
JOURNAL OF COMPUTER AND SYSTEM SClENCES 42, 2888306 (1991)

Improved Algorithms for Graph Four-Connectivity*

ARKADY KANEVSKY

Department of Computer Science, Texas A&M University,
College Station, TX 77843

AND

VIJAYA RAMACHANDRAN

Department of Computer Sciences,
University of Texas, Austin, Texas 78712

Received March 3, 1988; revised January 23, 1990

We present a new algorithm based on open ear decomposition for testing vertex four-con-
nectivity and for finding all separating triplets in a triconnected graph. A sequential implemen-
tation of our algorithm runs in O(n2) time and a parallel implementation runs in O(log*n)
time using O(n2) processors on an ARBITRARY CRCW PRAM, where n is the number of
vertices in the graph. This improves previous bounds for the problem for both the sequential
and the parallel cases. The sequential time bound is the best possible, to within a constant
factor, if the input is specified in adjacency matrix form, or if the input graph is dense.
0 1991 Academic Press, Inc.

1. INTRODUCTION

This paper deals with the problem of determining four-connectivity in an
undirected graph. Connectivity is an important graph property and there has been
a considerable amount of work on algorithms for determining k-connectivity in
graphs. An important application of this property is that a k-connected network
can operate in a reliable manner in the presence of up to k node or link failures.

There are well-known sequential linear-time algorithms for determining graph
connectivity and biconnectivity (see, e.g., [Ev]), as well as triconnectivity [HoTa,
FuRaTh]. The best previously published deterministic sequential algorithms for
testing graph 4-connectivity have time complexity O(nm), where n is the number of
vertices in the input graph and m is the number of edges. There are two such algo-

* This research was supported by National Science Foundation under ECS 8404866, by the Semi-
conductor Research Corporation under 86-12-109, and by the Joint Services Electronics Program under
NOOO14-84-C-0149 while both authors were with the Coordinated Science Laboratory, University of
Illinois, Urbana, IL. A preliminary version of this paper appeared in the Proceedings of the 28 th Annual
IEEE Symposium on Foundations of Computer Science, 1987 [KanRa].

288
0022-0000/91 $3.00
Copyright 0 1991 by Academic Press, Inc.
All rights of reproductmn in any form reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81162016?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ALGORITHMS FOR FOUR-CONNECTIVITY 289

rithms. One is based on a reduction to network flow [EvTa, Ev2, Ga, GiSo]. The
other uses the O(m) algorithm for testing triconnectivity [HoTa, FuRaTh] to test
four-connectivity in a triconnected graph in O(mn) time by deleting each vertex of
the graph in turn, and testing triconnectivity in the resulting graph; this algorithm
also finds all separating triplets in the graph, if the graph is not triconnected.
For the problem of finding all separating k-sets, it is known that the number of
separating k-sets in a k-connected graph is O(n’) for any fixed k [Ka]. We also
note that there are some randomized algorithms for testing k-connectivity for k > 3
[BeX, LiLoWi]; the running time of these algorithms is Q(n5’2).

In this paper we present a new sequential algorithm, based on open ear decom-
position [Lo, MaScVi, MiRa, Wh], that tests vertex four-connectivity and finds all
separating triplets in a triconnected graph in O(n2) time. This represents an
improvement in the running time over all previous algorithms for the problem,
both deterministic and probabilistic. We also present a parallel implementation of
the algorithm, which runs in O(log2 n) time using O(n*) processors on an
ARBITRARY CRCW PRAM. For comparison the best previous processor count
for an NC algorithm for this problem is O(nm), which is obtained by running n
parallel applications of the parallel triconnectivity algorithms in [MiRa2, RaVi,
FuRaTh] on the input graph with a vertex deleted.

Our algorithm thus gives improved performance bounds for both the sequential
and the parallel cases. It also gives a completely new method for the four-connec-
tivity problem, which is of interest in itself. We also note that the algorithm is easily
modified to work for edge four-connectivity as well with the same time and pro-
cessor bounds: we use an ear decomposition instead of an open ear decomposition.
While a sequential O(n2) time algorithm is already known for edge four-connec-
tivity [Ma], our algorithm gives the best processor count for an NC algorithm for
edge four-connectivity. We do not elaborate further on this.

The rest of this paper is organized as follows. In Section 2 we describe the model
of parallel computation we use. Section 3 gives graph-theoretic definitions.
Section 4 relates open ear decomposition to vertex four-connectivity, and gives a
high-level description of the four-connectivity algorithm. Finally, in Section 5, we
show how to implement this algorithm in O(n*) sequential time, and in O(log’ n)
parallel time with n2 processors on an ARBITRARY CRCW PRAM.

2. MODEL OF PARALLEL COMPUTATION

The model of parallel computation that we will be using is the Parallel Random
Access Machine or PRAM [KarRa], which consists of several independent sequen-
tial processors, each with its own private memory, communicating with one
another through a global memory. In one step, each processor can read one global
or local memory, execute a single RAM operation, and write into one global or
local memory location.

PRAMS are classified according to restrictions on global memory access. An

290 KANEVSKYANDRAMACHANDRAN

EREW PRAM is a PRAM for which simultaneous access to any memory location
by different processors is forbidden for both reading and writing. In a
CREW PRAM simultaneous reads are allowed but no simultaneous writes. A
CRCW PRAM allows simultaneous reads and writes. In this case we have to
specify how to resolve write conflicts. We will use the ARBITRARY model in which
any one processor participating in a concurrent write may succeed, and the algo-
rithm should work correctly regardless of which one succeeds. Of the three PRAM
models we have listed, the EREW model is the most restrictive, and the
ARBITRARY CRCW model is the most powerful. Any algorithm for the
ARBITRARY CRCW PRAM that runs in parallel time T using P processors can
be simulated by an EREW PRAM (and hence by a CREW PRAM) in parallel time
Tlog P using the same number of processors, P (see, e.g., [KarRa]).

Let S be a problem that, on an input of size n, can be solved on a PRAM by
a parallel algorithm in parallel time t(n) with p(n) processors. The quantity
w(n) = t(n) .p(n) represents the work done by the parallel algorithm. Any PRAM
algorithm that performs work w(n) can be converted into a sequential algorithm
running in time w(n) by having a single processor simulate each parallel step of the
PRAM in p(n) time units. More generally, a PRAM algorithm that runs in parallel
time t(n) with p(n) processors also represents a PRAM algorithm performing
O(w(n)) work for any processor count P < p(n).

Define polylog(n) = lJk,,, O(logk n). Let S be a problem for which currently the
best sequential algorithm runs in time T(n). A PRAM algorithm A for S, running
in parallel time t(n) with p(n) processors, is efficient if

(a) t(n) = polylog(n); and
(b) the work w(n) = p(n). t(n) is T(n). polylog(n).

An efficient parallel algorithm is one that achieves a high degree of parallelism
and comes to within a polylog factor of optimal speedup. A major goal in the
design of parallel algorithms is to find efficient algorithms with t(n) as small as
possible. The simulations between the various PRAM models make the notion of
an efficient algorithm invariant with respect to the particular PRAM model used.
For more on the PRAM model and PRAM algorithms, see [KarRa].

Our efficient parallel algorithm for four-connectivity works on an ARBITRARY
CRCW PRAM. Some of the subroutines also work on the more restrictive EREW
PRAM model within the same processor and time bounds.

3. GRAPH-THEORETIC DEFINITIONS

An undirected graph G = (V, E) consists of a vertex set V and an edge set E con-
taining unordered pairs of distinct elements from V. A path P in G is a sequence
of vertices (v,, vk) such that (vi- i, vi) E E, i = 1, k. The path P contains the
vertices vO, uk and the edges (v,, v,), (u,_,, uk) and has endpoints vO, vk, and

ALGORITHMS FOR FOUR-CONNECTIVITY 291

internal vertices vl, vk- ,. Given a path (v,, v,), vi is to the left of vi and c,
is to the right of vi if i < j. The path P is a simple path if vO, ck . 1 are distinct and
01 > ..., vk are distinct. P is a simple cycle if it is a simple path and v0 = vk. A single
vertex is a trivial path with no edges.

Let P = (vO, vk-,) be a simple path. The path P(v,, v,), 0 d i, j d k - 1, is the
simple path connecting vi and vj in P, i.e., the path (v,, v,, , , v,~), if i <j or the
path (vi, v, + I, vi), if j < i. Analogously, P[v,, rj] consists of the path segments
obtained when the edges and internal vertices of P(vi, v,) are deleted from P.

Let G = (V, E) be an undirected graph and let V’ c V. A graph G’ = (Y’, E’) is
a s&graph of G if E’c En {(vi, vi) (vi, vje V’}. The subgraph of G induced b.v V’
is the graph G” = (V’, E”), where E” = En ((v,, vi) 1 vi, VIE V’}.

An undirected graph G = (V, E) is connected if there exists a path between every
pair of vertices in V. For a graph G that is not connected, a connected component
of G is a maximal induced subgraph of G which is connected.

A vertex v E V is an articulation point (ap) or cutpoint of a connected undirected
graph G = (V, E) if the subgraph induced by V- (c) is not connected. G is
biconnected if it contains no articulation point.

Let G = (V, E) be a biconnected undirected graph. G is triconnected if for all
pairs of vertices vl, v2 E V the induced subgraph on V - {v, , v2) is connected.

Let G = (V, E) be a biconnected graph which is not triconnected. A (nontrivial)
separating pair in G is a pair of vertices U, v in V whose removal decomposes G into
two or more connected components. A trivial separating pair is a pair of vertices u, u
with (u, v) an edge (note that a pair of vertices can be both a trivial and a non-
trivial separating pair). A candidate pair is a trivial or nontrivial separating pair; a
candidate sef is a set of vertices such that each pair in the set is a candidate pair.

A triplet (v,, rz, v3) of unordered distinct vertices in V is a separating triplet of
a triconnected graph if the subgraph induced by V - {r, , L‘~, vj j is not connected.
G is four-connected if it contains no separating triplet.

An ear decomposition [Lo, Wh] D = [PO, P,. ,] of an undirected graph
G = (V, E) is a partition of E into an ordered collection of edge disjoint simple
paths P,, P,- , such that P, is a simple cycle and each endpoint of Pi,
i = 1, r - 1, is contained in some P,, j < i, while none of its internal vertices are
contained in any P,, j < i. The paths in D are called the ears. D is an open ear
decomposition if none of the Pi, i= 1, r - 1, is a simple cycle. A trivial ear is an
ear consisting of a single edge. A graph has an open ear decomposition if and only
if it is biconnected [Wh].

Let G = (V, E) be a biconnected graph, and let Q be a subgraph of G. We define
the bridges of Q in G as follows (see, e.g., [Ev]): Let V’ be the vertices in G - Q,
and consider the partition of V’ into classes such that two vertices are in the same
class if and only if there is a path connecting them which does not use any vertex
of Q. Each such class K defines a (nontrivial) bridge B = (Vs, EB) of Q, where B is
the subgraph of G with V, = Ku {vertices of Q that are connected by an edge to
a vertex in K}, and E, containing the edges of G incident on a vertex in K. The
vertices of Q which are connected by an edge to a vertex in K are called the

292 KANEVSKY AND RAMACHANDRAN

attachments of B. An edge (u, u) in G- Q, with both u and v in Q, is a trivial bridge
of Q, with attachments u and u. The nontrivial and trivial bridges together form the
bridges of Q in G.

Let G = (V, E) be a biconnected graph, and let Q be a subgraph of G. We define
the bridge graph of Q, S = (V,, 5,) as follows: Let the bridges of Q in G be Bi,
i = 1, k. Then V, = V(Q)u{B ,,..., Bk) and Es = E(Q)u {(u, Bi)lue VQ),
1~ i< k, and v is an attachment of Bi}.

Let G = (V, E) be a graph and let P be a simple path in G. If each bridge of P
in G contains exactly one vertex not on P, and there is a bridge B of P with the
endpoints of P as attachments then we call G the star graph of P and denote it by
G(P). We denote the bridges of P in G(P) by stars. The unique vertex of a star that
is not contained in P is called its center. Note that, in a connected graph G, the
bridge graph of any simple path in G is a star graph.

Let G(P) be a star graph, and let S,, Sk be some of the stars in G(P). The
operation of coalescing the stars Si, i= 1, k, removes these stars and replaces
them by a new star S whose attachments are the union of the attachments of
s Sk. , , ...>

Let G be a biconnected graph with an open ear decomposition D=
[PO, Pr-,]. Let the bridges of Pi in G that contain nonattachment vertices on
ears numbered lower than i be B,, B,. We shall call these the anchor bridges of
Pi. The ear graph of Pi, denoted by G,(P,), is the graph obtained from the bridge
graph of Pi by coalescing all stars corresponding to anchor bridges, and by deleting
multiple two-attachment bridges. We will call this coalesced star the anchoring star

FIG. 1. Illustrating the definitions. (a) G with open ear decomposition D = [P,, P,, P,, P,, P,];
P,=(A,B,C,D,E,A), P,=<C,G,F,E), P,=(D,F), Ps=<G,H,F), Pd=<CiE). (b)Bridges of
P,. (c)Bridge graph G, of P,. (d) Ear graph of P,

ALGORITHMS FOR FOUR-CONNECTIVITY 293

of G,(P,). For any two vertices x,y on Pi, we denote by V,(x,y), the internal
vertices of P;(x, y); we denote by Vi [x, y], the vertices in (Pi [x, y] - {x, y })A u
(vertices in the anchor bridges of Pi}. For a star graph G(P) with no anchoring
star, the set V(x, y) represents the vertices in P(x, y) - {x, y }, and the set V[x, J]
represents the vertices in P[x, y] - {x, y}.

Figure 1 illustrates some of our definitions relating to bridges.
Two stars S, and Sk in a star graph G(P), where P is a simple path, interlucr

(see, e.g., [Ev, p. 1493) if one of the following two holds:

(1) there exist four distinct vertices a, 6, c, d in increasing order in P such that
a and c belong to Si(S,) and b and d belong to S,(S,); or

(2) there are three distinct vertices on P that belong to both S, and S,.

Given a star graph G(P), the coalesced graph G’ of G is the graph obtained from
G by coalescing all pairs of stars that interlace.

4. OPEN EAR DECOMPOSITION AND FOUR-CONNECTIVITY

LEMMA 1. Let G = (V, E) be a triconnected undirected graph ,for tchich
t = (x, y, z) forms a separating triplet. Let D = [P,, P,- ,] be an open ear decom-
position for G and let Gi(Pi) be the ear graph of ear P, fbr each i. Then there exists
an ear P, in D that contains two of the three vertices in t, say x and y, such that both
Vi(x, y) and V, [x, y] contain a vertex other than z, and every path from a vertex in
V,(x, y) to a vertex in Vi [x, y] in Gi passes through x, y, or z. Further ear P,
uniquely determines a connected component C in the subgraph induced h?,
V- {x, y, z}, in the sense that no other ear Pi in G that contains x, y and a vertex
in C, has the property that V,(x, y) - {x, y, z} is nonempty, and every path between
u vertex in V,(x, y) and a vertex in V, [x, y] in G, contains x, y, or z.

Proof. Since t = (x, y, z) forms a separating triplet, the subgraph of G induced
by V- {x, y, z} contains at least two connected components. Let C, and Cz be two
such connected components.

Case 1. The first ear P, contains no vertex in Cz (see Fig. 2).

FIG. 2. Case 1 in the proof of Lemma 1.

294 KANEVSKY AND RAMACHANDRAN

Consider the lowest-numbered ear, Pi, that contains a vertex u in C,. Since its
endpoints are distinct and must be contained in lower-numbered ears, Pi must enter
C2 through one of the three vertices in t, say x, and must leave C, through one of
the remaining two vertices in t, say y. Thus Pi must contain two of the three ver-
tices in t, and Vi(x, y) contains at least one vertex other than z. Further, all vertices
in Vi(x, y) lie in C,, and none of the vertices in Vi [x, y] lie in C,. Thus the vertices
in Vj(x, y) are separated from the vertices in V, [x, y] by t.

To prove the second claim of the lemma for this case, let C, = C, and suppose
Pi is an ear that contains x and y and also a vertex, say U, in C. Then j> i, since
P, is the lowest-numbered ear to contain a vertex in C. Since Pi contains x and y,
x and y must be the endpoints of P,, and all other vertices on it lie in Cu {z}.
Further, since i<j and vertex v is contained in Pi, the vertices in the bridge of Pj
containing v (call it B’) are in Vi [x, y], and since C is a connected component in
the subgraph induced by V- {x, y, z}, there is a path from B’ to the vertex u in
Vj(x, y) that avoids X, y, and z. This establishes the second claim of the lemma for
this case.

Case 2. P, contains a vertex in C,:

If P, contains no vertex in C,, then Case 1 applies to C,. Otherwise PO contains
at least one vertex in C, and one vertex in Cz. But then, since P, is a simple cycle,
it must contain two of the three vertices in t, say x and y, such that (by the
argument of Case l), every path from a vertex in VO(x, y) to a vertex in VJx, y]
contains x, y, or z, and PO is the unique ear with this property, which has a vertex
in C,. Thus, by taking Cz to be C, the lemma is established. 1

We will say that a separating triplet t = (x, y, z) separates ear Pi if Pi contains
two of the vertices in t, say x and y, with Vi(x, y) not a subset of {z}, and the ver-
tices in Vi(x, y) are disconnected from the vertices in Vi[x, y] in the subgraph of
G induced by V- {x, y, z}. We will denote this by writing t as i([x, y], z) to
indicate that Pi contains x and y, and Vj(x, y), which contains a vertex other than
z, is separated from V,[x, y] by {x, y, z}. By Lemma 1, every separating triplet in
G separates some ear, and hence can be written in the above form. We will write
i([x, y], z) as simply ([x, y], z), if the ear number is obvious from the context.

Analogously, for a star graph G(P), a triplet of vertices t = ([x, y], z) in G
separates P if P contains x and y, V(x, y) - (z} and V[x, y] - {z} are nonempty,
and the vertices in V(x, y) are separated from the vertices in V[x, ~1 when x, y, and
z are deleted from G(P).

LEMMA 2. Let G = (V, E) be a triconnected graph with an open ear decomposition
D = [P,,, P,- 1 1. Let i([x, y], z) separate Pi. rf Pi does not contain z then

(i) z is an articulation point in one of the bridges of Pi, and
(ii) if Pi is the largest-numbered ear that contains z, then j> i.

Proof: Let B be the bridge of Pi containing z. Then B has an attachment in both

ALGORITHMS FOR FOUR-CONNECTIVITY 295

V,(X, Y) and Pi[x, yl- {x, Y}, since otherwise, x, y would be a separating pair. Let
u be an attachment of B in Vi(x, y) and let h be an attachment of B in
P;[x, y] - {x, y}. Suppose there is a path p between a and b in B that avoids 2.
Then, if x, y, and z are removed from G, the vertices of V,(x, y) will remain connec-
ted to the vertices of V,[x, y] by the path p. But this is not possible since
([x, y], z) separates Pi. Hence, every path between a and h in B must pass through
z; i.e., z is a cutpoint of B.

Let C be the connected component containing I/,(x, p) in G - {x, y, z}. To prove
the second claim of the lemma, we note that, by Lemma 1, P, is the lowest-
numbered ear containing a vertex in C. Hence every edge (w, z) with w in C
must belong to an ear numbered greater than i. By the first part of this proof, we
know that there is at least one such edge (w, z). This proves the second part of the
lemma. 1

Using Lemma 2, we can classify triplets separating ear P, into two types:
Type 1 separating triplets are those for which P, contains all three vertices; type 2
separating triplets are those for which Pi contains two vertices, and the third is an
articulation point in one of the bridges of P,. Type 1 separating triplets can be
further classified into three types (see Fig. 3): Type la, in which z is to the left of

a

Frc;. 3. Classification of type 1 separating triplets. (a) Type la triplet. (b) Type lb triplet. (c) Type Ic
triplet.

51 I 42’3-4

296 KANEVSKY AND RAMACHANDRAN

x and y on Pi, type lb, in which z is to the right of x and y, and type lc, in which
z is between x and y on Pi.

Let ([x, y], z) be a type 2 triplet separating Pi. By Lemma 2, z is a cutpoint in
a bridge, B, of P,, and z lies on an ear P,, j> i. We shall refer to such cutpoints
as high cutpoints. Let B1, B, be the connected components of B- {z}, and let C
be the set of remaining bridges of Pi. Then C lJf=, { Bi} are the bridges of P, in
G- {z}. Let J,(z) be the ear graph of Pi in G- {z}.

LEMMA 3. Let G be a triconnected graph, and let G,(P,) be the ear graph of Pi.
Then,

(a) ([x, y], z) is a type 1 triplet separating Pi in G if and only if it is a type 1
triplet separating Pi in Gi.

(b) ([x, y], z) is a type 2 triplet separating Pi in G if and only if (x, y) is a pair
separating Pi in J,(z).

ProojI We note that, since G is triconnected, every anchor bridge of Pi in G has
attachments to the two endpoints of Pi, and to at least one internal vertex of Pi;
we shall call this Fact 1. We prove parts (a) and (b) of the lemma separately.

(a) First we note that if ([x, y], z) is a type 1 triplet separating Pi in the ear
graph Gi then it certainly separates Pi in G.

For the reverse, two cases arise:

(i) If x and y are the endpoints of Pi, then by Fact 1, ([x, y], z) is a type 1
triplet separating P, if and only if every anchor bridge of Pi has exactly one internal
attachment on Pi, and that attachment is at z. If this holds in G then it continues
to hold in the ear graph Gi, since by coalescing such anchor bridges, we do not
create any new attachments.

(ii) If either x or y is not an endpoint of Pi, then no anchor bridge of Pi can
have an attachment in Vi(x, y) - {z}. Once again, this condition will continue to
hold if all anchor bridges are coalesced, and hence will be true in Gi if it was true
in G.

(b) As in case (a), if (x, y) is a pair separating Pi in J,(z) then clearly ([x, y], z)
is a type 2 triplet separating Pi in G. For the reverse, once again, two cases arise.

B (i)
z is a high cutpoint in an anchor bridge B. Let B decompose into bridges

1, ..a, B,, C,, C, when z is removed, where the Bj are the anchor bridges of Pi
in G- {z} and the C, are nonanchor bridges. By Lemma 1, each Bj has all of its
attachments in Pi[x, y] and each C, has all of its attachments in Pi(x, y) or all of
its attachments in Pi[x, y]. Also, since ([x, y], z) is a triplet separating Pi in G,
any bridge of Pi other than B will have either all of its attachments in Pi(x, y) or
all of its attachments in Pi[x, y]. Hence x, y will separate Pi in Ji(z).

ALGORITHMSFOR FOUR-CONNECTIVITY 297

If one of x or y is not an endpoint of Pi, then every anchor bridge B’ other than
B has no attachment in vi(x, v). This continues to hold in G, as well.

(ii) z is a cutpoint in a nonanchor bridge: In this case no anchor bridge of
G can have an attachment in Vi(x, y), and the result follows by an argument as in
case i. 1

Finally, we make the following observation on the size of all of the ear graphs
in G.

OBSERVATION. Let G be an n-node, m-edge triconnected graph w?th an open eat
decomposition D. Let Hi(Qi), i= 1, s, be the bridge graphs qf the nontrivial ears
in D, and for each i, let ear Qi have n, nodes, and let the bridges qf Q, in H, have
m, edges. Then

(i) Ci=, n, = O(n);
(ii) xi=, mi = O(n’).

Proof. (i) The number of nontrivial ears in G, excluding P,, is no more than
n - 3, and each node in G is an internal node of exactly one nontrivial ear. Hence,
charging the end vertices of each nontrivial ear QZ to its index i, we obtain
CT=, n, < n + 2(n - 3) which is O(n).

(ii) Each edge in G appears at most once as an internal attachment in the Q,
and at most n times as an end attachment in the Qj, i = 1, s. Hence,
C.i=, mj < m + 2(n - 3) n, which is O(n2). 1

Based on the characterization in Lemmas 1 to 3, we obtain the following high-
level algorithm to find all separating triplets in a triconnected graph.

Four Connectivity Algorithm: Finding All Separating Triplets in a Triconnected
Graph G = (V, E).

(1) Find an open ear decomposition D = [PO, P,- ,] for G.
(2) For i = r - 1, r - 2, 0 do

if P, is a nontrivial ear then
(A) Construct the ear graph G,(P,).
(B) Use Gj(P,) to find all type 1 triplets separating Pi.
(C) In the bridges of Pi, find the cutpoints that lie on ears numbered higher
than i, and use them to find all type 2 triplets separating Pi.

Let / VI = n and IEl = m. Step 1 has a linear-time sequential algorithm and an
O(log n) time parallel algorithm with O(m) processors on a CRCW PRAM
[MaScVi, MiRa]. Step 2A has a linear-time sequential algorithm and an O(log n)
time parallel algorithm with O(m+ n) processors on an ARBITRARY CRCW
PRAM [FuRaTh].

298 KANEVSKYANDRAMACHANDRAN

Let ni be the number of vertices contained in Pi, and mi be the number of edges
incident on vertices contained in Pi. In Section 5.1, we present algorithms to find
type 1 triplets separating a nontrivial ear Pi in O(nf + m,) sequential time, and in
O(log ni) parallel time with nf processors on an EREW PRAM. In Section 5.2, we
show how to find all high cutpoints in the bridges of each ear, organized in a forest
of block-trees, in xi O(n + mi) time plus some additional time for processing trivial
ears, which is O(m) over the execution of the entire algorithm. This parallelizes into
an O(log* n) time algorithm to find cutpoints in bridges of all nontrivial ears on an
ARBITRARY CRCW PRAM with n2 processors. We use this to develop an algo-
rithm to find all type 2 triplets in xi O(n yli + m,) sequential time, and in O(log* n)
parallel time using xi O(n .n, + mi) processors on an ARBITRARY CRCW PRAM.
Thus by the Observation we obtain an O(n’) time sequential implementation of
Algorithm 1, as well as an O(log2 n) time parallel implementation on an
ARBITRARY CRCW PRAM with n2 processors.

5. FINDING ALL TRIPLETS THAT SEPARATE AN EAR

5.1. Finding Type 1 Separating Triplets

In this section we give algorithms to find type la, lb, and lc separating triplets
on an ear Pi. Recall that ([x, y], z) is a type 1 triplet separating Pi, if x, y, and z
lie on Pi, and the vertices in Vi(x, y) are separated from the vertices in Vi[x, y]
when x, y, and z are removed from Pi.

As shown in Lemma 3, if x and y are the endpoints of ear Pi then ([x, y], z) form
a type 1 triplet separating Pi if and only if the anchoring star in G,(P,) has exactly
one internal attachment on Pi, and that attachment is z. This is a simple condition
that can be checked in constant time with mi processors. For finding any other
type 1 triplet separating Pi, it suffices to view the ear graph G,(P,) as the path Pi
together with a collection of stars, and to identify all type 1 triplets separating P,
in Gi. For this we can work with a star graph G(P) without any reference to the
fact that it is the ear graph of an ear.

Let G(P) be a star graph with k vertices on P, 1 stars, and a total of p edges on
the stars. We present an O(k* + p) time sequential algorithm and an O(log k) time
parallel algorithm with k2 +p processors on an EREW PRAM to find all type 1
triplets separating P in G(P). Assume that the vertices on P are numbered in
order as 1, k from left to right.

For a closed interval [x, y] on P, let

L[x, y] be the leftmost attachment among all stars that have an attachment
in Cx,vl,
S[X, y] be the second leftmost attachment among all stars that have an attach-
ment in [x, y], and

ALGORITHMSFORFOUR-CONNECTIVITY 299

R[x, y] and M[x, y] be the rightmost and second rightmost attachments,
respectively, of stars that have an attachment in [x, y].

The following lemma is straightforward.

LEMMA 4. Let x, y, z he three vertices on P. Then

(a) ([x, y], z) is a type la triplet separating P if and onfJ% $
L[x+l,~‘-l]=z, S[x+l,y-113x, andR[x+l,y-l]<y;and

(b) ([x, y], z) is a type lb triplet separating P if and only if’
R[x+l,y-l]=z,M[x+1,y-1]~y,andL[x+1,~-1J3x.

We compute LCx,yl, XX,.YI, N-5~1, and M[x, J] for every interval [x, ,r]
with x < y by a doubling technique that first computes these values incrementally
for intervals whose size is a power of 2, and then computes the values for all
remaining intervals. This algorithm runs in O(k* + p) time sequentially, and in
O(log k) time on an EREW PRAM with k* + p processors.

Algorithm 1: Finding Type la Triplets.

(1.1) Initialize: For i= 1, k compute L[i, i], S[i, i], R[i, i], and M[i, i].
These values can be computed in O(k + p) sequential time and O(log k) parallel
time on an EREW PRAM with k -+ p processors by using bucket sort to order the
star edges in increasing order of attachment, with ties broken in decreasing order
of the leftmost (rightmost) attachment of the star the edge belongs to for L[i, i]
and S[i, i] (for R[i, i] and M[i, i]).

(1.2) For j= 1, [log kl compute, for each i, L[i, i + 2’ - 1] from
L[i, i + 2’ ’ - 11 and L[i + 2’-‘, i + 2’ - 11. Similarly compute S[i, i+2’],
R[i, i + 2’1, and M[i, i + 2’1. Each of these values can be computed in constant
time in parallel, and hence sequentially as well. Thus, this total step takes
O(k log k) time sequentially and O(log k) parallel time on an EREW PRAM with
k processors.

(1.3) For each pair [x, y], x < y, let i, be the integer satisfying
x + 2’” < J’ < x + 2“) + ‘. Compute L[x, y] from the precomputed values
L[x, x + 2’\1 - 1] and L[y - 2’1, + 1, y] in constant time. Similarly compute
S[x, y], R[x, y], and M[x, y]. As in Step 2, each of these values can be computed
in constant time, and hence this step requires O(k’) sequential time; it is
straightforward to implement this in O(log k) parallel time on an EREW PRAM
with k2 processors.

An analogous procedure identifies type lb separating triplets.
For type lc separating triplets, let L[x, y] and R[x, y] be as before. Let z, be a

vertex in [x, y] which is an attachment of a star with an attachment at L[x, y]:
analogously let zr be a vertex in [x, y] which is an attachment of a star with an

300 KANEVSKY AND RAMACHANDRAN

attachment at R[x, y]. Let S’[x, y] be the leftmost attachment of stars with an
attachment in [x, y] - {zI} and let M’[x, y] be the rightmost attachment among
stars with an attachment in [x, y] - {zr>. Then the following lemma is again
straightforward.

LEMMA 5. The triplet ([x, y], z) is a type lc triplet separating P if and only if
S’[x + 1, y - l] Z x, M’[x + 1, y - l] < y, and one of the following three conditions
holds:

(4 2, = z, = z; or

(b) L[x+l,y-1]3xandz=z,;or

(c) R[x+l,y-l]<yandz=z[.

Using Lemma 5 we can compute the type lc triplets separating P in a manner
analogous to the method used for finding type la and lb triplets separating P.

5.2. Finding Type 2 Triplets Separating an Ear

There are many implementation details in this algorithm. We give a high-level
description first, and then elaborate on each of the steps. We use the result in
Lemma 2 that if ([x, y], z) is a type 2 triplet separating Pi, then z is a high cut-
point; i.e., z is a cutpoint in one of the bridges of Pi, and z belongs to a higher-
numbered ear than Pi. Observe that the number of blocks (biconnected com-
ponents) and the number of articulation points in the bridges of an ear Pi are no
more than IZ. As a matter of notation, we will denote the star(s) in the ear graph
G,(P,) corresponding to a bridge or a collection of bridges B of Pi by s(B), and
similarly, the bridge(s) of Pi corresponding to a star or a collection of stars S
of G, by b(S). We now present the high-level algorithm for finding type 2 triplets
separating Pi. For convenience we assume that the vertices of G are numbered so
that any vertex contained in Pi has a smaller number than a vertex in the interior
of any Pi, j> i.

Algorithm 2: Finding Type 2 Triplets.

(2.1) For each star s of Gi, we construct a list L(s) of those pairs of vertices
x, y on Pi for which s is the only star that has an attachment in V,(x, y) and
Vi[x, y]. Note that there can be no more than nf entries in the lists for all of the
stars of Gi, since each pair can appear on at most one list. The list for each star
is in lexicographically increasing order on (x, y).

(2.2) For each ear Pi, we determine the high cutpoints in each of its bridges.
(2.3) For each bridge B of Pi, for each high cutpoint a in B, we find all

pairs of vertices separating Pi in P,u (B - {a}) (note that we do not include the
remaining bridges of Pi in this graph), using the triconnectivity algorithm in
[MiRa2, RaVi]. These separating pairs can be specified as candidate sets (see
Section 3). We maintain these candidate sets for all cutpoints for a given bridge B
in a properly sorted manner; we call this the candidate representation for B.

ALGORITHMSFOR FOUR-CONNECTIVITY 301

(2.4) We compare the entries in L(s) for each s with pairs of vertices in a
candidate set in the candidate representation for h(s), and each match gives a type 2
separating triplet for Pi.

We need the following observation.

OBSERVATION. Let z be a high cutpoint of a bridge B of Pi, and x, y, a puir qf’
vertices on P,. Then ([x, y], z) is a type 2 triplet separating P, if and only if

(a) (x, y) is a pair separating P, in the graph P, u (B - {z }), and

(b) s(B) is the only star of Gj that has an attachment in both V,(.u, y) and

Proof: If ([x, y], z) is a type 2 triplet separating Pi, then by part (b) of
Lemma 3 we know that (x, y) separates P, in Ji(z). Hence (x, y) is certainly a pair
separating P, in Pi u (B- {z}). Further if any other bridge B’ of P, has an attach-
ment in both VJx, y) and V, [x, y], then removal of x, y, and z leaves Vi(x, y)
connected with Vi [x, y], which is not possible since ([x, y], z) separates P, by
assumption. Hence part (b) of the observation must hold as well.

For the reverse, assume that parts (a) and (b) hold. Then it follows that X, ~9 is
a pair separating Pi in G - {z}, since by (b), no bridge other than B can connect
V,(x, y) with V, [x, y] in G - (x, y, z}. Hence ([s, ~1, z) must be a type 2 triplet
separating P,. m

All pairs of vertices on Pi satisfying property (b) appear on the list L(s(B)),
which we construct in Step 2.1. The pairs satisfying property (a) are those that lie
in a common candidate set in the candidate representation for B, which we construct
in Step 2.3. In Step 2.4 we scan these two sets of pairs of vertices, and identify
matches between the two sets; each such match gives a type 2 triplet separating Pi,
and every type 2 triplet separating P, appears as such a match. This establishes the
correctness of the above algorithm.

We now explain how to implement Steps 2.1 through 2.4 to obtain the stated
time and processor bounds.

Step 2.1. The algorithm for Step 2.1 is similar to the algorithms for finding
type 1 separating triplets. By Lemma 3, if x and y are the endpoints of ear P,, then
the anchoring star of Gi is the unique star containing vertices in both V,(x, .I’) and
Vi [x, ~1. For any other pair x, y we can work with a star graph G(P) without any
reference to the fact that it is the ear graph of an ear.

As in Section 5.1, given a star graph G(P) we compute certain values for each
interval of vertices on P. The values computed are L[x, y], S”[x, y], R[x, y], and
M”[x, y], where L[x, y] and R[x, y] are, as before, the leftmost and rightmost
attachments, respectively, among all stars that have an attachment in the closed
interval [x, y]. Let s, be a star with attachments at L[x, y] and in [x, y], and
similarly, let s, be a star with attachments at R[x, y] and in [x, y]. S”[x, y] is the
leftmost attachment among all stars with an attachment in [x. y] except star s,;

302 KANEVSKY AND RAMACHANDRAN

similarly, M”[x, y] is the rightmost attachment among all stars with an attachment
in [x, y] except s,. From these definitions, the following lemma is straightforward.

LEMMA 6. Star s is the only star that has an attachment in V(x, y) and V[x, y]
tf and only tf one of the following three holds:

(a) S”[x+l,y-112x, R[x+l,y-l]<y, ands=s,;or
(b) L[x+l,y-l]>x, M”[x+l,y-l]<y, ands=s,;or
(c) S”[x+l,y-112x, M”[x+l,y-l]<y, ands=s,=s,.

Using Lemma 6 and the method of Section 5.1, we can form the lists L(s) for all
stars of all nontrivial ears in O(n2) sequential time and in @log n) parallel time on
an EREW PRAM with n2 processors.

Step 2.2: Sequential Algorithm. Let Hi= Uj=, Pi. Let A,, A, be the bridges
of Hi. Let Bj be Aj with its attachment edges and vertices deleted. A split of Pi is
an articulation point in one of the Bj. An ex-node of Pi is a vertex in one of the
B, adjacent to an attachment on Hi. An adj-node of Pi is an ex-node, which is
adjacent to a vertex on Pi. For example, in Fig. 4, H, has four nontrivial bridges
and one trivial bridge; vertices a, 6, and c are some of the split nodes of P,; vertices
a, d, and e are some of the ex-nodes of P, of which a and d are adj-nodes as well.
We observe that by Lemma 2, if ([x, y], z) is a type 2 triplet separating Pi then z
is a split or ex-node of Pi or z must be an attachment of one of the Aj on Hip,.

We organize the splits and ex-nodes of P, in a forest of split-trees analogous to
the tree of biconnected components. There is one split-tree for each Bj, whose ver-
tices are the splits, ex-nodes and blocks of Bj. There is an edge between a split and
each block it lies in, as well as an edge between each ex-node (that is not also a
split) and the unique block in which it lies. For u an ex-node, let A(u,j) be thejth
smallest vertex adjacent to u and belonging to H, _, , if it exists, null otherwise, for
j= 1, 2, 3,4. By our numbering scheme for vertices, A(u,j), j= 1, 4 (when
defined), represent four distinct vertices on lowest-numbered ears adjacent to u. The
number of entries in A(u,j), over all ex-nodes u, is O(n).

Let Fj- i be Hip i with the two endpoints of Pi deleted. (In Fig. 4 FO is the single
vertex PO.) Let A(u) be the set of two smallest nonnull vertices in Fi- , n { A(u, 1),
A(u, 2), A(u, 3), A(u, 4)). By construction, A(u) contains the two smallest-
numbered vertices in Fip i adjacent to u (when they exist), and can be obtained in
constant time per ex-node, since we have the A(u,j). Note that if we did not have
the A(u, j), finding the A(u) would take time proportional to the number of edges
incident on the ex-nodes and that could be as large as O(m).

From the forest of split-trees we derive the forest of trees of biconnected com-
ponents (or block-trees) of the bridges of Pi by first constructing the augmented
graph as follows: We augment the vertex set of the forest of split-trees by adding
in vertex v to represent Hi-i--a potential “high-block” (i.e., a connected compo-
nent that contains no high cutpoints)-and we add in the set of vertices

ALGORITHMS FOR FOUR-CONNECTIVITY 303

u = u ex-nodesu A(u)-potential high cutpoints. We put in an edge between r and
each vertex in U as well as edges between u and vertices in A(U), for each ex-node U.

Observe that a vertex w in Hi_ , is a high cutpoint in a bridge of Pi if and only
if, for some split-tree T of Pi, w is the only vertex in F, ~, that is adjacent to a
vertex in T. Since by construction A(u) includes the two smallest vertices adjacent
to U, if they lie in Fjp,, it follows that w is a high cutpoint in a bridge of Pi if and
only if it is a cutpoint in the augmented graph. Similarly, an ex-node u in a split-
tree T is a cutpoint separating vertices in T from the rest of the bridge of Pi if and
only if u has an attachment in Fip, and no other ex-node in T has an attachment
in F,. ,. This again holds if and only if u is a cutpoint in the augmented graph.
Hence the blocks and articulation points in this augmented graph are precisely the

pO
FIG. 4. Illustrating Step 2.2 for finding type 2 separating triplets. (a) Graph G with open ear decom-

position indicated by ear number along edges. (b) Some splits, ex-nodes, and adj-nodes for P, in G.

304 KANEVSKY AND RAMACHANDRAN

blocks and articulation points in the bridges of Pi. We find these in O(n) sequential
time, using a linear-time algorithm for biconnectivity [Ta]. At this point we have
the forest of block-trees for the bridges of P,. In additional O(mi) time, we can
obtain all of the adj-nodes by scanning all edges incident on the internal vertices
of Pi.

All that remains is to obtain incrementally the split-trees for P, and the A(u,j)
for the new ex-nodes of P, in an efficient way, where PI is the next nontrivial ear.
To update information for PI, we first process the forest of split-trees for Pi to
eliminate those splits and blocks that disappear and the new ones that appear when
pi9 pi-l, ..7 p[+l are added. This is done in O(n + m,+ 1 -i) time by finding
blocks, cutpoints, and ex-nodes in the graph Uj Bj uk=,+, P, u {attachment edges
of each B, in the interior of Pi}. This gives us the split-trees for P,. The new
ex-nodes for P, are the nodes in the interior of Pi adjacent to a vertex in H,; in
particular, this includes the nodes in the interior of Pi adjacent to its endpoints.
We compute the A(u,j) values for these new exnodes. This computation takes
O(m) time over the entire execution of the algorithm. Now we are ready to find
type 2 triplets separating P,.

Parallel Implementation of Step 2.2. This step is similar to the algorithms in
[MiRa2, RaVi] that find the ear graphs of all nontrivial ears. The only difference
is that we now find the forest of block-trees instead of connected components. For
this we can use any efficient parallel block finding algorithm [Ma&Vi, MiRa,
TaVi]. By noting that the total size of the graphs present at each stage of the
algorithm is O(n*), we obtain an O(log* n) time parallel algorithm on an
ARBITRARY EREW PRAM with n2 processors.

Step 2.3: Sequential Algorithm. We number the vertices in the forest of block-
trees in post order with respect to a depth first search. We label each attachment
edge to Pi in the bridges of Pi by the number of the block it belongs to (since each
such edge is incident on an adj-node, this is done in constant time per edge). We
remove any multiple occurrences of edges with the same block number and attach-
ment. Since the number of blocks and the number of articulation points is O(n)
(over all bridges of Pi) this step can be done in O(n + mi) time for all of the bridges.

We now sort (using bucket sort) the labeled attachment edges in increasing order
of the attachments, with edges having the same attachment sorted in increasing
order of their label, and we leave the sorted edges in stacks corresponding to their
attachment number. Now, with another postorder traversal of the block-trees, we
can determine, for each cutpoint s of each bridge B of ear Pi, the stars formed from
B when s is deleted from B, in O(n + mi) time.

At this point, for each high cutpoint x of bridge B, we have s(B- {xl), the
collection of stars formed from B when x is removed from B. Each of these stars
has no more than n, attachments. Using the algorithm in [MiRa2] we can find the
separating pairs on Pi corresponding to these stars in O(k . ni) time, where k is the
number of stars. These are organized as the vertices on the faces of the planar
embedding of the coalesced graph of P, u s(B - {x>) [MiRaZ]; we call this the

ALGORITHMS FOR FOUR-CONNECTIVITY 305

candidate collection for s(B - {x}). This has an O(k . ni) size representation. We find
such a collection for each cutpoint. This procedure takes O(n ni) time over all cut-
points of all bridges of P,, since the number of stars formed in all of these graphs
is no more than 2n.

In order to execute Step 2.4 efficiently, we store the candidate collections in a
special way. Let us confine our attention to a specific bridge B (note that the
candidate collections are obtained bridge by bridge). Let X and Y be a pair of
candidate sets in the set of candidate collections for B. Then we note that the spans
of X and Y are either disjoint or one contains the other (the span of a candidate
set is the interval [a, h], where a is the lowest-numbered and h is the highest-num-
bered vertex in the candidate set). We represent these candidate sets in a special
form called the candidate representation of B as follows: We maintain each
candidate set as a list, a candidate list, with vertices ordered in increasing order of
their number. We have ni stacks, one for each vertex on Pi, and in the stack for ver-
tex c, we place pointers to all candidate lists that contain U. These pointers are
arranged in increasing order of the lowest-numbered vertex in the candidate list,
with ties broken in decreasing order of the highest-numbered vertex in the
candidate list (the topmost pointer points to the candidate list with the lowest num-
bered vertex). For each candidate list we maintain a pointer to the current lowest-
numbered vertex in the candidate list; initially the pointer for each candidate list
points to its lowest-numbered vertex.

Parallel Implementation of Step 2.3. This step can be implemented on ear P,
in O(log* n) time with O(n . ni) processors using efficient parallel algorithms for
computing postorder numbering on trees [TaVi], for sorting [Co], and for finding
separating pairs in a star graph [MiRa2].

Step 2.4: Sequential Algorithm. We scan the entries in L(s(B)) in order. If the
current entry is (x, v), we look at the topmost candidate list R in the stack for
vertex y in the candidate representation for bridge B and check its current lowest-
numbered vertex Z. If z > .X then we proceed to the next entry in L(s(B)). If z = .Y
then we have found a match, and hence a type 2 triplet separating Pi. If z < X, we
move the pointer for R along the list until it points to a vertex u 2 X. If u = X, then
we have located a type 2 triplet and we leave the pointer at u. If u = Y then we pop
the pointer to R off the stack and proceed to check the next candidate list in the
stack for y; if .r > u > x we leave the pointer at u and proceed to the next entry in
L(.s(B)). It is easy to see that this scan locates all type 2 triplets (C-u, ~31, Z) with z
in B, and the time it takes is proportional to the sizes of L(s(B)) and the candidate
lists for B. Hence, over all bridges of Pi this procedure takes time O(n’ + n ‘12,) =
O(n n,).

Parallel Implementation of Step 2.4. To implement Step 2.4 in parallel we
allow ourselves O(log n) time per entry (x, JJ) on L(s(B)) to determine if x lies in
the same candidate list as y for some entry in stack y; this is accomplished by
binary search on the entries in stack 4’ followed by a binary search on the vertices
in the relevant candidate list R.

306 KANEVSKY AND RAMACHANDRAN

REFERENCES

CBW M. BECKER, W. DEGENHARDT, J. DOENHARDT, S. HERTEL, G. KANINKE, W. KEBER,
K. MEHLHORN, S. NAHER, H. ROHNERT, AND T. WINTER, A probabilistic algorithm for vertex
connectivity of graphs, Inform. Process. Left. 15, No. 3 (1982), 135-136.

cc01 R. COLE, Parallel merge sort, in “Proceedings, 27th IEEE Ann. Symp. on Foundations of
Comp. Sci., 1986,” pp. 51 l-516.

CEvl S. EVEN, “Graph Algorithms,” Computer Science Press, Rockville, MD, 1979.
CEv21 S. EVEN, An algorithm for determining whether the connectivity of a graph is at least k,

SIAM J. Comput. 4 (1975), 393-396.
[EvTa] S. EVEN AND R. E. TARJAN, Network flow and testing graph connectivity, SIAM J. Compur.

4 (1975), 507-518.
[Gal Z. GALIL, Finding the vertex connectivity of graphs, SIAM J. Comput. 9 (1980), 197-199.
[GiSo] M. GIRKAR AND M. SOHONI, “On Finding the Vertex Connectivity of Graphs,” Tech. Report

ACT-77, Coordinated Science Laboratory, University of Illinois, Urbana, II, May 1987.
[HoTa] J. E. HOPCROFT AND R. E. TARJAN, Dividing a graph into triconnected components, SIAM

J. Comput. (1973), 135-158.
WI A. KANEVSKY, “On the Number of Minimum Size Separating Vertex Sets in a Graph,” Tech.

Report ACT-80, Coordinated Science Laboratory, University of Illinois, Urban, IL,
July 1987.

[KanRa] A. KANEVSKY AND V. RAMACHANDRAN, Improved algorithms for graph four-connectivity, in
“Proceedings, 28th Ann. IEEE Symp. on Foundations of Comp. Sci., 1987,” pp. 252-259.

[KarRa] R. M. KARP AND V. RAMACHANDRAN, Parallel algorithms for shared memory machines,
in “Handbook of Theoretical Computer Science,” North-Holland, Amsterdam, 1990,
pp. 869-941.

[LiLoWi] N. LINIAL, L. LOVASZ, AND A. WIGDERSON, A physical interpretation of graph connectivity,
and its algorithm applications, in “Proceedings, 27th IEEE Ann. Symp. on Foundations of
Comp. Sci., 1986,” pp. 39-48.

CL01 L. LOVASZ, Computing ears and branchings in parallel, in “Proceedings 26th IEEE Ann.
Symp. on Foundations of Comp. Sci., 1985,” pp. 464467.

LMal D. MATULA, Determining edge connectivity in O(nm), in “Proceedings, 28th IEEE Ann.
Symp. on Foundations of Comp. Sci., Los Angeles, CA, 1987,” pp. 252-259.

[MaScVi] Y. MAON, B. SCHIEBER, AND U. VISHKIN, Parallel ear decomposition search (EDS) and
St-numbering in graphs, in “VLSI Algorithms and Architectures,” Lecture Notes in Com-
puter Science Vol. 277, pp. 34-45, 1986.

[MiRa] G. L. MILLER AND V. RAMACHANDRAN, Efficient parallel ear decomposition with applica-
tions, manuscript, MSRI, Berkeley, CA, January 1986.

[MiRa2] G. L. MILLER AND V. RAMACHANDRAN, A new graph triconnectivity algorithm and its
parallelization, in “Proceedings, 19th ACM Ann. Symp. on Theory of Computing,
New York, NY, 1987,” pp. 335-344.

[RaVi] V. RAMACHANDRAN AND U. VISHKIN, Eflicient parallel triconnectivity in logarithmic time, in
“VLSI Algorithms and Architectures, AWOC 88,” Springer-Verlag LNCS, Vol. 3 19,
pp. 3342, 1988.

ETaI R. E. TARJAN, Depth-first search and linear graph algorithms, SIAM J. Comput. 1 (1972),
146-160.

[TaVi] R. E. TARJAN AND U. VISHKIN, An efficient parallel biconnectivity algorithm, SIAM J. Com-
pur. 14 (1985), 862-874.

lwhl H. WHITNEY, Non-separable and planar graphs, Trans. Amer. Math. Sot. 34 (1932), 339-362.
[FuRaTh] D. FUSSELL, V. RAMACHANDRAN, R. THURIMELLA, Finding triconnected components by local

replacements, in “ICALP 89,” Lecture Notes in Computer Science Vol. 372, pp. 379-393,
1989.

