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We present a new algorithm based on open ear decomposition for testing vertex four-con- 
nectivity and for finding all separating triplets in a triconnected graph. A sequential implemen- 
tation of our algorithm runs in O(n2) time and a parallel implementation runs in O(log*n) 
time using O(n2) processors on an ARBITRARY CRCW PRAM, where n is the number of 
vertices in the graph. This improves previous bounds for the problem for both the sequential 
and the parallel cases. The sequential time bound is the best possible, to within a constant 
factor, if the input is specified in adjacency matrix form, or if the input graph is dense. 
0 1991 Academic Press, Inc. 

1. INTRODUCTION 

This paper deals with the problem of determining four-connectivity in an 
undirected graph. Connectivity is an important graph property and there has been 
a considerable amount of work on algorithms for determining k-connectivity in 
graphs. An important application of this property is that a k-connected network 
can operate in a reliable manner in the presence of up to k node or link failures. 

There are well-known sequential linear-time algorithms for determining graph 
connectivity and biconnectivity (see, e.g., [Ev]), as well as triconnectivity [HoTa, 
FuRaTh]. The best previously published deterministic sequential algorithms for 
testing graph 4-connectivity have time complexity O(nm), where n is the number of 
vertices in the input graph and m is the number of edges. There are two such algo- 
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rithms. One is based on a reduction to network flow [EvTa, Ev2, Ga, GiSo]. The 
other uses the O(m) algorithm for testing triconnectivity [HoTa, FuRaTh] to test 
four-connectivity in a triconnected graph in O(mn) time by deleting each vertex of 
the graph in turn, and testing triconnectivity in the resulting graph; this algorithm 
also finds all separating triplets in the graph, if the graph is not triconnected. 
For the problem of finding all separating k-sets, it is known that the number of 
separating k-sets in a k-connected graph is O(n’) for any fixed k [Ka]. We also 
note that there are some randomized algorithms for testing k-connectivity for k > 3 
[BeX, LiLoWi]; the running time of these algorithms is Q(n5’2). 

In this paper we present a new sequential algorithm, based on open ear decom- 
position [Lo, MaScVi, MiRa, Wh], that tests vertex four-connectivity and finds all 
separating triplets in a triconnected graph in O(n2) time. This represents an 
improvement in the running time over all previous algorithms for the problem, 
both deterministic and probabilistic. We also present a parallel implementation of 
the algorithm, which runs in O(log2 n) time using O(n*) processors on an 
ARBITRARY CRCW PRAM. For comparison the best previous processor count 
for an NC algorithm for this problem is O(nm), which is obtained by running n 
parallel applications of the parallel triconnectivity algorithms in [MiRa2, RaVi, 
FuRaTh] on the input graph with a vertex deleted. 

Our algorithm thus gives improved performance bounds for both the sequential 
and the parallel cases. It also gives a completely new method for the four-connec- 
tivity problem, which is of interest in itself. We also note that the algorithm is easily 
modified to work for edge four-connectivity as well with the same time and pro- 
cessor bounds: we use an ear decomposition instead of an open ear decomposition. 
While a sequential O(n2) time algorithm is already known for edge four-connec- 
tivity [Ma], our algorithm gives the best processor count for an NC algorithm for 
edge four-connectivity. We do not elaborate further on this. 

The rest of this paper is organized as follows. In Section 2 we describe the model 
of parallel computation we use. Section 3 gives graph-theoretic definitions. 
Section 4 relates open ear decomposition to vertex four-connectivity, and gives a 
high-level description of the four-connectivity algorithm. Finally, in Section 5, we 
show how to implement this algorithm in O(n*) sequential time, and in O(log’ n) 
parallel time with n2 processors on an ARBITRARY CRCW PRAM. 

2. MODEL OF PARALLEL COMPUTATION 

The model of parallel computation that we will be using is the Parallel Random 
Access Machine or PRAM [KarRa], which consists of several independent sequen- 
tial processors, each with its own private memory, communicating with one 
another through a global memory. In one step, each processor can read one global 
or local memory, execute a single RAM operation, and write into one global or 
local memory location. 

PRAMS are classified according to restrictions on global memory access. An 
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EREW PRAM is a PRAM for which simultaneous access to any memory location 
by different processors is forbidden for both reading and writing. In a 
CREW PRAM simultaneous reads are allowed but no simultaneous writes. A 
CRCW PRAM allows simultaneous reads and writes. In this case we have to 
specify how to resolve write conflicts. We will use the ARBITRARY model in which 
any one processor participating in a concurrent write may succeed, and the algo- 
rithm should work correctly regardless of which one succeeds. Of the three PRAM 
models we have listed, the EREW model is the most restrictive, and the 
ARBITRARY CRCW model is the most powerful. Any algorithm for the 
ARBITRARY CRCW PRAM that runs in parallel time T using P processors can 
be simulated by an EREW PRAM (and hence by a CREW PRAM) in parallel time 
Tlog P using the same number of processors, P (see, e.g., [KarRa]). 

Let S be a problem that, on an input of size n, can be solved on a PRAM by 
a parallel algorithm in parallel time t(n) with p(n) processors. The quantity 
w(n) = t(n) .p(n) represents the work done by the parallel algorithm. Any PRAM 
algorithm that performs work w(n) can be converted into a sequential algorithm 
running in time w(n) by having a single processor simulate each parallel step of the 
PRAM in p(n) time units. More generally, a PRAM algorithm that runs in parallel 
time t(n) with p(n) processors also represents a PRAM algorithm performing 
O(w(n)) work for any processor count P < p(n). 

Define polylog(n) = lJk,,, O(logk n). Let S be a problem for which currently the 
best sequential algorithm runs in time T(n). A PRAM algorithm A for S, running 
in parallel time t(n) with p(n) processors, is efficient if 

(a) t(n) = polylog(n); and 
(b) the work w(n) = p(n). t(n) is T(n). polylog(n). 

An efficient parallel algorithm is one that achieves a high degree of parallelism 
and comes to within a polylog factor of optimal speedup. A major goal in the 
design of parallel algorithms is to find efficient algorithms with t(n) as small as 
possible. The simulations between the various PRAM models make the notion of 
an efficient algorithm invariant with respect to the particular PRAM model used. 
For more on the PRAM model and PRAM algorithms, see [KarRa]. 

Our efficient parallel algorithm for four-connectivity works on an ARBITRARY 
CRCW PRAM. Some of the subroutines also work on the more restrictive EREW 
PRAM model within the same processor and time bounds. 

3. GRAPH-THEORETIC DEFINITIONS 

An undirected graph G = (V, E) consists of a vertex set V and an edge set E con- 
taining unordered pairs of distinct elements from V. A path P in G is a sequence 
of vertices (v,, . . . . vk) such that (vi- i, vi) E E, i = 1, . . . . k. The path P contains the 
vertices vO, . . . . uk and the edges (v,, v,), . . . . (u,_,, uk) and has endpoints vO, vk, and 
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internal vertices vl, . . . . vk- ,. Given a path (v,, . . . . v,), vi is to the left of vi and c, 
is to the right of vi if i < j. The path P is a simple path if vO, . . . . ck . 1 are distinct and 
01 > ..., vk are distinct. P is a simple cycle if it is a simple path and v0 = vk. A single 
vertex is a trivial path with no edges. 

Let P = ( vO, . . . . vk-, ) be a simple path. The path P(v,, v,), 0 d i, j d k - 1, is the 
simple path connecting vi and vj in P, i.e., the path (v,, v,, , , . . . . v,~), if i <j or the 
path (vi, v, + I, . . . . vi ), if j < i. Analogously, P[v,, rj] consists of the path segments 
obtained when the edges and internal vertices of P(vi, v,) are deleted from P. 

Let G = ( V, E) be an undirected graph and let V’ c V. A graph G’ = ( Y’, E’ ) is 
a s&graph of G if E’c En {(vi, vi) ( vi, vje V’}. The subgraph of G induced b.v V’ 
is the graph G” = (V’, E”), where E” = En ((v,, vi) 1 vi, VIE V’}. 

An undirected graph G = (V, E) is connected if there exists a path between every 
pair of vertices in V. For a graph G that is not connected, a connected component 
of G is a maximal induced subgraph of G which is connected. 

A vertex v E V is an articulation point (ap) or cutpoint of a connected undirected 
graph G = (V, E) if the subgraph induced by V- (c) is not connected. G is 
biconnected if it contains no articulation point. 

Let G = (V, E) be a biconnected undirected graph. G is triconnected if for all 
pairs of vertices vl, v2 E V the induced subgraph on V - {v, , v2 ) is connected. 

Let G = (V, E) be a biconnected graph which is not triconnected. A (nontrivial) 
separating pair in G is a pair of vertices U, v in V whose removal decomposes G into 
two or more connected components. A trivial separating pair is a pair of vertices u, u 
with (u, v) an edge (note that a pair of vertices can be both a trivial and a non- 
trivial separating pair). A candidate pair is a trivial or nontrivial separating pair; a 
candidate sef is a set of vertices such that each pair in the set is a candidate pair. 

A triplet (v,, rz, v3) of unordered distinct vertices in V is a separating triplet of 
a triconnected graph if the subgraph induced by V - {r, , L‘~, vj j is not connected. 
G is four-connected if it contains no separating triplet. 

An ear decomposition [Lo, Wh] D = [PO, . . . . P,. ,] of an undirected graph 
G = (V, E) is a partition of E into an ordered collection of edge disjoint simple 
paths P,, . . . . P,- , such that P, is a simple cycle and each endpoint of Pi, 
i = 1, . . . . r - 1, is contained in some P,, j < i, while none of its internal vertices are 
contained in any P,, j < i. The paths in D are called the ears. D is an open ear 
decomposition if none of the Pi, i= 1, . . . . r - 1, is a simple cycle. A trivial ear is an 
ear consisting of a single edge. A graph has an open ear decomposition if and only 
if it is biconnected [Wh]. 

Let G = (V, E) be a biconnected graph, and let Q be a subgraph of G. We define 
the bridges of Q in G as follows (see, e.g., [Ev]): Let V’ be the vertices in G - Q, 
and consider the partition of V’ into classes such that two vertices are in the same 
class if and only if there is a path connecting them which does not use any vertex 
of Q. Each such class K defines a (nontrivial) bridge B = ( Vs, EB) of Q, where B is 
the subgraph of G with V, = Ku {vertices of Q that are connected by an edge to 
a vertex in K}, and E, containing the edges of G incident on a vertex in K. The 
vertices of Q which are connected by an edge to a vertex in K are called the 
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attachments of B. An edge (u, u) in G- Q, with both u and v in Q, is a trivial bridge 
of Q, with attachments u and u. The nontrivial and trivial bridges together form the 
bridges of Q in G. 

Let G = (V, E) be a biconnected graph, and let Q be a subgraph of G. We define 
the bridge graph of Q, S = (V,, 5,) as follows: Let the bridges of Q in G be Bi, 
i = 1, . . . . k. Then V, = V(Q)u{B ,,..., Bk) and Es = E(Q)u {(u, Bi)lue VQ), 
1~ i< k, and v is an attachment of Bi}. 

Let G = (V, E) be a graph and let P be a simple path in G. If each bridge of P 
in G contains exactly one vertex not on P, and there is a bridge B of P with the 
endpoints of P as attachments then we call G the star graph of P and denote it by 
G(P). We denote the bridges of P in G(P) by stars. The unique vertex of a star that 
is not contained in P is called its center. Note that, in a connected graph G, the 
bridge graph of any simple path in G is a star graph. 

Let G(P) be a star graph, and let S,, . . . . Sk be some of the stars in G(P). The 
operation of coalescing the stars Si, i= 1, . . . . k, removes these stars and replaces 
them by a new star S whose attachments are the union of the attachments of 
s Sk. , , ...> 

Let G be a biconnected graph with an open ear decomposition D= 
[PO, . . . . Pr-,]. Let the bridges of Pi in G that contain nonattachment vertices on 
ears numbered lower than i be B,, . . . . B,. We shall call these the anchor bridges of 
Pi. The ear graph of Pi, denoted by G,(P,), is the graph obtained from the bridge 
graph of Pi by coalescing all stars corresponding to anchor bridges, and by deleting 
multiple two-attachment bridges. We will call this coalesced star the anchoring star 

FIG. 1. Illustrating the definitions. (a) G with open ear decomposition D = [P,, P,, P,, P,, P,]; 
P,=(A,B,C,D,E,A), P,=<C,G,F,E), P,=(D,F), Ps=<G,H,F), Pd=<CiE). (b)Bridges of 
P,. (c)Bridge graph G, of P,. (d) Ear graph of P, 
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of G,(P,). For any two vertices x,y on Pi, we denote by V,(x,y), the internal 
vertices of P;(x, y); we denote by Vi [x, y], the vertices in (Pi [x, y] - {x, y } )A u 
(vertices in the anchor bridges of Pi}. For a star graph G(P) with no anchoring 
star, the set V(x, y) represents the vertices in P(x, y) - {x, y }, and the set V[x, J] 
represents the vertices in P[x, y] - {x, y}. 

Figure 1 illustrates some of our definitions relating to bridges. 
Two stars S, and Sk in a star graph G(P), where P is a simple path, interlucr 

(see, e.g., [Ev, p. 1493) if one of the following two holds: 

(1) there exist four distinct vertices a, 6, c, d in increasing order in P such that 
a and c belong to Si(S,) and b and d belong to S,( S,); or 

(2) there are three distinct vertices on P that belong to both S, and S,. 

Given a star graph G(P), the coalesced graph G’ of G is the graph obtained from 
G by coalescing all pairs of stars that interlace. 

4. OPEN EAR DECOMPOSITION AND FOUR-CONNECTIVITY 

LEMMA 1. Let G = ( V, E) be a triconnected undirected graph ,for tchich 
t = (x, y, z) forms a separating triplet. Let D = [P,, . . . . P,- ,] be an open ear decom- 
position for G and let Gi(Pi) be the ear graph of ear P, fbr each i. Then there exists 
an ear P, in D that contains two of the three vertices in t, say x and y, such that both 
Vi(x, y) and V, [x, y] contain a vertex other than z, and every path from a vertex in 
V,(x, y) to a vertex in Vi [x, y] in Gi passes through x, y, or z. Further ear P, 
uniquely determines a connected component C in the subgraph induced h?, 
V- {x, y, z}, in the sense that no other ear Pi in G that contains x, y and a vertex 
in C, has the property that V,(x, y) - {x, y, z} is nonempty, and every path between 
u vertex in V,(x, y) and a vertex in V, [x, y] in G, contains x, y, or z. 

Proof. Since t = (x, y, z) forms a separating triplet, the subgraph of G induced 
by V- {x, y, z} contains at least two connected components. Let C, and Cz be two 
such connected components. 

Case 1. The first ear P, contains no vertex in Cz (see Fig. 2). 

FIG. 2. Case 1 in the proof of Lemma 1. 
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Consider the lowest-numbered ear, Pi, that contains a vertex u in C,. Since its 
endpoints are distinct and must be contained in lower-numbered ears, Pi must enter 
C2 through one of the three vertices in t, say x, and must leave C, through one of 
the remaining two vertices in t, say y. Thus Pi must contain two of the three ver- 
tices in t, and Vi(x, y) contains at least one vertex other than z. Further, all vertices 
in Vi(x, y) lie in C,, and none of the vertices in Vi [x, y] lie in C,. Thus the vertices 
in Vj(x, y) are separated from the vertices in V, [x, y] by t. 

To prove the second claim of the lemma for this case, let C, = C, and suppose 
Pi is an ear that contains x and y and also a vertex, say U, in C. Then j> i, since 
P, is the lowest-numbered ear to contain a vertex in C. Since Pi contains x and y, 
x and y must be the endpoints of P,, and all other vertices on it lie in Cu {z}. 
Further, since i<j and vertex v is contained in Pi, the vertices in the bridge of Pj 
containing v (call it B’) are in Vi [x, y], and since C is a connected component in 
the subgraph induced by V- {x, y, z}, there is a path from B’ to the vertex u in 
Vj(x, y) that avoids X, y, and z. This establishes the second claim of the lemma for 
this case. 

Case 2. P, contains a vertex in C,: 

If P, contains no vertex in C,, then Case 1 applies to C,. Otherwise PO contains 
at least one vertex in C, and one vertex in Cz. But then, since P, is a simple cycle, 
it must contain two of the three vertices in t, say x and y, such that (by the 
argument of Case l), every path from a vertex in VO(x, y) to a vertex in VJx, y] 
contains x, y, or z, and PO is the unique ear with this property, which has a vertex 
in C,. Thus, by taking Cz to be C, the lemma is established. 1 

We will say that a separating triplet t = (x, y, z) separates ear Pi if Pi contains 
two of the vertices in t, say x and y, with Vi(x, y) not a subset of {z}, and the ver- 
tices in Vi(x, y) are disconnected from the vertices in Vi[x, y] in the subgraph of 
G induced by V- {x, y, z}. We will denote this by writing t as i( [x, y], z) to 
indicate that Pi contains x and y, and Vj(x, y), which contains a vertex other than 
z, is separated from V,[x, y] by {x, y, z}. By Lemma 1, every separating triplet in 
G separates some ear, and hence can be written in the above form. We will write 
i( [x, y], z) as simply ([x, y], z), if the ear number is obvious from the context. 

Analogously, for a star graph G(P), a triplet of vertices t = ([x, y], z) in G 
separates P if P contains x and y, V(x, y) - (z} and V[x, y] - {z} are nonempty, 
and the vertices in V(x, y) are separated from the vertices in V[x, ~1 when x, y, and 
z are deleted from G(P). 

LEMMA 2. Let G = ( V, E) be a triconnected graph with an open ear decomposition 
D = [P,,, . . . . P,- 1 1. Let i( [x, y], z) separate Pi. rf Pi does not contain z then 

(i) z is an articulation point in one of the bridges of Pi, and 
(ii) if Pi is the largest-numbered ear that contains z, then j> i. 

Proof: Let B be the bridge of Pi containing z. Then B has an attachment in both 
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V,(X, Y) and Pi[x, yl- {x, Y}, since otherwise, x, y would be a separating pair. Let 
u be an attachment of B in Vi(x, y) and let h be an attachment of B in 
P;[x, y] - {x, y}. Suppose there is a path p between a and b in B that avoids 2. 
Then, if x, y, and z are removed from G, the vertices of V,(x, y) will remain connec- 
ted to the vertices of V,[x, y] by the path p. But this is not possible since 
([x, y], z) separates Pi. Hence, every path between a and h in B must pass through 
z; i.e., z is a cutpoint of B. 

Let C be the connected component containing I/,(x, p) in G - {x, y, z}. To prove 
the second claim of the lemma, we note that, by Lemma 1, P, is the lowest- 
numbered ear containing a vertex in C. Hence every edge (w, z) with w in C 
must belong to an ear numbered greater than i. By the first part of this proof, we 
know that there is at least one such edge (w, z). This proves the second part of the 
lemma. 1 

Using Lemma 2, we can classify triplets separating ear P, into two types: 
Type 1 separating triplets are those for which P, contains all three vertices; type 2 
separating triplets are those for which Pi contains two vertices, and the third is an 
articulation point in one of the bridges of P,. Type 1 separating triplets can be 
further classified into three types (see Fig. 3): Type la, in which z is to the left of 

a 

Frc;. 3. Classification of type 1 separating triplets. (a) Type la triplet. (b) Type lb triplet. (c) Type Ic 
triplet. 

51 I 42’3-4 
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x and y on Pi, type lb, in which z is to the right of x and y, and type lc, in which 
z is between x and y on Pi. 

Let ([x, y], z) be a type 2 triplet separating Pi. By Lemma 2, z is a cutpoint in 
a bridge, B, of P,, and z lies on an ear P,, j> i. We shall refer to such cutpoints 
as high cutpoints. Let B1, . . . . B, be the connected components of B- {z}, and let C 
be the set of remaining bridges of Pi. Then C lJf=, { Bi} are the bridges of P, in 
G- {z}. Let J,(z) be the ear graph of Pi in G- {z}. 

LEMMA 3. Let G be a triconnected graph, and let G,(P,) be the ear graph of Pi. 
Then, 

(a) ([x, y], z) is a type 1 triplet separating Pi in G if and only if it is a type 1 
triplet separating Pi in Gi. 

(b) ([x, y], z) is a type 2 triplet separating Pi in G if and only if (x, y) is a pair 
separating Pi in J,(z). 

ProojI We note that, since G is triconnected, every anchor bridge of Pi in G has 
attachments to the two endpoints of Pi, and to at least one internal vertex of Pi; 
we shall call this Fact 1. We prove parts (a) and (b) of the lemma separately. 

(a) First we note that if ([x, y], z) is a type 1 triplet separating Pi in the ear 
graph Gi then it certainly separates Pi in G. 

For the reverse, two cases arise: 

(i) If x and y are the endpoints of Pi, then by Fact 1, ([x, y], z) is a type 1 
triplet separating P, if and only if every anchor bridge of Pi has exactly one internal 
attachment on Pi, and that attachment is at z. If this holds in G then it continues 
to hold in the ear graph Gi, since by coalescing such anchor bridges, we do not 
create any new attachments. 

(ii) If either x or y is not an endpoint of Pi, then no anchor bridge of Pi can 
have an attachment in Vi(x, y) - {z}. Once again, this condition will continue to 
hold if all anchor bridges are coalesced, and hence will be true in Gi if it was true 
in G. 

(b) As in case (a), if (x, y) is a pair separating Pi in J,(z) then clearly ([x, y], z) 
is a type 2 triplet separating Pi in G. For the reverse, once again, two cases arise. 

B (i) 
z is a high cutpoint in an anchor bridge B. Let B decompose into bridges 

1, ..a, B,, C,, . . . . C, when z is removed, where the Bj are the anchor bridges of Pi 
in G- {z} and the C, are nonanchor bridges. By Lemma 1, each Bj has all of its 
attachments in Pi[x, y] and each C, has all of its attachments in Pi(x, y) or all of 
its attachments in Pi[x, y]. Also, since ([x, y], z) is a triplet separating Pi in G, 
any bridge of Pi other than B will have either all of its attachments in Pi(x, y) or 
all of its attachments in Pi[x, y]. Hence x, y will separate Pi in Ji(z). 
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If one of x or y is not an endpoint of Pi, then every anchor bridge B’ other than 
B has no attachment in vi(x, v). This continues to hold in G, as well. 

(ii) z is a cutpoint in a nonanchor bridge: In this case no anchor bridge of 
G can have an attachment in Vi(x, y), and the result follows by an argument as in 
case i. 1 

Finally, we make the following observation on the size of all of the ear graphs 
in G. 

OBSERVATION. Let G be an n-node, m-edge triconnected graph w?th an open eat 
decomposition D. Let Hi(Qi), i= 1, . . . . s, be the bridge graphs qf the nontrivial ears 
in D, and for each i, let ear Qi have n, nodes, and let the bridges qf Q, in H, have 
m, edges. Then 

(i) Ci=, n, = O(n); 
(ii) xi=, mi = O(n’). 

Proof. (i) The number of nontrivial ears in G, excluding P,, is no more than 
n - 3, and each node in G is an internal node of exactly one nontrivial ear. Hence, 
charging the end vertices of each nontrivial ear QZ to its index i, we obtain 
CT=, n, < n + 2(n - 3) which is O(n). 

(ii) Each edge in G appears at most once as an internal attachment in the Q, 
and at most n times as an end attachment in the Qj, i = 1, . . . . s. Hence, 
C.i=, mj < m + 2(n - 3) n, which is O(n2). 1 

Based on the characterization in Lemmas 1 to 3, we obtain the following high- 
level algorithm to find all separating triplets in a triconnected graph. 

Four Connectivity Algorithm: Finding All Separating Triplets in a Triconnected 
Graph G = (V, E). 

(1) Find an open ear decomposition D = [PO, . . . . P,- ,] for G. 
(2) For i = r - 1, r - 2, . . . . 0 do 

if P, is a nontrivial ear then 
(A) Construct the ear graph G,(P,). 
(B) Use Gj( P,) to find all type 1 triplets separating Pi. 
(C) In the bridges of Pi, find the cutpoints that lie on ears numbered higher 
than i, and use them to find all type 2 triplets separating Pi. 

Let / VI = n and IEl = m. Step 1 has a linear-time sequential algorithm and an 
O(log n) time parallel algorithm with O(m) processors on a CRCW PRAM 
[MaScVi, MiRa]. Step 2A has a linear-time sequential algorithm and an O(log n) 
time parallel algorithm with O(m+ n) processors on an ARBITRARY CRCW 
PRAM [FuRaTh]. 
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Let ni be the number of vertices contained in Pi, and mi be the number of edges 
incident on vertices contained in Pi. In Section 5.1, we present algorithms to find 
type 1 triplets separating a nontrivial ear Pi in O(nf + m,) sequential time, and in 
O(log ni) parallel time with nf processors on an EREW PRAM. In Section 5.2, we 
show how to find all high cutpoints in the bridges of each ear, organized in a forest 
of block-trees, in xi O(n + mi) time plus some additional time for processing trivial 
ears, which is O(m) over the execution of the entire algorithm. This parallelizes into 
an O(log* n) time algorithm to find cutpoints in bridges of all nontrivial ears on an 
ARBITRARY CRCW PRAM with n2 processors. We use this to develop an algo- 
rithm to find all type 2 triplets in xi O(n yli + m,) sequential time, and in O(log* n) 
parallel time using xi O(n .n, + mi) processors on an ARBITRARY CRCW PRAM. 
Thus by the Observation we obtain an O(n’) time sequential implementation of 
Algorithm 1, as well as an O(log2 n) time parallel implementation on an 
ARBITRARY CRCW PRAM with n2 processors. 

5. FINDING ALL TRIPLETS THAT SEPARATE AN EAR 

5.1. Finding Type 1 Separating Triplets 

In this section we give algorithms to find type la, lb, and lc separating triplets 
on an ear Pi. Recall that ([x, y], z) is a type 1 triplet separating Pi, if x, y, and z 
lie on Pi, and the vertices in Vi(x, y) are separated from the vertices in Vi[x, y] 
when x, y, and z are removed from Pi. 

As shown in Lemma 3, if x and y are the endpoints of ear Pi then ([x, y], z) form 
a type 1 triplet separating Pi if and only if the anchoring star in G,(P,) has exactly 
one internal attachment on Pi, and that attachment is z. This is a simple condition 
that can be checked in constant time with mi processors. For finding any other 
type 1 triplet separating Pi, it suffices to view the ear graph G,(P,) as the path Pi 
together with a collection of stars, and to identify all type 1 triplets separating P, 
in Gi. For this we can work with a star graph G(P) without any reference to the 
fact that it is the ear graph of an ear. 

Let G(P) be a star graph with k vertices on P, 1 stars, and a total of p edges on 
the stars. We present an O(k* + p) time sequential algorithm and an O(log k) time 
parallel algorithm with k2 +p processors on an EREW PRAM to find all type 1 
triplets separating P in G(P). Assume that the vertices on P are numbered in 
order as 1, . . . . k from left to right. 

For a closed interval [x, y] on P, let 

L[x, y] be the leftmost attachment among all stars that have an attachment 
in Cx,vl, 
S[X, y] be the second leftmost attachment among all stars that have an attach- 
ment in [x, y], and 
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R[x, y] and M[x, y] be the rightmost and second rightmost attachments, 
respectively, of stars that have an attachment in [x, y]. 

The following lemma is straightforward. 

LEMMA 4. Let x, y, z he three vertices on P. Then 

(a) ([x, y], z) is a type la triplet separating P if and onfJ% $ 
L[x+l,~‘-l]=z, S[x+l,y-113x, andR[x+l,y-l]<y;and 

(b) ([x, y], z) is a type lb triplet separating P if and only if’ 
R[x+l,y-l]=z,M[x+1,y-1]~y,andL[x+1,~-1J3x. 

We compute LCx,yl, XX,.YI, N-5~1, and M[x, J] for every interval [x, ,r] 
with x < y by a doubling technique that first computes these values incrementally 
for intervals whose size is a power of 2, and then computes the values for all 
remaining intervals. This algorithm runs in O(k* + p) time sequentially, and in 
O(log k) time on an EREW PRAM with k* + p processors. 

Algorithm 1: Finding Type la Triplets. 

(1.1) Initialize: For i= 1, . . . . k compute L[i, i], S[i, i], R[i, i], and M[i, i]. 
These values can be computed in O(k + p) sequential time and O(log k) parallel 
time on an EREW PRAM with k -+ p processors by using bucket sort to order the 
star edges in increasing order of attachment, with ties broken in decreasing order 
of the leftmost (rightmost) attachment of the star the edge belongs to for L[i, i] 
and S[i, i] (for R[i, i] and M[i, i]). 

(1.2) For j= 1, . . . . [log kl compute, for each i, L[ i, i + 2’ - 1 ] from 
L[i, i + 2’ ’ - 11 and L[i + 2’-‘, i + 2’ - 11. Similarly compute S[i, i+2’], 
R[i, i + 2’1, and M[i, i + 2’1. Each of these values can be computed in constant 
time in parallel, and hence sequentially as well. Thus, this total step takes 
O(k log k) time sequentially and O(log k) parallel time on an EREW PRAM with 
k processors. 

(1.3) For each pair [x, y], x < y, let i, be the integer satisfying 
x + 2’” < J’ < x + 2“) + ‘. Compute L[x, y] from the precomputed values 
L[x, x + 2’\1 - 1 ] and L[ y - 2’1, + 1, y] in constant time. Similarly compute 
S[x, y], R[x, y], and M[x, y]. As in Step 2, each of these values can be computed 
in constant time, and hence this step requires O(k’) sequential time; it is 
straightforward to implement this in O(log k) parallel time on an EREW PRAM 
with k2 processors. 

An analogous procedure identifies type lb separating triplets. 
For type lc separating triplets, let L[x, y] and R[x, y] be as before. Let z, be a 

vertex in [x, y] which is an attachment of a star with an attachment at L[x, y]: 
analogously let zr be a vertex in [x, y] which is an attachment of a star with an 
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attachment at R[x, y]. Let S’[x, y] be the leftmost attachment of stars with an 
attachment in [x, y] - {zI} and let M’[x, y] be the rightmost attachment among 
stars with an attachment in [x, y] - {zr>. Then the following lemma is again 
straightforward. 

LEMMA 5. The triplet ([x, y], z) is a type lc triplet separating P if and only if 
S’[x + 1, y - l] Z x, M’[x + 1, y - l] < y, and one of the following three conditions 
holds: 

(4 2, = z, = z; or 

(b) L[x+l,y-1]3xandz=z,;or 

(c) R[x+l,y-l]<yandz=z[. 

Using Lemma 5 we can compute the type lc triplets separating P in a manner 
analogous to the method used for finding type la and lb triplets separating P. 

5.2. Finding Type 2 Triplets Separating an Ear 

There are many implementation details in this algorithm. We give a high-level 
description first, and then elaborate on each of the steps. We use the result in 
Lemma 2 that if ([x, y], z) is a type 2 triplet separating Pi, then z is a high cut- 
point; i.e., z is a cutpoint in one of the bridges of Pi, and z belongs to a higher- 
numbered ear than Pi. Observe that the number of blocks (biconnected com- 
ponents) and the number of articulation points in the bridges of an ear Pi are no 
more than IZ. As a matter of notation, we will denote the star(s) in the ear graph 
G,(P,) corresponding to a bridge or a collection of bridges B of Pi by s(B), and 
similarly, the bridge(s) of Pi corresponding to a star or a collection of stars S 
of G, by b(S). We now present the high-level algorithm for finding type 2 triplets 
separating Pi. For convenience we assume that the vertices of G are numbered so 
that any vertex contained in Pi has a smaller number than a vertex in the interior 
of any Pi, j> i. 

Algorithm 2: Finding Type 2 Triplets. 

(2.1) For each star s of Gi, we construct a list L(s) of those pairs of vertices 
x, y on Pi for which s is the only star that has an attachment in V,(x, y) and 
Vi[x, y]. Note that there can be no more than nf entries in the lists for all of the 
stars of Gi, since each pair can appear on at most one list. The list for each star 
is in lexicographically increasing order on (x, y). 

(2.2) For each ear Pi, we determine the high cutpoints in each of its bridges. 
(2.3) For each bridge B of Pi, for each high cutpoint a in B, we find all 

pairs of vertices separating Pi in P,u (B - {a}) (note that we do not include the 
remaining bridges of Pi in this graph), using the triconnectivity algorithm in 
[MiRa2, RaVi]. These separating pairs can be specified as candidate sets (see 
Section 3). We maintain these candidate sets for all cutpoints for a given bridge B 
in a properly sorted manner; we call this the candidate representation for B. 
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(2.4) We compare the entries in L(s) for each s with pairs of vertices in a 
candidate set in the candidate representation for h(s), and each match gives a type 2 
separating triplet for Pi. 

We need the following observation. 

OBSERVATION. Let z be a high cutpoint of a bridge B of Pi, and x, y, a puir qf’ 
vertices on P,. Then ([x, y], z) is a type 2 triplet separating P, if and only if 

(a) (x, y) is a pair separating P, in the graph P, u (B - {z } ), and 

(b) s(B) is the only star of Gj that has an attachment in both V,(.u, y) and 

Proof: If ([x, y], z) is a type 2 triplet separating Pi, then by part (b) of 
Lemma 3 we know that (x, y) separates P, in Ji(z). Hence (x, y) is certainly a pair 
separating P, in Pi u (B- {z}). Further if any other bridge B’ of P, has an attach- 
ment in both VJx, y) and V, [x, y], then removal of x, y, and z leaves Vi(x, y) 
connected with Vi [x, y], which is not possible since ([x, y], z) separates P, by 
assumption. Hence part (b) of the observation must hold as well. 

For the reverse, assume that parts (a) and (b) hold. Then it follows that X, ~9 is 
a pair separating Pi in G - {z}, since by (b), no bridge other than B can connect 
V,(x, y) with V, [x, y] in G - (x, y, z}. Hence ([s, ~1, z) must be a type 2 triplet 
separating P,. m 

All pairs of vertices on Pi satisfying property (b) appear on the list L(s( B)), 
which we construct in Step 2.1. The pairs satisfying property (a) are those that lie 
in a common candidate set in the candidate representation for B, which we construct 
in Step 2.3. In Step 2.4 we scan these two sets of pairs of vertices, and identify 
matches between the two sets; each such match gives a type 2 triplet separating Pi, 
and every type 2 triplet separating P, appears as such a match. This establishes the 
correctness of the above algorithm. 

We now explain how to implement Steps 2.1 through 2.4 to obtain the stated 
time and processor bounds. 

Step 2.1. The algorithm for Step 2.1 is similar to the algorithms for finding 
type 1 separating triplets. By Lemma 3, if x and y are the endpoints of ear P,, then 
the anchoring star of Gi is the unique star containing vertices in both V,(x, .I’) and 
Vi [x, ~1. For any other pair x, y we can work with a star graph G(P) without any 
reference to the fact that it is the ear graph of an ear. 

As in Section 5.1, given a star graph G(P) we compute certain values for each 
interval of vertices on P. The values computed are L[x, y], S”[x, y], R[x, y], and 
M”[x, y], where L[x, y] and R[x, y] are, as before, the leftmost and rightmost 
attachments, respectively, among all stars that have an attachment in the closed 
interval [x, y]. Let s, be a star with attachments at L[x, y] and in [x, y], and 
similarly, let s, be a star with attachments at R[x, y] and in [x, y]. S”[x, y] is the 
leftmost attachment among all stars with an attachment in [x. y] except star s,; 
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similarly, M”[x, y] is the rightmost attachment among all stars with an attachment 
in [x, y] except s,. From these definitions, the following lemma is straightforward. 

LEMMA 6. Star s is the only star that has an attachment in V(x, y) and V[x, y] 
tf and only tf one of the following three holds: 

(a) S”[x+l,y-112x, R[x+l,y-l]<y, ands=s,;or 
(b) L[x+l,y-l]>x, M”[x+l,y-l]<y, ands=s,;or 
(c) S”[x+l,y-112x, M”[x+l,y-l]<y, ands=s,=s,. 

Using Lemma 6 and the method of Section 5.1, we can form the lists L(s) for all 
stars of all nontrivial ears in O(n2) sequential time and in @log n) parallel time on 
an EREW PRAM with n2 processors. 

Step 2.2: Sequential Algorithm. Let Hi= Uj=, Pi. Let A,, . . . . A, be the bridges 
of Hi. Let Bj be Aj with its attachment edges and vertices deleted. A split of Pi is 
an articulation point in one of the Bj. An ex-node of Pi is a vertex in one of the 
B, adjacent to an attachment on Hi. An adj-node of Pi is an ex-node, which is 
adjacent to a vertex on Pi. For example, in Fig. 4, H, has four nontrivial bridges 
and one trivial bridge; vertices a, 6, and c are some of the split nodes of P,; vertices 
a, d, and e are some of the ex-nodes of P, of which a and d are adj-nodes as well. 
We observe that by Lemma 2, if ([x, y], z) is a type 2 triplet separating Pi then z 
is a split or ex-node of Pi or z must be an attachment of one of the Aj on Hip,. 

We organize the splits and ex-nodes of P, in a forest of split-trees analogous to 
the tree of biconnected components. There is one split-tree for each Bj, whose ver- 
tices are the splits, ex-nodes and blocks of Bj. There is an edge between a split and 
each block it lies in, as well as an edge between each ex-node (that is not also a 
split) and the unique block in which it lies. For u an ex-node, let A(u,j) be thejth 
smallest vertex adjacent to u and belonging to H, _, , if it exists, null otherwise, for 
j= 1, 2, 3,4. By our numbering scheme for vertices, A(u,j), j= 1, . . . . 4 (when 
defined), represent four distinct vertices on lowest-numbered ears adjacent to u. The 
number of entries in A(u,j), over all ex-nodes u, is O(n). 

Let Fj- i be Hip i with the two endpoints of Pi deleted. (In Fig. 4 FO is the single 
vertex PO.) Let A(u) be the set of two smallest nonnull vertices in Fi- , n { A(u, 1 ), 
A(u, 2), A(u, 3), A(u, 4)). By construction, A(u) contains the two smallest- 
numbered vertices in Fip i adjacent to u (when they exist), and can be obtained in 
constant time per ex-node, since we have the A(u,j). Note that if we did not have 
the A(u, j), finding the A(u) would take time proportional to the number of edges 
incident on the ex-nodes and that could be as large as O(m). 

From the forest of split-trees we derive the forest of trees of biconnected com- 
ponents (or block-trees) of the bridges of Pi by first constructing the augmented 
graph as follows: We augment the vertex set of the forest of split-trees by adding 
in vertex v to represent Hi-i--a potential “high-block” (i.e., a connected compo- 
nent that contains no high cutpoints)-and we add in the set of vertices 
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u = u ex-nodesu A(u)-potential high cutpoints. We put in an edge between r and 
each vertex in U as well as edges between u and vertices in A(U), for each ex-node U. 

Observe that a vertex w in Hi_ , is a high cutpoint in a bridge of Pi if and only 
if, for some split-tree T of Pi, w is the only vertex in F, ~, that is adjacent to a 
vertex in T. Since by construction A(u) includes the two smallest vertices adjacent 
to U, if they lie in Fjp,, it follows that w is a high cutpoint in a bridge of Pi if and 
only if it is a cutpoint in the augmented graph. Similarly, an ex-node u in a split- 
tree T is a cutpoint separating vertices in T from the rest of the bridge of Pi if and 
only if u has an attachment in Fip, and no other ex-node in T has an attachment 
in F,. ,. This again holds if and only if u is a cutpoint in the augmented graph. 
Hence the blocks and articulation points in this augmented graph are precisely the 

pO 
FIG. 4. Illustrating Step 2.2 for finding type 2 separating triplets. (a) Graph G with open ear decom- 

position indicated by ear number along edges. (b) Some splits, ex-nodes, and adj-nodes for P, in G. 
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blocks and articulation points in the bridges of Pi. We find these in O(n) sequential 
time, using a linear-time algorithm for biconnectivity [Ta]. At this point we have 
the forest of block-trees for the bridges of P,. In additional O(mi) time, we can 
obtain all of the adj-nodes by scanning all edges incident on the internal vertices 
of Pi. 

All that remains is to obtain incrementally the split-trees for P, and the A(u,j) 
for the new ex-nodes of P, in an efficient way, where PI is the next nontrivial ear. 
To update information for PI, we first process the forest of split-trees for Pi to 
eliminate those splits and blocks that disappear and the new ones that appear when 
pi9 pi-l, ..7 p[+l are added. This is done in O(n + m,+ 1 -i) time by finding 
blocks, cutpoints, and ex-nodes in the graph Uj Bj uk=,+, P, u {attachment edges 
of each B, in the interior of Pi}. This gives us the split-trees for P,. The new 
ex-nodes for P, are the nodes in the interior of Pi adjacent to a vertex in H,; in 
particular, this includes the nodes in the interior of Pi adjacent to its endpoints. 
We compute the A(u,j) values for these new exnodes. This computation takes 
O(m) time over the entire execution of the algorithm. Now we are ready to find 
type 2 triplets separating P,. 

Parallel Implementation of Step 2.2. This step is similar to the algorithms in 
[MiRa2, RaVi] that find the ear graphs of all nontrivial ears. The only difference 
is that we now find the forest of block-trees instead of connected components. For 
this we can use any efficient parallel block finding algorithm [Ma&Vi, MiRa, 
TaVi]. By noting that the total size of the graphs present at each stage of the 
algorithm is O(n*), we obtain an O(log* n) time parallel algorithm on an 
ARBITRARY EREW PRAM with n2 processors. 

Step 2.3: Sequential Algorithm. We number the vertices in the forest of block- 
trees in post order with respect to a depth first search. We label each attachment 
edge to Pi in the bridges of Pi by the number of the block it belongs to (since each 
such edge is incident on an adj-node, this is done in constant time per edge). We 
remove any multiple occurrences of edges with the same block number and attach- 
ment. Since the number of blocks and the number of articulation points is O(n) 
(over all bridges of Pi) this step can be done in O(n + mi) time for all of the bridges. 

We now sort (using bucket sort) the labeled attachment edges in increasing order 
of the attachments, with edges having the same attachment sorted in increasing 
order of their label, and we leave the sorted edges in stacks corresponding to their 
attachment number. Now, with another postorder traversal of the block-trees, we 
can determine, for each cutpoint s of each bridge B of ear Pi, the stars formed from 
B when s is deleted from B, in O(n + mi) time. 

At this point, for each high cutpoint x of bridge B, we have s(B- {xl), the 
collection of stars formed from B when x is removed from B. Each of these stars 
has no more than n, attachments. Using the algorithm in [MiRa2] we can find the 
separating pairs on Pi corresponding to these stars in O(k . ni) time, where k is the 
number of stars. These are organized as the vertices on the faces of the planar 
embedding of the coalesced graph of P, u s(B - {x> ) [MiRaZ]; we call this the 
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candidate collection for s(B - {x} ). This has an O(k . ni) size representation. We find 
such a collection for each cutpoint. This procedure takes O(n ni) time over all cut- 
points of all bridges of P,, since the number of stars formed in all of these graphs 
is no more than 2n. 

In order to execute Step 2.4 efficiently, we store the candidate collections in a 
special way. Let us confine our attention to a specific bridge B (note that the 
candidate collections are obtained bridge by bridge). Let X and Y be a pair of 
candidate sets in the set of candidate collections for B. Then we note that the spans 
of X and Y are either disjoint or one contains the other (the span of a candidate 
set is the interval [a, h], where a is the lowest-numbered and h is the highest-num- 
bered vertex in the candidate set). We represent these candidate sets in a special 
form called the candidate representation of B as follows: We maintain each 
candidate set as a list, a candidate list, with vertices ordered in increasing order of 
their number. We have ni stacks, one for each vertex on Pi, and in the stack for ver- 
tex c, we place pointers to all candidate lists that contain U. These pointers are 
arranged in increasing order of the lowest-numbered vertex in the candidate list, 
with ties broken in decreasing order of the highest-numbered vertex in the 
candidate list (the topmost pointer points to the candidate list with the lowest num- 
bered vertex). For each candidate list we maintain a pointer to the current lowest- 
numbered vertex in the candidate list; initially the pointer for each candidate list 
points to its lowest-numbered vertex. 

Parallel Implementation of Step 2.3. This step can be implemented on ear P, 
in O(log* n) time with O(n . ni) processors using efficient parallel algorithms for 
computing postorder numbering on trees [TaVi], for sorting [Co], and for finding 
separating pairs in a star graph [MiRa2]. 

Step 2.4: Sequential Algorithm. We scan the entries in L(s(B)) in order. If the 
current entry is (x, v), we look at the topmost candidate list R in the stack for 
vertex y in the candidate representation for bridge B and check its current lowest- 
numbered vertex Z. If z > .X then we proceed to the next entry in L(s(B)). If z = .Y 
then we have found a match, and hence a type 2 triplet separating Pi. If z < X, we 
move the pointer for R along the list until it points to a vertex u 2 X. If u = X, then 
we have located a type 2 triplet and we leave the pointer at u. If u = Y then we pop 
the pointer to R off the stack and proceed to check the next candidate list in the 
stack for y; if .r > u > x we leave the pointer at u and proceed to the next entry in 
L(.s( B)). It is easy to see that this scan locates all type 2 triplets (C-u, ~31, Z) with z 
in B, and the time it takes is proportional to the sizes of L(s(B)) and the candidate 
lists for B. Hence, over all bridges of Pi this procedure takes time O(n’ + n ‘12,) = 
O(n n,). 

Parallel Implementation of Step 2.4. To implement Step 2.4 in parallel we 
allow ourselves O(log n) time per entry (x, JJ) on L(s( B)) to determine if x lies in 
the same candidate list as y for some entry in stack y; this is accomplished by 
binary search on the entries in stack 4’ followed by a binary search on the vertices 
in the relevant candidate list R. 
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