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Abstract

Starting from a suitable fixed point relation, a new one-parameter family of iterativemethods for the simultaneous
inclusion of complex zeros in circular complex arithmetic is constructed. It is proved that the order of convergence
of this family is four. The convergence analysis is performed under computationally verifiable initial conditions.
An approach for the construction of accelerated methods with negligible number of additional operations is dis-
cussed. To demonstrate convergence properties of the proposed family of methods, two numerical examples results
are given.
© 2005 Elsevier B.V. All rights reserved.

MSC:65H05; 65G20; 30C15

Keywords:Polynomial zeros; Simultaneous methods; Inclusion methods; Convergence; Acceleration of convergence; Circular
interval arithmetic

1. Introduction

In this paper we derive a new fixed point relation which is the base for the construction of a new
one-parameter family of iterative methods for the simultaneous determination of complex zeros of a
polynomial. The basic method realized in circular complex arithmetic has the convergence order equal
to four. Convergence analysis of the proposed method and numerical example are given. A discussion on
the construction of modified methods with very fast convergence is also included.
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The presentation of the paper is organized as follows. Some basic definitions and operations of circular
complex interval arithmetic, necessary for the convergence analysis and the construction of inclusion
methods, are given at the end of Introduction. In Section 2 we derive a fixed point relation of square
root type which is the basis for the construction of iterative methods for the simultaneous inclusion
of simple complex zeros presented in Section 3. The convergence analysis of the basic fourth-order
interval method is given in Section 4. In Section 5 we discuss some modified interval methods with the
accelerated convergence of high computational efficiency. Numerical results obtained for various values
of the involved parameter are given in Section 6.
In the construction of inclusion methods and the convergence analysis we will estimate some complex

quantities using an approach by circular complex arithmetic which deals with disks in the complex plane.
A diskZwith center midZ= c and radius radZ= r, that isZ := {z : |z− c|�r}, will be denoted briefly
by the parametric notationZ = {c; r}. For more details about properties of circular complex interval
arithmetic see the books[1, Chapter 5; 10, Chapter 1].
Consider now the inversion of a diskZ={c; r}which does not contain the origin, that is,|c|>r holds.

Under the transformationw(z)= 1/z this disk maps into the disk

Z−1 =
{
1

z
: z ∈ {c; r}

}
=

{
c̄

|c|2 − r2 ;
r

|c|2 − r2
}
. (1.1)

Aside from the inverse diskZ−1, another type of inversion (so-called centered form)

ZIc =
{
1

c
; r

|c|(|c| − r)
}

(1.2)

is often used. It is easy to check that radZIc > radZ−1 and|midZIc −midZ−1| = radZIc − radZ−1.
According to this and a geometric construction we infer that

Z−1 ⊂ ZIc (0 /∈Z).
In circular complex arithmetic the following simple properties are valid[5]:

z ∈ {c; r} ⇒ |c| − r� |z|� |c| + r, (1.3)

{c1; r1} ± {c2; r2} = {c1 ± c2; r1 + r2}, (1.4)

�{c; r} = {�c; |�|r} (� ∈ C), (1.5)

{c1; r1} ∩ {c2; r2} = ∅ ⇔ |c1 − c2|>r1 + r2, (1.6)

{c1; r1} · {c2; r2} = {c1c2; |c1|r2 + |c2|r1 + r1r2}. (1.7)

Following (1.7) and inversions (1.1) and (1.2), division is defined as

Z1 : Z2 = Z1 · Z−1
2 or Z1 : Z2 = Z1 · ZIc2 (0 /∈Z2).

The square root of a disk{c; r} in the centered form, wherec = |c|ei� and |c|>r, is defined as the
union of two disjoint disks (see[3]):

{c; r}1/2 :=
{√|c|ei�/2; √|c| − √|c| − r

}
∪

{
−√|c|ei�/2; √|c| − √|c| − r

}
. (1.8)

In what follows, disks in the complex plane will be denoted by capital letters.
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2. Fixed-point relation

Let � (�= −1) be a complex parameter whose size will be discussed later. Particular case� = −1 was
considered in detail in[7,13] so that the corresponding methods will not be analyzed in this paper. LetP
be a monic polynomial with simple zeros�1, . . . , �n and letz1, . . . , zn be their approximations. For the
point z= zi let us introduce the notations:

��,i =
n∑
j=1
j �=i

1

(zi − �j )
�
, s�,i =

n∑
j=1
j �=i

1

(zi − zj )�
(� = 1,2),

�1,i = P ′(zi)
P (zi)

, �2,i = P ′(zi)2 − P(zi)P ′′(zi)
P (zi)

2 , (2.1)

f ∗
i = (� + 1)�2,i − �(� + 1)�21,i , fi = (� + 1)s2,i − �(� + 1)s21,i ,

�i = zi − �i , � = max
1� i�n

|�i |. (2.2)

Lemma 2.1. For i ∈ In := {1, . . . , n} the following identity is valid:

(� + 1)�2,i − ��21,i − f ∗
i =

(
� + 1

�i
− ��1,i

)2
. (2.3)

Proof. Starting from the identities

P ′(z)
P (z)

=
n∑
j=1

1

z− �j
(2.4)

and

P ′(z)2 − P(z)P ′′(z)
P (z)2

= −
(
P ′(z)
P (z)

)′
=

n∑
j=1

1

(z− �j )
2 , (2.5)

we obtain

(� + 1)�2,i − ��21,i − f ∗
i = (� + 1)

(
1

�2i
+ �2,i

)
− �

(
1

�i
+ �1,i

)2
− (� + 1)�2,i + �(� + 1)�21,i

= 1

�2i
+ �2�21,i −

2�

�i
�1,i =

(
1

�i
− ��1,i

)2
=

(
� + 1

�i
− ��1,i

)2
. �
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From identity (2.3) we obtain the following fixed point relation:

�i = zi − � + 1

��1,i + [(� + 1)�2,i − ��21,i − f ∗
i ]1/2 (i ∈ In), (2.6)

assuming that two values of the square root have to be taken in (2.6).
Let us assume that we have found mutually disjoint disksZ1, . . . , Zn with centerszi = mid Zi and

radii ri = radZi such that�i ∈ Zi (i ∈ In). Let us substitute the zeros�j by their inclusion disksZj in
the expression forf ∗

i . In this way we obtain a circular extensionFi of f
∗
i ,

Fi = (� + 1)
n∑
j=1
j �=i

(
1

zi − Zj
)2

− �(� + 1)

 n∑
j=1
j �=i

1

zi − Zj


2

(2.7)

with f ∗
i ∈ Fi for eachi ∈ In.

Using the inclusion isotonicity property, from the fixed point relation (2.6) we get

�i ∈ Ẑi := zi − � + 1

��1,i + [(� + 1)�2,i − ��21,i − Fi]1/2
(i ∈ In). (2.8)

If the denominator in (2.8) is a disk not containing 0, thenẐi is a new outer circular approximation to
the zero�i , that is,�i ∈ Ẑi (i ∈ In).

3. Family of methods in circular complex arithmetic

Let us introduce some notations:

1. The circular inclusion approximationsZ(m)1 , . . . , Z
(m)
n of the zeros at themth iterative step will be

briefly denoted byZ1, . . . , Zn, and the new approximationsZ
(m+1)
1 , . . . , Z

(m+1)
n , obtained by some

simultaneous inclusion iterative method, byẐ1, . . . , Ẑn, respectively;
2. Sk,i(A,B)= ∑i−1

j=1(INV (zi − Aj))k + ∑n
j=i+1(INV (zi − Bj))k, zi =midZi ,

Fi(A,B)= (� + 1)S2,i(A,B)− �(� + 1)S21,i(A,B),

whereA = (A1, . . . , An) andB = (B1, . . . , Bn) are some vectors of disks and INV∈ {()−1, ()Ic}. If
A = B = Z = (Z1, . . . , Zn), then we will writeSk,i(Z,Z)= Sk,i andFi(Z,Z)= Fi .
3. Z = (Z1, . . . , Zn) (current disk approximations),

Ẑ = (Ẑ1, . . . , Ẑn) (new disk approximations).
Starting from (2.8), we obtain a new one-parameter family of iterative processes for the simultaneous

inclusion of all simple zeros of a polynomial. In our consideration of a new family wewill always suppose
that� �= −1. However, the particular case� = −1 reduces (by applying a limiting process) to the already
known Halley-like interval method which was studied in[7,12–14]. For the total-step methods (“Jacobi”
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or parallel mode) and single-step methods (serial or “Gauss–Seidel” mode) the abbreviations TS and SS
will be used.
First, following (2.8), we will construct the family of total-step methods:
Basic total-step method(TS):

Z
(m+1)
i = z(m)i − � + 1

��(m)1,i + [(� + 1)�(m)2,i − �[�(m)1,i ]2 − F (m)i (Z,Z)]1/2∗
(i ∈ In; m= 0,1, . . .). (TS)

The symbol∗ indicates that one of the two disks (say,U1,i = {u1,i; di} andU2,i = {u2,i; di}, where
u1,i = −u2,i) has to be chosen according to some suitable criterion. That disk will be called a “proper”
disk. From (2.3) and the inclusionf ∗

i ∈ Fi we conclude that the proper disk is one which contains the
complex number(� + 1)/�i − ��1,i . The choice of the proper sign in front of the square root in (TS) was
considered in detail in[3] (see, also,[6, Chapter 3]). The following criterion for the choice of a proper
disk of a square root (between two disks) can be stated:
If the disksZ1, . . . , Zn are reasonably small, then we have to choose that disk(betweenU1,i andU2,i)

whose center minimizes|P ′(zi)/P (zi)− uk,i | (k = 1,2).
Nowwewill present somespecial cases of this family total-step iterativemethods (omitting the iteration

indices):
� = 0,Ostrowski-like method:

Ẑi = zi − 1

[�2,i − S2,i(Z,Z)]1/2∗
(i ∈ In). (3.1)

� = 1/(n− 1), Laguerre-like method:

Ẑi = zi − n

�1,i +
[
(n− 1)

(
n�2,i − �21,i −

(
nS2,i(Z,Z)− n

n− 1
S21,i(Z,Z)

))]1/2
∗

(i ∈ In).

(3.2)

� = 1,Euler-like method:

Ẑi = zi − 2

�1,i + [2�2,i − �21,i − 2(S2,i(Z,Z)− S21,i(Z,Z))]1/2∗
(i ∈ In). (3.3)

� = −1,Halley-like method:

Ẑi = zi − 2�1,i
�2,i + �21,i − S2,i(Z,Z)− S21,i(Z,Z)

(i ∈ In). (3.4)

The Halley-like method is obtained for� → −1 applying a limiting operation.
The names come from the similarity with the quoted classical methods. For instance, omitting the sum

in (3.1) we obtain the well-known Ostrowski methodẑi = zi − 1/[�2,i]1/2∗ .
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4. Convergence analysis

In this section we give the convergence analysis of the interval method (TS). In the sequel we will
always assume thatn�3.
Let us introduce the abbreviationa = |�|. Also, for disjoint disksZ1, . . . , Zn let us define
r = max

1� i�n
ri, � = min

1� i,j �n
i �=j

{|zi − zj | − rj }, zi =midZi, ri = radZi.

Lemma 4.1. Let

	 = |� + 1|(n− 1)r

�3
(2+ 3a(n− 1))

and let the inequality

�>4(n− 1)r (4.1)

hold. Then

Fi ⊂ {fi; 	}. (4.2)

Proof. We use the following inclusion derived in[6, Chapter 3]:(
1

zi − Zj
)k

⊂
{

1

(zi − zj )k
; kr

�k+1

}
(k = 1,2, . . .). (4.3)

Since

|zi − �j |� |zi − zj | − |zj − �j |� |zi − zj | − rj ��,

we have
1

|zi − �j | �
1

�
and

1

|zi − zj | �
1

�
. (4.4)

Using (4.1), (4.4) and the inclusion (4.3), from (2.7) we obtain

Fi ⊂ (� + 1)
∑
j �=i

{
1

(zi − zj )2
; 2r

�3

}
− �(� + 1)

∑
j �=i

{
1

zi − zj ; r
�2

}2

⊆
(� + 1)

∑
j �=i

1

(zi − zj )2
; 2|� + 1|(n− 1)r

�3

 − �(� + 1)

∑
j �=i

1

zi − zj ; (n− 1)r

�2


2

⊂
(� + 1)

∑
j �=i

1

(zi − zj )2
; 2|� + 1|(n− 1)r

�3

 − �(� + 1)


∑
j �=i

1

zi − zj

2

; 3(n− 1)2r

�3


=

{
fi; |� + 1|(n− 1)r

�3
(2+ 3a(n− 1))

}
= {fi; 	}. �
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Let

yi = (� + 1)�2,i − ��21,i − fi, vi = f ∗
i − fi(

� + 1

�i
− ��1,i

)2 , d = 12|� + 1|(n− 1)2
r2

�3
.

Lemma 4.2. Let inequality(4.1)hold anda = |�|<1.13.Then
(i) |yi |> 15−11a−a2

16r2
>0;

(ii) |yi | − 	> 119−92a−11a2
128r2

>0;
(iii)

√{yi; 	} ⊂ {√
yi; d

} ;
(iv)

√
1+ vi ∈ {1; |�+1|(2a+1)|�i |

(a−4)2� }.

Proof. (i) Using the above notation and identities (2.4) and (2.5), we obtain

yi = (� + 1)

(
1

�2i
+ �2,i

)
− �

(
1

�i
+ �1,i

)2
− ((� + 1)s2,i − �(� + 1)s21,i)

= 1− 2��i�1,i

�2i
+ (� + 1)�2,i − ��21,i − (� + 1)s2,i + �(� + 1)s21,i .

Starting from this expression and using the estimates

|�k,i |� n− 1

�k
, |sk,i |� n− 1

�k
(k = 1,2)

and (4.1), we find

|yi |�
∣∣∣∣∣1− 2��i�1,i

�2i

∣∣∣∣∣ − |(� + 1)�2,i | − |��1,i |2 − |(� + 1)s2,i | − |�(� + 1)s21,i |

�
1− 2ar · n− 1

�

r2
− (a + 1)(n− 1)

�2
− a(n− 1)2

�2
− (a + 1)(n− 1)

�2
− a(a + 1)(n− 1)2

�2

>

1− a

2
r2

− a + 1

8(n− 1)r2
− a

16r2
− a(a + 1)

16r2
�
15− 11a − a2

16r2
>0

for a <1.13.
(ii) Using (i) we obtain

|yi | − 	>
15− 11a − a2

16r2
− (a + 1)(2+ 3a(n− 1))

64(n− 1)2r2
>
15− 11a − a2

16r2
− 3a2 + 4a + 1

128r2

= −11a2 − 92a + 119

128r2
>0

for a <1.13.
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(iii) Using (1.8) we find√{yi; 	} =
{
y
1/2
i ; √|yi | − √|yi | − 	

}
= {y1/2i ;Ri},

where

Ri = 	√|yi | + √|yi | − 	
.

By (i) and (ii) we estimate

Ri =
|� + 1|(n− 1)2r

�3

(
2

n− 1
+ 3a

)
√|yi | + √|yi | − 	

<12|� + 1|(n− 1)2
r2

�3
.

Therefore,√{yi; 	} = {√
yi;Ri

} ⊂
{√
yi;12|� + 1|(n− 1)2

r2

�3

}
= {√

yi; d
}
.

(iv) Starting from the expressions forfi andf ∗
i we find

f ∗
i − fi = − (� + 1)

∑
j �=i

�j
(zi − �j )(zi − zj )

(
1

zi − �j
+ 1

zi − zj
)

+ �(� + 1)

∑
j �=i

�j
(zi − �j )(zi − zj )

 ∑
j �=i

1

zi − �j
+

∑
j �=i

1

zi − zj

 .
Hence, by (4.4) and the inequalities|�i |�r, |zi − zj |�� we get

|f ∗
i − fi |� |� + 1|(n− 1)r

�2

(
1

�
+ 1

�

)
+ a|� + 1|(n− 1)r

�2

(
n− 1

�
+ n− 1

�

)
= 2|� + 1|(n− 1)r

�3
(1+ a(n− 1)). (4.5)

Using (4.1) and (4.4) we estimate

|� + 1− ��i�1,i | =
∣∣∣∣∣∣� + 1− ��i

∑
j �=i

1

zi − �j
+ 1

�i

∣∣∣∣∣∣ �1− a|�i |
∑
j �=i

1

|zi − �j |

�1− a (n− 1)r

�
>
4− a
4
. (4.6)

In the similar way we find

|� + 1− ��i�1,i |�1+ a|�i |
∑
j �=i

1

|zi − �j | <
4+ a
4
. (4.7)
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By (4.5) and (4.6) we estimate

|vi |� |f ∗
i − fi |∣∣∣∣� + 1

�i
− ��1,i

∣∣∣∣2
<

2|� + 1|(n− 1)r

�3
(1+ a(n− 1))

1

|�i |2 |� + 1− ��i�1,i |2

�
32|� + 1|(n− 1)(1+ a(n− 1))

(4− a)2
r2

�2
|�i |
�

=: 
i(�).

Let us observe that


i(�)<
32|� + 1|(n− 1)(1+ a(n− 1))

(4− a)2 · 1

64(n− 1)3
<

|� + 1|
(

1

n− 1
+ a

)
2(4− a)2(n− 1)

<
|� + 1|(1+ 2a)

8(a − 4)2
<1

for |�|<1.13.
Let Vi := {0; 
i(�)}, thenvi ∈ Vi and, by the inclusion isotonicity property and (1.8), we find√

1+ vi ∈ √
1+ Vi =

√{1; 
i(�)} =
{
1;1− √

1− 
i(�)
}

=
{
1; 
i(�)

1+ √
1− 
i(�)

}
⊂ {1; 
i(�)}.

Finally, we obtain√
1+ vi ∈

{
1; |� + 1|(2a + 1)|�i |

(a − 4)2�

}
. �

Using Lemmas 4.1 and 4.2 we are now able to prove that the order of convergence of the inclusion
method (TS) is four.

Theorem 4.1. Let the interval sequences{Z(m)i } (i ∈ In) be defined by the iterative formula(TS),where
|�|<1.13.Then, under the condition

�(0) >4(n− 1)r(0), (4.8)

for eachi ∈ In andm= 0,1, . . . we have

1. �i ∈ Z(m)i ;

2. r(m+1) < 14(n−1)2(r(m))4
(�(0)−1711 r(0))3

.

Proof. We will prove assertion 1 by induction. Suppose that�i ∈ Z(m)i for i ∈ In andm�1. Then

f ∗
i = (� + 1)

∑
j �=i

1

(z
(m)
i − �j )

2
− �(� + 1)

∑
j �=i

1

z
(m)
i − �j

2

∈ F (m)i
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and, according to (2.8), it follows

�i ∈ z(m)i − � + 1

��(m)1,i + [(� + 1)�(m)2,i − �(�(m)1,i )
2 − F (m)i ]1/2∗

= Z(m+1)
i .

The symbol∗ points that the proper disk has to be chosen. Since�i ∈ Z(0)i , we obtain by induction that
�i ∈ Z(m)i for eachm= 0,1,2, . . . .
Let us prove now that the interval method (TS) has the order of convergence equal to four (assertion

2). We use induction and start withm= 0. For simplicity, all indices are omitted and all quantities in the
first iteration are denoted by∧.
Using circular arithmetic operations, inclusion (4.2) and assertion (iii) of Lemma 4.2, from the iterative

formula (TS) (omitting iteration indices) we obtain

Ẑi ⊂ zi − � + 1

��1,i +
{√
yi; d

}
∗

= zi − � + 1

{ui; d} , (4.9)

where we putui = ��1,i + [yi]1/2∗ . By (4.7) and (iv) of Lemma 4.2, we obtain

ui = ��1,i + [yi]1/2∗

= ��1,i +
(

� + 1

�i
− ��1,i

) √
1+ vi ∈ ��1,i +

(
� + 1

�i
− ��1,i

) {
1; |� + 1|(2a + 1)

(a − 4)2
· |�i |

�

}
⊂

{
� + 1

�i
; (4+ a)(2a + 1)|� + 1|

32(a − 4)2
· 1
r

}
=: Ui.

Hence, by virtue of (1.3),

|ui |> |midUi | − radUi = |� + 1|
|�i | − (4+ a)(2a + 1)|� + 1|

32(a − 4)2r

>
|� + 1|
r

· 30a
2 − 265a + 508

32(a − 4)2
>0 (4.10)

for |�|<1.13. Using (4.1) and (4.10) we estimate

|ui | − d > |� + 1|
r

(
30a2 − 265a + 508

32(a − 4)2
− 3

32

)
= |� + 1|

r

(
27a2 − 241a + 460

32(a − 4)2

)
>0

for |�|<1.13.
By (1.1) from (4.9) we find

Ẑi ⊂ zi − (� + 1)

{
ui

|ui |2 − d2 ;
d

|ui |2 − d2
}
,

whence

r̂i = radẐi <
|� + 1|d

|ui |2 − d2 . (4.11)
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Using the lower bound for|ui | given by (4.10), from (4.11) we obtain

r̂i <

12|� + 1|2(n− 1)2
r2

�3( |� + 1|
r

(
30a2 − 265a + 508

32(a − 4)2

))2
−

(
12|� + 1|(n− 1)2

r2

�3

)2

<

12(n− 1)2 · r
4

�3(
30a2 − 265a + 508

32(a − 4)2

)2
−

(
3

32

)2 ,
wherefrom

r̂ <
14(n− 1)2r4

�3
(4.12)

and

r̂ <14(n− 1)2
r3

�3
r <

14

64(n− 1)
r <0.11r <

3

25
r. (4.13)

According to a geometric construction and the fact that the disksZ
(m)
i andZ(m+1)

i must have at least
one point in common (the zero�i), the following relation can be derived (see[4]):

�(m+1)��(m) − r(m) − 3r(m+1). (4.14)

Using inequalities (4.13) and (4.14) (form= 0), we find

�(1)��(0) − r(0) − 3r(1) >4(n− 1)r(0) − r(0) − 9
25 r

(0) > 25
3 r

(1)(4(n− 1)− 1− 9
25),

wherefrom it follows

�(1) >4(n− 1)r(1). (4.15)

This is condition (4.1) for the indexm = 1, which means that all assertions of Lemmas 4.1 and 4.2 are
valid form= 1.
Using the definition of� and (4.15), for arbitrary pair of indicesi, j ∈ In (i �= j) we have

|z(1)i − z(1)j |��(1) >4(n− 1)r(1) >2r(1)�r(1)i + r(1)j . (4.16)

Therefore, in regard to (1.6), the disksZ(1)1 , . . . , Z
(1)
n produced by (TS) are disjoint.

Applying mathematical induction with the argumentation used for the derivation of (4.12)–(4.14) and
(4.16) (which makes the part of the proof with respect tom= 1), we prove that, for eachm= 0,1, . . . ,



M.S. Petkovi´c, D.M. Milošević / Journal of Computational and Applied Mathematics 182 (2005) 416–432427

the disksZ(m)1 , . . . , Z
(m)
n are disjoint and the following relations are true:

r(m+1) < 14(n− 1)2(r(m))4

(�(m))3
, (4.17)

r(m+1) < 3
25 r

(m), (4.18)

�(m) >4(n− 1)r(m). (4.19)

In addition we note that the last inequality (4.19) means that the assertions of Lemmas 4.1 and 4.2 hold
for eachm= 0,1,2, . . . .
For simplicity, let� = 3/25. Then

1+ 4(� + �2 + · · · + �m)− �m <1+ 4�

1− �
= 17

11
. (4.20)

By the successive application of (4.14) and (4.18) we obtain

�(m) > �(m−1) − r(m−1) − 3�r(m−1) = �(m−1) − r(m−1)(1+ 3�)

> �(m−2) − r(m−2) − 3�r(m−2) − �r(m−2)(1+ 3�)

= �(m−2) − r(m−2)(1+ 4� + 4�2 − �2)
...

> �(0) − r(0)(1+ 4� + 4�2 + · · · + 4�m − �m)

> �(0) − 17
11 r

(0),

where we used (4.20). According to the last inequality and (4.17) we find

r(m+1) < 14(n− 1)2(r(m))4

(�(0) − 17
11 r

(0))3
.

Therefore, assertion 2 of Theorem 4.1 holds. The last relation shows that the order of convergence of the
inclusion method (TS) is four.�

Remark 1. The condition|�|<1.13 is only sufficient. This bound is used to provide the validity of some
(not so sharp) inequalities and estimates in the presented convergence analysis. However, the value of|�|
can be taken to be considerably larger in practice, as many numerical examples have shown.

5. Improved methods

The convergence rate of the total-step method (TS) can be accelerated using new circular approxima-
tions as soon as they are calculated in the current iteration (Gauss–Seidel approach or single-step mode).
In this way we construct
Basic single-step method(SS):

Ẑi = zi − � + 1

��1,i + [(� + 1)�2,i − ��21,i − Fi(̂Z,Z)]1/2∗
(i ∈ In). (SS)
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TheR-order of convergence of the single-step method (SS) is at least 3+ xn, wherexn >1 is the unique
positive root of the equationxn − x − 3= 0 (see[7]).
Let us introduce the following notations:

Ni =N(zi)= 1/�1,i = P(zi)

P ′(zi)
(Newton’s correction), (5.1)

Hi =H(zi)=
[
P ′(zi)
P (zi)

− P ′′(zi)
2P ′(zi)

]−1
= 2�1,i

�21,i + �2,i
(Halley’s correction), (5.2)

ZN = (ZN,1, . . . , ZN,n) ZN,i = Zi −N(zi) (Newton’s disk approximations),

ZH = (ZH,1, . . . , ZH,n) ZH,i = Zi −H(zi) (Halley’s disk approximations).

We recall that the correction terms (5.1) and (5.2) appear in the iterative formulas

Ẑ = z−N(z) (Newton’s method), and Ẑ = z−H(z) (Halley’s method),

which have quadratic and cubic convergence, respectively.
The approximationFi of f ∗

i is obtained by substituting the zeros�1, . . . , �n by their approximations
Z1, . . . , Zn. If we apply the substitution procedure taking better approximations (compared toZi)ZN,i or
ZH,i in the sums�1,i and�2,i , thenwewill obtain the better approximationsFi(ZN,ZN) andFi(ZH ,ZH)
to f ∗

i . In this way we obtain algorithms with the improved convergence. For example, using Newton’s
disksZN,j we can construct
Total-step method with Newton’s correction(TSN):

Ẑi = zi − � + 1

��1,i + [(� + 1)�2,i − ��21,i − Fi(ZN,ZN)]1/2∗
(i ∈ In). (TSN)

TheR-order of convergence of the modified method (TSN) depends on the type of the inversion of a disk
used in the calculation ofFN,i (cf. [2,8,9]). It is equal to 2+

√
7�4.646 if the exact inversion (1.1) is

applied and 5 if we apply the centered inversion (1.2).
Further acceleration of the convergence rate can be achieved applying Gauss–Seidel approach to the

inclusionmethodswith corrections.An extensive study of these improvedmethods, together with detailed
convergence analysis, is given in the forthcoming paper.
It is worth noting that the increase of the convergence rate of the methods with corrections is obtained

with negligible number of additional calculations (sinceP(zi), P ′(zi), P ′′(zi) are already evaluated for
all i ∈ In), which means that these methods possess very high computational efficiency.
We recall that the symbol∗ in the above methods denotes the proper value of the square root.

6. Numerical results

To test the convergence properties of the presented inclusionmethods from the family (TS), we applied
these methods to polynomial equations of various degrees. In order to save all significant digits of the
obtained approximations and to control the enclosure of the sought zeros, we implemented the corre-
sponding algorithms on PC PENTIUM IV using the programming packageMathematica5 with multiple
precision arithmetic.
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For comparison purpose, beside methods (3.1)–(3.4), we tested the method (TS) which is obtained for
� = 1/2:

Ẑi = zi − 3

�1,i +
√
2[3�2,i − �21,i − 3S2,i(Z,Z)+ 3

2S
2
1,i(Z,Z)]1/2∗

(i ∈ In), (6.1)

and the following inclusion method of the order four:

Ẑi = zi − 1
P ′(zi)
P (zi)

− ∑n
j=1
j �=i

(zi − Zj +Nj)Ic
(i ∈ In). (6.2)

([2]) and

Ẑi = zi − W(zi)

1+ ∑n
j=1
j �=i

W(zj )(Zi −Wi − zj )Ic
(i ∈ In). (6.3)

([9]).
Some authors consider that it is always better to apply more iterations of Weierstrass’ method of the

second order[6, Chapter 3]

Ẑi = zi − P(zi)

 n∏
j=1
j �=i

(zi − Zj)


−1

(i ∈ In) (6.4)

than any higher-order method. To check this opinion, we also employed this method.
The performed numerical experiments demonstrated very fast convergence of the inclusion method

even in the case of relatively large initial disks. In all tested examples the choice of initial disks was
carried out under a weaker condition than (4.1); moreover, the ratio�(0)/r(0) was most frequently two,
three or more times less than 4(n− 1). We have selected two typical examples.

Example 1. Inclusion methods (3.1)–(3.4), (6.1)–(6.4) were applied for the simultaneous approximation
to the zeros of the polynomial

P(z)= z9 + 3z8 − 3z7 − 9z6 + 3z5 + 9z4 + 99z3 + 297z2 − 100z− 300.

The exact zeros of this polynomial are−3, ±1, ±2i, ±2i ± i. The initial disks were selected to be
Z
(0)
i = {z(0)i ;0.3} with the centers

z
(0)
1 = −3.1+ 0.2i, z

(0)
2 = −1.2− 0.1i, z

(0)
3 = 1.2+ 0.1i,

z
(0)
4 = 0.2− 2.1i, z

(0)
5 = 0.2+ 1.9i, z

(0)
6 = −1.8+ 1.1i,

z
(0)
7 = −1.8− 0.9i, z

(0)
8 = 2.1+ 1.1i, z

(0)
9 = 1.8− 0.9i.

The entries of the maximal radii of the disks produced in the first three iterations, for different values
of �, are given inTable 1, where the denotationA(−q) meansA× 10−q .
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Table 1
The maximal radii of inclusion disks

Methods r(1) r(2) r(3)

(TS)� = 1 1.96(−2) 5.32(−9) 7.95(−39)
(TS)� = 0.5 1.45(−2) 7.13(−10) 4.64(−43)
(TS)� = 1

n−1 9.03(−3) 3.96(−10) 4.81(−42)
(TS)� = 0 8.09(−3) 3.20(−10) 1.70(−40)
(TS)� = −1 2.38(−2) 4.28(−8) 4.62(−34)
(6.2) 5.38(−2) 1.11(−5) 4.90(−23)
(6.3) 1.12(−2) 9.97(−9) 3.38(−34)
(6.4) diverges — —

Example 2. The same interval methods from Example 1 were applied for the determination of the eigen-
values of Hessenberg’s matrixH (see[11]). Gerschgorin’s disks were taken as initial regions containing
these eigenvalues. It is known that these disks are of the form{hii;Ri} (i = 1, . . . , n), wherehii are the
diagonal elements of a matrix[hij ] andRi = ∑

j �=i |hij |. If these disks are mutually disjoint, then each
of them contains one and only one eigenvalue, which is very convenient for the application of inclusion
methods.

The methods were tested in the example of the matrix

H =


2+ 3i 1 0 0 0
0 4+ 6i 1 0 0
0 0 6+ 9i 1 0
0 0 0 8+ 12i 1
1 0 0 0 10+ 15i

 ,
whose characteristic polynomial is

g(�)= �5 − (30+ 45i)�4 + (−425+ 1020i)�3 + (10350− 2025i)�2

− (32606+ 32880i)� − 14641+ 71640i.

We selected Gerschgorin’s disks

Z1 = {2+ 3i;1}, Z2 = {4+ 6i;1}, Z3 = {6+ 9i;1}, Z4 = {8+ 12i;1}, Z5 = {10+ 15i;1}
tobe initial diskscontaining thezerosofg, that is, theeigenvaluesofH .The radiir(m)i =radZ(m)i (m=1,2)
of the produced disks are displayed inTable 2.
As in Example 1, Weierstrass’method (6.4) diverged.
FromTable 2we observe that the applied inclusion methods converges very fast. The explanation for

this extremely rapid convergence lies in the fact that the eigenvalues of Hessenberg’s matrix are very
close to the diagonal elements. For the closeness to the desired zeros, the centers of initial disks cause
very fast convergence of the sequences of centers of inclusion disks, which provides fast convergence of
radii.
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Table 2
The maximal radii of inclusion disks containing the eigenvalues of Hessenberg’s matrix

(TS)� = 1 (TS)� = 0.5 (TS)� = 1/(n− 1) (TS)� = 0 (TS)� = −1 (6.2) (6.3)

r(1) 2.73(−10) 2.39(−10) 2.21(−10) 2.04(−10) 2.73(−10) 5.64(−7) 3.27(−7)
r(2) 4.92(−43) 3.65(−43) 3.02(−43) 2.38(−43) 2.73(−43) 1.71(−37) 1.60(−28)

7. Conclusions

Wepresented a new one-parameter family of iterativemethods for the simultaneous inclusion of simple
complex zeros of a polynomial. Computationally verifiable initial conditions, which provide the inclusion
of zeros at each iteration as well as the convergence of the fourth-order right from the start, are stated.
The characteristics and advantages of this family can be summarized as follows:
(1) theproducedencloseddisks enable automatic determinationof rigorouserror boundsof theobtained

approximations;
(2) the proposed family is of general type and includes previously derived methods of the square-root

type;
(3) numerical examples demonstrate stable and fast convergence of the family (TS); furthermore,

the methods of this family compete the existing inclusion methods of the fourth order (6.2) and (6.3),
sometimes they produce tighter disks; moreover, numerical experiments show that a variation of the
parameter� can often provide a better approaching to the wanted zeros compared to (6.2) and (6.3). See
Examples 1 and 2.
(4) quadratically convergent Weierstrass’ method (6.4) diverged not only in the displayed examples,

but also in the case of numerous polynomial equations. This means that the application of Newton-like
methods (like Weierstrass’method (6.4)) is not always better than higher-order methods.
(5) the order of convergence of the proposed family of methods is four; it can be significantly increased

by suitable (already calculated) corrections with negligible number of operations attaining in this way a
high computational efficiency.
(6) a slight modification of the fixed point relation, which served as the base for the construction of the

considered algorithm, can provide the simultaneous inclusion of multiple zeros.
Algorithmswith corrections (item (5)) and algorithms for the inclusion ofmultiple complex zeros (item

(6)) will be considered in details in the forthcoming papers.
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