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Abstract 

The temperature dependences of the magnetization M ( T ) for multiferroic single crystal lanthanum-strontium manganites 
La 0.875 Sr 0.125 MnO 3 (LSMO-0.125) and La 0.93 Sr 0.07 MnO 3 (LSMO-0.07) have been obtained. It is shown that the phase transitions 
(PT) in LSMO-0.07 at T C =125.8(1,5) K and in LSMO-0.125 at T C1 =181.2 (1.5) belong to the second order type. The phase 
transition in LSMO-0.125 at T C2 =157.6 (1.5) K is the first order PT. From the M 

–1 ( T ) curves, the values of the magnetic 
moments have been determined. They are equal to μ1 =2.47(1) μB /Mn and μ2 =2.82(1) μB /Mn, for LSMO-0.125 and LSMO- 
0.07 respectively. 
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Introduction 

A very interesting correlation between doping-
induced conductivity and ferromagnetism was discov-
ered at the end of the 20th century for the initially
dielectric manganese-containing perovskites LaMnO 3 ,
the so-called manganites, in which the rare-earth metal
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was replaced by the alkaline-earth one. Initial ternary
composites LaMnO 3 and AMnO 3 , where A = Ca, Sr
or Ba, are antiferromagnetics whose magnetic mo-
ments are located at the sites occupied by man-
ganese ions. In the case of quaternary stoichiometry
of the La 1–x A x MnO 3 type with intermediate compo-
sitions (with different values of x ), the composite not
only becomes a strong ferromagnetic, but also exhibits
metallic-type conductivity observed below the Curie
temperature [1] . Additionally, this compound is a ma-
terial with extremely high values of dielectric permit-
tivity (up to 10 

7 ) and magnetocapacitance effect (up
to 10 

5 %) even at room temperature [2] . 
ction and hosting by Elsevier B.V. This is an open access article 
nc-nd/4.0/ ) 
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The structure of the cubic perovskite LaMnO 3 is a 
three-dimensional lattice consisting of regular MnO 3 

octahedra connected by oxygen vertices [3,4] . In this 
structure, La 3 + , which is the larger cation, is located 

in the center of the cube formed by the oxygen oc- 
tahedra, and Mn 

3 + , which is smaller, is in the center 
of the octahedron. On the other hand, the structure of 
La 1–x Sr x MnO 3 changes from orthorhombic to rhom- 
bohedral [5] at increasing of strontium cation concen- 
tration, and an unusual polaron-ordered state is ob- 
served in the intermediate range of concentrations (for 
x = 0.10 –0.15). According to the neutron diffraction 

data [6] , this condition is associated with the ordered 

arrangement of aliovalent Mn 

3 + /Mn 

4 + ions in alter- 
nating (001) planes and the emergence of the corre- 
sponding superstructure. 

The structure of La 1–x Sr x MnO 3 (LSMO- x ) is far 
from cubic perovskite. According to Ref. [7] , this 
structure has two types of distortions, which are 
caused by either the mismatch between the size of the 
cations and the size of the corresponding free space 
(type 1), or by the Jahn–Teller (JT) effect (type 2) 
[4,8] . 

The JT effect manifests in the decrease in the en- 
ergy of such a degenerate system due to the reduction 

of the symmetry removing the degeneracy of the elec- 
tronic levels. 

The author of Ref. [7] suggested that the second 

type of distortions was caused by the fact that the 
Mn 

3 + ion in a cubic crystalline field is degenerate in 

the d -orbitals, i.e., this field splits the atomic d -level to 

two- and three-fold degenerate levels e g and t 2 g . Since 
the first level is higher than the second one, the t 2 g 
level is fully occupied by four electrons of the d -level 
of Mn 

3 + , while the e g level is only partially occupied. 
The lanthanum strontium manganite undergoes 

two structural transitions, however, the data on 

them greatly differs. According to the results ob- 
tained by the authors of Refs. [5,9,10] , the high- 
temperature structural transition in LSMO-0.125 oc- 
curs at T = 270 K from one orthorhombic structure to 

another, accompanied by the appearance of coopera- 
tive distortions of the second type. With a further de- 
crease in temperature, a transition back to the initial 
structure occurs at Т = 150 K with the suppression of 
these distortions. At the same time, it follows from 

the results of Refs. [6,11,12] that the first transition 

occurs from the orthorhombic phase ( Pbnm ) to the 
monoclinic one ( P 2 1 / с ); the second transition is from 

the monoclinic phase to the triclinic one ( P 1) [13] . For 
example, according to the data in [14] , LSMO-0.125 in 

a high-temperature paramagnetic phase belongs to the 
orthorhombic space group Pnma and has the param- 
eters a = 5.5624(6) Å, b = 7.7360(6) Å, c = 5.5478(6) 
Å, while according to the results of [15] , this phase in 

LSMO-0.2 belongs to the rhombohedral space group 

R ̄3 c and has the following unit cell parameters: a ≈
5,5 Å, c ≈ 1,34 Å, γ =120 º. 

La 1–x Sr x MnO 3 crystals have become a model object 
for studying colossal magnetoresistance [16] , which 

is often associated with the charge and phase sep- 
aration and with the percolation of the nanoregions 
with metallic-type conductivity [17] . It was predicted 

that inhomogeneous states could occur even above the 
Curie temperature [17] . 

The presence of unusual magnetocapacitance prop- 
erties provides opportunities for practical applications 
of this type of manganites. For example, the authors of 
Ref. [2] proposed, for achieving high values of permit- 
tivity and magnetocapacitance effect, to modulate the 
properties of charge inhomogeneities in doped man- 
ganites LSMO- x . Extremely high values of permittiv- 
ity (up to 10 

7 in the 0.1 –1 kHz frequency range) and 

magnetocapacitance effect (up to 10 

5 %) were detected 

even at room temperature. The authors of [2] suggest 
that this may be due to the strong interaction between 

charge, spin and lattice degrees of freedom, leading 

to charge and phase separation before the percolation 

threshold [17] . 
Despite extensive studies in this field, the micro- 

scopic origin of this behavior has not yet been found. 
The study carried out by the authors of Ref. [5] can 

be considered one of the more successful attempts; a 
full Т –х phase diagram was constructed for LSMO- 
x with the x concentrations from 0 to 0.45 and in a 
wide temperature range (4.2–1050 K), and detailed in- 
vestigations of the electrical and magnetic properties 
of LSMO- x single crystals were examined in detail in 

the above-noted range of concentrations. Temperature 
studies of the properties of LSMO-0.07 and LSMO- 
0.125 [5] have revealed that these compounds undergo 

a variety of magnetic and structural transformations, 
which include the appearance of antiferromagnetic and 

ferromagnetic orderings, structural transitions between 

strongly and weakly distorted orthorhombic phases, 
transition to the rhombohedral phase and transition 

to polaron ordering. According to Ref. [6] , the po- 
laron phase is an ordered arrangement of the Mn 

3 + 

and Mn 

4 + ions in which one of the two alternating 

atomic layers of the (001) plane contains, as in pure 
LMO, only the Mn 

3 + ions, while the second one con- 
tains both types of ions, i.e., holes [5] . 

Nevertheless, the temperatures of these transitions, 
the magnetic moments of the materials, the type of 
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phase transitions (PT), and the practical effect of the
application of a strong magnetic field remain unclear.

The goal of this study is to obtain the information
on the temperature evolution of the magnetic proper-
ties of the LSMO-0.07 and LSMO-0.125 compounds
in the 4–240 K temperature range, i.e., exactly where
the unusual macroscopic properties of these materials
are observed. 

The experimental part 

The studies were carried out on a vibration magne-
tometer in the International Laboratory of High Mag-
netic Fields and Low Temperatures (Wroclaw, Poland).
The weight of single-crystal samples was 121.95 mg
for LSMO-0.125 and 152.8 mg for LSMO-0.07, re-
spectively. The magnetic field was applied along the c
axis; the measuring field was 0.2 T. The temperature
dependences of the magnetization of the samples were
obtained in the 4–240 K temperature range. 

Results and discussion 

Fig. 1 a shows the temperature dependence of mag-
netization for the LSMO-0.07 sample under cooling.
It is easy to notice that the curve changes its behavior
in the vicinity of 130 K, and this temperature, accord-
ing to the phase diagram obtained in Ref. [5] , corre-
sponds to the PT from the high-temperature paramag-
netic phase to the low-temperature non-collinear one,
accompanied by the emergence of spontaneous and
residual magnetization. This indicates that the mag-
netic structure is weakly ferromagnetic rather than
purely antiferromagnetic [5] . 

In this case, let us represent the temperature depen-
dence of magnetization М( Т ) as the following power
function: 

( T C − Т ) β (1)

where Т С is the PT temperature, β is the critical ex-
ponent. 

It follows from the analysis of the data in Fig. 1 a
that this description (curve 2 ) is in sufficiently good
agreement with the experimental curve. The following
values were obtained for the parameters of function
( 1 ): T С = 125.8(1.5) K, β= 0.280(8). We also deter-
mined the PT temperature using the following proce-
dure: the М( Т ) dependence in the paramagnetic phase
was approximated by a straight line to the region of
low temperatures (curve 3 in Fig. 1 a), and the inter-
section point with the approximating curve was found
(see formula ( 1 )). The obtained temperature value
coincides with the above-listed value of Т С within
± 0.5 K. 

Fig. 1 b shows the temperature dependence of mag-
netization M ( T ) for the LSMO-0.125 sample under
cooling. It can be clearly seen that two anomalies are
observed on the curve: the first one near 180 K, and
the second one near 157 K; notice that the function
М( Т ) increases sharply below this temperature, and
then practically does not change in the region below
100 K. Thus, we can conclude that two magnetic phase
transitions are observed in the LSMO-0.125 sample.
In the 150–190 K temperature range, the М( Т ) depen-
dence was also approximated by function ( 1 ) and the
following parameters were obtained: Т С 1 =181.2(1.5)
K and β1 =0.440(13), which is sufficiently close to the
value of the critical exponent equal to 0.5 for the mean
field theory. The value of Т С 1 , obtained from the inter-
section point of line 3 (linear approximation of М( Т )
of the paramagnetic phase to the low-temperature re-
gion) and curve 2 (power dependence of magnetiza-
tion with the parameters Т С 1 and β1 ), turned out to
be similar to the case with the LSMO-0.07 sample,
close (with greater accuracy than 0.5 K) to the value
of Т С 1 =181.2 K, determined from formula ( 1 ). This
temperature value is in good agreement with the re-
sult obtained in Ref. [5] . 

The second PT was approximated by a step func-
tion with Т С 2 = 157.6 (1.5) K. This transition appar-
ently corresponds to the transition to the polaron or
the polaro n-ordering phase [5,6] . 

Thus, based on the character of the temperature de-
pendences of М( Т ), and the values of the critical expo-
nents obtained for the LSMO-0.07 and LSMO-0.125
samples, it can be assumed that the PT at 125.8 K in
the first sample and at 181.2 K in the second one are
the second order phase transitions, while the PT in the
second sample (LSMO-0.125) at 157.6 K is the first
order phase transition. The final stage of our study in-
volved constructing the temperature dependence of the
reverse magnetization 1/ M for both samples ( Fig. 2 );
the slopes of these curves in the paramagnetic phase
(high-temperature regions) were used to estimate the
values of the magnetic moments of manganese ions in
both samples. 

The following formula was used to assess the val-
ues of the magnetic moments in both compounds: 

1 

M 

= 

k B T 

N μ2 B 

(2)

where μ (in Bohr magnetons μB 

) is the magnetic mo-
ment; M is the magnetization; B (in Oe) is the applied
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Fig. 1. Experimental temperature dependences of magnetization for samples with the LSMO-0.07 (a) and LSMO-0.125 (b) compositions under 
cooling ( 1 ) and their approximations in the high-temperature ( 2 ) and low-temperature ( 3 ) regions. 
measuring magnetic field; k B 

is the Boltzmann con- 
stant, N is the number of magnetic atoms per unit of 
volume. 

The slopes of the M 

–1 ( T ) dependences (lines 2 

in Fig. 2 ) were determined for the experimental 
curves 1 in the high-temperature region; upon sub- 
stitution into formula ( 2 ), the magnetic moments for 
both compounds were calculated. They were as fol- 
lows: μ1 =2.47(1) μB 

/Mn and μ2 =2.82(1) μB 

/Mn for 
LSMO-0.125 and LSMO-0.07, respectively. 
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Fig. 2. Experimental temperature dependences of reverse magnetization ( 1 ) for the LSMO-0.0125 (a) and LSMO-0.07 (b) samples and their 
approximations in the high-temperature region (2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusion 

We have studied the temperature evolution
of magnetization in the single crystals of the
La 0.875 Sr 0.125 MnO 3 and La 0.93 Sr 0.07 MnO 3 composi-
tions and have established that a single magnetic
PT has been observed in LSMO-0.07 Т С =125.8(1.5)
K, and two magnetic PTs have been observed in
LSMO-0.125 at Т С 1 =181.2(1.5) K и Т С 2 =157.6(1.5)

K.  
We have determined the values of the criti-
cal exponents β=0.280(8) for La 0.93 Sr 0.07 MnO 3 and
β1 =0.440(13) for La 0.875 Sr 0.125 MnO 3 . 

Based on the obtained experimental data and the
critical exponent values we can conclude that the PTs
at the Т С and Т С 1 temperatures are the second order
phase transitions, and the PT in LSMO-0.125 at Т С 2
is the first order phase transition. 

We have obtained the estimates for the mag-
netic moments, which have the following values
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μ1 =2.47(1) μB 

/Mn and μ2 =2.82(1) μB 

/Mn for 
LSMO-0.125 and LSMO-0.07, respectively. 
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