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1. Introduction

Cluster categories are introduced by Buan, Marsh, Reineke, Reiten, Todorov [BMRRT] for a categori-
fied understanding of cluster algebras introduced by Fomin and Zelevinsky in [FZ1,FZ2], see also [CCS]
for type An . We refer [FZ3] for a survey on cluster algebras and their combinatorics, see also [FR1].
Cluster categories are the orbit categories D/τ−1[1] of derived categories of hereditary categories
by the automorphism group 〈τ−1[1]〉 generated by the automorphism τ−1[1]. They are triangulated
categories [Ke]. Cluster categories, on the one hand, provide a successful model for acyclic cluster al-
gebras and their cluster combinatoric; see, for example, [BMRRT,BMR,CC,CK1,CK2,IR,Zh1,Zh2]; on the
other hand, they replace module categories as a new generalization of the classical tilting theory, see,
for example, [KR1,KR2,IY,KZ]. Cluster tilting theory and its combinatorics are the essential ingredients
in the connection between quiver representations and cluster algebras, and have now become a new
part of tilting theory in the representation theory of algebras; we refer to the surveys [BM,Rin,Re] and
the references there for recent developments and background on cluster tilting theory.

Let H be a finite dimensional hereditary algebra over a field K with n non-isomorphic simple
modules, and let C(H) be the corresponding cluster category. In a triangulated category, there are
three possible kinds of rigid objects: cluster tilting (maximal 1-orthogonal in the sense of Iyama [I]),
maximal rigid, and complete rigid. It is well known that they are not equivalent to each other in
general [BIKR,KZ]. But in the cluster category C(H), they are equivalent [BMRRT]. Compared with
classical tilting modules, cluster tilting objects in cluster categories have nice properties [BMRRT]. For
example, any almost complete cluster tilting object in a cluster category can be completed to a cluster
tilting object in exactly two ways, but in mod H , there are at most two ways to complete an almost
complete basic tilting module. Moreover, the two complements M , M∗ of an almost complete basic
cluster tilting object T̄ are connected by two triangles

M∗ −→ B −→ M −→ M∗[1],
M −→ B ′ −→ M∗ −→ M[1]

in C(H), where respectively, B −→ M and B ′ −→ M∗ are minimal right add T̄ -approximations of
M and M∗ in C(H). It follows that M and M∗ satisfy the condition dimDM Ext1

C(H)(M, M∗) = 1 =
dimDM∗ Ext1

C(H)(M∗, M), where DM (or DM∗ ) is the endomorphism division ring of M (resp. M∗).
Conversely, if two indecomposable rigid objects M , M∗ satisfy the condition above, one can find an
almost complete cluster-tilting object T̄ such that M and M∗ are the two complements of T̄ . In this
case, T̄ ⊕ M∗ is called a mutation of T̄ ⊕ M . Any two cluster-tilting objects are connected through
mutations, provided that the ground field K is algebraically closed.

Keller [Ke] introduced d-cluster categories D/τ−1[d] as a generalization of cluster categories for
d ∈ N. They are studied recently in [Th,Zh3,BaM1,BaM2,KR1,KR2,IY,HoJ1,HoJ2,J,Pa,ABST,T,Wr]. d-cluster
categories are triangulated categories with Calabi–Yau dimension d + 1 [Ke]. When d = 1, ordinary
cluster categories are recovered.

The aim of this paper is to study the cluster tilting theory in d-cluster categories. It is motivated by
two factors. First, since some properties of cluster tilting objects in cluster categories do not hold in
general in this generalized setting (for example, the endomorphism algebras of d-cluster tilting objects
are not again Goreistein algebras of dimension at most d in general [KR1]), one natural question
is to see whether other properties of cluster tilting objects hold in d-cluster categories. Second, in
[Zh3] we use d-cluster categories to define a generalized cluster complexes of the root systems of the
corresponding Kac–Moddy Lie algebras (see also [BMRRT] and [Zh1] for a quiver approach of cluster
complexes). When H is of finite representation type, these complexes are the same as those defined
by Fomin and Reading [FR2] using the combinatorics of the root systems, see also [Th]. We need the
combinatorial properties of d-cluster tilting objects for these generalized cluster complexes.

In [Zh3], the second author of this paper proved that any basic d-cluster tilting object in a d-
cluster category Cd(H) contains exactly n indecomposable direct summands, where n is the number
of non-isomorphic simple H-modules, and that the number of complements of an almost complete
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d-cluster tilting object is at least d + 1. The present article is a completion of the result from [Zh3]
mentioned above. Furthermore, it can be viewed as a generalization to d-cluster categories of (almost)
all the results for cluster categories in [BMRRT].

The paper is organized as follows: In Section 2, we recall and collect some notion and basic results
needed in this paper. In Section 3, we prove that the d-cluster tilting objects in d-cluster categories
are equivalent to the maximal rigid objects, and also to the complete rigid objects (i.e. rigid objects
containing n non-isomorphic indecomposable direct summands, where n is the number of simple
modules over the associated hereditary algebra). In the Dynkin case, this equivalence was proved in
[Th] using the fact that every indecomposable object is rigid. In Section 4, we compare two chains
of d + 1 triangles, from [Zh3] and [IY] respectively, in order to prove that a basic almost complete
d-cluster tilting object has exactly d + 1 non-isomorphic complements, which are connected by these
d+1 triangles. The extension groups between the complements of an almost complete d-cluster tilting
object are computed explicitly, and a necessary and sufficient condition for d+1 indecomposable rigid
objects to be the complements of an almost complete d-cluster tilting object is obtained in Section 5.
In Section 6, for an almost complete d-cluster tilting object, the middle terms of the d + 1 triangles
which are connected by the d + 1 complements are proved to contain no direct summands common
to them all. In the final section, we give an application of the results proved in these previous sections
to the generalized cluster complexes defined by Fomin and Reading [FR2], studied in [Th], and [Zh3],
and show that all the main properties of these generalized cluster complexes of finite root system in
[FR2,Th] hold also for the generalized cluster complexes of arbitrary root systems defined in [Zh3].

After completing and submitting this work, we saw Wralsen’s paper [Wr] (arXiv:0712.2870). The
fact that maximal d-rigid objects and d-cluster tilting objects coincide and that almost complete
d-cluster tilting objects have d + 1 complements, have also been proved independently in [Wr], with
different proofs.

2. Basics on d-cluster categories

In this section, we collect some basic definitions and fix notation that we will use throughout the
paper.

Let H be a finite dimensional hereditary algebra over a field K . We denote by H the category of
finite dimensional modules over H . It is a hereditary abelian category [DR]. The subcategory of H
consisting of isomorphism classes of indecomposable H-modules is denoted by ind H. The bounded
derived category of H will be denoted by Db(H) or D. We denote the non-isomorphic indecompos-
able projective representations in H by P1, . . . , Pn , and the simple representations with dimension
vectors α1, . . . ,αn by E1, . . . , En . We use D(−) to denote HomK (−, K ) which is a duality operation
in H.

The derived category D has Auslander–Reiten triangles, and the Auslander–Reiten translate τ is an
automorphism of D. Fix a positive integer d, and denote by Fd = τ−1[d], it is an automorphism of D.
The d-cluster category of H is defined in [Ke]; we denote by D/Fd the corresponding factor category.
Its objects are by definition the Fd-orbits of objects in D, and the morphisms are given by

HomD/Fd ( X̃, Ỹ ) =
⊕
i∈Z

HomD
(

X, F i
dY

)
.

Here X and Y are objects in D, and X̃ and Ỹ are the corresponding objects in D/Fd (although we
shall sometimes write such objects simply as X and Y ).

Definition 2.1. (See [Ke,Th].) The orbit category D/Fd is called the d-cluster category of H (or of H),
and is denoted by Cd(H), or sometimes by Cd(H).

By [Ke], the d-cluster category is a triangulated category with shift functor [1] induced by the shift
functor in D; the projection π : D −→ D/F is a triangle functor. When d = 1, this orbit category is
called the cluster category of H, and denoted by C(H), or sometimes by C(H).
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H is a full subcategory of D consisting of complexes concentrated in degree 0. Passing to Cd(H)

by the projection π , H is a (possibly not full) subcategory of Cd(H), and C(H) is also a (possibly
not full) subcategory of Cd(H). For any i ∈ Z, we use (H)[i] to denote the copy of H under the ith
shift [i], considered as a subcategory of Cd(H). Thus, (ind H)[i] = {M[i] | M ∈ ind H}. For any object
M in Cd(H), let add M denote the full subcategory of Cd(H) consisting of direct summands of direct
sums of copies of M .

For X, Y ∈ Cd(H), we will use Hom(X, Y ) to denote the Hom-space HomCd(H)(X, Y ) in the d-
cluster category Cd(H) throughout the paper. We define Exti(X, Y ) to be Hom(X, Y [i]).

We summarize some known facts about d-cluster categories [BMRRT,Ke], see also [Zh3].

Proposition 2.2.

1. Cd(H) has Auslander–Reiten triangles and Serre functor Σ = τ [1], where τ is the AR-translate in Cd(H),
induced from the AR-translate in D.

2. Cd(H) is a Calabi–Yau category of CY-dimension d + 1.
3. Cd(H) is a Krull–Remak–Schmidt category.
4. ind Cd(H) = ⋃i=d−1

i=0 (ind H)[i] ∪ {P j[d] | 1 � j � n}.

Proof. See [Zh3]. �
Using Proposition 2.2, we can define the degree for every indecomposable object in Cd(H) as

follows [Zh3]:

Definition 2.3. For any indecomposable object X ∈ Cd(H), we call the non-negative integer min{k ∈
Z�0 | X ∼= M[k] in Cd(H), for some M ∈ ind H} the degree of X , denoted by deg X . If deg X = k, k = 0,

. . . ,d − 1, we say that X is of color k + 1; if deg X = d, we say that X is of color 1.

By Proposition 2.2, any indecomposable object X of degree k is isomorphic to M[k] in Cd(H),
where M is an indecomposable representation in H, 0 � deg X � d, X has degree d if and only if
X ∼= P [d] in Cd(H) for some indecomposable projective object P ∈ H, and X has degree 0 if and only
if X ∼= M[0] in Cd(H) for some indecomposable object M ∈ H. Here M[0] denotes the object M of H,
considered as a complex concentrated in degree 0.

Now we recall the notion of d-cluster tilting objects from [KR1,Th,Zh3,IY]. This notion is equivalent
to the “maximal d-orthogonal subcategories” of Iyama [I,IY].

Definition 2.4. Let Cd(H) be the d-cluster category.

1. An object X in Cd(H) is called rigid if Exti(X, X) = 0, for all 1 � i � d.
2. An object X in Cd(H) is called maximal rigid if it satisfies the property: Y ∈ add X if and only if

Exti(X ⊕ Y , X ⊕ Y ) = 0 for all 1 � i � d.
3. An object X in Cd(H) is called completely rigid if it contains exactly n non-isomorphic indecom-

posable direct summands.
4. An object X in Cd(H) is called d-cluster tilting if it satisfies the property that Y ∈ add X if and

only if Exti(X, Y ) = 0 for all 1 � i � d.
5. An object X in Cd(H) is called an almost complete d-cluster tilting if there is an indecompos-

able object Y with Y /∈ add X such that X ⊕ Y is a d-cluster tilting object. Such Y is called a
complement of the almost complete d-cluster tilting object.

For a basic d-cluster tilting object T in Cd(H), an indecomposable object X0 ∈ add T and its com-
plement X such that X0 ⊕ X = T , then there is a triangle in Cd(H):

X1
g−→ B0

f−→ X0 −→ X1[1],
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where f is the minimal right add X-approximation of X0 and g is the minimal left add X-
approximation of X1. It is easy to see that T ′ := X1 ⊕ X is a basic d-cluster tilting object (com-
pare [IY]). We call T ′ is a mutation of T in the direction of X0. We call two d-cluster tilting objects T ,
T ′ mutation equivalent provided that there are finitely many d-cluster tilting objects T1 (= T ), T2, . . . ,

Tn (= T ′) such that Ti+1 is a mutation of Ti for any 1 � i � n − 1.
From the proof of Theorem 4.6 in [Zh3], we know that every d-cluster tilting object is mutation

equivalent to a d-cluster tilting object in H[0].
The following results are proved in [Zh3].

Proposition 2.5.

1. Any indecomposable rigid object X in Cd(H) is either of the form M[i], where M is a rigid module (i.e.
Ext1

H (M, M) = 0) in H and 0 � i � d − 1, or of the form P j[d] for some 1 � j � n. In particular, if Γ is a
Dynkin graph, then any indecomposable object in Cd(H) is rigid.

2. Suppose d � 2. Then EndCd(H)(X) is a division algebra for any indecomposable rigid object X .
3. Let d � 2 and X = M[i], Y = N[ j] be indecomposable objects of degree i, j respectively in Cd(H). Suppose

that Hom(X, Y ) �= 0. Then one of the following holds:
(1) We have i = j or j − 1 (provided j � 1);
(2) We have i = 0, i = d (and M = P ) or d − 1 (provided j = 0).

4. Let d � 2 and M, N ∈ H. Then any non-split triangle between M[0] and N[0] in Cd(H) is induced from a
non-split exact sequence between M and N in H.

3. Equivalence of d-cluster tilting objects and maximal rigid objects

The equivalence between cluster tilting objects and maximal rigid objects in cluster categories
was proved in [BMRRT]. For d-cluster categories, in the simply laced Dynkin case, the equivalence
of d-cluster tilting objects and maximal rigid objects is easily obtained because any indecomposable
object is rigid (compare [Th]). We will now prove it for arbitrary d-cluster categories. From the proof
of Theorem 4.6 in [Zh3], we know that every d-cluster tilting object is mutation equivalent to one
in H[0]. If there is a similar result for mutations of maximal rigid objects, then we can get the
equivalence by the obvious equivalence between d-cluster tilting objects and maximal rigid objects in
H[0] (both are tilting modules in mod H).

Lemma 3.1. Let d � 2, T = X ⊕ X0 be a basic maximal rigid object in Cd(H) and X0 an indecomposable
object. Then there are d + 1 triangles

Xi+1
gi−→ Ti

fi−→ Xi
δi−→ Xi+1[1], (∗)

where Ti ∈ add X, f i is the minimal right add X-approximation of Xi , gi is the minimal left add X-
approximation of Xi+1 , all the X ⊕ Xi are maximal rigid objects, and all Xi are distinct up to isomorphisms for
i = 0, . . . ,d.

Proof. First we prove that there is a triangle

X1
g0−→ T0

f0−→ X0
δ0−→ X1[1],

where T0 ∈ add X , f0 is the minimal right add X-approximation of X0, g is the minimal left add X-
approximation of X1, and X ⊕ X1 is a maximal rigid object.

Let T0
f0−→ X0 be the minimal right add X-approximation of X0, and let

X1
g0−→ T0

f0−→ X0
δ0−→ X1[1] (1)
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be the triangle into which f embeds. By the discussion in [BMRRT], one can easily check that g0
is the minimal left add X-approximation of X1, X1 is indecomposable and X1 /∈ add X . By applying
Hom(X,−) to the triangle, we have Exti(X, X1) = 0, for 1 � i � d (for i = 1, because f is the minimal
right add X-approximation of X0). By applying Hom(X0,−) to the triangle, we get Exti(X0, X0) ∼=
Exti+1(X0, X1), for 1 � i � d − 1. By applying Hom(−, X1) to the triangle, we have Exti(X1, X1) ∼=
Exti+1(X0, X1), for 1 � i � d − 1. So Exti(X1, X1) ∼= Exti(X0, X0) = 0 for 1 � i � d − 1. Since Cd(H) is a
Calabi–Yau category of CY-dimension d + 1, Extd(X1, X1) ∼= D Ext1(X1, X1) = 0. We claim that X ⊕ X1
is a maximal rigid object. If not, we have an indecomposable object Y1 /∈ add(X ⊕ X1), such that
X ⊕ X1 ⊕ Y1 is a rigid object. Then we have a triangle

Y1
ψ−→ T1

ϕ−→ Y0 −→ X1[1], (2)

where ψ is the minimal left add X-approximation of Y1. It is easy to prove that ϕ is the minimal
right add X-approximation of Y0, Y0 /∈ add X , and Exti(Y0, X ⊕ Y0) = 0 for 1 � i � d. We will prove
that Exti(Y0, X0) = 0 for 1 � i � d; then Y0 ∼= X0 due to the fact that X ⊕ X0 is a maximal rigid object.
By applying Hom(−, Y1) to the first triangle, we have 0 = Exti(X1, Y1) ∼= Exti+1(X0, Y1) for 1 � i �
d − 1. By applying Hom(X0,−) to the second triangle, we have Exti(X0, Y0) ∼= Exti+1(X0, Y1) = 0 for
1 � i � d − 1. So we have Exti(X0, Y0) = 0 for 1 � i � d − 1, and thus Exti(Y0, X0) = 0 for 2 � i � d.
By applying Hom(−, X1) to the second triangle, we have 0 = Ext1(Y1, X1) ∼= Ext2(Y0, X1). By applying
Hom(Y0,−) to the first triangle, we have Ext1(Y0, X0) ∼= Ext2(Y0, X1) = 0. So Ext1(Y0, X0) = 0. In
all, Exti(Y0, X0) = 0 for 1 � i � d. Therefore Y0 ∼= X0 which induces an isomorphism between the
triangles (1) and (2). Then Y1 ∼= X1, a contradiction. This proves that X ⊕ X1 is a maximal rigid
object.

Second we repeat this process to get d + 1 triangles

Xi+1
gi−→ Ti

fi−→ Xi
δi−→ Xi+1[1], (∗)

where Ti ∈ add X , f i is the minimal right add X-approximation of Xi , gi is the minimal left add X-
approximation of Xi+1, and all the X ⊕ Xi are maximal rigid objects.

Third it is easy to see that δd[d]δd−1[d − 1] · · · δ1[1]δ0 �= 0 (similar as that in Corollary 4.5 in [Zh3]).
In particular, Hom(Xi, X j[ j − i]) �= 0 and Xi � X j , ∀0 � i < j � d. This finishes the proof. �

With the help of Lemma 3.1, one can define mutations of maximal rigid objects similar to those
of d-cluster tilting objects: Let

Xi+1
gi−→ Ti

fi−→ Xi
δi−→ Xi+1[1]

be the ith triangle in Lemma 3.1. We say that each of the maximal rigid objects X ⊕ Xi , for i =
1, . . . ,d, is a mutation of the maximal rigid object X ⊕ X0. A maximal rigid object T is mutation
equivalent to a maximal rigid object T ′ provided that there are finitely many maximal rigid objects
T1 (= T ), T2, . . . , Tn−1, Tn (= T ′) such that Ti is a mutation of Ti−1 for any i.

Lemma 3.2. Let d � 2, T = X ⊕ X0 be a maximal rigid object and X0 be an indecomposable object. Then T is
mutation equivalent to a maximal rigid object in H[0].

Proof. In the proof of Theorem 4.6 in [Zh3], we proved that any d-cluster tilting object is muta-
tion equivalent to a d-cluster tilting object in H[0]. The same proof works here (with the help of
Lemma 3.1), after replacing d-cluster tilting objects by maximal rigid objects. We omit the details and
refer to the proof of Theorem 4.6 in [Zh3]. �

Now we prove the main result in this section.



2904 Y. Zhou, B. Zhu / Journal of Algebra 321 (2009) 2898–2915
Theorem 3.3. Let X be a basic rigid object in the d-cluster category Cd(H). Then the following statements are
equivalent:

1. X is a d-cluster tilting object.
2. X is a maximal rigid object.
3. X is a complete rigid object, i.e. it contains exactly n indecomposable summands.

Proof. We suppose that d > 1; the same statement was proved for d = 1 in [BMRRT]. We prove that
the first two conditions are equivalent. A d-cluster tilting object must be a maximal rigid object by
definition. Now we assume X is a maximal rigid object. Then X is mutation equivalent to a maxi-
mal rigid object T ′[0] in H[0] by Lemma 3.2. We have that Extk(T ′[0], T ′[0]) ∼= Extk

D(T ′[0], T ′[0]) ∼=
Extk

H(T ′, T ′), k = 1, . . . ,d − 1, and Extd(T ′[0], T ′[0]) ∼= D Ext(T ′[0], T ′[0]) ∼= D ExtH(T ′, T ′). So T ′ is a
maximal rigid module in H. Hence T ′ is a tilting module, and thus T ′[0] is a d-cluster tilting object.
Therefore T is a d-cluster tilting object, since it is mutation equivalent to the d-cluster tilting object
T ′[0].

Now we prove that the last two conditions are equivalent. In [Zh3], we know that every basic
d-cluster tilting object has exactly n indecomposable summands. Conversely, any basic rigid object
with n indecomposable summands will be a basic maximal rigid object, since otherwise it can be
extended to a basic maximal rigid object that contains at least n + 1 indecomposable summands. This
is a contradiction. �

This theorem immediately yields the following important conclusion.

Corollary 3.4. Let X be a rigid object in Cd(H). Then there exists an object Y such that X ⊕ Y is a d-cluster
tilting object.

4. Complements of almost complete basic d-cluster tilting objects

The number of complements of an almost complete cluster tilting object in a cluster category C(H)

is exactly two [BMRRT]. From Corollary 4.5 in [Zh3], we know that the number of complements of
an almost complete d-cluster tilting object is at least d + 1. In this section, we will prove it is exactly
d + 1.

Let T = X ⊕ X0 be a basic d-cluster tilting object in Cd(H), and X an almost complete d-cluster
tilting object. By Theorem 4.4 in [Zh3] and Theorem 3.10 in [IY], we have the following two chains of
d + 1 triangles:

Xi+1
gi−→ Bi

fi−→ Xi
δi−→ Xi+1[1], (∗)

where for i = 0,1, . . . ,d, Bi ∈ add X , the map f i is the minimal right add X-approximation of Xi and
gi is the minimal left add X-approximation of Xi+1.

X ′
i+1

bi−→ Ci
ai−→ X ′

i
ci−→ X ′

i+1[1], (∗∗)

where for i = 0,1, . . . ,d, Ci ∈ add T , the map ai is the minimal right add T -approximation of X ′
i (ex-

cept a0, which is the sink map of X ′
0 in add T ) and bi is the minimal left add T -approximation of X ′

i+1
(except bd , which is the source map of X ′

d in add T ), and X ′
0 = X ′

d+1 = X0.
In [IY], the authors show that X0 /∈ add(

⊕
0�i�d Ci) is a sufficient condition for an almost complete

d-cluster tilting object to have exactly d + 1 complements. The main aim of this section is to prove
that Bi = Ci for all 0 � i � d, which implies this sufficient condition. We will first study the properties
of the degree of an indecomposable object in Cd(H) which is a useful tool for studying rigid objects
in d-cluster categories.
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Lemma 4.1.
Let Xi , 0 � i � d, be the objects appearing in the triangles in (∗). If deg X0 = 0, then

(1) deg X1 = 0, d or d − 1, and
(2) deg Xi � d − i, for any 2 � i � d.

Proof. (1) We have the fact that Hom(X0, X1[1]) = Ext(X0, X1) �= 0. If 0 < deg X1 < d − 1 (which
implies d � 3), then 2 � deg X1[1] � d − 1 and Hom(X0, X1[1]) = 0 by Proposition 2.5(3). This is a
contradiction.

(2) If deg X1 = 0, then deg X2 = d or d − 1 or d − 2 (because X0, X1, X2 cannot have the same
degree by the proof of Theorem 4.6 in [Zh3]). Now we prove the assertion that deg Xi+1 � d − (i + 1)

provided that deg Xi � d − i for some i (1 � i � d −1). If deg Xi+1 < d − (i +1), then 1 � deg Xi+1[1] <

d − i, which implies d � 2, and then Hom(Xi, Xi+1[1]) = 0 by Proposition 2.5. This contradicts the fact
Ext(Xi, Xi+1) �= 0. So by induction on i, we get the statement (2). �
Lemma 4.2. Let d � 2 and X = M[i], Y = N[ j] be indecomposable objects of degree i, j respectively in Cd(H).
Suppose that 0 � j + k − i � d − 1. Then

(1) Hom(X, Y [k]) ∼= HomD(X, Y [k]), and
(2) Hom(X, τ−1Y [k]) ∼= HomD(X, τ−1Y [k]).

Proof. (1) Hom(X, Y [k]) = ⊕
l∈Z HomD(X, τ−lY [k + ld]).

When l � 1, HomD(X, τ−lY [k+ ld]) ∼= HomD(τ l M, N[k+ ld− i + j]) = 0, since k+ ld− i + j � ld � 2.
When l � −1, HomD(X, τ−lY [k+ld]) ∼= D HomD(τ−l−1 N, M[−k−ld+ i− j+1]) = 0, since −l−1 �

0 and −k − ld + i − j + 1 � 2 − (l + 1)d � 2.
It follows that Hom(X, Y [k]) ∼= HomD(X, Y [k]).
(2) Hom(X, τ−1Y [k]) = ⊕

l∈Z HomD(X, τ−l−1Y [k + ld]).
When l � 1, HomD(X, τ−l−1Y [k + ld]) ∼= HomD(τ l+1 M, N[k + ld − i + j]) = 0, since l + 1 � 2 and

k + ld − i + j � ld � 2.
When l = −1, HomD(X, τ−l−1Y [k + ld]) = HomD(M, N[k − d − i + j]) = 0, since k − d − i + j � −1.
When l � −2, HomD(X, τ−l−1Y [k + ld]) ∼= D HomD(τ−l−2 N, M[−k − ld + i − j + 1]) = 0, since

−l − 2 � 0 and −k − ld + i − j + 1 � 2 − (l + 1)d � 2.
It follows that Hom(X, τ−1Y [k]) ∼= HomD(X, τ−1Y [k]). �
For convenience, we add a triangle below to the triangle chains (∗):

X0
g−1−→ B−1

f−1−→ X−1
δ−1−→ X0[1],

where f−1 is the right add X-approximation and g−1 is the left add X-approximation. Now we prove
the main theorem in this section.

Theorem 4.3. Let d � 2, T = X ⊕ X0 be a basic d-cluster tilting object in Cd(H), and X an almost complete
d-cluster tilting object. Then there are exactly d + 1 complements {Xi}0�i�d of X , which are connected by the
d + 1 triangles (∗).

Proof. The main step in the proof is to show that X0 /∈ add Ci for 0 � i � d.
For i = 0 or i = d, since f0 is the minimal right add X-approximation of X0 and End X0 is a division

ring, for any map h ∈ Hom(T ′, X0) that is not a retraction, where T ′ is some object in add T , there
exists h′ ∈ Hom(T ′, B0) such that h = f0h′ . Therefore, f0 is a sink map in add T . By the uniqueness
of the sink map, we get C0 ∼= B0, X1 ∼= X ′

1 and, dually Cd
∼= B−1, X−1 ∼= X ′

d . So X0 /∈ add C0 and
Xd /∈ add Cd .
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For 1 � i � d − 2 (this implies d � 3), if i = 1, by applying Hom(X0,−) to the triangle X2 −→
B1 −→ X1 −→ X2[1], we have the exact sequence

Hom(X0, B1) −→ Hom(X0, X1) −→ Ext(X0, X2) −→ 0.

We need to prove Ext(X0, X2) = 0. If not, i.e. Ext(X0, X2) �= 0, then Hom(X0, X1) �= 0. Similarly, by
applying Hom(−, X2) to the triangle X1 −→ B0 −→ X0 −→ X1[1], we have the exact sequence

Hom(X1, X2) −→ Ext(X0, X2) −→ 0,

so Ext(X0, X2) �= 0 implies Hom(X1, X2) �= 0. We know that Ext(X0, X1) �= 0 and Ext(X1, X2) �= 0.
We may assume that the degree of X0 is 0; then deg X1 = 0, d or d − 1 by Lemma 4.1. But
Hom(X0, X1) �= 0 implies that the degree of X1 is not d or d − 1, so it is 0. For the same reason,
deg X2 = 0, which contradicts the fact that X0, X1, and X2 do not all have the same degree (refer to
the proof of Theorem 4.6 in [Zh3]).

If 2 � i � d − 2, then by applying Hom(X0,−) to the triangle Xi+1 −→ Bi −→ Xi −→ Xi+1[1], we
get the exact sequence

Hom(X0, Bi) −→ Hom(X0, Xi) −→ Ext(X0, Xi+1) −→ 0.

We want to prove that Hom(X0, Xi) = 0, which implies Ext(X0, Xi+1) = 0. We also assume that
the degree of X0 is 0. Since deg Xi � d − i � 2 by Lemma 4.1, it follows that Hom(X0, Xi) = 0. So
Ext(X0, Xi+1) = 0, and it follows that f i is the minimal right add T -approximation of Xi . By the
uniqueness of the minimal approximation map, since X1 ∼= X ′

1, we get Ci ∼= Bi and Xi+1 ∼= X ′
i+1 for

1 � i � d − 2, so X0 /∈ add(
⊕

1�i�d−2 Ci).

For i = d − 1 � 1 (which implies d � 2), we claim that in the triangle Xd
gd−1−→ Bd−1

fd−1−→ Xd−1 −→
Xd[1], the morphism fd−1 is the minimal right add(X ⊕ X0)-approximation of Xd−1, which is equiva-
lent to the fact that Ext(X0, Xd) = 0. Suppose that deg X0 = 0 and deg X1 �= 0 (if deg X0 = deg X1 = 0,
then deg X2 �= 0, and we can replace X0 by X1). From Lemma 4.1(2), deg Xd−1 � 1. If deg Xd−1 = 1,
then deg Xd = 1 or 0 since Hom(Xd−1, Xd[1]) �= 0. So we divide the calculation of Ext(X0, Xd) into
three cases:

1. The case deg Xd−1 � 2. Then by Proposition 2.1(3) Hom(X0, Xd−1) = 0, which implies Ext(X0, Xd) =
0.

2. The case deg Xd−1 = 1 and deg Xd = 1. By applying Hom(X0,−) to the triangle Xd −→ Bd−1 −→
Xd−1

δd−1−→ Xd[1] we get the exact sequence

Hom(X0, Xd−1)
δ∗

d−1−→ Hom
(

X0, Xd[1]) −→ 0,

where δd−1 ∈ Hom(Xd−1, Xd[1]) ∼= HomD(Xd−1, Xd[1]) by Lemma 3.2. For any ϕ ∈ Hom(X0,

Xd−1) ∼= HomD(X0, Xd−1), by Lemma 4.2, we have δ∗
d−1(ϕ) = δd−1ϕ ∈ HomD(X0, Xd[1]) = 0. So

δ∗
d−1 = 0. Thus Ext(X0, Xd) = 0.

3. The case deg Xd−1 = 1 and deg Xd = 0. Consider the triangle X ′
d −→ Cd−1 −→ X ′

d−1 −→ X ′
d[1].

Since X−1 ∼= X ′
d and Xd−1 ∼= X ′

d−1, the triangle is X−1 −→ Cd−1 −→ Xd−1 −→ X−1[1], where
Cd−1 ∈ add(X ⊕ X0). Analogously, we get a triangle

X0 −→ Y −→ Xd −→ X0[1],

where Y ∈ add(X ⊕ X1). Since deg X0 = deg Xd = 0, then the degree of the indecomposable sum-
mands of Y is zero. But deg X1 �= 0, so X1 /∈ Y , that is, Y ∈ add X . By applying Hom(X0,−) to the
triangle above, we get the exact sequence
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Ext(X0, Y ) −→ Ext(X0, Xd) −→ Ext2(X0, X0) −→ X0[1],

so Ext(X0, Xd) = 0 since X0 ⊕ X is a d-cluster tilting object.

Then Cd−1 ∼= Bd−1 so X0 /∈ add Cd−1.
In all, X0 /∈ add(

⊕
0�i�d Ci), which satisfies the condition of Corollary 5.9 in [IY]. Therefore, X has

exactly d + 1 complements in Cd(H). �
As a consequence of the proof of the theorem above, we have

Corollary 4.4. The corresponding triangles in the chains (∗) and (∗∗) are isomorphic.

Let d � 2. For a (basic) d-cluster tilting object T = X ⊕ X0 in Cd(H) with an almost complete
d-cluster tilting object X , and for any i between 0 and d, the triangle

Xi+1
gi−→ Bi

fi−→ Xi
δi−→ Xi+1[1]

in (∗) is called the ith connecting triangle of the complements of X with respect to X0. These d + 1
triangles form a d + 1-Auslander–Reiten triangle starting at X0 (see [IY]).

Similar to the cluster categories in [BMRRT], one can associate to Cd(H) a mutation graph of d-
cluster tilting objects: the vertices are the basic d-cluster tilting objects, and there is an edge between
two vertices if the corresponding two basic d-cluster tilting objects in Cd(H) have all but one in-
decomposable summand in common. Exactly as in [BMRRT], we obtain the conclusion below, which
means that over an algebraically closed field, any two d-cluster tilting objects in Cd(H) can be con-
nected by a series of mutations.

Proposition 4.5. Let K be an algebraically closed field. Given an indecomposable hereditary k-algebra H, the
associated mutation graph of d-cluster tilting objects in Cd(H) is connected.

5. Relations of complements

Let T = X ⊕ X0 be a basic d-cluster tilting object in Cd(H). The almost complete d-cluster object
X has exactly d + 1 complements Xi , 0 � i � d, as shown in Theorem 4.3. When d = 1, the exten-
sion groups of between X0 and X1 were computed in [BMRRT]. In this section we will compute
Extk(Xi, X j). Throughout this section, we assume d � 2, and X is a basic almost complete d-cluster
tilting object, the d + 1 complements X0, . . . , Xd of X are connected by the d + 1 triangles in (∗) in
Section 4:

Xi+1
gi−→ Bi

fi−→ Xi
δi−→ Xi+1[1], (∗)

where for i = 0,1, . . . ,d, Bi ∈ add X , f i is the minimal right add X-approximation of Xi and gi is the
minimal left add X-approximation of Xi+1.

Lemma 5.1. Exti(X0, Xi) ∼= Ext(X0, X1) ∼= EndH(X0), and Extk(X0, Xi) = 0 for 1 � i � d, and k ∈ {1, . . . ,

d}\{i}.

Proof. By applying Hom(X0,−) to the triangles (∗) we get the long exact sequences

Extk(X0, Bi) −→ Extk(X0, Xi) −→ Extk+1(X0, Xi+1) −→ Extk+1(X0, Bi),

where i = 0,1, . . . ,d, and k = 1,2, . . . ,d − 1. Since Extk(X0, Bi) = 0 for 0 � i � d and 1 � k � d,
we have Extk(X0, Xi) ∼= Extk+1(X0, Xi+1) for 0 � i � d and 1 � k � d − 1. So Exti+1(X0, Xi+1) ∼=
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Exti(X0, Xi), for 1 � i � d − 1. Hence we get the left equation by induction on i. Applying Hom(X0,−)

to the triangle X1 −→ B0 −→ X0
δ0−→ X1[1] induces the exact sequence

Hom(X0, X0)
δ∗

0−→ Ext(X0, X1) −→ 0.

Since Hom(X0, X0) is a division algebra for d � 2, it follows that δ∗
0(ϕ) = δ0ϕ is non-zero for any non-

zero map ϕ in End X0, which must therefore be an isomorphism of X0. Then δ∗
0 is a monomorphism

and hence an isomorphism. This gives the first part of the lemma.
For the second part, if i < k, we have Extk(X0, Xi) ∼= Extk−1(X0, Xi−1) ∼= · · · ∼= Extk−i(X0, X0) = 0,

since 0〈k− i < d+1, and if i〉k, we have Extk(X0, Xi) ∼= Extk+1(X0, Xi+1) ∼= · · · ∼= Extk+d+1−i(X0, Xd+1) =
Extk+d+1−i(X0, X0) = 0, since 0 < k + d + 1 − i < d + 1. �
Lemma 5.2. End Xi ∼= End X0 as algebras, for 0 � i � d.

Proof. We only need to prove the ring isomorphism End X1 ∼= End X0, since the others are done by
induction. It is exactly the same as the proof of the case d = 1 in [BMRRT]. �
Lemma 5.3.

dimEnd Xi Extk(Xi, X j) =
{

1 if i + k − j = 0 mod (d + 1),

0 otherwise,

for 0 � k � d. If we fix an End Xi-basis {δi} of Ext1(Xi, Xi+1), then for any 0 � i � d and 0 � k � d,
Extk(Xi, Xi+k) has an End(Xi)-basis {δi+k[k] · · · δi+1[1]δi}, where Xi+k = Xi+k−(d+1) and δi+k = δi+k−(d+1) ,
for i + k > d.

Proof. The case of i = 0 of the first part follows easily from the two lemmas above, and the case for
arbitrary i follows from the same proof after replacing 0 by i. For the second part, it is easy to see
that any morphisms δi+k[k] · · · δi+1[1]δi are non-zero in Extk(Xi, Xi+k), hence form a basis over End Xi
of Extk(Xi, Xi+k). �
Definition 5.4. A set of d + 1 indecomposable objects X0, X1, . . . , Xd in Cd(H) is called an exchange
team if they satisfy Lemma 5.3, i.e.

dimEnd Xi Extk(Xi, X j) =
{

1 if i + k − j = 0 mod (d + 1),

0 otherwise,

for 0 � k � d. If we fix an End Xi-basis {δi} of Ext1(Xi, Xi+1), then for any 0 � i � d and 0 �
k � d, Extk(Xi, Xi+k) has an End Xi-basis {δi+k[k] · · · δi+1[1]δi}, where Xi+k = Xi+k−(d+1) and δi+k =
δi+k−(d+1) , for i + k > d.

This is a generalization of the notation of exchange pairs in cluster categories, defined in [BMRRT].
Given an exchange team {Xi}d

i=0, by definition we can find d + 1 non-split triangles

Xi+1
gi−→ Bi

fi−→ Xi −→ Xi+1[1] (∗ ∗ ∗)

in Cd(H), where we use the same notation as before. We will now start to prove that B = ⊕
0�i�d Bi

is a rigid object.
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Lemma 5.5. With the notation above, we have

Extk(B ⊕ Xi, B ⊕ Xi) = 0,

for all 1 � k � d and 0 � i � d.

Proof. Apply Hom(X0,−) to the triangle X1 −→ B0 −→ X0
δ0−→ X1[1] to get the exact sequence

Hom(X0, X0)
α−→ Ext(X0, X1) −→ Ext(X0, B0) −→ Ext(X0, X0).

Since α �= 0 (α(1X0) = δ0 �= 0) and dimEnd(X0) Ext(X0, X1) = 1, while Ext(X0, X0) = 0 by assump-
tion, it follows that Ext(X0, B0) = 0. By assumption, Extk(X0, X1) = 0 and Extk(X0, X0) = 0 for any
2 � k � d, so it follows that Extk(X0, B0) = 0 for any 2 � k � d. Hence Extk(X0, B0) = 0, for 1 � k � d.

Apply Hom(X0,−) to the triangle Xi+1
gi−→ Bi

fi−→ Xi −→ Xi+1[1] to get the exact sequence

−→ Ext(X0, Xi+1) −→ Ext(X0, Bi) −→ Ext(X0, Xi)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−→ Exti(X0, Xi+1) −→ Exti(X0, Bi) −→ Exti(X0, Xi)

−→ Exti+1(X0, Xi+1) −→ Exti+1(X0, Bi) −→ Exti+1(X0, Xi)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−→ Extd(X0, Xi+1) −→ Extd(X0, Bi) −→ Extd(X0, Xi).

Exti(X0, Xi) −→ Exti+1(X0, Xi+1) is an isomorphism (because f ∈ Exti+1(X0, Xi+1) can be decom-
posed), and Extk(X0, Xi+1) = 0 = Extl(X0, Xi) for k �= i + 1 and l �= i, so Extk(X0, Bi) = 0 for any
1 � k � d. Analogously, we get Extk(Xi, B j) = 0 for all 1 � k � d and 0 � i, j � d.

Apply Hom(B,−) to the triangles Xi+1 −→ Bi −→ Xi −→ Xi+1[1] to get the exact sequences

Extk(B, Xi+1) −→ Extk(B, Bi) −→ Extk(B, Xi).

Then Extk(B, Bi) = 0 for all 0 � i � d and 1 � k � d, so Extk(B, B) = 0 for all 1 � k � d. �
Note that this implies that the Xi cannot be direct summands of B (if Xi ∈ add B for some i, then

Ext(Xi, Xi+1) is a direct summand of Ext(B ⊕ Xi+1, B ⊕ Xi+1) = 0, a contradiction) and B is a rigid
object in Cd(H). Hence B can be extended to a d-tilting object by Corollary 3.4. Let T = B ⊕ T ′ be a
d-cluster tilting object in Cd(H).

Lemma 5.6. Under the same assumptions and notation as before, if N is an indecomposable summand of T and
there exists some j such that N is not isomorphic to Xi for all i �= j, then Extk(N, X j) = 0 for any 1 � k � d.

Proof. Assume by contradiction that Extk(N, X j) �= 0 for some 1 � k � d, and there is some indecom-
posable summand N of T with N � Xi for all i �= j. Applying Hom(N,−) to the d + 1 triangles (∗∗∗),
we get Ext1(N, X j−k+1) ∼= Extk(N, X j) �= 0. Without loss of generality, we may assume that j − k = 0.
So we have Hom(N, X1[1]) = Ext1(N, X1) �= 0 and an exact sequence

Hom(N, X0) −→ Hom
(
N, X1[1]) −→ 0,

which implies that there exists a non-zero morphism t ∈ Hom(N, X0) �= 0 such that δ0t �= 0. Ap-
plying Hom(N,−) to the d + 1 triangles (∗ ∗ ∗), we get Extd(N, Xd) ∼= Extd−1(N, Xd−1) ∼= · · · ∼=
Ext1(N, X1) �= 0, and then δd[d] · · · δ1[1]δ0t �= 0. Denote by
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X0[d] −→ A
r−→ X0 −→ X0[d + 1]

the AR-triangle ending at X0 in Cd(H). Consider the commutative diagram

X0[d] A
r

b1

X0

b2

X0[d + 1]

X0[d] gd[d]
Bd[d] fd[d]

Xd[d] δd[d]
X0[d + 1],

where the map b1 exists since δd[d] �= 0 (thus gd[d] is not a section), and hence there exists a
map b2 such that the diagram commutes. From Definition 5.4, we know that Hom(X0, Xd[d]) has
an End X0-basis {δd[d] · · · δ1[1]δ0}. Since b2 ∈ Hom(X0, Xd[d]) is not zero, there exists an isomorphism
φ ∈ End(X0) such that b2 = δd[d] · · · δ1[1]δ0φ. Let s = φ−1t ∈ Hom(N, X0), then b2s �= 0. Since N � X0,
there is some map s′ : N −→ A, such that s = rs′ . Note that b2s = b2rs′ = fd[d]b1s′ is a non-zero map,
and consequently b1s′ �= 0. But this contradicts Hom(N, Bd[d]) = 0. This completes the proof of the
lemma. �
Lemma 5.7. If add(

⊕
1�i�d,i �= j Xi)∩ add T = {0} for some 1 � j � d, then X j is a direct summand of T .

Writing T as Xk
j ⊕ T , where the X j are not direct summands of T , then Xi ⊕ T is also a d-cluster tilting object

for any 0 � i � d.

Proof. The first assertion follows directly from Lemma 5.6. The second follows from Theorem 4.3 and
Lemma 5.6. �

In summary, we have the following main result:

Theorem 5.8. The d + 1 rigid indecomposable objects {Xi}0�i�d form the set of complements of an almost
complete d-cluster tilting object in Cd(H) if and only if they form an exchange team.

Since the chain of d+1-triangles of the complements of an almost complete d-cluster tilting object
form a cycle, their distribution is uniform. In particular there are two cases: either every complement
has a different degree, or that the degree of any complement is smaller than d − 1 and only two
complements have the same degree. We can summarize the cases as follows.

Proposition 5.9. Suppose deg X0 = 0 and deg X1 �= 0. Then there exists some k, with 0 � k � d, such that

deg Xi =
{

d − i if 1 � i � k,

d + 1 − i if k + 1 � i � d.

Proof. By Lemma 3.1, we know that deg Xi � d − i for 1 � i � d. Since d + 1-triangle chains form a
cycle, analyzing the degree in the opposite direction from X0, we get deg Xi � d − i + 1 for 1 � i � d.
If deg X1 = d, then deg X2 = d − 1, since Hom(X1, X2[1]) �= 0 forces deg X2 � d − 1. By induction,
deg Xi = d − i +1 for 1 � i � d. This situation is equivalent to k = 0. If deg X1 = d −1, then there exists
some k such that deg Xk = deg Xk+1. By the way of the case deg X1 = d, we obtain the conclusion. �
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6. Middle terms of the d + 1 triangles

Throughout this section, we assume that d � 2. We assume that X is a basic almost complete
d-cluster tilting object, and that the d + 1 complements X0, . . . , Xd of X are connected by the d + 1
triangles in (∗) in Section 4:

Xi+1
gi−→ Bi

fi−→ Xi
δi−→ Xi+1[1], (∗)

where for i = 0,1, . . . ,d, Bi ∈ add X , the map f i is the minimal right add X-approximation of Xi and
gi is the minimal left add X-approximation of Xi+1.

In [BMRRT], there was a conjecture that the sets of indecomposables of Bi appeared in the tri-
angles (∗) are disjoint in cluster categories. That has been solved in [BMR]. We will prove the same
statement for d-cluster categories. Prior to this, we need some preparatory work. For a tilting module
T in H, any two non-isomorphic summands T1, T2 of T have the following property: Hom(T1, T2) = 0
or Hom(T2, T1) = 0 (see [Ker]). The same property holds for d-cluster tilting objects in d-cluster cat-
egories when d � 3.

Lemma 6.1. Suppose d � 3. Let T1 , T2 be two non-isomorphic summands of a d-cluster tilting object T in
Cd(H). Then Hom(T1, T2) = 0 or Hom(T2, T1) = 0.

Proof. If not, then Hom(T1, T2) �= 0 and Hom(T2, T1) �= 0. Then deg T1 = deg T2 by the fact that d � 3
and Lemma 4.7 in [Zh3]. Let k denote this common value. Then T1, T2 are of the forms T ′

1[k], T ′
2[k]

respectively, where T ′
1 and T ′

2 are partial tilting modules in H. Hence Hom(T1, T2) ∼= HomD(T ′
1, T ′

2) �=
0 and Hom(T2, T1) ∼= HomD(T ′

2, T ′
1) �= 0 [Ker]. That is a contradiction. �

As a consequence, we get the following simple result.

Lemma 6.2. Let d � 3. Then Hom(Xi, Xi+1) = 0.

Proof. Apply Hom(Xi,−) to the triangle Xi+1 −→ Bi −→ Xi −→ Xi+1[1] to get the exact sequence

Hom
(

Xi, Xi[−1]) −→ Hom(Xi, Xi+1) −→ Hom(Xi, Bi).

In this exact sequence, Hom(Xi, Xi[−1]) = 0 since d � 3. Since Bi −→ Xi is the minimal right add X-
approximation, Hom(Y , Xi) �= 0 for any indecomposable direct summand Y of Bi . It follows from
Lemma 6.1 that Hom(Xi, Bi) = 0. Thus Hom(Xi, Xi+1) = 0. �

Now we are able to prove the main conclusion in this section.

Theorem 6.3. Let {Bi}0�i�d be as above. Then the sets of indecomposable summands of Bi , for i = 0, . . . ,d,
are disjoint.

Proof. We divide the proof into two cases:
(1) The case when d = 2. Suppose deg X0 = 0. Assume by contradiction that two of B0, B1, B2

have non-trivial intersection. Without loss of generality, we suppose that there exists an inde-
composable object T1 ∈ add B0 ∩ add B1. Then Hom(X1, T1) �= 0 �= Hom(T1, X1), which implies that
deg X1 �= deg T1 (see [Ker]). We claim that deg X1 = 1, deg X2 = 0, and deg T1 = 0. If deg X1 = 0, then
deg T1 = 0 by Lemma 4.9 in [Zh3], a contradiction. If deg X1 = 2 and deg T1 = 0, then Hom(T1, X1) = 0
by Lemma 4.7 in [Zh3], a contradiction. If deg X1 = 2 and deg T1 = 1, then Hom(X1, T1) = 0 by
Lemma 4.7 in [Zh3], a contradiction. So deg X1 = 1, and then deg T1 = 0 (otherwise, deg T1 = 2 which
implies Hom(T1, X1) = 0, a contradiction). From Proposition 5.9, we have deg X2 = 0. Hence the de-
gree of any indecomposable summands of B2 is zero. Then Hom(X2, B2) = 0 = Hom(B2, X0) (see the
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discussion in the proof of Lemma 6.2). Apply Hom(X2,−) to the triangle X0 −→ B2 −→ X2 −→ X0[1]
to get the exact sequence

Hom
(

X2, X2[−1]) −→ Hom(X2, X0) −→ Hom(X2, B2),

where Hom(X2, B2) = 0, so Hom(X2, X0) = 0 (for any map r ∈ Hom(X2, X0), there exists s ∈
Hom(X2, X2[−1]) ∼= Hom(X2, τ

−1 X2[1]) ∼= HomD(X2, τ
−1 X2[1]) ∼= HomD(τ X2[−2], X2[−1]) and t ∈

Hom(X2[−1], X0) ∼= Hom(X2, X0[1]) ∼= HomD(X2, X0[1]) ∼= HomD(X2[−1], X0) (both of the second
isomorphisms come from Lemma 4.2), such that r = ts ∈ HomD(τ X2[−2], X0) = 0). Write the second
triangle in (∗) as

X2
(h

f )−→ B ′
1 ⊕ T1

(α,β)−→ X1 −→ X2[1],

where β ∈ Hom(T1, X1) ∼= HomD(T1, X1). Let g be a non-zero map in Hom(T1, X0) (such a map exists
because T1 is a direct summand of B0). Then we get (0, g)

(h
f

) = g f ∈ Hom(X2, X0) = 0, so there ex-

ists a map ϕ ∈ Hom(X1, X0) ∼= Hom(X1, τ
−1 X0[2]) ∼= HomD(X1, τ

−1 X0[2]) (the second isomorphism
come from Lemma 4.2) such that ϕ(α,β) = (0, g). Then g = ϕβ ∈ HomD(T1, τ

−1 X0[2]) = 0. This is a
contradiction.

(2) The case when d � 3. Suppose T1 is an indecomposable summand of both Bi and B j , i < j.
Define d(Bi, B j) = min{ j − i, i − j + d + 1}.

If d(Bi, B j) = 1, then without loss of generality we may suppose that i = 0 and j = 1; then
Hom(X1, T1) �= 0 and Hom(T1, X1) �= 0. But X1 and T1 are two non-isomorphic indecomposable sum-
mands of a d-cluster tilting object X1 ⊕ X , which is impossible by Lemma 6.1.

If d(Bi, B j) = 2, then without loss of generality we may suppose that i = 1 and j = 3; then
deg X2 = deg X3 = deg T1. Let k denote this common value. Then deg X4 = k − 1 when k � 1, and

deg X4 = d − 1 when k = 0. Apply Hom(X2,−) to the triangle X4
g3−→ B3

f3−→ X3
δ3−→ X4[1] to get an

exact sequence

Hom(X2, X4) −→ Hom(X2, B3) −→ Hom(X2, X3).

Then Hom(X2, X4) −→ Hom(X2, B3) is an epimorphism since Hom(X2, X3) = 0. Since T1 ∈ add B1,
there exists a non-zero morphism s ∈ Hom(X2, T1), so the morphism

(s
0

) : X2 −→ T1 ⊕ B ′
3 is

not zero, where B3 = B ′
3 ⊕ T1. Hence there exists r ∈ Hom(X2, X4) such that s = g3r. Let g3 =(h

h′
)

: X4 −→ T1 ⊕ B ′
3, where h ∈ Hom(X4, T1), then s = hr. Since Hom(X2, X4) ∼= HomD(X2, τ

−1 X4[d])
and Hom(X4, T1) ∼= HomD(τ−1 X4[d], τ−1T1[d]), it follows that hr ∈ HomD(X2, τ

−1T1[d]) = 0, a con-
tradiction.

If d(Bi, B j) � 3, then the degrees of the summands of Bi and B j are distinct. Hence the sets of
indecomposable summands of Bi are disjoint, for i = 0, . . . ,d. �
7. Cluster combinatorics of d-cluster categories

Denote by E (H) the set of isomorphism classes of indecomposable rigid modules in H. The set
E (Cd(H)) of isoclasses of indecomposable rigid objects in Cd(H) is the (disjoint) union of the subsets
E (H)[i], i = 0,1, . . . ,d − 1, with {P j[d] | 1 � j � n} (see Section 4 in [Zh3]). A subset M of E (Cd(H))

is called rigid if for any X, Y ∈ M, Exti(X, Y ) = 0 for all i = 1, . . . ,d. Denote by E+(Cd(H)) the subset
of E (Cd(H)) consisting of all indecomposable exceptional objects other than P1[d], . . . , Pn[d].

Now we recall the definition of simplicial complexes associated to the d-cluster category Cd(H)

and the root system Φ from [Zh3].
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Definition 7.1. The cluster complex d(H) of Cd(H) is a simplicial complex with E (Cd(H)) as its set
of vertices, and the rigid subsets of Cd(H) as its simplices. The positive part d+(H) is the subcomplex
of d(H) on the subset E+(Cd(H)).

From the definition, the facets (maximal simplices) are exactly the d-cluster tilting subsets (i.e. the
sets of indecomposable objects of Cd(H) (up to isomorphism) whose direct sum is a d-cluster tilting
object).

As consequences of results in Sections 3–5, we have that:

Proposition 7.2.

1. A face of the cluster complex d(H) is a facet if and only if it contains exactly n vertices. In particular, all
facets in d(H) are of size n.

2. Every codimension 1 face of d(H) is contained in exactly d + 1 facets.
3. Any codimension 1 face in d(H) has complements of each color.

Throughout the rest of this section, we assume that H is the category of finite dimensional
representations of a valued quiver (Γ,Ω, M). For basic material about valued quivers and their rep-
resentations, we refer to [DR].

Let Φ be the root system of the Kac–Moody Lie algebra corresponding to the graph Γ . We as-
sume that P1, . . . , Pn are the non-isomorphic indecomposable projective representations in H, and
E1, . . . , En are the simple representations with dimension vectors α1, . . . ,αn , where α1, . . . ,αn are
the simple roots in Φ . We use Φ�−1 to denote the set of almost positive roots, i.e. the set of positive
roots together with the −αi .

Fix a positive integer d, for any α ∈ Φ+ , following [FR2], we call α1, . . . ,αd the d “colored” copies
of α.

Definition 7.3. (See [FR2].) The set of colored almost positive roots is

Φd
�−1 = {

αi: α ∈ Φ>0, i ∈ {1, . . . ,d}} ∪ {
(−αi)

1: 1 � i � n
}
.

We now define a map γ d
H from ind Cd(H) to Φd

�−1. Note that any indecomposable object X of de-
gree i in Cd(H) has the form M[i], for some M ∈ ind H, and if i = d then M = P j , an indecomposable
projective representation.

Definition 7.4. Let γ d
H be defined as follows. Let M[i] ∈ ind Cd(H), where M ∈ ind H and i ∈ {1, . . . ,d}

(note that if i = d then M = P j for some j). We set

γ d
H

(
M[i]) =

{
(dim M)i+1 if 0 � i � d − 1;
(−α j)

1 if i = d.

Note that if Γ is a Dynkin diagram, then γ d
H is a bijection.

We denote by Φsr
>0 the set of real Schur roots of (Γ,Ω), i.e.

Φsr
>0 = {

dim M: M ∈ ind E (H)
}
.

Then the map M �→ dim M gives a 1–1 correspondence between E (H) and Φsr
>0 [Rin].

If we denote the set of colored almost positive real Schur roots by Φ
sr,d
�−1 (which consists by defi-

nition of d copies of the set Φsr
>0 together with one copy of the negative simple roots), then the map
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γ d
H gives a bijection from E (Cd(H)) to Φ

sr,d
�−1. Φ

sr,d
�−1 contains a subset Φ

sr,d
>0 consisting of all colored

positive real Schur roots. The restriction of γ d
H gives a bijection from E+(Cd(H)) to Φ

sr,d
>0 .

Using this bijection, in [Zh3] we defined, for any root system Φ and H, an associated simplicial
complex d,H(Φ) on the set Φ

sr,d
>0 , which is called the generalized cluster complex of Φ and is a

generalization of the generalized cluster complexes defined by Fomin and Reading [FR2], see also [Th]
for finite root systems Φ . It was proved that γ d

H defines an isomorphism from the simplicial complex
d(H) to the generalized cluster complex d,H(Φ), which sends vertices to vertices, and k-faces to
k-faces [Zh3].

Corollary 7.5.

1. A face of the generalized cluster complex d,H(Φ) is a facet if and only it contains exactly n vertices. In
particular, d,H(Φ) is of pure dimension n − 1.

2. Any codimension 1 face of d,H(Φ) is contained in exactly d + 1 facets.
3. For any codimension 1 face of d,H(Φ), there are complements of each color.

Proof. Combining Proposition 7.2 with the fact that γ d
H is an isomorphism from d(H) to d,H(Φ)

[Zh3], we have all the conclusions in the corollary. �
Acknowledgments

The authors would like to thank Idun Reiten for her interest in this work. After completing this
work, the second author was informed by Idun Reiten that Anette Wraalsen also proved Theorem 4.3
in [Wr]; he is grateful to Idun Reiten for this!

The authors would like to thank the referee for his/her very useful suggestions to improve the
paper.

References

[ABST] I. Assem, T. Brüstle, R. Schiffler, G. Todorov, m-Cluster categories and m-replicated algebras, J. Pure Appl. Alge-
bra 212 (4) (2008) 884–901.

[BaM1] K. Baur, R. Marsh, A geometric description of m-cluster categories, Trans. Amer. Math. Soc. 360 (2008) 5789–5803.
[BaM2] K. Baur, R. Marsh, A geometric description of the m-cluster categories of type Dn , preprint, arXiv:math.RT/0610512;

see also Int. Math. Res. Not. 2007 (2007), doi:10.1093/imrn/rnm011.
[BIKR] I. Burban, O. Iyama, B. Keller, I. Reiten, Cluster tilting for one-dimensional hypersurface singularities, Adv. Math. 217 (6)

(2008) 2443–2484.
[BM] A. Buan, R. Marsh, Cluster-tilting theory, in: J. de la Peña, R. Bautista (Eds.), Trends in Representation Theory of Alge-

bras and Related Topics, in: Contemp. Math., vol. 406, 2006, pp. 1–30.
[BMR] A. Buan, R. Marsh, I. Reiten, Cluster-tilted algebras, Trans. Amer. Math. Soc. 359 (2007) 323–332.
[BMRRT] A. Buan, R. Marsh, M. Reineke, I. Reiten, G. Todorov, Tilting theory and cluster combinatorics, Adv. Math. 204 (2006)

572–618.
[CC] P. Caldero, F. Chapoton, Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv. 81 (2006)

595–616.
[CCS] P. Caldero, F. Chapoton, R. Schiffler, Quivers with relations arising from clusters ( An case), Trans. Amer. Math. Soc. 358

(2006) 1347–1364.
[CK1] P. Caldero, B. Keller, From triangulated categories to cluster algebras, Invent. Math. 172 (1) (2008) 169–211.
[CK2] P. Caldero, B. Keller, From triangulated categories to cluster algebras, II, Ann. Sci. Ecole Norm. Sup. (4) 39 (2006)

983–1009.
[DR] V. Dlab, C.M. Ringel, Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc. 591 (1976).
[FR1] S. Fomin, N. Reading, Root system and generalized associahedra, in: Lecture Notes for the IAS/Park City Graduate

Summer School in Geometric Combinatorics, 2004.
[FR2] S. Fomin, N. Reading, Generalized cluster complexes and Coxeter combinatorics, Int. Math. Res. Not. 44 (2005) 2709–

2757.
[FZ1] S. Fomin, A. Zelevinsky, Cluster Algebras I: Foundations, J. Amer. Math. Soc. 15 (2) (2002) 497–529.
[FZ2] S. Fomin, A. Zelevinsky, Cluster algebras II: Finite type classification, Invent. Math. 154 (1) (2003) 63–121.
[FZ3] S. Fomin, A. Zelevinsky, Cluster algebras: Notes for the CDM-03 conference, in: Current Dev. Math., International Press,

2003, pp. 1–34.
[HoJ1] T. Holm, P. Jørgensen, Cluster categories and selfinjective algebras: Type A, preprint, arXiv:math.RT/0610728.

http://dx.doi.org/10.1093/imrn/rnm011


Y. Zhou, B. Zhu / Journal of Algebra 321 (2009) 2898–2915 2915
[HoJ2] T. Holm, P. Jørgensen, Cluster categories and selfinjective algebras: Types D and E, preprint, arXiv:math.RT/0612451.
[I] O. Iyama, Higher dimensional Auslander–Reiten theory on maximal orthogonal subcategories, Adv. Math. 210 (2007)

22–50.
[IR] O. Iyama, I. Reiten, Fomin–Zelevinsky mutations and tilting modules over Calabi–Yau algebras, Amer. J. Math. 130 (4)

(2008) 1087–1149.
[IY] O. Iyama, Y. Yoshino, Mutations in triangulated categories and rigid Cohen–Macaulay modules, Invent. Math. 172 (1)

(2008) 117–168.
[J] P. Jørgensen, Quotients of cluster categories, preprint, arXiv:math.RT/0705.1117.
[Ke] B. Keller, Triangulated orbit categories, Doc. Math. 10 (2005) 551–581.
[Ker] O. Kerner, Representations of wild quivers, in: Representation Theory of Algebras and Related Topics, in: Can. Math.

Soc. Conf. Proc., vol. 19, AMS, Providence, RI, 1996, pp. 65–107.
[KR1] B. Keller, I. Reiten, Cluster-tilted algebras are Gorenstein and stably Calabi–Yau, Adv. Math. 211 (2007) 123–151.
[KR2] B. Keller, I. Reiten, Acyclic Calabi–Yau categories, with an appendix by Van den Bergh, Compos. Math. 144 (5) (2008)

1332–1348.
[KZ] S. Koenig, B. Zhu, From triangulated categories to abelian categories—cluster tilting in a general framework, Math.

Z. 258 (2008) 143–160.
[Pa] Y. Palu, PhD thesis, in preparation.
[Re] I. Reiten, Tilting theory and cluster algebras, preprint.
[Rin] C.M. Ringel, Some remarks concerning tilting modules and tilted algebras, in: Lidia Angeleri-Hügel, Dieter Happel,

Henning Krause (Eds.), Origin. Relevance. Future. An Appendix to the Handbook of Tilting Theory, in: London Math.
Soc. Lecture Note Ser., vol. 332, Cambridge Univ. Press, Cambridge, 2007.

[T] G. Tabuada, On the structure of Calabi–Yau categories with a cluster tilting subcategories, Doc. Math. 12 (2007) 193–
213.

[Th] H. Thomas, Defining an m-cluster category, J. Algebra 318 (2007) 37–46.
[Wr] A. Wralsen, Rigid objects in higher cluster categories, preprint, arXiv:math.RT/0712.2970.
[Zh1] B. Zhu, BGP-reflection functors and cluster combinatorics, J. Pure Appl. Algebra 209 (2007) 497–506.
[Zh2] B. Zhu, Equivalences between cluster categories, J. Algebra 304 (2006) 832–850.
[Zh3] B. Zhu, Generalized cluster complexes via quiver representations, J. Algebraic Combin. 27 (2008) 25–54.


	Cluster combinatorics of d-cluster categories
	Introduction
	Basics on d-cluster categories
	Equivalence of d-cluster tilting objects and maximal rigid objects
	Complements of almost complete basic d-cluster tilting objects
	Relations of complements
	Middle terms of the d+1 triangles
	Cluster combinatorics of d-cluster categories
	Acknowledgments
	References


