
Physics Letters B 753 (2016) 488–492

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Three theorems on near horizon extremal vanishing horizon 

geometries

S. Sadeghian a,b, M.M. Sheikh-Jabbari b, M.H. Vahidinia b, H. Yavartanoo c,∗
a Department of Physics, Alzahra University, P.O. Box 19938, Tehran 91167, Iran
b School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran
c State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 August 2015
Received in revised form 16 December 2015
Accepted 18 December 2015
Available online 23 December 2015
Editor: N. Lambert

Keywords:
Near horizon geometry
Extremal black holes

EVH black holes are Extremal black holes with Vanishing Horizon area, where vanishing of horizon area is 
a result of having a vanishing one-cycle on the horizon. We prove three theorems regarding near horizon 
geometry of EVH black hole solutions to generic Einstein gravity theories in diverse dimensions. These 
generic gravity theories are Einstein–Maxwell-dilaton-� theories, and gauged or ungauged supergravity 
theories with U (1) Maxwell fields. Our three theorems are: (1) The near horizon geometry of any EVH 
black hole has a three dimensional maximally symmetric subspace. (2) If the energy momentum tensor 
of the theory satisfies strong energy condition either this 3d part is an AdS3, or the solution is a direct 
product of a locally 3d flat space and a d −3 dimensional part. (3) These results extend to the near 
horizon geometry of near-EVH black holes, for which the AdS3 part is replaced with BTZ geometry.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
Black holes, their classical aspects, semi-classical and thermo-
dynamical aspects, quantum aspects and finally black holes in real 
world and nature, have long been four very active areas of re-
search. There is a common understanding that black holes are the 
windows to new physics, especially when the extreme gravitational 
effects are concerned [1]. A part of analysis of classical aspects of 
black holes involves constructing black hole solutions to various 
gravity theories in diverse dimensions, studying classification and 
uniqueness, and geometric aspects of these solutions [2]. Getting 
insight into the behavior of gravity theory and its solutions in di-
verse dimensions not only provides a new perspective into the 4d 
gravity, but is also what is expected from a variety of quantum 
gravity theories, most notably string or M-theory. Despite the sig-
nificant effort put into classification and uniqueness theorems [1], 
such theorems have been mainly robustly proven for stationary, 
asymptotic flat black hole solutions to 4d Einstein–Maxwell the-
ory.

There is a special class of black holes, extremal black holes, 
which have been of interest both as classical solutions and as test 
grounds for asking questions about quantum aspects of black holes. 
They also seem to be a good model for fast rotating black hole can-
didates [3]. Extremal black holes have two coincident inner and 
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outer (Killing) horizons, have vanishing Hawking temperature [1,4]
and hence do not Hawking radiate [5]; they have the lowest mass 
in the family of black holes with given conserved charges and may 
be viewed as ground states for more general non-extremal black 
holes; moreover, all supersymmetric black holes are necessarily 
extremal [6]. These all have made extremal black holes an inter-
esting family especially when questions about thermodynamical, 
semi-classical and quantum aspects of black holes are concerned; 
e.g. see [7].

It has been shown that when the spatial cross sections of the 
horizon possess sufficiently many commuting rotational isometries, 
the near horizon geometry of extremal black holes generically pro-
vides us with another family of solutions with SL(2, R) × U (1)n

isometry [5,8]. This new family of solutions is dubbed as Near 
Horizon Extremal Geometry (NHEG). Since many basic thermo-
dynamical and quantum properties of black holes are associated 
with the properties at the horizon, studying such near horizon ge-
ometries and the whole NHEG family would shed light on similar 
questions on generic black holes. We would like to note that al-
though near horizon limit of every extremal black hole leads to 
a solution in the class of NHEG’s, the converse is not necessarily 
true; we do not know (or are not able to explicitly construct) the 
black hole solution corresponding to each NHEG. There are ele-
gant uniqueness and classification theorems proved for the NHEG’s 
[5,8]. These theorems are for general Einstein gravity theories in 
four and five dimensions and, for a restricted class of geometries 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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with SL(2, R) × U (1)d−3 isometry in generic d dimensional theory
with the matter field satisfying strong energy condition [5]. More-
over, in a semi-classical analysis, the laws of NHEG mechanics has 
been worked out [9,10]. These laws parallel laws of black hole 
thermodynamics [1].

An interesting class of extremal black holes are Extremal Van-
ishing Horizon area (EVH) black holes. If we denote the surface 
gravity of a black hole by κ and its horizon area by Ah , we define 
EVH black holes in the following limit [11]

κ, Ah → 0 , κ/Ah = fixed. (1)

Although, it can be more general, in our current treatment of EVH 
black holes we assume that vanishing of the horizon area is a 
result of having a vanishing one-cycle at the horizon. Various ex-
amples of asymptotic flat or AdS and, stationary or static EVH black 
holes in generic d ≥ 3 dimensions have been identified and stud-
ied; e.g. see [12]. Studying EVH black holes besides the GR solution 
building purposes, is motivated by the fact that as observed in all 
of these examples, in the near horizon limit of an EVH black hole 
we find an AdS3 throat, a locally SO(2, 2) invariant part of geome-
try.

The analysis of EVH black holes and their near horizon dynam-
ics is in interesting and distinct from generic NHEG’s: the “no-
dynamics” statements [10,13] for perturbations around NHEG’s do 
not apply to the EVH black holes. This is witnessed by the appear-
ance of the AdS3 factors in the near horizon limit for EVH case. 
In the near-horizon EVH case we expect to remain with a part of 
original EVH black hole dynamical perturbations, which may be 
associated with excitations around the AdS3 part of geometry. This 
AdS3, and the point that this near horizon limit is a decoupling 
limit, prompted two of us to propose the EVH/CFT proposal for the 
4d EVH black holes, stating that the low energy dynamics around 
an EVH black hole is described by a 2d CFT [11]. The EVH/CFT 
proposal has been extended to the other known examples of EVH 
black holes [12].

Given the theorems applying to generic extremal black holes 
[5], which state that the NHEG have generically an AdS2 (and not 
AdS3) throat, and recalling that EVH black holes are extremal, one 
is led to the question of why and how these theorems fail for the 
case of EVH black holes. The key to this question comes from the 
very definition of EVH black holes and that they have a vanishing 
one-cycle at the horizon. Therefore, the near horizon EVH black 
holes do not satisfy the smoothness assumption of the generic 
NHEG theorems [5] and hence do not necessarily obey those theo-
rems. In this Letter we study in exactly which way the EVH black 
holes evade those theorems. We in fact prove some general the-
orems regarding the Near Horizon structure of EVH (NHEVH) ge-
ometries. Our theorems, as we will argue, apply to a broad class 
of Einstein gravity theories in generic dimensions. These theories 
include bosonic part of the gauged or ungauged supergravity the-
ories with U (1) gauge and scalar fields.

General EVH and NHEVH ansatz. Gaussian null coordinates may 
be defined in a neighborhood of any null hypersurface. In particu-
lar, in the vicinity of a Killing horizon, the metric in the Gaussian
null coordinates can be written as [5,8]

ds2 = 2drdv + 2rfi(r, y)dvdyi − rF(r, y)dv2

+ hi j(r, y)dyidy j, i, j = 1,2, · · ·d − 2, (2)

where the Killing horizon is located at r = 0 and defined by Killing 
vector N = ∂v . The surface gravity and horizon area of (2) are [5]

κ = 1

2
F(r = 0, y), Ah =

∫ √
deth dd−2 y . (3)
r=0
For an EVH black hole then κ ∼ Ah ∼ ε where ε is a small pa-
rameter measuring how close to extremality (more precisely, to 
“EVH-ness”) we are. We assume vanishing of Ah is due to a van-
ishing one-cycle at r = 0 and parameterize this direction by φ. We 
also assume ∂φ to be a Killing direction and hence functions in the 
metric do not have φ dependence. It is then more convenient to 
decompose yi into (xa, φ). The leading ε expansion of the metric 
functions hence take the form [14]

F(r, y) = ε F (1) + r F (x),

hi jdyidy j = G(r, x)dφ2 + 2ga(r, x)dφdxa + γ̂ab(r, x)dxadxb,

where F (1) is a positive constant, a, b = 1, 2, · · · ,d − 3, and

ga = εg(1)
a (x) + rga(x), G = ε2G(2)(x) + εrG(1) + r2G(x) .

As the above form clearly shows, although the components hij are 
smooth functions of xa, r, the metric hij is not invertible at the 
horizon. As will be made explicit below, this is at the root of the 
main differences of the EVH and generic extremal cases reviewed 
in [5].

Along with ε → 0, we take the near horizon limit,

r → λr, v → v

λ
, φ → φ

λ
, λ → 0, (4)

to obtain

ds2=−r
(ε

λ
F (1) + r F

)
dv2 + 2r

(ε

λ
H (1) + rH

)
dφdv

+
(

ε2

λ2
G(2) + ε

λ
rG(1) + r2G

)
dφ2 + 2drdv + 2r fadxadv

+ 2
(ε

λ
g(1)

a + rga

)
dxadφ + γabdxadxb +O(λ, ε) , (5)

where γab = γ̂ab(r = 0, x), H (1) and H are first terms in the near 
horizon expansion of fφ . If we take this limit such that ε � λ we 
are dealing with the near-horizon EVH geometry, while taking the 
limit ε ∼ λ corresponds to near-EVH near-horizon limit. The ε � λ

case (while ε → 0) corresponds to far from EVH cases and we do 
not discuss it here. Taking near horizon λ, ε/λ → 0 limit of EVH 
black hole solutions gives

ds2 = r2
[
−Fdv2 + Gdφ2 + 2Hdφdv

]
+ 2drdv

+ 2r
[

fadxadv + gadxadφ
] + γabdxadxb, (6)

where all undetermined coefficients are functions of only xa . That 
is, imposing the EVH conditions fixes the r dependence of all met-
ric coefficients while to fix their xa dependence we need equations 
of motion on above metric and matter fields coupled to gravity.

General implications of Einstein equations. To restrict further 
the form of metric (6) we use smoothness properties and Einstein 
equations which in d dimensions take the form

Rμν = Tμν − 1

d − 2
T gμν + 2�

d − 2
gμν, (7)

where Rμν, Tμν respectively denote Ricci curvature and energy–
momentum tensor, T is the trace of energy–momentum tensor and 
� is the cosmological constant.

Theorem 1. Near horizon of EVH black hole solutions in Einstein gravity 
coupled with matter fields which have finite and analytic energy momen-
tum tensor at the horizon and Tφa = T va = 0, have a three dimensional 
locally maximally symmetric part.
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Proof. Recalling that in the Gaussian null coordinates grr , gra com-
ponents of the NHEVH metric ansatz (6) are zero, smoothness 
and analyticity of the energy–momentum tensor at the horizon at 
r = 0, which is a generic feature of black hole solutions, implies 
[14]

Rrr = 0, Rra = 0. (8)

These imply that ga = 0 and fa = ∂aG/G . Next, if we also assume 
that T va and Tφa vanish for the near horizon EVH geometry, Ein-
stein equations (7) restrict the form of metric (6) to

ds2 = e−2K
[

A0ρ
2dv2 + 2dvdρ + ρ2dφ2

]
+ γabdxadxb, (9)

where G = e2K , ρ = reK , A0 is a constant and φ coordinate in the 
above is related to φ in (2) by a φ − cv shift for a constant c.

One can show through computation of the Riemann curvature 
and also working out the Killing vectors, that the 3d v, ρ, φ part 
of the metric (9) is a maximally symmetric space; for A0 positive, 
zero and negative, it is respectively locally dS3, flat and AdS3 [14].

It worths noting that conditions of Theorem 1 on the en-
ergy momentum tensor of matter fields are satisfied in Einstein–
Maxwell-dilaton-� and gauged or ungauged supergravity theories 
with U(1) gauge fields, and are not extra conditions. More detailed 
analysis is given in [14] and here we sketch the argument. Sym-
metries of the metric (6) imply scalar fields are only function of xa , 
therefore T �

ρρ = T �
ρa = 0, T �

va ∝ fa and T �
aφ ∝ ga . Gauge field poten-

tials of U(1) gauge fields consistent with symmetries of the metric 
(6) can be generically written as

A = ρedv + hdρ

ρ
+ ρbdφ + Aadxa, (10)

where e, h, b and Aa are functions of xa . Finiteness of energy–
momentum tensor of the above gauge field at the horizon (ρ = 0) 
implies b = ∂ah = 0. Then, equation of motion for gauge fields gives
e = 0 and therefore T A

ρρ = T A
ρa = 0, T A

va ∝ fa and T A
aφ ∝ ga . The 

same argument can be used for the cosmological constant part of 
the action.

Therefore, a general theory of Einstein theory in arbitrary di-
mensions coupled to scalar and gauge fields, including all gauged 
and un-gauged supergravity satisfy conditions of Theorem 1 and 
hence, the near horizon geometry of EVH black holes there have 
generic form (9). �
Theorem 2. In theories of gravity with matter fields which besides the 
assumptions of Theorem 1, also satisfy strong energy condition, and with 
non-positive cosmological constant �, the 3d part of near horizon of an 
EVH black is AdS3 for � < 0 and for � = 0 either it is an AdS3 or the 
geometry is a direct product of a locally 3d flat space and a d −3 dimen-
sional part.

Proof. The strong energy condition stipulates that

(Tμν − 1

d − 2
T gμν)tμtν ≥ 0 (11)

for every future-oriented timelike vector field tμ. Eliminating Tμν

from the Einstein equations for metric (9) we arrive at

∇2 K − 3(∇K )2 − 2�

d − 2
+ 2A0e2K ≤ 0 , (12)

where ∇2 denotes the Laplacian computed with metric γab and 
(∇K )2 = γ ab∂a K∂b K . Multiplying (12) by e−αK with α ≥ 3 and in-
tegrating it on d − 3 dimensional part, when γ has a finite volume 
we get
∫
γd−3

dd−3x
√

detγ e−αK
[
α − 3

2
(∇K )2 − �

d − 2
+ e2K A0

]
≤ 0.

Therefore, if ∂a K �= 0 then A0 < 0 for any � ≤ 0 and the near-
horizon EVH geometry contains an AdS3 factor. The flat 3d case, 
A0 = 0, is only possible when K = const. and � = 0, where the 
warp factor e−K becomes a constant. For � > 0 cases, the above 
analysis does not yield a restriction on the sign of A0. �
Theorem 3. In theories with non-positive cosmological constant, the 3d 
part of near horizon of a near-EVH black hole is either a BTZ black hole 
or a rotating massive particle on the flat spacetime.

Proof. The near-EVH near-horizon geometries are of the form (5)
with ε ∼ λ. The parameter α = ε/λ (0 ≤ α � 1) measures “out-
of-EVH-ness” and α = 0 corresponds to the EVH point. We again 
invoke Einstein equations for determining or restricting the un-
known functions in the near-EVH metric. Since these equations 
should be valid for arbitrary α in the given range, these equations 
may be expanded in powers of α. One then has the zeroth order 
EVH (α = 0) results to obtain

ds2 = e−2K
[

− ρ(ρ F̃ + αF (1))dv2 + 2ρ(H̃ρ + αH (1))dvdφ +

+ 2dvdρ + [(ρ + αR)2 + α2 J ]dφ2
]

+ 2αg(1)
a dxadφ

+ γabdxadxb,

where F̃ , H̃ are constants by virtue of zeroth α order equations, 
while F (1) is a constant because it is related to the surface gravity 
of the near-EVH black hole. The above metric has d more unknown 
functions H (1), R, J and g(1)

a . These unknown functions may be de-
termined through the higher order α terms of the equations of 
motion.

Requiring |∂φ |2 = gφφ ≥ 0 everywhere in the spacetime, im-
plies (ρ + αR)2 and α2 J terms should be non-negative sepa-
rately and hence J ≥ 0. Moreover, one would expect that deter-
minant of constant v and ρ sectors should be positive, that is 
detγ · [(ρ + αR)2 + α2 J − e2K α2γ ab ga gb] ≥ 0, where γ ab is the 
inverse of γab . Since detγ > 0 and that this relation should hold 
everywhere, we learn that e2K γ ab ga gb ≤ J .

Again, smoothness and analyticity of energy–momentum tensor 
in the near-horizon limit implies Tρρ = Tρa = 0. These conditions 
remain true for near-EVH case and therefore we have Rρρ = Rρa =
0, which in turn yields

J = e2K γ ab g(1)
a g(1)

b . (13)

With the above, the metric may be written as

ds2 = e−2K
[

− ρ(ρ F̃ + αF (1))dv2 + 2ρ(H̃ρ + αH (1))dvdφ +

+ 2dvdρ + (ρ + αR)2dφ2
]

+ γab(dxa + α ĝadφ)(dxb + α ĝbdφ) ,

where ĝa = γ ab g(1)

b . Analysis of equations of motion and in partic-
ular with the T va = 0, Tφa = 0, does not yield ĝa = 0, while they 
imply R, H (1) are constants, if we assume ĝa = 0 [14]. The ĝa = 0
assumption is equivalent to ∂φ be a hypersurface orthogonal Killing 
vector on the horizon of the original EVH black hole; i.e. at codi-
mension two constant v and r = 0 surfaces, ∂φ is transverse to the 
constant φ surfaces [15]. With the above assumptions, we obtain 
a metric with five constants, one of which can be removed by a 
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coordinate transformation φ → φ + cv , with a constant c, and the 
unknown functions K , γab .

The 3d ρ, v, φ part is not a maximally symmetric space, un-
less the constants are related in a specific way. Such relations 
may come from components of the Einstein equations along the 
3d part. Explicit computations of the energy momentum tensor for 
generic tensor (Einstein)-vector (Maxwell field)-scalar theories [14]
reveal that the energy momentum along the 3d part is propor-
tional to its metric, implying that

H (1) = 2H̃ R , F (1) = 2 F̃ R. (14)

With the above, the 3d part of the near-EVH metric becomes a 
locally constant curvature space.

As in the EVH case, if the matter fields satisfy strong energy 
condition, we deal with two options:

• A0 = −( F̃ + H̃2) < 0, then we have a locally AdS3 space, with 
metric

ds2 = e−2K
[

− F̃ρ(ρ + 2αR)dv2 + 2H̃ρ(ρ + 2αR)dvdφ

+ (ρ + αR)2dφ2 + 2dvdρ

]
+ γabdxadxb, (15)

which its 3d part denotes a BTZ geometry [16], written in Gaussian 
null coordinates, with inner and outer horizon radii r± and AdS3
radius 

2 = − 1

A0
, r+ = αR , H̃ = r−

r+
. (16)

We note that if the φ direction in the original EVH black hole (be-
fore taking the near horizon limit) was ranging over [0, 2π ], after 
taking the near horizon limit (4) the φ direction will be ranging 
over [0, 2πλ]. This geometry is hence called “pinching BTZ” [17].

• For A0 = 0 after the shift ρ → ρ − αR and φ → φ − H̃ v , and 
then rescaling v, φ and ρ , metric takes the form

ds2 = e−2K [
dv2 + 2

H̃
dvdφ + ρ2dφ2 + 2dvdρ

] + γabdxadxb,

(17)

where the φ coordinate is ranging over [0, 2πα H̃ Rλ]. The 3d part 
of metric is locally flat and represents a particle of a given mass 
and spin proportional to H̃ [18]. �

Concluding remarks. In this work we proved three theorems 
regarding near horizon limit of (near) Extremal Vanishing Hori-
zon black hole solutions. Our results are interesting and powerful 
because they apply to quite generic gravity theories in diverse di-
mensions and recalling that in the context of gravity solutions we 
do not usually have such theorems. In a sense our reasoning is 
close, and our results are complementary, to similar analysis for 
extremal black holes [5,8]. Our theorems state that for theories 
obeying strong energy condition we generically get an AdS3 fac-
tor in our NHEVH geometry. While the possibility of 3d flat space 
is not ruled out by our theorems, we do not know any explicit ex-
ample which actually realizes this possibility. It would hence be 
interesting to explore if this possibility can be ruled out through 
some other properties (e.g. other energy conditions) of the matter 
fields.

Our theorems are not uniqueness or classification theorems, 
neither for the EVH black holes nor for their near horizon limits; 
they uncover interesting, generic features of NHEVH geometries. 
However, our theorems once considered together with analysis of 
[11,19], provide a classification and uniqueness for four and five di-
mensional NHEVH solutions to Einstein–Maxwell-dilaton theories.
An important point to keep in mind regarding the AdS3 throat 
we get is that, as seen from (4), the φ direction is a “pinching” 
direction [17], it is ranging over φ ∈ [0, 2πλ], if the φ direction in 
the original black hole had a [0, 2π ] range. Then, one should note 
this fact if based on this pinching AdS3 one wants to put forward 
an EVH/CFT correspondence [11,12]. In this respect and recalling 
our near-EVH theorem (Theorem 3), the EVH case is interesting 
because, unlike the extremal case [20], it allows for “excitation” 
and nontrivial dynamics about the NHEVH geometry. In particular, 
it would be interesting to explore further how the laws of black 
hole thermodynamics after and before the near horizon limit for 
near-EVH black holes are related. First steps in this direction are
taken in [9].
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[15] The ĝa = 0 assumption is not relevant for 4d cases, as discussed in [11], and it 
remains valid for all the higher dimensional examples, explored in [12].

http://refhub.elsevier.com/S0370-2693(15)01005-9/bib426C61636B2D486F6C65732D47656E6572616Cs1
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib426C61636B2D486F6C65732D47656E6572616Cs1
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib426C61636B2D486F6C65732D47656E6572616Cs2
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib426C61636B2D486F6C65732D47656E6572616Cs3
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib45522D726576696577s1
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib45787472656D652D4B6572722D6F62736572766174696F6Es1
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib45787472656D652D4B6572722D6F62736572766174696F6Es1
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib45787472656D652D4B6572722D6F62736572766174696F6Es2
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib45787472656D652D4B6572722D6F62736572766174696F6Es2
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib57616C64s1
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib4B4C2D726576696577s1
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib466572726172612D726576696577s1
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib53656E2D726576696577s1
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib4B4C2D706170657273s1
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib4B4C2D706170657273s2
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib4B4C2D706170657273s3
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib4B4C2D706170657273s3
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib4B4C2D706170657273s4
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib46697273742D6C6177s1
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib46697273742D6C6177s1
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib4E4845472D6D656368616E696373s1
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib4E4845472D6D656368616E696373s2
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib4556482F434654s1
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib4556482D6578616D706C6573s1
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib4556482D6578616D706C6573s2
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib4556482D6578616D706C6573s2
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib4556482D6578616D706C6573s3
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib4556482D6578616D706C6573s3
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib4556482D6578616D706C6573s4
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib4556482D6578616D706C6573s5
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib4556482D6578616D706C6573s5
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib4556482D6578616D706C6573s6
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib4556482D6578616D706C6573s6
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib4556482D6578616D706C6573s7
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib4556482D6578616D706C6573s8
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib4556482D6578616D706C6573s9
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib4556482D6578616D706C6573s10
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib4556482D6578616D706C6573s11
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib4556482D6578616D706C6573s11
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib4556482D6578616D706C6573s12
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib4556482D6578616D706C6573s12
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib6E6F2D64796E616D696373s1
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib6E6F2D64796E616D696373s1
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib6E6F2D64796E616D696373s2
http://dx.doi.org/10.1007/JHEP10(2015)093
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib6E6F2D64796E616D696373s4
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib6E6F2D64796E616D696373s4
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib4C6F6E672D76657273696F6Es1
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib4C6F6E672D76657273696F6Es1


492 S. Sadeghian et al. / Physics Letters B 753 (2016) 488–492
[16] M. Banados, C. Teitelboim, J. Zanelli, Phys. Rev. Lett. 69 (1992) 1849;
M. Banados, M. Henneaux, C. Teitelboim, J. Zanelli, Phys. Rev. D 48 (1993) 1506;
M. Banados, M. Henneaux, C. Teitelboim, J. Zanelli, Phys. Rev. D 88 (6) (2013) 
069902 (Erratum).

[17] J. de Boer, M.M. Sheikh-Jabbari, J. Simon, Class. Quantum Gravity 28 (2011) 
175012.

[18] S. Deser, R. Jackiw, G. ’t Hooft, Ann. Phys. 152 (1984) 220.
[19] S. Sadeghian, M.M. Sheikh-Jabbari, H. Yavartanoo, J. High Energy Phys. 1410 
(2014) 81.

[20] A.J. Amsel, G.T. Horowitz, D. Marolf, M.M. Roberts, J. High Energy Phys. 0909 
(2009) 044;
O.J.C. Dias, H.S. Reall, J.E. Santos, J. High Energy Phys. 0908 (2009) 101;
K. Hajian, A. Seraj, M.M. Sheikh-Jabbari, J. High Energy Phys. 1410 (2014)
111.

http://refhub.elsevier.com/S0370-2693(15)01005-9/bib42545As1
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib42545As2
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib42545As3
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib42545As3
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib42545A2D455648s1
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib42545A2D455648s1
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib444A54s1
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib534F3232s1
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib534F3232s1
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib4E6F2D64796E616D696373s1
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib4E6F2D64796E616D696373s1
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib4E6F2D64796E616D696373s2
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib4E6F2D64796E616D696373s3
http://refhub.elsevier.com/S0370-2693(15)01005-9/bib4E6F2D64796E616D696373s3

	Three theorems on near horizon extremal vanishing horizon geometries
	Acknowledgements
	References


