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Abstract—1In this paper, the number of limit cycles i a famuly of polynomial systems was studied
by the bifurcation methods With the help of a computer algebra system (e.g., MAPLE 7 0), we
obtain that the least upper bound for the number of hmit cycles appearing m a global bifurcation of
systems (2.1) and (2.2) is 5n 45+ (1 — (—=1)")/2 for ¢ # 0 and n for ¢ = 0. © 2005 Elsevier Ltd
All rights reserved.
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1. PRELIMINARY LEMMAS

In the qualitative theory of real planar differential systems, a typical problem is to determine
limit cycles (see [1,2] for more details). A classical approach to generate limit cycles is perturbing
a system, which has a center, so that limit cycles bifurcate in the perturbed system from some
periodic orbits of the unperturbed system (see [3-7] for example).

Consider a planar system of the form,

iE(t) :Hy+£f(x7ya€7a)7
. (1.1)
y(t)=—H; +eg(z,y,¢,0a),
H, f, g are C* functions in a region G C R?, ¢ € R is a small parameter, and a € D C R"
with D compact. For ¢ = 0, (1.1) becomes Hamiltonian with the Hamiltonian function H(z,y).
Suppose there exists a constant Hp > 0, such that for 0 < h < Hp, the equation H(z,y) = h
defines a smooth closed curve L, C G surrounding the origin and shrinking to the origin as
h — 0. Hence, H(0,0) = 0 and for € = 0 (1.1) has a center at the origin.
Let
B(ha)= § (ds~fdi)sg=$ (Hyg+Hoog (1.2
h h

which is called the first-order Melnikov function or Abelian integral of (1.1). This function plays
an important role in the study of limit cycles bifurcation (see [8-14] for example). In the case
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that (1.1) is a polynomial system, a well-known problem is to determine the least upper bound
of the number of zeros of ®. This is the weakened Hilbert’s 16*" problem (see [1]).

In this paper, we first state some preliminary lemmas that can be used to find the maximal
number of limit cycles by using zeros of ®. These lemmas are known results or based on known
results. Then, we study the global bifurcations of limit cycles for some polynomial systems, and
obtain the least upper bound for the number of limit cycles.

For Hopf bifurcation, we have the following lemma.

LEMMA 1.1. (See [5].) Let H(z,y) = K(z% + v*) + O(|z,y|®) with K > 0 for (x,y) near the
origin. Then, the function ® is of class C* in h at h = 0. If ®(h,aq) = K;(ag)h*+! + O(hF+2),
Ki(ag) # 0 for some ag € D, then (1.1) has at most k limit cycles near the origin for |e| +|a — ao|
sufficiently small

The following lemma is well-known result (see [2] for example).
LEMMA 1.2. If &(h,a0) = Ka(ao)(h — ho)® + O(|h — ho|**1), K2(ag) # 0 for some ap € D and
ho € (0, Hyp), then (1.1) has at most k limit cycles near Ly, for |€| 4+ |a — ag| sufficiently small.

Let Lo denote the origin and set

S= |J Ln (13)
0<h< Hy

It is obvious that S is a simply connected open subset of the plane. We suppose that the

function @ has the following form,

® (h,a) = I(h)N (h,a), (1.4)
where I € C™ for h € [0, Hy) and satisfles
I(0)=0, I'(0)#0, and I(h)#0, for h € (0, Hp). (1.5)

Using the above two lemmas, Xiang and Han [11] proved the next lemma.

LEMMA 1.3. Let (1.4) and (1.5) hold. If there exists a positive integer k such that for every
a € D the function N(h,a) has at most k zeros in h € [0, Hy) (multiplicities taken into account),
then for any given compact set V C S, there exists &g = £o(V') > 0, such that for all 0 < |¢| < &,
a € D the system (1.1) has at most k limit cyclesin V.

REMARK 1.1. As we know, if there exists ag € D, such that the function N(h,ao) has exactly &
simple zeros 0 < hy < --- < hy < Hy with N(0,a0) # 0, then for any compact set V satisfying
Ly, CintV and V C 8, there exists €0 > 0, such that for all 0 < |g] < &o,|a — ao| < €0, (1.1) has
precisely k limit cycles in V.

REMARK 1.2. The conclusions of Lemma 1.1 and Lemma 1.2 are local with respect to both the
parameter a and the set S, while the conclusion of Lemma 1.3 is global because it holds in any
compact set of S and uniformly in a € D.

2. THE NUMBER OF LIMIT CYCLES IN
A FAMILY OF POLYNOMIAL SYSTEMS

In this section, we consider a family of real planar polynomial systems of the form,
t=y(l+az+by+ecz(z?+7%)) +¢ Z ay, Ty,
0<et38n

§=—z(1+ar+by+cz(a®+y?)) +e }: b,y
0<+3<n

(2.1)

where a, b, ¢ are real with a? +b? # 0, and a,, b,, satisfy |a,y| < K, |b,| < K with K, a positive
constant and n, a positive integer. Let Br = {(a,y,b.,) | las,;| < K, |b,| < K}.
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On the region Q = {(z,y) | 1 + az + by + cx(z? + y?) # 0}, (2.1) is equivalent to

T=y+ d Z a,; Ty,
T+ az + oy + 2@ + 7)) o 2%, |

€
y=-z+ 3 E szzy
(1 + ax + by + cx(z? + y?) 0<1+J<n

(2.2)

Let ®(h) denote the first-order Melnikov function of (2.2) for 0 < h < Hp with Hy satisfying
1 - ((a + cHp)? + b*)Hp = 0. Then, we have the following main results.

THEOREM 2.1. Suppose ¢ # 0. For any K > 0 and compact set V in Q, if ®(h) is not identically
zero for (ayy,b,,) varying in a compact set D in By, then there exists an g9 > 0, such that for
0 < l¢| < g, (@4y,by5) € D, (2.1) or (2.2) has at most 5n + 5 + (1 — (—1)")/2 limit cyclesin V.

THEOREM 2.2. Suppose ¢ = 0.

(1) For any K > 0 and compact set V in Q, if ®(h) is not identically zero for (a,,,b,,) varying
in a compact set D in By, then there exists an g9 > 0, such that for 0 < |¢| < &,
(@i, b,y) € D, (2.1) or (2.2) has at most n Iimit cycles in V.

(2) For any K > 0 and compact set V in Q, there exists an o > 0 and (a;,b%;) € B, such
that for all 0 < €| < £, |a,, —al)| < €, |byy; —bY)| < €0, (2.1) or (2.2) has precisely n limit
cyclesinV.

Before proving the above theorems, we first give some lemmas.

Let
Tty dt .
= > > 3
L, (h) th (1+ax+by+cz:(a:2+y2))’ 120, 720, (2.3)
8., (h) = ayy Loy, (h) + by Ly (h), i20, 3720, (2.4)
where
Ly : z = Vhsint, y=\/ﬁcost.
Let 2 1)" .
_ J — L
Ko=2m Eu="gm ™ ST Gy
and
1F/1-p2(R)h
_ 16(h) 2,32 _ 2 - _
(@+chtb)i=pWe'®,  (@reh) +E=p ), na= LR (29)
where i = v/—1.

LEMMA 2.1. For k > 0, we have

(-1)F 2m s\ 2
Ioko (h) = 22k\/1_< h)) {%( \/ll—lp([:)(h)h) cos 2k6 (h)

1-VI=ZWRY . 06
-o;k< Tl ) cos (2k —2) 8 (h) + - -- (2.6)

2
+ (-1 ekt (1 - V\;E;(‘:)(h)h) cos 20 (h) + (-1)"05%}
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and
2k+1
(-1)"2r (VR) o (1-VIFmAE\""
Lkyr,0 (R) = P T2 (W h 2k+1 < Vo () ) sin (2k + 1)6 (k)
2k~1
1- T2k
~Clos ( T (2)( ) ) sin (2k — 1) 0 () + - (2.7)
|- VI= 7k
F(=D*Chipy ( o (Z)( ) )sine(h)},
where .
cos 2k0 () = pz—kl@ ;0 (=1) C2B*=2 (g 4 ch)¥ 2.8)
and
k
sin (2k + 1) 6 (h) = p—zzi—(,;; SO (-1 CHINFB (a1 )P, k=0,1,2,.... (29)
7=0

PROOF. We use the residue theorem to compute the integral I, o(h).
By the definitions of Lj, and Iy o(h), we have

z*dt
L, 1 taz+by+cx(z?+y?)
2 (\/ﬁsint)k dt
/0 14+a (\/Esint) +b(\/ﬁcost) +ch (\/—ﬁsint) .

Iio (h) =

Let ' = z. Then, dt = 1/izdz, sint = (22 ~ 1)/2iz, where i = v/=1. Then, the above formula
becomes

_ (\/H ((z*-1) /22'2))’c dz/iz
Iro (h) = 7|{z|=1 1+ (a+ch) (\/E ((z2 -1) /2iz)) +b (\/ﬁ((zz +1) /2z))

_ 2(‘/5/ 22)k £ (2) dz (2.10)
"~ Vh(a+ch+bi) Jiz1=1
_ —4r (ﬁ/?z)k N N .
= e Beslf(3),al+ Res(f(2), 01}
where
k —
f(z)__((—zf__‘l)—/Z)‘_ _1FVI- /WA (a+ch+bi)i=p(h)e®®,

= (z — 21) (Z — 22)1 zZ12 = \/Ep (h) eiﬂ(h) )

By the definition of residue, we have

Res|[f (2),0] =C_4,
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where C_; is the coefficient of power of —1 in Laurent series of f(z) being in the neighborhood
of the point z = 0. In fact,

(-1)* 11 ) 1 1 )
Ci=-uol {2 y=)- ——— e — ) .-
T a-n P * 25 C zf'z * 252 M

1 1 (2.11)
((k=1)/2) Al(k-1)/2)
+(-1) Ci (‘ = c=Ve zk—2[(k-l)/2l) } :

1 2

where [r] denotes the integer part of r.
Similarly, we have

22— k kK
RES[f(Z),21]= (l 1) _ ( 1) Z(_I)JC,.:

1
= . 2.12
H(a-n) a-ng P (212)

From (2.11) and (2.12), we have

k
Res [ (2), 2 + Res [ (2),0) = - { (—12- + (—zl)*) e (—:— + (—zl)"'z)

21 — 22

(2.13)
+oee (=102 Clte-D/2) (_k:ﬂ(}c__l)/?] + (_zf-ﬂ(k—l)/zl)) } :
%
By the definition of z; 3, we have
L, (VEewe® \' (1-JI=ZWE)"
-  \1+/1-22(R)h vhp () e0(®)
_ (1 - \\/_/:1 —(Z";(h)h)" (e,ko(;.) + e—sz(h)) (2.14)
p
k
P (1 = V\/l,_z;(’: )(h)h) cos k8 (k)
and N .
1 [ _Vho(h)e*® + 1-1-p2(R)h
£ AT \1+/I-2 )k Vhp () €¥®
_ (1 - \\/_/lh —(/:)(h) h)" (e,ka(h) _ e—ckO(h)) (2.15)
0
k
=% (1 - V;E;(iz)(h)h) sinkd (h) .
where i = /=1, k =1,2,3,.... Hence, for k even, from (2.10), (2.13), and (2.14), we obtain that
—47 (\/ﬁ/2z)k
Ik o(h) = ip (R 9K {Res [f (2) ,21) + Res [f (), 0]}
(=) er («/i‘z)k 1- JI=FZ®h "coske(h)
/1= F(R)h Vo (h)
k-2
1-JI—ZWh
-c,t( D ) cos (k ~ 2) 6 (h)

2
1t k2 [1=VT= 2 ()R
Hoed (1) o2 ‘( \/ﬁp(‘;)( ) ) cos20(h)+(—l)k/2C,':/2%},
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and for k odd, by using (2.15), (2.10) becomes

(1) 2r (VR 1-VI—ZWE\"
Iro (h) = 2"\/1——#11)1)1 {( \/ﬁp(’;)() ) sin k6 (k)

k-2
_cl ( 1= w%;(’:)”’”‘) sin (k — 2) 8 (h)

+ee (_1)(k~1)/2 C,ng_n/z (1 —V1-p%*(h) h) sind (h)} )

Vhp (h)
Then, (2.6),(2.7) follow from the formula,
p* (h) {cos kf (h) +1sin k@ (R)} = {(a + ch + bi)i}*. (2.16)

The proof is completed.
Suppose ¢ = 0 and let /1 — p2h = 7. Similarly, we can prove

LEMMA 2.2. Suppose ¢ = 0. For k > 0, we have

_ (=1)*4r (1 —r)* (25,0) & (2,0) 1 , (2k.0)
Dok (h)--—-——~————--—-2,c {ck TPt 4 } (2.17)
r(2p)
and
DM a1 -0F ¢ ke e (2k+1,0).1 |, (2k+1,0)
Toer,0 (R) = r (2p) 7 {Ck+1 A Rt r+o }7 (2.18)
where

0 = (—1y {0,1 cos 2k8 — CL, (c,i_1 - O,’;}) cos (2k — 2) 6
oo ()T OR (O, — OfTE) cos20 + (—1)F -;-Cékci}
and
c§2k+l,0) = (=1Y’ {CIJc sin (2k +1)8 — Chiiq (C,{_l - C,Z:}) sin (2k —1)6
ook (DT ORL (G, — 07 sindd + (<1)F77 Oy G sin,
where j = 0,1,..., and \/1— p?h =r, pe’® = (a + bi)i.
LEMMA 2.3. Ifb# 0, then for k > 0, we have
L (h) = % (Kokh® — Ingo (R) — (@ + ch) Ingt1,0 (B)) (2.19)

and
Dok () = % (~Ir,0 () = (@ + ch) Ik (1) (2.20)

PrOOF. By the definition of I, ,(h)}, we have

" zkdt (a+ch) z*+ dt
ot dt = ) 2 + 2 2
L Ly L tar+by+cx(z2492)  Jp, 1+ az+ by +cx(z? +y?)

+]{ bzky dt
L, 1 +ax+by+cx(z? +y2)

= Ir,0(h) + (a + ch)Ip11,0(h) + blx,1 (h).
Hence, formulae (2.19) and (2.20) follow from the above formula. The proof is completed.

Similarly, by the definition of I, ,(k), we have the following.
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LemMMA 2.4. It holds that

)

Iigi (B) = Y (=1 CIR* ™ Ixyaj0 (h)

=0

and
1

Ik,2z+1 (h)
=0

b3

LeEmMA 2.5. For k > 0, we have

k
Z q)z] Z E2k-1)I2(k—z) z (
=0

= Z (-1 C?h*  Iiy0,1 (h).

k-1
R R+ S B Vg1 (R B

=0

k k
3 8, (M) = a8 hgyrr, (W A+ 35 Ly, (B) B,

1+9=2k—1
and
1+3=2k 2=0
where .
~{2k -1 k
a§2 ) _ Z(_l)J C;a.§2 ),
7=
- k
B =3 (—1y 7 Cp®,
k .
&52’6—1) — Z (_1)]—1 C;agzk—l),
j=t
. k
bEZk—l) - Z (_1)]—1 C;b§2k—l),
and

J
a2k,0,

b(2k)
b 2k,

Q2k—1,0,

b(2k 1)

bak-1,0,

Proor. By the definition (2.5) of ®,,(h), we have

PR

1+9=2k =1

k

420 _ { Q2k-21,2; + b2k-2541,2-1, >0,

a1 { Qok—2y-1,2j + bok—-29,2,-1, >0,

1=0

0<i<k,

0<i<k,

0<i<k,

0<i<k-1,

i=0,

Ggk—25-1,25+1 + bak—2529, FF# Kk,

j=k1

3=0,

Ook—2y—2,27+1 + bak—2;,-12;, T Fk,

1=k

=Y (Pok-2.2:(h) + Bok—n41,20-1 (h)) + Pak,o ()

k
= Z {agzk)12k—21+1,21 (h) + bgzk)IZk—21,2i+1 (h)} ,

=0

1675

(2.21)

(2.22)

(2.23)

(2.24)

so the formula (2.24) follows from Lemma 2.4 and the above formula. Similarly, (2.23) can be

proved too The proof is completed.



1676 G XIANG et al.

Furthermore, if ¢ 0 from the above lemmas, we have

1
&, (h) = PEEY Ry + T= 22 (W RPZE2D ()l (2.5
w2zt O gy (0 MARSY B} (29
and

3 &y (h) = \/_(h)hl(hz T {PEh 0+ VIZEmRPE, (), 226)

1+9=2k

where P )(h) denotes a polynomial of & of degree m whose coefficients are linear combinations
of a5, by, with i+ j =k, and p%(k) = (a + ch)? + b2,
Suppose ¢ = 0 and let 1/1 — p?h = r. By Lemma 2.5, we have the following.

LEMMA 2.6. Suppose ¢ =0. For k > 0, we have

1-r
Z 5, (h ) { @=Lk 4.4 (2k=D),, k= 1)} (2.27)
1+g=2k-1
and
S o, { (@) kb1 2R, +c[()2k)}, (2.28)
1+)=2k
where C§2k—l) and c§2k) are linear combinations of (a.,, by,)) with 1+ j = 2k — 1 and 1+ + 5 = 2k
respectively, and cfk_l) ;(fﬂ # 0.

Now, we are in position to prove the main results.

PROOF OF THEOREM 2.1. In this following, we first suppose n = 2s. In this case, by (1.2), the
Melinikov function ®(h) of system (2.2) has the following form,

1 .
@ h = . t+1 7 + sz I3 _7+1
( ) ‘%Lh (1+a$+by+cx(z2+y2)) 0<§525 (a 1T Yy 3Ty )

s (2.29)
> <I>u<h>=z( > )+ Y <I>u<h>+<1>o,o(h).

0<2+3<2s k=1 \1+3=2k-1 143=2k

Then, by the above lemmas and formulae (2.25),(2.26), the function ®(h) has the form,

8

1 - k—
003 (P )+ VT TR )
L PR (h) + /1= p2 (R AP, ( 2.30
= A WA + e ( skt * (R hFsiiy (b ) (2:30)
1
= =i (Fere () + VI 2 RPs (1)
Here, Ps;43(h) and Ps,(h) denote the polynomials of h of degree 55+ 3 and 5s, respectively, whose

coefficients are linear combinations of a,;,b,; with 0 < i+ j < 2s, and p?(h) = (a + ch)? + b°.
Obviously, all the zeros of (2.30) satisfy

(Psaya(h))® = (1= (a + ch)?h — b2h)(Ps, (h))2.

Hence, the number of zeros of ®(h) are not larger than 10s + 6.
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For the case of n = 2s — 1, similarly, we can prove that the number of zeros of ®(k) are not
larger than 10s + 2.

Notice that ®(h) =0 at h = 0 in (2.30). Hence, from Lemma 1.3 we know that there exists an
g0 > 0, such that when 0 < |g| < g9 and (a,y, by;) satisfies |a,y| < K, |b,;| < K, system (2.2) has
at most 5n + 5+ (1 — (—1)™)/2 limit cycles. The proof is completed.

ProOF OF THEOREM 2.2. Suppose ¢ = 0. First, let n = 2s.
(1) By (1.2), (2.27), (2.28), and (2.29), the Melinikov function ®(h) of system (2.2) has the

following form,

1
= - +1,.2 2,,7+1
®(h) %Lh Azt by) E (amz Y’ + b2’y )

0<e+7<2s

L (1-r) 2%k—1 2k—1 k—1
T
k=1

(2.31)
+ (Cff;rkﬁ +o 4 cg%)r + céZk))} + a0ol1,0 + boolo,1

1-r CosT2 - e + o
T

1-—
= TTP2s(r)7

where Py;(r) is a polynomial of r of degree 2s.
Hence, from Lemma 1.3, we know that there exists an eg > 0, such that when 0 < |¢] <
€0 and (a,;, by;) satisfies |a,,| < K, |b,;| < K, system (2.2) has at most 2s limit cycles.
(2) From the proof of Theorem 2.1 we know that the coefficients cys, . .., €1, ¢ of (2.31) satisfy

cas =1L (Cgﬂ) ,
Cos—1 =L (cgﬁ,cg%"l)) ,
: (2.32)
cg=1L (cﬁs},cg%_l), e ,c(ll)) ,
o= L (&0, o),
where L(---) denotes the linear function and ¢*) is linear combinations of @y, by, With

1+j=k, fork=0,1,...,2s
From (2.32), we have that the linear map,

K: (az_')ysz) - (028)023—1!' . 1c1aCO)7
is surjective. That is, the coefficients ¢z, c95-1,...,¢1,¢0 of Pos(r) are independently
varied, so there exists (a%,b?]), such that Py,(r) has exact 2s simple zeros for g > 0

and |a,; — a2 |, |b,, — b2 | small. Then, from Lemma 1.3 and Remark 1.1, we have proved
that there exists an eg > 0, such that for 0 <| € |< &, |a,, — a?JI < g, la, — a?]| < &g,
system {2.2) has precisely 2s limit cycles.

For the case of n = 25 — 1, a similar proof can be given.

This finishes the proof.

REMARK 2.1. In fact, for the system,

:'c:y(1+aa:+by+c(z2+y2)),
y=—z(l+az+by+c(z*+1?)),
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where a, b, ¢ are real with a? + b2 # 0, ¢ # 0, we can use a similar argument to prove that the
number of limit cycles of the above system under the perturbations of the polynomials of order n,
is at most N, where

10

11.

12

13.

14.

{2n+1, a? 4+ b2 # 4e,

n, a? +b% =4c.
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