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A b s t r a c t - - I n  thin paper~ the number of hmlt cycles m a family of polynomial systems was studmd 
by the bifurcation methods With the help of a computer algebra system (e.g., MAPLE 7 0), we 
obtain that the least upper bound for the number of hmlt cycles appearing m a global bifurcation of 
systems (2.1) and (2.2) is 5n ÷ 5 + (1 - ( -1)~) /2  for c ¢ 0 and n for c ~ 0. (~) 2005 Elsewer Ltd 
All rights reserved. 

K e y w o r d s - - H d b e r t ' s  16 th problem, Global bifurcation, Abehan integrals, Limit cycles 

1. P R E L I M I N A R Y  L E M M A S  

In the qualitative theory of real planar differential systems, a typmal problem is to determine 
limit cycles (see [1,2] for more details). A classical approach to generate limit cycles is perturbing 
a system, which has a center, so that  limit cycles bifurcate m the perturbed system from some 
periodic orbits of the unperturbed system (see [3-7] for example). 

Consider a planar system of the form, 

2(t) = Hv + s f  (x,y,s,a), 
~] (t) = - H x  + ~g (x, y, ~, a) ,  

(1.1) 

H, f ,  g are C a functions in a region G C R 2, ~ E R is a small parameter, and a C D C R n 
with D compact. For e = 0, (1.1) becomes Hamiltonian with the Hamiltonian function H(x, y). 
Suppose there exists a constant H0 > 0, such that  for 0 < h < H0, the equation H(x,y) = h 
defines a smooth closed curve Lh C G surrounding the origin and shrinking to the origin as 
h --~ 0. Hence, H(0,0)  -- 0 and for ¢ = 0 (1.1) has a center at the origin. 

Let 

• ( h , a ) =  ¢_ (gdx- fdy)~=o= ¢_ (Hyg÷H~S)~=od$, (1.2) 
JL h J1¢ h 

which is called the first-order Melnikov function or Abehan integral of (1.1). This function plays 
an important role in the study of limit cycles bifurcation (see [8-14] for example). In the case 
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that (1.1) is a polynomial system, a well-known problem is to determine the least upper bound 
of the number of zeros of ~. This is the weakened Hilbert's 16 th problem (see [1]). 

In this paper, we first state some preliminary lemmas that can be used to find the maximal 
number of limit cycles by using zeros of ~. These lemmas are known results or based on known 
results. Then, we study the global bifurcations of limit cycles for some polynomial systems, and 
obtain the least upper bound for the number of limit cycles. 

For Hopf bifurcation, we have the following [emma. 

LEMMA 1.1. (See [5].) Let H(x ,y)  = I((x  2 + y2) + O(ix, yl3) with K > 0 for (x,y) near the 
origin. Then, the function • is of class C °o in h at h -- O. If ~ (h, ao) = Kl(ao) h k+l + O (h k+2), 
gl(ao) • 0 for some ao e D, then (1.1) has at most k limit cycles near the origin for Is] + la - aol 
sumciently small 

The following lemma is well-known result (see [2] for example). 

LEMMA 1.2. I f~ (h ,  ao) = K2(a0)(h - h0) k + O(Ih - holk+l), K2(a0) ~ 0 for some ao E D and 
he E (0, He), then (1.1) has at most k limit cycles near Lho for Is] + ]a -- ao] su~ciently small. 

Let Lo denote the origin and set 

S = U Lh. (1 3) 
0_<h<Ho 

It is obvious that S is a simply connected open subset of the plane. We suppose that the 
function • has the following form, 

(h, a) = I (h )N (h, a), (1.4) 

where I C Coo for h E [0, H0) and satisfies 

I(0) = 0, I '(0) ~ 0, and I(h) ~ O, for h e (0, H0). (1.5) 

Using the above two lemmas, Xiang and Han [11] proved the next lemma. 

LEMMA 1.3. Let (1.4) and (1.5) hold. If there exists a positive integer k such that for every 
a E D the function N(h, a) has at most k zeros in h E [0, H0) (multiplicities taken into account), 
then for any given compact set V C S, there exists So = so(V) > O, such that for all 0 < Is[ < so, 
a E D the system (1.1) has at most k limit cycles in V. 

REMARK 1.1. As we know, if there exists a0 6 D, such that the function N(h, ao) has exactly k 
simple zeros 0 < hi < --- < hk < H0 with N(0, a0) # 0, then for any compact set V satisfying 
Lhk C intV and V C S, there exists Zo > 0, such that for all 0 < I~] < eo , [ a -  ao[ < Go, (1.1) has 
precisely k limit cycles in V. 

REMARK 1.2. The conclusions of Lemma 1.1 and Lemma 1.2 are local with respect to both the 
parameter a and the set S, while the conclusion of Lemma 1.3 is global because it holds in any 
compact set of S and uniformly in a 6 D. 

2. T H E  N U M B E R  O F  L I M I T  C Y C L E S  I N  

A F A M I L Y  O F  P O L Y N O M I A L  S Y S T E M S  

In this section, we consider a family of real planar polynomial systems of the form, 

~ = Y ( l + a x + b y + c x ( x 2 + Y 2 ) ) +  ~ ~ a~jx~Y ~, 

0<~+3<n (2.1) 
-x(1 +by +c (x + +6 Z 

where a, b, c are real with a 2 +b  2 ~ 0, and a~, b~ 3 satisfy la~31 _< K, Ib~3[ < K with K, a positive 
constant and n, a positive integer. Let BK = {(a~j,b~j) I la ,  I -< K, Ibm31 < K}. 
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On the region gt = {(x ,y)  I 1 + a x + b y + c x ( x  2 + y 2 )  # 0}, (2.1) is equivalent to 

8 

O<*+j<n 
E 

fj = - z  + (1 + a z  + by + c z (x  2 + y2)) 
O<_~+3<_n 

(2.2) 

Let O(h) denote the first-order Melnikov function of (2.2) for 0 _ h < Ho with Ho satisfying 
1 - ((a + clio) 2 + b2)Ho = 0. Then, we have the following main results. 

THEOREM 2.1. Suppose c ~ O. For any K > 0 and compact set V in gt, i f ~ ( h )  is not identically 
zero for (a~3,b,3) varying in a compact set D in BK, then there exists an eo > O, such that for 
0 < I¢l < Co, (a,3, b~j) • D, (2.1) or (2.2) has at most 5n + 5 + (1 - ( -1) '~) /2  limit cycles in V. 

THEOREM 2.2. Suppose c = O. 

(1) For any K > 0 and compact set V / n  ~, i f  O(h) is not identically zero for (a,j, b,j) varying 
in a compact set D in BK, then there exists an So > 0, such that for 0 < ]¢] < ¢o, 
(a•,b,,) • D, (2.1) or (2.2) has at most n limit cycles in V. 

Ca,j, b,i) • BK, such (2) For any K > 0 and compact set V in f~, there exists an So > 0 and o o 
o ib,3 o (2.1) or (2.2) has precisely n limit tha t  for all 0 < s[ < So, la,3 - %1 < ¢o, - b,31 < Eo, 

cycles in V. 

Before proving the above theorems, we first give some lemmas. 

Let  

~L x~y J dt 
I , , , ( h ) =  ( l + a x + b y + c x ( x  2 + y 2 ) ) '  ~ > 0 ,  j > 0 ,  

h 

~,, (h) = a,,I,+l,3 (h) + b,,I~o+l (h), i >_ O, 2 >- O, 

(2.3) 

(2.4) 

where 
Lh : x = x /hs in t ,  y = V ~ c o s t .  

Let 

and 

( 2 j - l ) ! !  
K o = 2 ~ ,  g2 j  = ~2T) ~ 2r ,  C~ = 

k! 
] ! ( k - j ) ! '  

(a + ch + b,) ~ = p (h) e 'e(h) , ( a + c h ) 2 + b 2 = p  2 (h), 1 =]: 4 1  - p2 (h) h (2.5) 
z l ,2  = v / ' h p ( h )  e~°(h) ' 

where i = v/Z'l. 

LEMMA 2.1. For k > O, we have 

I2k,o (h) = 22kV/1 _ p2 (h) h 7 r~p~-  ) cos 2k0 (h) 

_C~k ( 1 -  x / l  - p2 (h) h ) 2k-2 
v/_~p(h ) cos (2k - 2) 8 (h) + . . -  

+ ( - 1 ) k - l C ~ - l  ( 1 - x / - - l l = p 2 ( h ) h ~ 2 c o s 2 0 ( h ) + ( - 1 ) k C ~  1 ) 

(2.8) 
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and 

/ak+x,o (h) = 
(--1)k 21r { ( ~v/1-pa(h)hh2k+l 

(V~) 2 k + l  

2 2k+' V/1 --_ P-2 ( - ~  c o +  ' 1 - sin (2k + 1)0 (h) 

C1 ( 1 - x / X - p 2 ( h ) h )  2k-1 
- 2k+1 ~ 7  (-~ sin (2k - 1) 0 (h) + . . .  

. . ( 1 - V . - , ' ( , ) , ~  } 
+ ( - 1 )  C,k+t ~/~p(--~) .]sinO(h) , 

(2.7) 

where 

and 

k 

= ~ ~ n2~k2k-2~ (a + ch) 2~ cos 2kO (h) 1 (_1) J v2k~ (2.8) 

k 
1 

sin (2k + 1) 0 (h) = fl2k+l (h) E (-1)3 023+1h2k-2j (a + ch) 23+1 ~ 2 k + l  v ) 

1 = 0  

k = 0 ,1 ,2 , . . . .  (2.9) 

PROOF. We use the residue theorem to compute the integral Ik,o(h). 
By the definitions of Lh and Ik,o(h), we have 

~L x k dt 
Ik,o (h) = h 1 + ax + by + cx (x 2 + y2) 

__[,, (,~s~,,.O",,,: 
1 + a ( v / h s i n t ) +  b ( v ~ c o s t ) + c h ( v / h s i n t )  " 

Let e *t = z. Then, dt = 1/izdz, sint = (z 2 - 1)/2iz, where i = v/L~. Then, the above formula 
becomes 

I k o ( h ) = ~  ( v ~ ( ( z ' - l ) / 2 i z ) ) ' d z / i z  

' ,=I, + <o-,-~,,.> ( ~  ~z,_ i> l,,:z>)+ b (~<<z, + ,> l,z>) 

2 ( v ~ / 2 0  k 

= x /~ (a+ch+bi )  ~zl=l f ( z ) d z  

-4~r (v/-h/2i) k 
= x/~p (h) e *° (Res If (z), zl] + Res [f (z),0]},  

(2.10) 

where 

( ( z  2 -  1 ) / z )  k 

f (z) = (z - zl) (z - z2)' 
1 T V1 - F (h) h 

Zl,2 = x/-hp (h) do(h) ' (a + ch + bi) i = p (h) e ~°(h). 

By the definition of residue, we have 

Res [f (z), 0] -- C- t ,  
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where C-1 is the coefficient of power of - I  in Laurent series of .f(z) being in the neighborhood 
of the point z = 0. In fact, 

(-1)+ { ( - +  + ) - C ~ (  zl--~_2+z2--~_2)+"" C _ ,  = ~ '1 :~2  1 + 1 _ 1 1 

(_l)[(+-l)/2l Ci(+-l)/2l (" + 

where [r] denotes the integer part of r. 
Similarly, we have 

l:tes If(z), zl] = 

From(2.11) and (2.12),we have 

( z p - t )  + 
Z~(Zl--Z2) 

1 1 ) }  
Zi+_21(+_1)/2] -I- z~_21(+_1)/2 ) , 

+ i-i)+ ~(- iy c/, 1 
= ------ + - 2 ~ "  

Z I -- Z 2 Z 1 3=0 

(-I) + 1 
Res [f(z),Z1]~LRes [f(z),0] = ~l---z-- 2 {(zl-Jc(--Zl) +) - C  1 (z-=~=~'~-(-Zl) +-2) 

+ .  • 

By the definition of zl,2, we have 

and 

z-~2 +z~= l+x/l_p2(h)h + ~/-~-~e~-" ~ 

(I - ~/I - p2(h)h ~ + ) (e,+) + e-,+>) 
\ 

= 2 ( I  - ~_.11--P2 (h) h~ + 
v%(h)  ) cos ko (h) 

z~ z~= \ l+ j l_p2(h)h  ] +kl  - - v %  (h) e,o(,,) ) 

= v%(h) ) 

(1  - ~ - 9 2 (h)h ~ ~ +in kO ~h~. 2z 
v%(h) ) " " 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

where i = vzUT, k -- 1,2,3,... .  Hence, for k even, from (2.10), (2.13), and (2.14), we obtain that 

-4~ (V~/2z) k 
/+,o(h) = v~p (h) e,O(a) {P~s V (z), zll + P ~  [I (~),0]} 

(-1)+/221r (v~)+ { (! - X/__.l_l - Ifl___(h) h ~ +coskO (h) 
= 2+X/1 - pZ(h)h v~p(h) ) 

+--2 
- C~ ( 1- ~l - p2 (h) h ) cos (k-2)0(h)  

C+/21 + . . . +  (_1)+/2_! c~/~_, 1 - d_ l_ -~ (h )h~  ~ 2 0 ( h )  + (-1) +/5 
v%(h)  ) + 2 ' 
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and for k odd, by using (2.15), (2.10) becomes 

Ik,o (h) = 2 k ~ / l _ p 2 ( h ) h  ~,_fp(-~) ] 

-C~ 1 -  V/1 - p2 (h) h sin(k 2) 0 

"~k 7~p~-)  sin0 (h) . 

Then, (2.6),(2.7) follow from the formula, 

pk (h) {cos k0 (h) +~ sin k0 (h)} = {(a + ch + bi) i} k . (2.16) 

The proof is completed. 

Suppose c = 0 and let ~ -  p2h = r. Similarly, we can prove 

LEMMA 2.2. Suppose c = O. For k >_ O, we have 

I2k,o (h) = (--1)k47r(1--r)k {C(2k'O)rk "" "+c~2k'°)rl +c~ 2k'°) } (2.17) 

and 

(--1)k+l 4~r (1-- r) k 
L c ~ l ' ° ) r  k+' + . . . + c  1 r + (2.18) I2k+1,0 (h) = r (2p) 2k+1 

W h e F e  

c(2k,0) = (_1)3 { C ~ c o s 2 k O _ C ~  k (C~_ 1 - C ~ - ~ ) c o s ( 2 k  2) 8 ? 

1Ck t-~3} 
and 

c (2k+l ' ° ) - - ( - -1 ) ' {C~s in (2k+l )O  C '  (C~_, C ' -1~ 
3 - - 2 k + 1  - k_ U s i n ( 2 k - 1 ) o  

._~_..._~_(__x)k-2-1C~k+ lk-I (C~_ 1 _ C~-.11) 8in30..~_(_m)k-.1 C~k+IC k k  'siilO}, 
where j = 0, 1 , . . . ,  and x/1 - p2h = r, pe '8 = (a + bi)i. 

LEMMA 2.3. I f  b ~ O, then for k >_ O, we have 

I2k,1 (h) = -~1 (g2khk _ I2k,0 (h) - (a + ch) I2k+l,o (h)) , (2.19) 

and 
1 

I2k+1,1 (h) = ~ (-I2k+1,0 (h) - (a + ch) I2k+2,0 (h)). (2.20) 

PROOF. By the definition of iw(h) ,  we have 

x k dt -- 1 + ax + by + cx (x 2 + y2) + 1 + ax + by + cx (x 2 + y2) 
h h h 

~L bxk y dt 
-i- h l + ax + by + cx (x 2 + y2) 

= Ik,o(h) + (a + ch)Ik+l,o(h) + bIk,1 (h). 

Hence, formulae (2.19) and (2.20) follow from the above formula. The proof is completed. 

Similarly, by the definition of I~,3 (h), we have the following. 
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LEMMA 2.4. It holds that 

Ik,2, (h) = ~ (-1) 3 C~h'-~Ik+2j,o (h) 
3----0 

(2.21) 

and 

Ik,2,+1 (h) = E (-1)~ C~h'-3I~+2J, 1 (h).  
3=0 

(2.22) 

LEMMA 2.5. For k >_ O, we have 

k k-1 
- ( 2 k - l ) .  h '  - (2k- l )  h '  Z ¢-  (h) 2_,as + (hi = b, I2(k-,)-l,, 

~+3=2k--1 ~=0 ~=0 
(2.23) 

and 

where 

and 

E 
z+o=2k ~=0 

k k 
= K"' r.(2k)r (I),, (hi Z_., t~, -2(k-,)+l,, (hi h' + E b}2k)I2(k-'), ' (hi M, 

I----0 

k 
(2k) E , = ( _ 1 ) : - , . . ~  (2k) ~}a: ~ O < i < k, 

k 
~}2k) = E (--1) ' - '  C;b~ 2k), 0 < i < k, 

3 : $  

k 
a(2k-z) = E ( -1)J- i  " (2k-1) c.~% , 0 < i <  k, 

k 
~(2k--1) = E (--1)3-- '  C;b~ 2k-l), 0 < i < k - 1, 

a(2k) f a2k-23,23 + b2k-23+l,2j-1,  

3 = t a2k,O, 

b~2k) = { a2k--2g-l,23+l + b2k-23,23, 
bo,2k 

a(2k-1) { a2k-20-1,2j + b2k-2o,23-1~ 
3 -- _ a2k_l,O~ 

(2k-l)  f a2k--23-2,23+l -{- b2k-23-1,23, 
b3 --  / b2k-l,O~ 

of ~,3 (h), we have PROOF. By the definition (2.5) 

3 > 0 ,  

3 = 0 ,  

3 ~ k ,  

3 = k ,  

3>0, 

3 ----0, 

j#k, 

3----k. 

(2.24) 

k 

~3 (h) = ~ (~2k-2,,2~(h) + ~2~-2,+1,2,-1 (h)) + ~2k,o (h) 
~-}-j=2k ~----1 

k 

s ~ 0  

so the formula (2.24) follows from Lemma 2.4 and the above formula. Similarly, (2.23) can be 
proved too The proof is completed. 
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Furthermore, if c ¢ 0 from the above lemmas, we have 

1 f~(2}-~) th~ ]~D(2k-1) 
E @,~(h)= V / 1 - P  2 h(h2+b2)2~ [ ' ~ + i  ( h ) + x / 1 - P  2 (h)} (2.25) ~-F~=2k-1 (h) ' ~ '~" ~k-~ 

and 

1 [p(2k) 
E ]  ~,~ (h) = ~/1 p~ b~)2~+1 l" ~+~ (h) + ~1  - ~ (~) ~e~(~+~ (~)} (22~) ~+~=2~ - (h) h (h 2 + 

where p(k)(h) denotes a polynomial of h of degree m whose coefficients are linear combinations 
of aij, b, 3 with i + j  -- k, and p2(h) = (a + ch) 2 + b 2. 

Suppose c = 0 and let x/ri " - p2h = r. By Lemma 2.5, we have the following. 

LEMMA 2.6. Suppose c = O. For k >_ O, we have 

E (I)~3 (h) -- (1 -r r)k { e(k2k-1)rk +'"-~ c~2k-1)r ~- 42k-1)}  (2.27) 
~+3=2k--1 

and 

E ~,3 (h)--  (1 r r)k S'~(2k)~'k+X "~- c~2k)r + c(2k) [~k+i" + ' ' "  } ,  (2.28) 
~+3~2k 

c~ ^(2k) where 2k-l) and u 3 are//near combinations of (a~j, b~3) with z + j = 2k - 1 and ~ + 2 = 2k 

respectively, and c (2k-l) ,,(2k) "~k+l ¢ 0. 
Now, we are in position to prove the main results. 

PROOF OF THEOREM 2.1. In this following, we first suppose n = 2s. In this case, by (1.2), the 
Melinikov function @(h) of system (2.2) has the following form, 

~L 1 • (h) = (1 + ax + by + ~ (x2 + y2)) ~ (a~'+lY J + b-~Y J+l) 
h 0_<~+3_<2s 

= £ ~ ,  (h) + ~0,0 (h) • . (~) = ~ .  (h) + ~ 
0<~÷y<2s k=l ~+3 -1 = 

Then, by the above lemmas and formulae (2.25),(2.26), the function ~(h) has the form, 

1 /D(2k_l) (2k--1) 
(h)--- ~ X / 1 - p 2 ( h ) h ( h  2+b2) 2k [ 'Sk+l ( h ) + x / 1 - p 2 ( h ) h P ~ k _  2 (h)) 

k=0 

1 ~ . ( ~  (~  ) }  (2.30) - (h) hP~k+2 (h) V/1 _ p2 (h) h(h 2 + b2) 2k+1 ~." sk+2 (h) + v/1 p2 

= 1 (P5~+3 (h) + X/1 - p2 (h)hPs~ (h)) 
x/1 - p2 (h) h (h 2 + b2) 2s+1 

Here, Pss+3 (h) and P58(h) denote the polynomials of h of degree 5s+3 and 5s, respectively, whose 
coefficients are linear combinations of a~3, b~ 3 with 0 < i + j _< 2s, and p2(h) = (a + ch) 2 + b 2. 

Obviously~ all the zeros of (2.30) satisfy 

(Ps~+3(h)) 2 -- (1 - (a + ch)2h - b2h)(Ps~(h)) 2. 

Hence, the number of zeros of ~(h) are not larger than 10s + 6. 



Limit Cycles 1677 

For the case of n = 2s - 1, similarly, we can prove tha t  the number  of zeros of (I)(h) are not 
larger than  10s + 2. 

Notice tha t  ~)(h) = 0 at  h = 0 in (2.30). Hence, from L e m m a  1.3 we know tha t  there exists an 
Go > 0, such tha t  when 0 < [z[ < Go and (a~3,b~) satisfies [a~31 _< g ,  lb~3[ <_ K, system (2.2) has 
at  most  5n + 5 + (1 - ( - 1 ) ~ ) / 2  limit cycles. The  proof is completed.  

PROOF OF THEOREM 2.2. Suppose c = 0. First,  let n = 2s. 

(1) By (1.2), (2.27), (2.28), and (2.29), the Melinikov function ~(h)  of system (2.2) has the 
following form, 

1 
• (h) = (1 +ax  +by) E (a~' x~+ly' +b~' x~y'+l) 

h 0 ~ + 3 < 2 s  

k=l  
(2.31) [ (2k)rk+l  _ (2k) _ (2k )~ l  

+[ck+ 1 + . . . - F c  1 r~-c  o }]+aooIl,o+booIo,1 

_ 1 - r {e2sr2 ~ + " -  + clr + co} 
r 

1 - rp ,  
- 

r 

where P28(r) is a polynomial  of r of degree 2s. 
Hence, from L e m m a  1.3, we know tha t  there exists an so > 0, such tha t  when 0 < ]e I < 

so and (a~3, b~3) satisfies la,3] _< K,  Ibm3] _< K ,  sys tem (2.2) has at  most  2s limit cycles. 
(2) From the proof of Theorem 2.1 we know tha t  the coefficients c2s,. . . ,  Cl, c0 of (2.31) satisfy 

f (28 )~  c28 = n [c8+1) , 

{ (28) 2~-1)) 
C2s-- 1 ~- L ~Cs.{_l, C~ 

: (2.32) 

/ (2s) _(28--1) 1) I 
= L . , 

[ (28) _(2s--I) (1) (0)'~ co L~C~+l, % ,.. ---~ .,C I ,C 0 ) ' 

where L(...) denotes the linear function and c (k) is linear combinations of a,3,b~ 9 with 
~ + j = k ,  f o r k - - - - 0 , 1 , . . . , 2 s  

From (2.32), we have tha t  the linear map, 

K :  (a,j,b,j) -~ (c28,c28-1,'' ,Cl,CO), 

is surjective. Tha t  is, the coefficients c2s ,c28-1, . . . ,Cl ,C0 of P2s(r) are independently 
varied, so there exists 0 0 (a~3,b~3), such tha t  P28(r) has exact 2s simple zeros for G0 > 0 
and [a,~ - a°31, [b~ 3 - b~°l small. Then,  from L e m m a  1.3 and Remark  1.1, we have proved 
tha t  there exists an G0 > 0, such tha t  for 0 <1 E [< s0, [a~ 3 - a~°l < s0, la~9 - a~°[ < s0, 
sys tem (2.2) has precisely 2s limit cycles. 

For the case of n = 2s - 1, a similar proof can be given. 
This finishes the proof. 

REMARK 2.1. In fact, for the system, 

~ = y ( 1  + a x  + b y + c ( x  2 + y 2 ) ) ,  

= - x  ( l + a x  + by + c ( x  2 + y2) ) ,  
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where  a, b, c are  real  w i th  a 2 + b 2 ¢ 0, c ¢ 0, we can  use a s imi lar  a r g u m e n t  to  prove t h a t  t he  

n u m b e r  of  l imi t  cycles of  t he  above  sys t em under  the  p e r t u r b a t i o n s  of  t h e  po lynomia l s  of  o rder  n, 

is at  m o s t  N~ where  
N = ~ 2n + 1, a 2 + b 2 ~ 4c, 

[ n,  a 2 ÷ b 2 = 4c.  
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