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It is known that various discrete optimization problems can be represented 
by finite state models called sequential decision processes (sdp's). A subclass 
of sdp's, the class of monotone sdp's (msdp's), is particularly important since 
the method of dynamic programming is applicable to obtain optimal policies. 
Several subclasses of msdp's have also been introduced from the viewpoint of 
computational complexity for obtaining optimal policies. For each of these 
classes of sdp's, optimal policies are usually obtained (if possible at all) in 
fewer steps if a given optimization problem is represented by a model with 
fewer states. 

Thus we are naturally led to the problem of finding a minimal (with the 
fewest states) representation of a given optimization problem by an sdp of a 
specified class. This paper investigates the existence or nonexistence of such 
minimization algorithms (in the sense of the theory of computation) for various 
classes of sdp's. It is shown that there exist minimization algorithms for some 
classes of sdp's, but there exist no algorithms for others. 

The nonuniqueness of a minimal representation is also proved for each 
class of sdp's. 

1. INTRODUCTION 

In  order to discuss the dynamic programming on a rigorous mathematical 
basis, it is commonly taken to consider the essence of dynamic programming 

as a certain monotonicity property possessed by some classes of sequential 
decision processes (sdp's) (Bellman, 1957; Mitten, 1964; Nemhauser, 1966; 

Denardo, 1967; Karp and Held, 1967; Elmaghraby, 1970; Ibaraki, 1972, 
1973a, 1973b, 1974.)An sdp is a system consisting of finite states, a transition 
rule from one state to another corresponding to each decision, and a cost 
function associated with each transition. 

Karp and Held (1967) showed that the functional equations of dynamic 
programming hold if an sdp satisfies a certain monotonicity condition. Thus  
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representing a given problem by an sdp of this class may be identified with 
a formulation of the problem by dynamic programming. However, it was 
shown in Ibaraki (1974) that there exists no algorithm (in the sense of the 
theory of computation) for solving the resulting functional equations of 
dynamic programming for an arbitrarily given such sdp, under somewhat 
different mathematical formulation. To avoid this difficulty, Ibaraki (1973a) 
introduced three subclasses of sdp's for which the functional equations are 
always solvable to obtain an optimal policy. For these classes it was also 
demonstrated that such functional equations can be solved in fewer steps 
if the sdp under consideration has fewer states. 

Therefore we are naturally led to the problem of finding a representation 
of a given, problem by an sdp (of the class under consideration) with the fewest 
states. In this paper, we will consider algorithms for solving such minimization 
problems for various classes of sdp's. For some classes, it will be shown that 
such algorithms exist, whereas no such algorithms exist for others. These 
results may also be interpreted as indicating an aspect of the complexity 
hierarchy of various classes of sdp's. 

In the following discussion, we are primarily concerned with the existence 
of an algorithm for each minimization problem. Thus, attention is not paid 
to the efficiency of the resulting algorithm obtained for a solvable problem. 
Attempts for improving them, however, are currently under way and some 
results will be reported elsewhere. 

2. DEFINITIONS 

This section introduces various definitions and notations which will be 
used in the subsequent discussions. 

We assume that a problem is originally given in the form of a discrete 
decision process (ddp) (Karp and Held, 1967; Ibaraki, 1972) or a recursive 
ddp (r-ddp) (Ibaraki, 1974), which is considered as a general description of a 
discrete deterministic optimization problem. A ddp !* is the system (Z, S, f ) ,  
where 

Z: a finite nonempty set of primitive decisions (alphabet); Z* 
denotes the set of all policies (strings) obtained by concatenating 
decisions e Z; e stands for the null policy (string), i.e,, 
(Vx E z * ) ( x E  = Ex = x). 

S C Z*: a set of feasible policies of Y; 

f :  S --~ E, where E is the set of real numbers; f is called the cost function 
of 1'. 
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A policy x ~ Z* is feasible if x ~ S, and optimal if x ~ S ^ (gy ~ S) ( f (x)  ~ f ( y ) ) .  
T h e  set of optimal policies of Y is denoted by O(Y). 

A recursive ddp (r-ddp) Y is a ddp with the additional restrictions that 
(1) S is regular (see the definition of a finite automaton below), (2) f (x)  takes 
on only integral values for x ~ S, and (3) f :  Z*  --+ Z is a partial recursive 
function on Z*  with D o m ( f ) ( ~ { x  I f (x)  is defined}) = S, where Z denotes 
the set of all integers. Here  f :  Z*  --~ Z is a partial recursive function if 
f ' :  Z+2-+ Z+ 2 (Z+ denotes the set of nonnegative integers and Z + 2 =  
Z+ × Z+) defined by f'(q)(gn(x))) -~ 9(f(x))  is a partial recursive function 
in the ordinary sense (e.g., Davis, 1958) with D o m ( f ' )  = ~o(gn(Dom(f))). 
gn: Z* -+ Z is G6del numbering (e.g., Davis, 1958) that is a one-to-one 
mapping from 27* to the set of positive integers, and % a one-to-one mapping 
from Z to Z+ ~, is for example given by 

t(2,~) if ~:>~0 
~0(f) = ((1, l~:]) if s e < 0 .  

A partial recursive func t ionfwi th  D o m ( f )  = S may be intuitively considered 
as a function whose value f (x )  can be computed in a finite number  of steps 
if x ~ S. A partial recursive func t ion f  with D o m ( f )  - -  Z*  (i.e., total) is said 
recursive. 

Afinite automaton (fa) M is the system (Q, 27, qo, t ,  Qe), where 

Q _. 

Z: 

qo ~ Q :  

),: 

Q~ CQ:  

a finite nonempty set of states, 

a finite nonempty alphabet and may be identified with Z of a 
ddp 1,, 

an initial state of M, 

Q x Z - +  Q is a state transition function, 

a set of final states. 

A can be extended to Q × Z* --~ Q inductively by 

(Vq e Q)(Vx e 2*)(Va e z)(a(f ,  ,) = ~ ^ A(q, xa) = a(Z(q, x), a)). 

~(x) =-- ;~(qo, x) is used for convenience. F(M)  = {x l ~(x ) e QF} denotes the 
set of strings accepted by M. B C Z*  is said regular if there exists an fa M 
such that B = F(M).  Some other properties of fa's and regular sets will be 
discussed in Section 5. 
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A (finite-state) sequential decision process (sdp)H is the system (M, h, ~o), 
where 

M: a n f a ( Q , Z ,  qo,A, QF), 
h: E × Q × 27--~ E, and h is called the cost function o f l I ,  

~0 ~ E: an initial cost value of the initial state qo • 

h can be extended to h: E × Q × 27* ~ E by 

(v~ ~ E)(Vq ~ 9)(Vx ~ z*)(Va ~ 27)(h(~, q, ~) = ~ ^ h(~, q, xa) 

-~ h(h(~, q, x), A(q, x), a)). 

//(x) i h(~0 ' qo, x) is used for convenience. The  set of feasible policies of an 
sdp /7 is given by F ( H )  = F(M),  and the set of optimal policies o f / 7  by 
o(11) = {xEF(rI) l(VyEF(n))(~(x)<~/;(y))}. An sdp can be considered 
as a general model of discrete deterministic decision processes with finite 

states. 
A recursive sdp (r-sdp) H = (M, h, ~0) is an sdp with additional restrictions 

that (1) h takes on only integral values, i.e., h: Z x Q × 27 --+ Z, and (2) h is 
a partial recursive function with Dora(h) D Lrz, where 

Lr~ ---- {(/l(x), ~(x), a) I x ~ Z*, a ~ 27). 

The  partial recursiveness of h is defined similarly to f of Y (Ibaraki, 1974). 
Obviously,/~ of any r - sdp /7  is a recursive function on 27* (i.e., h(x) can be 
computed in a finite number of steps for any x ~ 27*). 

If  h of an sdp /7  ---- (M, h, ~:o) satisfies 

(V~a, ~ ~ E)(Vq ~ Q)(Va ~ 27)(~1 ~ ~2 ::~ h(~l,  q, a) ~ h(~2, q, a)), 

h is said monotone and /7  is called a monotone sdp (msdp). Of course, 
h: monotone ~ (V(1 , ~2 ~ E)(Vq ~ Q)(Vx ~ Z*)(~1 ~< ~2 ~ h(~l , q, x) ~< 
h(~2, q, x)). In particular, (Vx, y ~ Z*)(A(x) = A(y) ^ / / (x)  ~ / i ( y )  
(vz E 27*)(~(xz) <~ ~(yz))). 

I f  h of an r-dsp H = (M, h, ~0) satisfies 

(V(~:I, q, a), (~:2, q, a) ELrx)(~l < ~2 ~ h(~l,  q, a) ~-~ h(se~, q, a)), 

h is said monotone a n d / 7  is called a monotone r-sdp (r-msdp). For an r-msdp 

/7  = (M, h, ~0), 

(Vx, y e Z*)(~(x) : A(y) ^ ?~(x) < li(y) ~ (Vz e 27*)(h(xz) < h(yz))) 

holds. 
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In Karp and Held (1967), many interesting problems in operations research 
are formulated as sdp's and msdp's. 

For msdp and r-msdp, it is known that the functional equations of dynamic 
programming hold (Karp and Held, 1967; Ibaraki, 1974), and hence they 
may be considered as general models of sequential decision processes to which 
the method of dynamic programming is applicable. 

Three subclasses of the class of r-msdp's are now introduced (Ibaraki, 
1973a). Let 

Lr = (M, h, ~:o) 

be an r-mdsp. H is a loop-free r-msdp (r-lmsdp) i fF(H)  is finite. An r-lmsdp 
may be considered as a generalization of multistage decision processes. H is 
a strictly monotone r-sdp (r-smsdp) if h of H satisfies 

(V(6,  q, a), (~2, q, a) e L n ) ( 6  < ~2 ~ h(~'~, q, a) < h(&, q, a)). 

In this case, 

(w,  y ~ z*)(i(~) = 1(y) ^ h(~) < h(y)  ~ (W ~ Z*)(~(~) < ~(y~))) 

holds. H is a positively monotone r-sdp (r-pmsdp) if h of H satisfies 

(V(~, q, a) ELn)(h(~, q, a) ~ ~). 

Obviously, (gx, y ~ X*)(h(x) <~ h(xy)) holds for an r-pmsdp. An r-pmsdp 
may be considered as a generalization of shortest path problems with non- 
negative arc lengths. 

Let Y = (X, S, f )  be an r-ddp and H = (M, h, ~0) be an r-sdp. Then H 
weakly represents (w-represents) F if O( H) = O( Y) holds. H strongly represents 
(s-represents) Y if F(H) = S ^ (gx ~ S)(,~(x) = f(x)). Two r-sap's 
171 = (3/11, hi ,  ~01) and H 2 = (M2, h2, ~0e) are weakly equivalent (w- 
equivalent) if O(H1) = O(H2). H 1 and H a are strongly equivalent (s-equivalent) 
if F(H~) = F(H2) A (gx e F(H~))(~(x) = ]~2(x)). An r-sdp H is a minimal 
w-representation of an r-ddp lZ by an r-sdp if H w-represents 1 z and there 
exists no r-sdp H' which is w-equivalent to H and has fewer states than H. 
Similarly an r-sdp H is a minimal s-representation of an r-ddp Y by an r-sdp 
if H s-represents Y and there exists no r -sdp/7 '  which is s-equivalent to H 
and has fewer states than H. 
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The above concepts can be similarly defined for other classes of sdp's 
such as r-msdp, r-lmsdp, r-smsdp, and r-pmsdp. 

Since we will be concerned with the solvability (the existence of an 
algorithm) or the unsolvability of each minimization problem, ddp, sdp, and 
msdp will not be explicitly considered in the subsequent discussion, since the 
computability (recursiveness) of cost functions is not assumed in these 
models. 

3. PROBLEM STATEMENT 

It is now possible to present the precise meaning of minimization problems 
which will be discussed in this paper. Our final object is of course to find a 
minimal w (or s)-representation of a given r-ddp by an sdp of the specified 
class such as r-sdp, r-msdp, and so forth. For that, we want to know whether 
an algorithm, which obtains a minimal w (or s)-representation of any r-ddp 
by an r-sdp of the specified class, exists or not. 

We see that two types of minimization problems (and algorithms to solve 
them) are conceivable for each class of problems. The first type is the one 
which first decides whether a given r-ddp can be w (or s)-represented by an 
r-sdp of the specified class, and then gives a minimal w (or s)-representation 
by an r-sdp of the specified class in case it is w (or s)-representable. On the 
other hand, the second type assumes that an r-sdp of the specified class 
/ / w  (or s)-representing a given r-ddp is given, and then finds a minimal 
r-sdp of the specified class w (or s)-equivalent to H. The problem of the 
first type is of course more difficult than the second in the sense that the 
algorithm of the first type can be used in place of an algorithm of the second 
type. 

A number of minimization problems are now defined depending on whether 
the representation is w or s, whether the specified class is r-sdp, r-msdp, 
r-lmsdp, r-smsdp, or r-pmsdp, and whether the type of algorithm is the first 
one or the second one. 

As summarized in Table 1 in Section 10, some of these minimization 
problems are solvable, while the rest are all unsolvable. 

Finally it should be noted here that a minimal representation by each 
class of r-sdp's is not usually unique, as shown in Section 11. Thus the 
algorithms presented in this paper provide only one of the minimal represen- 
tations, even if the minimization problem under consideration is solvable. 

Before proceeding to the minimization problems, we need two preparatory 
sections, one outlines some of the results obtained in the earlier papers, 
and the other summarizes fundamental properties of regular sets. 
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4. FURTHER DEFINITIONS AND REVIEW OF THE EARLIER RESULTS 

Let R be an equivalence relation on 27*. R is right invariant if 
(Vx, y ~ X*)(xRy ~ (gz e 27*)(xzRyz)). For equivalence relations R and T, 
T refines R if (gx, y ~ Z*) (xTy  ~ xRy), and this is denoted by T ~ R. 
Let  B C 27*. If  (gx, y ~ 27*)(xRy ~ (x ~ B ¢*- y ~ B)), then R refines B. For 
B C 27* and an equivalence relation R, B / R  stands for the set of equivalence 
classes of B under R. t B / R  [ is the number of equivalence classes in B/R.  
A(B) denotes the set of right invariant equivalence relations which refine B. 
In particular, A(27") denotes the set of right invariant equivalence relations. 

For equivalence relations R 1 and R2,  R = R 1 ^ Rg. is defined by 
(gx, y E X*)(xRy <=~ xRly  ^ xR2y ). Obviously (e.g., Ibaraki, 1972), 
R E A(X*)  if R 1 , R 2 E A(27"). R refines B if either R 1 or R 2 refines B. 

For  B C 27", define the equivalence relation R~ by (Vx, y ~ 27*)(xRBy <=~ 
(Vz ~ 27*)(xz ~ B ~ y z  e B) (or equivalently {x}\B = {y}\B, where A \ C  = 
{ y ] (3x ~ A )( xy ~ C)})). Re satisfies RB ~ A( B ) and R ~< R~ for any R ~ A( B ). 

A subset of A(B),  AF(B), is particularly important in automata theory, 
where AF(B ) = {R ~ A(B) [ ] Z * / R  [ < oe}. It is known (Rabin and Scott, 
1960) that (I) Ae(B) is nonempty if and only if B is regular, and (2) each 
C~ ~ 27*/T is regular for T ~ Av(B). 

The  next lemma proved in Ibaraki (1974) plays a fundamental role in 
deriving minimal representations. 

LEMMA 4.1. Let h': Z*  --~ Z be a given recursive function. Then there 
exists an r-msdp H = (M, h, ~0) satisfying (Vx~2 :* ) (~ (x )=  h'(x)) and 
having n states if  and only if  there exists T e AF(Z* ) with [27"/T! = n such 
that (Vx, y ~ 27*)(xTy ^ h'(x) <~ h'(y) ~ (Vz ~ 27*)(h'(xz) <~ h'(yz))). (In 
fact, the standard construction (see Section 5 for its definition) of T may be used 
as fa  M.)  

Let  7 t = {U i C 27* ] i = 1, 2,..., m}, where U i are mutually disjoint. Then  
T c A(27") jointly separates (J-separates) T if (gx, y e Z*)(x e Ui ^ y e Uj ^ 
xTy  ~ i ~-j) ,  i.e., each C k ~ X * / T  intersects at most one Ui E 7 t. In parti- 
cular, T must satisfy [ 27"/T l > /m  to J-separate 7I. 

For  U C 27*, define a binary relation ~-~.u on 27* by (gx, y e 27")(x ~-~v Y ~*" 
(Vz e 27*)(yz ~ U ~ xz  ~ g)(or  equivalently x ~ . v  Y ¢> {x} \gD{y} \g ) ) .  
% v  can also be defined on B/R,  where B C 27* and R e A ( U ) ,  by 
(gd~ ,  Aj  ~ B/R) (A ,  % u  d j  <:> (3x ~ Ai)(3y e Aj)(x ~ . v  y))(or equivalently 
d~ ~--~u A5 <:~ (gx ~ d~)(gy ~ dj ) (x  ~ u  Y)). ~<u on 27* or on B / R  is a pseudo 
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ordering, 1 while ~ u  on B / R  u is a partial ordering> A set B C 27* is monotone 
with respect to U if (Vx, y ~ B)(x <<.u Y v y ~ .u  x). Obviously this is 
equivalent to saying that ~ u  defined on B / R u  is a total ordering2 

The  next w-representation theorem was obtained in Ibaraki (1972). 

THEOREM 4.2. Let Y be a ddp with U =-- O(Y). Then there exists an sdp 
w-representing Y i f  and only i f  there exists T ~ AF(Z* ) such that (i) T 
J-separates U / R u .  Furthermore there exists an msdp w-representing Y i f  and 
only i f  there exists T ~ AF(Z* ) which satisfies (i) and for which (ii) each 
equivalence class C i ~ Z*  / T is monotone with respect to U. 

To obtain an s-representation counterpart of Theorem 4.2, define an 
equivalence relation R~. for a ddp Y = (Z, S, f )  by (Vx, y ~ Z * ) ( x R y y  
x R s y  ^ (Vxz, y z  ~ S ) ( f ( x z )  = f ( y z ) ) ) .  (Note that if x R r y ,  then 
(Vz ~ Z*)(xz  ~ S ~ y z  ~ S)  holds since xRsy .  ) As proved in Ibaraki (1972), 
R r  E A(S)  holds. Let  

7"~ --- {A t E S / R z  ] (Vx e Aj) ( f ( x )  = p)}. 

Define an ordering relation ~ z  on 27* by 

(Vx, y ~ Z*)(x <<.r y <~> x R s y  A (VXZ, y z  ~ S ) ( f ( x z )  <~ f ( y z ) ) ) ,  

for a ddp !* ---- (27, S, f ) .  ~ :  can also be defined on B/R,  where B C Z* and 
R ~ A ( S )  ^ R <~ R z  , by 

(vn,, At B/n)(A, <y nj (3x n,)(3y n:)(x yi). 

Although ~ .  on B / R  is a pseudo ordering, --<~z on B/Ry  is a partial ordering. 
A set B C Z* is monotone with respect to Y if (Vx, y ~ B)(x ~ , r  Y v y d r  x) 
(i.e., < z  on B / R r  is a total ordering). 

THEOREM 4.3 (Karp and Held, 1967; Ibaraki, 1972). Let Y = (Z, S , f )  
be a ddp. Then there exists an sdp s-representing Y i f  and only i f  there exists 
T ~ AF(S ) such that (i) T J-separates 7s~ for every p ~ E. Furthermore, there 
exists an msdp s-representing Y i f  and only i f  there exists T ~ AF(S ) which 
satisfies (i) and for which (ii) each equivalence class C, ~ Z * / T  is monotone with 
respect to 1". 

1 A binary relation ~. on set A is a pseudo ordering if (i) (Vx ~ A)(x ~ x) and (ii) 
(Vx, y, z E A)(x ~ y ^ y ~ z ~ x ~ z) hold. It is a partial ordering if (iii) 
(Vx, y ~ A)(x ~ y ^ y ~. x ~ x = y) holds in addition to (i) and (ii). It is a total 
ordering if (iv) (Vx, y ~ A)(x ~ y v y ~ x) holds in addition to (i), (ii), and (iii). 
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As noticed in Ibaraki (1974), it is difficult to directly extend the above 
representation theorems to the case of r-msdp. However, it is of course 
possible to use the conditions in the above theorems as necessary conditions 
for an r-ddp to be w (or s)-represented by an r-msdp.  

Representation theorems for three subclasses of the class of r -msdp 's  are 
now given (Ibaraki, 1973a). 

THEOREM 4.4. Let Y - (Z, S, f )  be an r-ddp. Then (1) Y is w-representable 
by an r-lmsap if  and only if O(Y) is finite, and (2) F is s-representable by an 
r-lmsdp if and only if S is finite. 

THEOREM 4.5. Let Y = (Z, S , f )  be an r-ddp. Then Y is w-representable 
by an r-smsdp and by an r-pmsdp, respectively, if and only if O(Y) is regular. 

The  next theorem is also important  (Ibaraki, 1973a). 

THEOREM 4.6. There exist algorithms to obtain O(H) for any r-lmsdp, 
r-smsclp, and r-pmsdp, respectively. 

Before concluding this section, we add a further property of ~--<u and ~--~y. 
Let  ~ be a binary relation on Z*/R, where R e A(Z*). ~. is right invariant 
on Z*/R if (V[x], [y] ~ Z*/R)([x] ~. [y] ~ (Vz ~ Z*)([xz] ~. [yz])), where 
[w] denotes the equivalence class of Z*/R containing w E Z*.  

PROPOSITION 4.7 (Ibaraki, 1972). Let U C Z*. Then ~<u on Z*/R, 
R ~ A(U), is right invariant. 

PROPOSITION 4.8 (Ibaraki, 1972). Let Y be a ddp. Then ~,r on Z~IR, 
R E A(Z*) ^ R ~ R~,  is right invariant. 

5. PROPERTIES OF REGULAR SETS 

A regular set was defined in Section 2 in terms of an fa. This  section 
provides some properties of regular sets. Since most of them are known in 
automata theory, we omit all proofs except for those given for new results. 
Omitted proofs may be found in Rabin and Scott (1960) or in textbooks such 
as Booth (1967), Hopcroft  and Ullman (1970), and Harrison (1965). These 
properties will be used in the subsequent discussion. 

As exhibited in Section 4, a regular set B C Z*  and AF(B) are closely 
related. In  fact it is possible to construct an fa M satisfying F(M) = B from 
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any T ~ Ar(B ). Let  T ~ AF(B ) and define fa M --- (Q, 27, q0, A, QF) such that 
Q = {[c~] [ ci  ~ 27"/T}, q0 = [e], and A: Q × 27 --+ Q satisfies (Vx ~ Z*) 
(Va ~ 2J)(A([x], a) = [xa]), where [x] denotes the state [Ci] E Q corresponding 
to Ci ~ Z*/T containing x. (QF of M is not explicitly specified.) This M is 
called the standard construction of T. 

PROPOSITION 5.1. Let B C X* be a regular set and let M = (Q, ~, qo , A, QF) 
be the standard construction of T eAF(B ). Then (1) (Vx, y e27*)(A(x)= 
A(y) <=> xTy), (2) ~f we let QF = {[C~] f Ci ~ B/T}, then F(M) = B, and 
(3) if T ---- RB holds and Qe is defined as in (2), then M is the minimal fa (i.e., 
with the fewest states) which accepts B. Furthermore, the minimal fa accepting B 
is unique up to isomorphism (i.e., a renaming of the states). 

PROPOSITION 5.2. Let M = (Q, s ,  qo, A, Qr) be an fa .  Let T be defined by 
(Vx, y ~ Z*)(xTy <> A(x) -~ A(y)), then T E AF(F(M)) and M is the standard 
construction of T. 

Some closure properties of the class of regular sets relevant to our discussion 
are summarized next. 

PROPOSITION 5.3. Let A, B C Z* be regular. Then A n B, A U B, 
A ( = Z *  -- A), and A\B(-~{y ] (~x E A)(xy ~ B)} are also regular. 

It  is known in the literature that many decision problems concerning 
regular sets and fa's are solvable. The  next proposition lists some of solvable 
decision problems. 

PROPOSITION 5.4. There exist algorithms for solving the foUowing problems. 
(1) Decide if a regular set B is empty, finite, or infinite. (2) Decide if A = B 
holds for two regular sets A and B. (3) Decide if A C B holds for two regular 
set A and B. (4) Obtain fa' s accepting A (~ B, A ~3 B, .~, and A\B for regular 
sets A and B. (5) Obtain all equivalence classes of B/Rv for regular sets B and U. 
(Note that all equivalence classes in B/Rtr are regular.) (6) Obtain the standard 
construction of T eAF(B ). (7) Obtain T~AF(F(M)) (i.e., all equivalence 
classes of Z*/T) satisfying (Vx, y ~ Z*)(xTy .x> A(x) ---- A(y)) for any fa 
M ~- (Q, Z, qo, ~, QF). 

From these results it is not difficult to see the followings. 

PROPOSITION 5.5. There exist algorithms for solving the following problems. 
(1) Decide if a given T E A~(Z*) J-separates B/Rv , where B and U are regular. 
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(2) Decide if  A ~ u  B holds for regular sets A, B, and U. (3) Decide if all 
Ci ~ Z*/T,  T ~ AF(Z* ) is monotone with respect to a regular set U. 

Proof. We give an outline of the algorithm for solving (1). Other cases 
can be similarly treated. Let  Z* / T = { Cx , C2 ,..., C~}, B / Ru = { B~ , Be ..... B~}. 
Decide if 

(~Cj e Z*/T)(VBi , Bk e B/Ru)(C ~ n B i =/= ;5 ^ C~ n B k ~= ~ A i ~ h). 

I f  such C~ exists, T does not J-separate B/Ru;  otherwise T J-separates 
B/R U . Of course this can be decided in a finite number  of steps by Propo- 
sition 5.4 (4) and (1) since I Z*/TI  and ] B/Ru [ are both finite. Q.E.D. 

Now let M = (Q, Z, % ,  A, Qe) be an fa and let T E AF(Z* ) be given by 
(Vx, y ~ Z*)(xTy -*> A(x) = h(y)). Assume that a binary relation ~ is defined 
on Z*/T.  Let M '  = (Q', Z, qo', h', Q / )  be also an fa and let T '  ~ At(Z*)  be 
given by (Vx, y ~ Z*)(xT'y z~ i ' (x)  = i ' (y) ) .  Then  M'  covers M with respect 
to ~--< if (VA~, Ak ~ Z*/T)(VC~ ~ Z*/T')(Cj n A~ ¢= ~ A Cj n d~ =/: ~ 
Ai ~-~ A~ v A1~ ~<~ Ai) holds. An fa M'  is a minimal cover of M with respect 
to ~.  (satisfying condition A) if M'  covers M with respect to ~ (and satisfies 
condition A), and there exists no fa M" with fewer states than M '  which 
covers M with respect to ~--< (and satisfies condition A). Condition A in this 
statement can be used to represent any other conditions which each fa is 
required to satisfy. For example, in Section 6, the condition that fa M '  
satisfies I F(M')[ < oo is used as condition A. 

PROPOSITION 5.6. There exists an algorithm to obtain a minimal cover of 
M with respect to ~., satisfying condition A, for any fa  M = (Q, Z, qo, ~, QF) 
and binary relation ~. on Z*/T,  where T is given by (Vx, y ~ Z*)(xTy <=> 
h(x) -~ )t(y)), under the assumption that (i) there is an algorithm to decide 
whether an fa M '  satisfies condition A, and that (ii) there is at least one fa which 
covers M with respect to ~ and satisfies condition A. 

Proof. First note that there exists an algorithm to decide if an fa M '  
covers M with respect to ~ and satisfies condition A. This is because the 
property (VAi , Aj  ~ Z*/T)(VC~ ~ Z*/T')(Cj n A i :/: ;g A C~ n A~ ~ ;~ 
Ai  ~ A~ v A~ ~. Ai) can be checked in a finite number  of steps since 
] Z* /T]  and I Z*/T'[  are both finite and A i ,  A e ,  Cg are all regular. (Note 
also that there exists an algorithm to decide whether M'  satisfies condition A, 
by assumption.) Next  let {M1, iV/2 ,...} be an effective enumeration of all 
fa's with alphabet Z, in the nondecreasing order of the number  of states. 
Although we will omit the details, such an enumeration obviously exists 
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since there are only finite number of fa's with a fixed number of states. (Thus 
consider an enumeration which first enumerates all fa's with one state, then 
all fa's with two states and so on.) Then the next algorithm finds a minimal 
cover of M with respect to ~ ,  satisfying condition A. 

Step 1. L e t k  = 1. G o t o S t e p 2 .  

Step 2. I f  M k covers M with respect to --<~ and satisfies condition A, 
terminate. Mz is a minimal cover of M with respect to ~ ,  satisfying con- 
dition A. Otherwise go to Step 3. 

Step 3. Increase k by one and return to Step 2. 

This computation terminates in a finite number of steps (hence it is an 
algorithm) since each step is obviously a finite computation and the existence 
of an fa M '  which covers M with respect to ~ and satisfies condition A is 
assumed. Q.E.D. 

6. MINIMAL w-REPRESENTATION OF AN r-ddp Y BY AN r-lmsdp 

As was proved in Ibaraki (1974), there exists no algorithm for deciding 
whether an arbitrarily given r-ddp Y is w-representable by an r-lmsdp. Thus 
there exists no algorithm of the first type described in Section 3 for the 
w-representation by an r-lmsdp. This section shows, however, that there 
exists an algorithm for finding a minimal r-lmsdp which is w-equivalent to 
an arbitrarily given r-lmsdp (an algorithm of the second type described in 
Section 3). 

L e t / / =  (M, h, ~0) be an r-lmsdp with U ---~ 0(/7). Note that there exists 
an algorithm to obtain U by Theorem 4.6. As shown in Theorem 4.4, U is 
a finite set for any r-lmsdp. Since U is a regular set, R u ~ A~(U) and hence 
Z*/R u consists of finite equivalence classes. 

In Section 4, it was mentioned that ~ tz  on Z*/Ru is a partial ordering. 
Let Y -~ Z*/Rtz and define Pv  C Y × Y by 

(VAi  , Aj  ~ Y)((As , Aj) ~ Pv  "~ Ai  ~ V  Aj) .  

Thus Pu characterizes ~ .u  on Y. In describing P v ,  we often omit pairs 
(A i  , Ai) ~ Pu for simplicity, since (VAi ~ Y)((Ai , As) ~ Pv) always holds. 
Pu  is alternatively illustrated by graph T' v in which each node corresponds 
to A i ~ Y ,  and Aj ~ Y, j =/= i, is placed above A s ~ Y with arc (A  i , A~) if 
(As,  Aj) ~ Pv  and there exists no Ak e Y such that 

(Ai , A~) ~ Pv  h (A~ , Aj) ~ Pv  ^ k ~ i ^ k ~ j .  
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Ptr' is defined from Pv by 

P v '  = P v  - -  { ( A i ,  Aj) ~ Pu [ A~ C U ^ Aj C U ^ i ~ j}. 

Ptr' is also a partial ordering. Graph -Pv' is defined for Pu' in a manner 
similar to F U . For Pu', define Nv' by 

N j  = {K C Y I (VA~, Aj E Y)(A~ , Aj ~ K ~ (A~ , A~) ~ Pv' ^ (Aj, A~) 6- Pu'} 

EXAMPLE 6.1. Let H = (M, h, ~:o) be an r-lmsdp given by M = 
(Q, x, qo, A, Qv); O = {qo, q~, qz, %, q~, as}, z = {a, b}, Ov = {q~, qs, q,}, and h 
is given in Fig. 1; ~:o = 0 ;  h(~:, qo, {a, b}) = ~; h(~:, q~, {a, b}) = ~:; 

a,b 

\ /ab 

Fro. 1. 

a,b 

State transition diagram of fa M of Example 6.1. 

h((, q~, a) = ~ + 1; h((, q2, b) = ~; h(~, {qs, q~, qa}, {a, b}) = ~. Obviously, 
F(H) = {a, aa, ab, ba, bb} and U(=--O(H)) = {a, ab, aa, bb}. 2*/Rv consists 
of the following equivalence classes: A o = {E} where Ao\U = U; A 1 = {a} 
where Al \U = {e, a, b}; Az ={b} where A~\U~{b};  A~ ={aa ,  ab, bb} 
where As \U={e} ;  A 4 - - X * - A  o w A  1UA2k) A~ where A 4 \ U ~  ;~. 
Pv is given by {(A1, A2), (A1, As), (Ao, Aa), (A~, A4) , (As, A4), (As, A4)} 
and Fir is shown in Fig. 2(a). By definition, Pu' ~- Pu -- {(A1, As)} and I v' 
is shown in Fig. 2(b). K ~ Nv' are {Ax, Aa, A0} , {Az, A2, A0}, {-do, A3} 
and so forth. 

The next lemma was proved in Ibaraki (1972). It is useful to find 
T ~ A~(Z'*) satisfying two conditions in Theorem 4.2. 

LEMMA 6.1. Let Y be a ddp with U ~ O(Y). T s A r ( X *  ) ]-separates 
U/R v and each Cj ~ X*/T is monotone with respect to U if and only if  T 
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(a) r u (b) % 

FIC. 2. T' v and / 'v '  of the r - lmsdp/7  of Example 6.1. (Double circles denote 
A~ 6 Y such that Ai C U.) 

J-separates every K E Nu '  (i.e., (VA, , A~ ~ Y)(VCj ~ Z*/T)(A~ c~ C 5 ~ ~ A 
A~ (3 Cj ~ rg ~ (A~ , A~) ~ Pu'  v (A~ , Ai)  ~ Pu')). 

Thus a minimal w-representation of Y by an msdp can be obtained by 
finding T ~ AF(X*) satisfying Lemma 6.1 with the fewest I Z * / T  1. Although 
there exists no algorithm to find such T for an arbitrary given ddp Y, there 
does exist such an algorithm if Y is restricted to be the one w-representable 
by an r-lmsdp (i.e., O(Y) is finite) and an r-lmsdp w-representing Y is given 
(or O(Y) is given). As shown below, this is possible in both eases in which 
the resulting minimal msdp is restricted to be an r-lmsdp and in which the 
resulting msdp can be any r-msdp. 

From now on, assume that U(=--O(Y) = O(11)) be given (see Theorem 4.6) 
and 11 is an r-lmsdp w-representing Y. 

LEMMA 6.2. Let T E AF(Z* ) J-separate all K ~ Nv ' ,  where U is finite. 
Then there exists an r-msdp 1I = (M, h, ~o) which satisfies 0(11) = U and 
in which M is the standard construction of T. Furthermore, there exists an 
algorithm to obtain such r-msdp 11for any T and any finite set U. In this case, 
i f  T satisfies the condition I k3{C5 [ Cj ~ Z * / T  ^ C 3 ~ U ~= ~}I < oo, the 
resulting r-msdp 11 is an r-lmsdp. 

Proof. Although this is almost a restatement of Theorem 4.2, we give a 
construction method o f / / t o  show that the restriction to an r-msdp (instead 
of an msdp) is not really a restriction in this case. Let T 6 At(Z* ) J-separate 
all K ~ Nu' .  Let W = Z* /Ru  A T where R v  A T ~ AF(U ) by definition. 
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Define a recursive function h' :  W--+ Z so that (i) (VD i , Dj E W)(D i TDy  ^ 
h'(Di) <~ h'(Da) ¢~ Di T Ds ^ Di ~ u  Da) and (ii) (VD~ ~ W)(D~ C U 
h'(D~) = 0 ^ D~ ~ U ~ h'(Di) > 0), where Di T D a stands for (Vx ~ Di) 
(Vy ~ Da)(xTy ). Such h'  exists because (a) W is finite, (b) Ru ^ T <~ 7', 
(c) ~ u  on each C a ~ Z * / T  is monotone with respect to U (see L e m m a  6.1 
and the discussion prior to Theorem 4.2), and (d) (VDi, Da ~ W)(Di C U ^ 
Da([ U ^  Di TDa ~ Di "<~,.tr Da) by definition of U (note that e ~ D i \ U  
but e ~ Ds\ U). h' is a recursive function since W is finite and each Di ~ W 
is regular, h': W -+ Z can then be extended to Z*  -+  Z by(Vx ~ Z*)(x ~ D i 
h'(x) = h'(D~)). For any h' satisfying (i) and (ii), it holds that (VD~, D a ~ W)  
(Vx s D~)(gy ~ Da)(xTy ^ h'(x) <~ h'(y) <=> Di T D a ^ h'(Di) <~ h'(Da) 
Di T D a ^ D i ~.tr Da ~ (Vz ~ Z*)([Di z] T [D~z] ^ [Diz ] ~ u  [Daz]) (since 
~--<v is right invariant on W by Proposition 4.7, where [Diz] denotes D~ ~ W 
such that Diz ( : { x z  I x e Di}) c DI~ ) ~ (Vz e Z * ) ( x z r y z  ^ h'([Diz]) <~ 
h'([Daz]) ) ~ (Vz e Z*) (xzTyz  ^ h'(xz) <~ h'(yz))). Therefore, there exists 
an r - m s @  H =- (M(Q, X, qo, ~, QF), h, ~0) satisfying (Vx e X*)(li(x) =- h'(x)) 
by L e m m a  4.1, where M is the standard construction of T. H satisfies 
O(H) = U by condition (ii) if we let 

Q~ = {[cA I ca ~ z * / r  ^ Cj n U ~ ~) .  

I t  is obvious that an algorithm to obtain the above H exists since each process 
described above can be done in a finite number  of steps. The  last lemma 
statement is also obvious since F(M)  ~- tA{C a I Ca ~ Z * / T  ^ C a n U =/: ;3}, 
which is assumed to be finite. Q.E.D. 

Now we move to the next lemma. 

LEMMA 6.3. Let U be a given finite set and M u  be the standard construction 
of R e . Let T E AF(Z* ) be given and M be its standard construction. Then T 
J-separates all K ~ Nu '  if  and only M covers M u with respect to 2 Pu'. 

Proof. T J-separates all K ~ N v '  <:> (VAi, Az~ ~ Z*/Ru)(VCa ~ Z * / T )  
(GnAi=# Z ^ C ; n A k = ~  Z ~ ( A ~ , A k ) ~ P u ' v  ( A k , A i ) ~ P u ' ) ~ > M  
covers M u  with respect to Pv'.  Q.E.D. 

By L e m m a  6.3, we will have the following algorithm. 
Algorithm for obtaining a minimal r-msdp (r-lmsdp) 17 satisfying 0(17) -~ U, 
for a finite set U. 

2 This is equivalent to saying that M covers M a with respect to ~-~, where ~-~ is 
defined by (VAi , Aj ~ Z*/Ru)(Ai ~ At ~ (A~ , At) ~Pv'). 

643/27/4-2 
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Step 1. Obtain M u .  

Step 2. Obtain a minimal cover M of Mv with respect to Pv" (satisfying 
[F(M)[ < oo). Then construct r-msdp (r-lmsdp) / /sat isfying 0(17) = U 
from M. 

Note that condition IF(M)[ < ~ of Step 2 is active only when a minimal 
r-lmsdp is required. Step 1 and Step 2 can be done in a finite number of steps 
by Propositions 5.4(5)(6), 5.5, and 5.6, and Lemma 6.2. (Note that at least 
one fa M which covers Mu with respect to Pv' (and satisfies ] F(M)[ < oo) 
exists since M u itself is such an fa.) 

THEORElVI 6.4. For any r-lmsdp l-I, there exists an algorithm to obtain a 
minimal r-lmsdp (or r-msdp ) w-equivalent to 17. 

Proof. Obtain U(~O(FI)) (see Theorem 4.6) and then apply the 
algorithm given above. Q.E.D. 

It should be noted that, in many cases, a minimal r-lmsdp (or r-msdp) can 
be obtained by ad hoc method without enumerating fa's. Such an example 
will be given next. 

EXAMPLE 6.2. Let U = {a, ab, aa, bb} (see Example 6.1) and find a 
minimal r-msdp and a minimal r-lmsdp/~r satisfying O(IUl) -~ U. Pu' was 
obtained in Example 6.1 (see Fig. 2(b) for/ 'v'). Since K ~ {./lo, A1, A3} ~ Nt / ,  
any T s AF(27* ) J-separating all K s Nt/satisfies [ I * / T  ] >/3. Let us first 
obtain a minimal r-msdp. Consider T ~ AF(27* ) given by Z* /T  = {C1, C~, C8} , 
where 

Ca = {~} = n 0 ,  

C 2 = { a , b }  = A  l k . ) A S ,  

and 

C a = { x E X * l l x l  >t2} a = A a U A  4. 

This T J-separates all K e Nu' as obvious from Fig. 3(a). The standard 
construction 29i of T is shown in Fig. 4 together with qo and OF- Then 
r-msdp/~r with O(/~) = U is constructed by Lemma 6.2. The resulting 
r-msdp H = (liar,/~, ~o) is given by (o = 1;/~(~, [C1], a) = 0;/~(~, [C1], b) = 1; 
/~(6, [C2], a) = 0 if 6 = 0, 1 if 6 = 1;/~(6, [C~], b) = 0;/7(6, [C3], {a, b}) = 1. 
(The values of h' introduced in the proof of Lemma 6.2 are also indicated 
in Fig. 3(a).) T h i s / I  is minimal since it has three states. Next let us obtain 

a [ x [ denotes the length of string x ~ l * .  
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f - - ~ .  

c8 

/~--_'h '=1 

/< 

c I 

(a) (b) 

FIG. 3. T ~ AF(X*) giving (a) a minimal r-msdp and (b) a minimal r-lmsdp of 
Example 6.2. (C~- denotes an equivalence class of T.) 

~0 = [c~3 
QF = { [cz ] '  [C33} 

FIG. 4. The standard construction 2~r of T ~ AF(2* ) obtained for the minimal 
r-msdp of Example 6.2. 

a minimal r-lmsdp/~r satisfying O( / I )  = U. By condition ] F( / i ) I  < 0% we 
must  find T ~ A~(X*) satisfying 

j v{Q I c,. e X*/T ^ Q n g # ~}I < co. (1) 

I t  is shown as follows that J X * / T ]  ~> 4 must hold to satisfy condition (1). 
Let  T ~ A / X * )  satisfy (1) and J-separate all K ~ Nu' .  Note that Ao , A1 ,  A2 , 
A3 E Z * / R u  are all finite and only A 4 e Z * / R u  is infinite. Let  C1, C 2 ~ Z * / T  
satisfy C l n ~ / 1  =/= ~ and C2 n A  3 =/= 2~, where - / / 1 , A s C  U. Then  
I C1 n -/t4 I < co and i C1 c~ -//4 I < co by condition (1). Since T J-separates 
all K ~ N v ' ,  another equivalence class C 8 ~ X * / T  satisfying C a D A o = {e} 
is required. This C s satisfies C s n A 4 ---- 2r by condition (1) because 
e E C  a A x E d  4 n C a  ~ ( V i > / 0 ) ( x  i~C~)  (since T is right invariant) => 
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(Vi/> O)(x~a ~ C1) ~ I C1 I = 0% a contradiction. Consequently we have 
-/14 --  C1 t.J C~ u C~ @ ~ implying that at least one more equivalence class 
C ~ X * / T  is necessary to include the rest of A~. T~AF(X* ) with 
[ Z*/T  l = 4 J-separating all K e Nu' and satisfying condition (1) above is 
for example given by X*/T = {C1, C2, C3, C4} , where 

C l = { a , b }  = A  l t j A ~ ,  

C~ = {~}, 

C 2 = {aa, ba, ab, bb} : A 3 k9 {ba}, 

c~ = z * -  Cl W C~ w C~ 

(see Fig. 3(b)). The standard construction ]~r of T is shown in Fig. 5 together 
with q0 and Oe. /~  and ~0 of r - lmsdp/~  = (21~,/~, ~0) are given by: ~0 = 1; 
~(~, [C3], a) = 0; f~(~, [C3], b) = 1; /~(~, [C1], a) = ~; /~(~, [Cl], b) = 0; 
~(~, [c~], {a, b}) ----- Z;(~:, [C,], {a, b}) = ~. 

FIG. 5. 

~o = [c3]  

QF = { [c i ] '  [c2]} 

a,b 

Standard construction 2~r of T giving a minimal r-lmsdp of Example 6.2. 

In concluding this section, a remark is given here. Although we assumed 
that U is a finite set throughout this section, most of the above argument is 
also valid even if U is a regular set rather than a finite set. In particular, the 
above algorithm for obtaining a minimal r-msdp can be applied to any 
regular set U (note that there exists no r - lmsdp/~ satisfying F( / I )  = U if U 
is an infinite set). This extension may be important from the practical point 
of view since many sequential decision processes H have regular O(H) as 
exhibited by Theorem 4.5. 

THEOREM 6.5. Let U C 22* be regular. Then there exists an algorithm to 
obtain a minimal r-msdp 1"1 satisfying O(fi) = U. 

7. MINIMAL s-REPRESENTATION OF AN r-ddp BY AN r-lmsdp 

This section shows that there exists an algorithm which first decides 
whether an arbitrarily given r-ddp Y is s-representable by an r-lmsdp and 
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then obtains a minimal s-representation of Y by an r-lmsdp in case it is 
s-representable (i.e., an algorithm of the first type described in Section 3). 

For an r-ddp IF, relation ~--<y was defined in Section 4 prior to Theorem 4.3. 
The partial ordering --<<~y on X*/R~ is particularly important in the following 
discussion. Let Y ~ •* /Ry .  ~ on Y is characterized by P y C  Y X Y 
defined by 

(Vdi , A j  e Y)( (A i , Aj) ~ P~ -~ Ai  % r  A~). 

In describing Py ,  pairs (A i ,  A i ) ~  Py are usually omitted for simplicity, 
since (VA i ~ Y ) ( ( A i ,  Ai) ~ P~-). Pz  is alternatively illustrated by graph /~z 
defined in a manner similar to/~u by replacing Ai  ~ X* /Ru  by Ai  ~ Z * / R z  
and ~<<v by ~ .  Py' is defined from Py by 

Pr' = PY - -  {(Ai , Aj) a Pz  I (3p e Z)(Ai  , Aj  ~ ~ A Ai  :/: Aj)}. 

( ~  was defined in Section 4.) Graph _Pz' is defined for Py' similarly to -Py. 
Ny' is given by 

N y ' = { K  C Y ] (VA~, A~ ~ Y)(A~, Aj  ~ K =~ (A i ,  A3-) ¢ Pr '  ^ (A;, A~) ¢ Pr'}. 

EXAMPLE 7.1. Let F ~ - ( Z , S , f )  be an r-ddp with E = { a , b } ,  
S -= {a, b, aa, ab, ba, bb} and 

f (a )  = f(b) =- f(ab) - -  f(ba) -= f(bb) = 1 

f (aa)  = O. 

S is regular since it is finite. R s is given by Z* /R  s = {Co, C1,6 '2,  Ca} , 
where 
C O = {e}, C~ = {a, b}, 6'2 = {aa, ab, ba, bb}, and Ca =- Z* -- C O -- C I --  C~. 
X*/Rr  consists of the following equivalence classes: A o = {e}, A 1 = {a}, 
Az = {b}, A 3 = {aa}, A ,  = {ab, ba, bb}, and A a = C a . Obviously, A 1 ~--<z A2 
and A 3 ~-~.r A4 since f (aa)  < f(ba). Thus P~ = {(A~, Az), (As, A4) }. / 'z  is 
shown in Fig. 6. Furthermore, 

% = {A3} 

7q = {A~ , A2 , A4}. 

Thus we have Py' = {(Aa, A4)}./'y' is shown in Fig. 7. For example, {Ao} , 
{Ao, A1, Az}, {Ao, A1, A2, Aa, As} belong to Ny'. 

The following lemma was proved in Ibaraki (1972). They are useful in 
finding T ~ A f (S )  which satisfies two conditions in Theorem 4.3. 
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LEMMA 7.1. For an r-ddp Y = (Z, S , f ) ,  T e A r ( S  ) J-separates % for 
every p ~ E and each C~ ~ ~* /T  is monotone with respect to Y if and only if  
T J-separates all K ~ Nz', i.e., (VA,, A~ ~ 2*/Rz)(VC~ ~ 2*/T)(A,  n C~ v~ 
25 h A~ n Cj --/: ~ =~ (Ai , A~) ~ Pr' v (A~ , Ai) ~ Pr'). 

As a result, a minimal s-representati0n of Y by an msdp is in principle 
obtained by finding T ~ A~(S) which J-separates all K s Nr '  and has the 
minimum ] X*/T [. It was proved in Ibaraki (1974), however, that there is 
no algorithm to find such T for an arbitrarily given ddp (or r-ddp) Y. If Y 
is s-representable by an r-lmsdp, however, we have the next theorem. 

C 0 C l C 2 C 3 

Fzc. 6. _P~-ofr-ddp YofExample 7.1. 

% 
. . . . .  c ? , ~ .  J '  

FIG. 7. /'y' of r-ddp Y of Example 7.1. 

c: " ~ /  

THEOREM 7.2. (1) There exists an algorithm for deciding whether an 
arbitrarily given r-ddp Y is s-representable by an r-lmsdp. (2) I f  an r-ddp Y 
is s-representable by an r-lmsdp, there exists an algorithm to obtain a minimal 
s-representation of Y by an r-lmsdp. 

Proof. (1) An r-ddp Y = (~, S , f )  is s-representable by an r-lmsdp if 
and only if 5: is finite (see Theorem 4.4). By Proposition 5.4 (1), there exists 
an algortihm to decide whether a regular set N is finite or not. (2) The 
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existence of such an algorithm will be shown in the following discussion 
(Theorem 7.6). Q.E.D. 

Now let Y = (27, S, f )  be an r-ddp with S finite. Let Y ~ X*/Rr.  Y has 
an equivalence class A~ ~ Y such that Aa = {x ~ 2J* i (Vy ~ 27*)(xy ~ S)}. 
Since 27* -- Acz = {x ~ 27* [ (3y ~ 27*)(xy e S)} is also finite by the finiteness 
of S, Y consists of finite equivalence classes Aa and Ai ,  i = 1, 2,..., m, 

q~Z 

where Ui=lAi = 2 7 * - - A a .  Thus we have Rr~AF(S  ) (note R r ~ A ( S )  
as mentioned in Section 4). Let Mr = (Q, Z, %, h, Q j  be the standard 
construction of Rr  where QF ={[Ai]  ] Ai ~ S/Rr}. Mr satisfies F ( M J  : S 
by Proposition 5.1. 

LEMMA 7.3. There exists an algorithm to obtain Mr from an arbitrarily 
given r-ddp Y = (Z, S , f )  with S finite. 

Proof. Since S is finite, there exist algorithms to obtain A a and to decide 
whether x R r y  holds for any x , y ~ Z * - - A a  (a finite set). (Note that 
Aa\S = ~ and hence (Vx, y ~-/t~)(xRz y).) Thus there exists an 
algorithm to obtain R r e AF(S ). M r can be obtained from Ry in a finite 
number of steps by Proposition 5.4 (6). Q.E.D. 

LEMMA 7.4. Let Y = (X, S, f )  be an r-ddp with S fnite. Then for  any 
T ~ AF(Z* ) J-separating all K ~ Ny', there exists an algorithm to obtain an 
r-lmsdp 17 = (M, h, ~o) s-representing F, where M is the standard construction 
ofT. 

Proof. Since T J-separates all K ~ Ny', T E AF(S) follows by definition 
of Ny' (note that (VAi C S)(VA~ (~ S)((AI , Aj) ~ Py' A (Aj , Ai) ~ Py') holds). 
T ~ AF(S ) and Rr ~ AF(S) (as proved above) implies R = Ry ^ T ~ Av(S ). 
Now define h': 27* --~ Z satisfying 

(i) h'(x) = f (x)  for x ~ S, 

(ii) (Vx, y e Z*)([x] T[y] ^ Ix] ~ y  [y] ~ xTy ^ h'(x) ~ h'(y)), where 
[w] is the equivalence class of X*/R containing w E X*. 

Such h' exists since ~--~y on C / R  (=C/R~),  Cy ~ 27"/T, is a total ordering 
(note that C~- is monotone with respect to Y since T J-separates all K ~ Nr'), 
and (Vx, y ~ S ) ( x T y  ^ f ( x )  ~ f ( y ) < ¢ -  [x] T[y] ^ [x] ~ y  [y]) by the fact 
that T J-separates 7/~ for every p ~ Z. Then (Vx, y ~ Z*)(xTy ^ h'(x) 
h'(y) =~ Ix] T[y] ^ Ix] ~--<y [y] ~ (Vz ~ 2:*)([xz] T[yz] ^ [xz] ~.~. [yz]) 
(since ~-~r is right invariant by Proposition 4 . 8 ) ~  (Vz ~ X*)(xzTyz ^ 
h'(xz) ~ h'(yz))), h' is obviously a recursive function since [ 27"/R1 < oz. 
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Thus by Lemma 4.1, there exists an r-msdp 11 = (21//, h, ~0) satisfying 
(Vx ~ 27")(11(x) = h'(x)). If we define QF of M = (Q, 27, qo, 1, Q j  by 

Q~ = {[c;] 1 cj  ~ S/T}, 

then F(11) = S holds (hence 11 is an r-lmsdp) and 11 s-represents Y by con- 
dition (i) given above. Note that the above r-lmsdp H can be constructed 
from T in a finite number of steps since (a) Ry can be obtained in a finite 
number of steps as mentioned in the proof of Lemma 7.3, (b) h' can be defined 
in a finite number of steps since Z*/R is finite, and (c) r-lmsdp H can be 
constructed from T and h" in a finite number of steps. Q.E.D. 

Note here that there always exists at least one T ~ AF(E* ) J-separating 
all K E N y '  for any r-ddp Y = (X, S , f )  with S finite. For example T = Ry 
J-separates all K a Ny'. 

The next lemma is a basis for the algorithm to obtain a minimal r-lmsdp. 

LEMMA 7.5. Let Y = (2:, S , f )  be an r-ddp with S finite. Let T ~ AF(Z* ) 
be given and M be the standard construction of T. Then T J-separates all 
K ~ Nz'  if and only if M covers My with respect to Pr'. 

Proof. T J-separates all K e Ny' <~ (VCj ~ X*/T)(VA, ,  Ak ~ 27*/Ry) 
(Cj n A, =/= • ^ Cj c~ A~ =# Z ~ (A,, Ak) ~ Py' v (An, A,) e Py') <=> M 
covers My with respect to Pz'. Q.E.D. 

Based on these lemmas, we have the following algorithm. 
Algorithm for obtaining a minimal r-lmsdp 11 s-representing a given r-ddp 
Y -~ (Z, S, f )  with S finite. 

Step 1. Obtain My.  

Step 2. Obtain a minimal cover 3~ of M z with respect to P j .  

Step 3. Obtain r - lmsdp/~ = (3~r,/~, ~0) s-representing Y by following 
the proof of Lemma 7.4. Terminate. 

Steps 1, 2, 3 are finite computations, respectively, by Lemma 7.3, Propo- 
sition 5.6, and Lemma 7.4. 

TI-IEOREM 7.6. There exists an algorithm to obtain a minimal s-representation 
of an r-ddp F = (27, S, f )  with S finite by an r-lmsdp. 

Proof. The above algorithm eventually reaches Step 3 and terminates, 
since for example Mr  covers My with respect to Py'. /~r is minimal by 
Lemmas 7.4 and 7.5. Q.E.D. 
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THEOREM 7.7. There exists an algorithm to obtain a minimal r-lmsdp 
s-equivalent to an arbitrarily given r-lmsdp 17[ (i.e., the algorithm of the second 
type described in Section 3). 

Proof. Obtain r-ddp Y = (X, S, f )  s-represented by / / ( th i s  is of course a 
finite computation). Then obtain a minimal r-lmsdp 1~ s-representing Y by 
means of the above algorithm. _/1 is a desired r-lmsdp. Q.E.D. 

EXAMPLE 7.2. Let us obtain a minimal s-representation of r-ddp 1 r 
given in Example 7.1. R s , Ry ,  P~., P1/ were obtained in Example 7.1. 
First obtain the standard construction My = (Q, Z, q0, A, QF) of Rr e A~(S). 
Since X*/Ry = {_do, A 1 ,..., As} , My has six states Q = {[_do], [Aj,..., [A~]}, 
and qo = [Ao] since e a A  o. A:Q × X - - ~  and QF are given in Fig. 8. 
Note that P /  = {(Aa, A4) }. A minimal 2~ which covers My with respect 
to Pr' is given by 7~ = (Q, Z, q0, A, Q J ,  where Q = {[_do], [A1], [7/,], 
[7/3 u A4], [7/5]}, q0 = [-do], and ~, QF are given in Fig. 9. The minimality 

QF = {JAIl' [A2], [A3], [A4]} 
FIG. 8. State transition diagram o£ My in Example 7.2. 

a,b @ a,b 

QF ={[AI ] '  [A2]" [A3LIA4]} 
FIG. 9. State transition diagram of a minimal cover 2~ r of M r with respect to P1/ 

in Example 7.2. 
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of 2~r follows from the fact that {A0, A 1 , A2, A3, As) e Nr '  and hence any 
T ~ A F ( S  ) J-separating all K ~ N r '  satisfies ] 27"/T[ >/5.  Since R~. ~< T ,  
Z * / R ( ~ Z * / R r  ^ T) = 2*/R~. follows in this case. h': 27"/R -~ Z introduced 
in the proof of Lemma 7.4 is determined as follows: 

(a) h ' ( A ~ ) :  h ' (A~)=  1, h ' (As)-~ O, h'(Aa)----1 (by condition (i) of 
the proof of Lemma 7.4) 

(b) h'(Ao) ~- h'(As) -= 0 (by condition (ii) of the proof of Lemma 7.4). 

From ~ and h', we obtain an r-lmsdp/~r = (~r,/~, ~0) satisfying (Vx E 27*) 
(h(x) = h'(x)) by following Lemma 7.4./~ and ~0 are given by ~o(=h'(A0)) ---- 0; 
/~(~, [A0], {a, b)) = ~ + 1; /~(~, [Ad,  a) ---- ~ - -  1; /~(~, l a d ,  b) = ~; 
h(~, [A~], {a, b}) = ~; /~(~, [A~ u Aa], {a, b)) = 0;/~(~, [As], {a, b)) = ~. This 
/ I  is a minimal s-representation of Y by an r-lmsdp. 

8. MINIMAL w-REPRESENTATION OF AN r-ddp BY AN r-smsdp 

As was shown in Ibaraki (1973a), there exists no algorithm to decide 
whether an arbitrarily given r-ddp Y is w-representable or s-representable 
by an r-smsdp respectively. Furthermore, it will be shown in Section 10 
that there exists no algorithm to obtain a minimal r-smsdp s-equivalent to 
an arbitrarily given r-smsdp. However, there does exist an algorithm to 
obtain a minimal r-smsdp w-equivalent to an arbitrarily given r-smsdp, as 
will be shown in this section. 

Let H be an r-smsdp with U ~ 0(1-i). Since U is regular by Theorem 4.5, 
R v ~ A~(U). Let M v -~ (Q, 27, qo, A, QF) be the standard construction of R• 
with QF • {[C~] I Cj ~ U/Rv}. A state qa ~ Q is said to be a dead state if 
(Vx ~ 2*)(A(qa, x )~QF) .  M y  has at most one dead state. Define 
My* = (Q*, 27, q0, A*, QF) from M y  as follows: if Mtr has no dead state 
or U = ~ ,  then My* ~ M y ,  while if M y  has a dead state and U @ ~,  
My* is given by Q* = Q - {qa} and 

~*(~, a) = ta(q' a) 
t~,(q, a) = q 

if q e Q *  ^ a e Z ^  ?t(q,a) eQ* 
if q e Q * A a e 2 7 A ) t ( q , a )  = q a .  

Let I-iv* -~ (My*, h, ~o) be an r-smsdp given by ~o ~ 0 and 

if q E Q* A a ~ 27 A A(q, a) ¢ Q* (i.e., A(q, a) -~ qa) 
otherwise. 
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By definition, it holds that (Vx ~ X*)(h(x) ) 1 <=> A(x) • qa in My) , and 

O(17v*) = {x ~ 2 .  1 i*(x) ~QF A ~(x) = 0} 

= {x ~ 2:* I ~(x) ~ QF) = U. 

This proves that Hv* is w-equivalent to /7 .  
Based on the next lemma proved in Ibaraki (1973a), we will show that 

Hv* is actually minima]. 

LEMMA 8.1. For any r-smsdp 17 with n states, there exists an fa  M satisfying 
(i) F(M)  = 0(17), and (ii) M has at most n + 1 states if  M has a dead and 
at most n states if  M has no dead state. 

TI-IEOREM 8.2. The Hu* defined above for an arbitrarily given r-smsdp H 
with U(=O(H)) is a minimal r-smsdp w-equivalent to 17. 

Proof. L e t / 1  = (~, /~,  ~0) be a minimal r-smsdp w-equivalent to H.  
Assume t h a t / I  has n states. We prove that 17cr* also has n states. By 
Lemma 8.1, there exists an fa M with F(M) = U having at most n @ 1 
states if M has a dead state, and at most n states if M has no dead state. Now 
note that M y  given above for U is the minimal fa accepting U (see Propo- 
sition 5.1 (3)). Since F(Mv) = F(M), M e has at most n + 1 states if M~r 
has a dead state, and at most n if M v has no dead state. (SinceF(Mv) ~ F(M),  
M y  has a dead state if and only if M has a dead state.) Finally Hv* has at 
most n states in either case, as obvious from the construction given above. 
This proves the minimality of Hu*. Q.E.D. 

As a result, the next algorithm is obtained. 
Algorithm for obtaining a minimal r-smsdp w-equivalent to an r-smsdp 17. 

Step 1. Obtain U(=~O(H)). 

Step 2. Obtain Hv*. 

Step 1 is a finite computation by Theorem 4.6. Step 2 can also be done in a 
finite number  of steps since M y  can be obtained from U in a finite number of 
steps by Proposition 5.4 (6), and Hv* is obviously obtained from M v in a 
finite number  of steps. 

THEOREM 8.3. There exists an algorithm to obtain a mhzimat r-smsdp 
w-equivalent to an arbitrarily given r-smsdp 17. 
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9. ~V[INIMAL w-REPRESENTATION OF AN r-ddp BY AN r-pmsdp 

As was shown in Ibaraki (1973a), there exists no algorithm to decide 
whether an arbitrarily given r-ddp is w-representable or s-representable 
by an r-pmsdp, respectively. It will be also shown in Section 10 that there 
exists no algorithm to obtain a minimal r-pmsdp s-equivalent to an arbitrarily 
given r-pmsdp. However, there does exist an algorithm to obtain a minimal 
r-pmsdp w-equivalent to an arbitrarily given r-pmsdp, as will be shown in 
this section. 

Let H be an r-pmsdp with U -~ 0(11). Then U is regular by Theorem 4.5 
and hence Re ~ A~(U). Let Z*/Ru = {A1, A 2 ..... An}. For any T e A r ( Z *  ) 
such that T J-separates U/Re and each C~ ~ Z*/T  is monotone with respect 
to U, graph/ 'v ; r  is defined as follows: Let X*/R v ^ T = {D1, D 2 ,..., Din} 
(note that R v ^ T ~ AF(U)). Pu;r has nodes D1, D 2 ,..., Din, and has three 
types of arcs. 

(1) (Di ,Dj)  is an arc of type 1 if DiTD j h D i  J=D~^Di--<~oDj. 
(DiTD ~ stands for (Vx ~ Di)(Vy ~ Dj)(xTy) and Di ~.v Dj for (Vx ~ Di) 
(Vy e Dj)(x <cry) ~;" (VAk , Az e Z*/Rv)(Di C A~ ^ D~ C A~ ~ Ak < v  A~).) 

(2) (D,,  Dj) is an arc of type 2 if (3a ~ Z)(Oia CDj) (i.e, there is a 
transition from state [Di] to [Dj] in the standard construction of R u ^ T). 

(3) (Di, Dj) is an arc of type 3 if D iC  U ^ D~-C U ^ Di @ Dj.  

Apath in/ 'v;riS a sequence of arcs/~ = (Dh, Di) (Dq,  Di~)"" (Di~_~, Di).  
fl is a circuit if Dq = Di~ holds. A circuit/3 is an I-circuit (an inconsistent 
circuit) if/3 contains an arc of type 1. 

THEOREM 9.1. Let U C Z* be a regular set. Assume that an r-pmsdp 
17 = (M(Q, Z, qo, ~, Q~), h, ~o) satisfies 0(17) -~ U and let T E AF(Z* ) be 
given by (Vx, y~X*) (xTy<>h(x)=J t (y ) ) .  Then (i) each C j ~ X * / T  is 
monotone with respect to U, and (ii) Fu; r has no I-circuit. 4 Conversely, for any 
T ~ AF(Z*) satisfying conditions (i) and (ii), there exists an r-pmsdp 

= (J~l, f2, ~o) such that O(ff]) = U and _f/i is the standard construction of T. 
In this case, there exists an algorithm to obtain such r-pmsdp ffl from T. 

Proof. Necessity. Condition (i) follows from Theorem 4.2 since r-pmsdp 
is an msdp. Let (Di, D~.) be an arc of type 1 in F U ;  T . Then (Vx ~ Di)(Vy e D~) 
(]~(x) < / / ( y ) )  holds, since otherwise xTy ^ h(x) >/~(y) => (Vz ~ 27*) 
(xzTyz ^ ~(xz) >/h(yz)) ~ (xz ~ U ~ yz  ~ U) ~ D~. ~.v Di, a contradiction. 

4 It follows from (ii) that T J-separates U/Rv. 
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Assume that there exists an/-circui t  

fi = (Dil, Di2)(Di:, Di3)'"(Di~_I, Di k) 
in Y'tr;r , where  Di l  = Di~ and ( D i l  , Dis ) is assumed to be of type 1 without 
loss of generality. Then  we can find xi~ ~ Di~ for j - -  1, 2 , . . ,  k -  1 and 
xj~ = x~. 1 such that xis ~ ' v  xi~+ 1 i f  (Di i  , Dij+l ) is of type 1, and xis+, = x i j a  

if (Dis , Di~+l ) is of type 2 and satisfies Dija C Di~+l for a ~ 27, and 
x~ ~ U ^ xi e U if (Di , Di ) i s o f t y p e  3. We h a v e h ( x i , ) < a ( x i ,  1) for 
(if)i,, n i , + Y  o~f type 1 as 'pro~ea above, h(xis)_<-~, h(xi,+l ) fo r  (Dis, Di++l) of 
type 2 since H is an r-pmsdp, and h(xis ) = h(xis+~ ) = h* (the value of an 
optimal policy) for (D~ , Di ) of type 3. Consequently, ~(x~-) < ~< _ .< . < _  ; _  ~+1 1 ~ ( x ; ~ )  

h(x~a ) ~ "" -.~ h(x~) = h(xjl) follows and this is a contradiction. 

Sufficiency. Denote Z*/Rv  ^ T by Y, where Y = {D 1 , D 2 ,..., D~}. 
Define a numbering h': Y -+ Z which satisfies the next conditions. 

(a) (gDi ,  Dj E Y)((Di,  Dj) is an arc in/~v;r  ~ h'(Di) <~ h'(D~)), 

(b) (VDi, D j~  Y)((Di,  D~)is an arc of type l in Fu; r ~ h'(Di) < h'(Dj)). 

This numbering is possible since/~v;r is a finite graph and has no I-circuit. 
If  there is a circuit/3 in Fc,;r (not an I-circuit), any Di ,  D~ in/3 satisfies 
h'(Di) = h'(Dj) by condition (a). In particular, any D i ,  Dj C U satisfies 
h'(Di) = h'(Dj) since there always exists a circuit which consists of arcs of 
type 3 and includes Di and Dj .  Next extend h' to h': 27"-+ Z by (Vx e D i e Y) 
(h'(x) = h'(D~)), h' is obviously a reeursive function since Y is finite and 
D i e Y is a regular set by assumption. Let  [x] denote the equivalence class 
in g containing x. We have (gx, y ~ X*)(xTy ^ h'(x) <~ h'(y) ~ Ix] T[y] ^ 
[x] ~ e  [y] (by the fact that each C~ ~ Z* /T  is monotone with respect to U 
and by condition (a) above) ~ (Vz e Z*)([xz] T[ya] ^ [xz] %tr [yz]) (by 
Proposition 4.7) ~ (gz e Z*)(xzTyz ^ h'(xz) ~ h'(y~)) (by conditions (a) 
(b). Note that [xz] = [yz] possibly holds.)). Thus  by Lemma 4.1, we have 
an r-msdp/~r = (~14(0 , 27, qo, ~, Qv),/~, ~0) satisfying (Vx e X*)(~(x) = h'(x)), 
where _~ is the standard construction of T. Note h' defined above satisfies 
(gx, z ~ X*)(~(x) <~ ~(xz)) since there is a path consisting of arcs of type 2 
from [x] to [xz]. T h u s / 7  is an r-pmsdp. Furthermore, if we let 

~ = fie;]  I c,. ~ 2 * / T  ^ C~ n U :/: ~}, 
we have 

= {x l (x) ^ (vy < 
= {x t (~Y ~ V)([x] T[y]) A (V[z] e Y)([x] T[z] ~ [x] ~ v  [z])} 

(see the property of h' given above) 
= {x ] [x] C U} (by definition o f < v  ) = U. 
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Consequently _/I w-represents H. Finally, it is also obvious that there exists 
an algorithm to obtain such/~  by following the above construction, since 
/~v;r is a finite graph and hence the above h': Y--~ Z can be constructed 
in a finite number of steps. Q.E.D. 

Now assume that a regular set U and an equivalence relation T ~ AF(27* ) 
are given. Then by Proposition 5.5 (3) and by the fact tha t / ' v ; r  is a finite 
graph, there exists an algorithm to decide whether two conditions in 
Theorem 9.1 are satisfied. Next let {T1, T2 ,...} be an effective enumeration 
of all T E AF(Z* ) in the nondecreasing order of ] 27"/T [. Such an enumeration 
may be obtained from the effective enumeration of all fa's {21//1, M 2 .... } 
discussed in the proof of Proposition 5.6, by (Vx, y e 27*)(xT~y <::> ~(x) = 
~,(y)), where Mi = (Qi, 27, qo,, h,,  Qr,), i = 1,2, . . .  

With these preparations, we have the following algorithm. 

Algorithm for obtaining a minimal r-pmsdp I~ w-equivalent to a given r-pmsdp IL 

Step 1. Obtain O(H) and let U ---- 0(1I). Let k = 1 and go to Step 2. 

Step 2. Check if T~ satisfies conditions: (i) each C~ ~ Z*/T~ is monotone 
with respect to U, and (ii)/'v;r7 ~ has no I-circuit. If yes, go to Step 4; otherwise 
go to Step 3. 

Step 3. Increase k by one and return to Step 2. 

Step 4. Obtain r-pmsdp ~ from T~, by Theorem 9.1. Terminate. 

Step 1 and Step 2 are, respectively, finite computations by Theorem 4.6 and 
by the remark mentioned above. Step 4 is also a finite computation by 
Theorem 9.1. This leads to the next theorem. 

THEOREM 9.2. There exists an algorithm to obtain a minimal r-pmsdp 
w-equivalent to an arbitrarily given r-pmsdp. 

Proof. In the above algorithm, Step 4 is eventually reached because there 
always exists an r-pmsdp w-equivalent t o / 7  (for example consider H itself). 
/-I obtained in Step 4 is then obviously minimal. Q.E.D. 

The above algorithm, however, is extremely inefficient, though it always 
terminates in a finite number of steps. In many practical problems, a minimal 
r-pmsdp can be discovered by ad hoe method. The next proposition is 
sometimes useful to prove the minimalky of a given r-pmsdp. 
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PROPOSITION 9.3. Let U C Z*  be a regular set and let 

2 * / R v  = {A1,  A~ ..... A~}. 

I f  A i C U h A k C [ - U ^ A i - < - < . v A ~ a A ~ \ U  ~ ~ ,  then any T ~ A F ( Z * ) ,  
having Cj ~ X * / T  which satisfies C~ n A i ~ Z ^ C~ n Ae  =/= ~ ,  has an 
I-circuit in £'V;T • 

Proof. Let  Di  = Ae n C~ and D~ = A~ n C~.. Then  there is arc (Di ,  D~) 
of type 1 in PU;T since Di ~ v  DI~ (note A i - -~v  A~). Furthermore,  since 
Ak\U :~ ;~, there is a path consisting of arcs of type 2 from Dk to D t , 
where D~ C U. I f  D~ = De,  the statement is proved. I f  D~ :~ De,  there is 
arc (D~, Di) of type 3 by definition. Therefore,  in both cases, we have an 
I-circuit .  Q.E.D.  

EXAMPLE 9.1. Let  

Z = {a, b, c} and U = {ab(a t3 b U c)* u (b u c)(a U b)(a t3 b k3 c)*}. 5 

Let  us obtain a minimal  r -pmsdp  /-/ satisfying 0(11) ~ U. Z * / R v  consists 
of  the following equivalence classes : A 0 = {e} where Ao\U : U; A 1 = {a} 
where A I \ U  = {b(a u b k3 e)*}; A 2 = {b, e} where A2\U ~ {(a u b)(a u 
b U c)*}; A 3 = U where Aa\U : {(a U b U c)*}; A 4 : {aa(a u b t3 c)* u 
(a w b u c) c(a u b u c)*} where A4iU = ~ .  T h u s / ' v  as shown in Fig. 10 

c a 

FIG. 10. Yv of U defined in Example 9.1. 

5 Notations k2 and * in this expression, respectively, stand for the union and star 
operation of the regular expression (Kleene, 1956). {P} stands for the set represented 
by regular expression P. 
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is obtained. Since {Ao, Aa} ~ Nv' for example, at least two states are required 
(see Theorem 4.2 and Lemma 6.1). Now we will give an r-pmsdp H 
with three states, satisfying O(H)= U, and after we will prove the 
minimality of 17. Define T~AF(X* ) by X*/T={Co,Ca,C~} where 
c 0 = { 4 = A 0 ,  C ~ = { ~ , b ,  4 = & u A , ,  C 2 = { ( ~ u b u ~ ) ( ~ u  
b u c ) ( a u b u c ) * }  = A ~ u A ~ .  This T is also illustrated in Fig. 10. 
Obviously, each C~ ~ 27"/T is monotone with respect to U and T J-separates 
U/Rv = {Aa}. 27*/Rv ^ r(=Z,*/Rv) also consists of the equivalence classes 
Ao,A~,A~,A~, andA~.ThenPv; r is obtained and shown in Fig. 11, in which 

/ h ' =  \ / h ' =2--¢X" - " " , ,  

a ,'1 -4c~,', I .."rT~. J ," 

( ( ,~ , , .T t , I I " , /  : l  l 
. \ ~ 7  I I I / ' , , l |  

/ " h ' ° o /  " ' - . b , c  I .;" ".: I J - - - .  

~o i 7 . . . . .  a,~,c 

C 1 C 2 

Fro.  11. / ' v  r o f  U a n d  T g i v e n  in  E x a m p l e  9.1. 

solid arcs indicate those of type 1 and broken arcs indicate those of type 2. 
There  is no arc of type 3, in this case. From Fig. 11, it immediately follows 
that there is no I-circuit in Fu; r . Thus  by Theorem 9.1, we see that an 
r-pmsdp with [ X*/T ] = 3 exists. A numbering h' on X*/Rv h T satisfying 
conditions in the proof of Theorem 9.1 is also illustrated in Fig. 11. An 
r -pmsdp/7  = (2~r(0 , 2J, q0, ~, OF),/~, ~o) is then obtained from h' by following 
the proof of Theorem 9.1. The  state transition diagram of ~ and OF are 
shown in Fig. 12. /~ and ~o are given by ~0 = 0; /~(s e, [Co], a) = 6: 4- 1; 
/~(~,[C0],{b,c}) = ~ ;  /~(~,[C1],a) = ~ 4 -  1; ~(~,[C1],b) = ~  if ~ / >  1, 
~ 4 -  1 if ~:~<0; /~(~:,[C1],c) = ~ : 4 -  1 if ~:~> 1, ~ 4 - 2  if ~:~<0; 
/~(~, [Ca] , {a, b, c}) = ~. Obviously, O(H) -~ {x ~F(H) ] (Vy ~F(H))(h(x) 
h(y))} = {x ~ c21 (Vy ~ c~)(~(x) <~ ~(y))} = {x ~ q I ~(x) = 1} = A3 = u. 
Finally, we will show that/~r is a minimal r-pmsdp with O(/7) = U. Since 
at least two states are required as mentioned above, assume that there exists 
an r-pmsdp H '  = (M',  h', ~0') which has two states and satisfies 0( /7 ' )  = U. 
Let  M' be the standard construction of T '  ~ Af(Z*),  where ] 2~*/T' I = 2. 
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FIG. 12. 

a,b,c @ . . . a , b , c  ~ a,b,c 

~o ~ [Co] 

~F = ( [c2]}  

State transition diagram offa]Krof r-pmsdp constructed in Example 9.1. 

Then for each C i ~ Z* /T '  to be monotone with respect to U, there exists 
C i ~ E * / T '  such that C i ( 3 A  3 =/= Z ^ (3ja{0, 1,2})(Cic~Aj va ~ )  (see 
Fig. 10). Since Ao\U, Aa\U and A2\U are not ~ ,  respectively, there is an 
I,circuit i n / ' v ; r ,  by Proposition 9.3. This is a contradiction. 

As was shown in Ibaraki (1973a), an r-pmsdp H with 0(17) = U is easily 
constructed from the standard construction of R u ,  if U is regular: 
/ / - ~  (3//, h, ~:0) where M = (Q, X, qo, A, QF) is the standard construction 
of Ru with Q ~ = { [ A i ] I A ~ U / R u }  , (VqcQ)(Va a Z)(h(~, q, a) =-~) 
and ~0 = 0. (Obviously O(H) = {x aF(H) I (Vy aF(17))(h(x) <~ h(y))} = 
{x ~F(H) I/~(x) = 0} -- F(H) = F(M) = U.) Although this r-pmsdp is not 
always minimal as exhibited by Example 9.1, there are many cases in which 
it is actually minimal. The next theorem shows one situation in which its 
rain\reality is guaranteed. 

THEOREM 9.4. Let U be a regular set. I f  Z*/R U has no equivalence class 
A i such that Ai\  U =- ~ ,  the above r-pmsdp 17 constructed from the standard 
construction of R v is a minimal r-pmsdp satisfying 0(17) -= U. Furthermore, 
M of the minimal r-pmsdp H -= (M, h, ~o) with 0(17) = U is unique except 
for a renaming of the states. 

Proof. Assume that a minimal r-pmsdp/1 with O(/~) = U is constructed 
from T ~ A~(Z*) by following Theorem 9.1. We will show that there exists 
no Cj ~ Z * / T  satisfying (3A~ , A~ ~ X*/Ru)(A i c~ C~ ~ 2: ^ A~ c~ C~ =/= 

^ Ai C U ^ Ak (~ U). First if such Cj exists and A i ~ v  A~,  I~V;T has 
an I-circuit by Proposition 9.3. On the other hand, if such C~. exists and 
neither A i ~ .uA~ nor Ak ~ u  Ai holds, C~. is not monotone with respect 
to U. Finally, A~ ~-~,u Ai  cannot hold since Ai C U and A~ ~ U (note that 
e e A i \ g  but e ¢ AkiU). Thus we have (VCj ~ Z*/T)(Cj C U v Cj C Z* -- U) 
and this implies that T ~ AE(U ). Since Re  is the unique equivalence relation 
in AF(U ) with the fewest equivalence classes (note that R <~ Re  holds for 
any R ~ A(U)), T = R v follows. Thus r-pmsdp H constructed from M v 

643/2714-3 
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is minimal. This  also proves the uniqueness of M of a minimal r -pmsdp 
H = (M, h, ~o) satisfying O(H) ~- U (except for a renaming of the states). 
(See Proposition 5.1(3).) Q.E.D. 

On the other hand, if R v has an equivalence class A~ ~ Z * / R  u such that  
A~\ U = 2~, the number  of states can always be reduced at least by one. 

THEOREM 9.5. Let U be a regular set with an equivalence class A~ ~ X * / R  v 
such that ~ti\ U = 2:. Then it is possible to construct an r-pmsdp I I  which 
satisfies O(H)  = V and has (I Z * / R u  i --  1) states. 

Proof. Let  Z * / R  v = {A1, A~ ..... An} and A n \ U  = 2~, without loss 
of generality. Let  M = (Q, Z, qo, )~, ~ r )  be the standard construction of R v 
withQF = {[A~] lAg ~ U/Ru}. From M, define an fa M '  = (~' ,  Z, qo', A', ~ / )  
by 

Q'  = Q - {[&]} 

q0' = q0 

A'([Ai], a) = t A([A~]' a) 
t[n~] 

Q)F p ~ 0 F • 

if A([A,], a) =/= [A~] 
if h([A~], a) ---= [An] 

f o r / =  1,2, . . . ,n  - -  1 and a ~ Z .  

Then  an r -pmsdp H '  = (M' ,  h', f0) is defined by 

~0 r ~ -  0 

l i  if ~ = 0 ^ h([Ai], a) =7:= JAM] 
h'(~, [Ai], a) ~ if ~ = 0 A h([Ai] , a) = [AM] 

if ~ =/= 0. 

I t  is not difficult to see that/~'(x) = 1 if and only if there exists a prefix 6 y 
of  x such that A(y) = [A~]. Therefore,  (Vx e Z*)(x  ~ F ( M )  -*~ i(x)  eQ~  -*> 
i (x) ~ QF ^ (Vy = prefix of x)(~(y) =/: [A~]) <=> ~'(x) e ~ / ^ / ~ ' ( x )  = 0 (by 
definitions of ~' and h' above)<=> x ~ 0(II ' ) ) .  This  proves that  O(H')  -= 
F ( M )  = U. 17' has (1 ~ * / R v  I - -  1) states. Q.E.D. 

Sometimes the number  of states can be further reduced. Example 9.1 is 
such an example 

6 y is a prefix of x if x = yz for some z ~ Z*. 
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10. UNDECIDABILITY OF CERTAIN MINIMIZATION PROBLEMS 

The  previous sections have discussed five solvable cases of minimization 
problems associated with r-lmsdp, r-smsdp, and r-pmsdp. It  will be shown 
in this section that the rest of minimization problems introduced in Section 3 
are all unsolvable (i.e., there exist no algorithms to solve them, respectively). 
These undecidabilities are all proved by reducing them to the well-known 
undecidable problem: the halting problem of a Turing machine (e.g., 
Davis, 1958). 

THEOREM 10.1. (l)  There exist no algorithms which first decide whether an 
arbitrarily given r-ddp Y is w-representable by an r-sdp, an r-msdp, an r-smsdp, 
an r-pmsdp, and an r-lmsdp, respectively, and then obtain a minimal w-represen- 
tation of Y by an sdp of the corresponding class in case it is w-representable. 
(2) There exist no algorithms which first decide whether an arbitrarily given 
r-ddp Y is s-representable by an r-sdp, an r-msdp, an smsdp, and an r-pmsdp, 
respectively, and then obtain a minimal s-representation of Y by an sdp of the 
corresponding class in case it is s-representable. 

Proof. Both statements are immediate consequences of the facts proved 
in Ibaraki (1973a, 1974) that there exists no algorithm which decides whether 
an arbitrarily given r-ddp Y is w(or s)-representable by each of sdp's listed 
above. Q.E.D. 

THEOREM 10.2. (1) There exist no algorithms to obtain minimal r-sdp and 
r-msdp which are, respectively, w-equivalent to arbitrarily given r-sdp and 
r-msdp. (2) There exist no algorithms to obtain minimal r-sdp, r-msdp, r-smsdp, 
and r-pmsdp which are, respectively, s-equivalent to arbitrarily given r-sdp, 
r-msdp, r-smsdp, and r-pmsdp. 

Proof. Let  3 be the set of all Turing machines. For ~ ~ Z, let S~ denote 
the number of steps required until Tur ing machine ~ halts. S~ takes on oo 
if ~ never halts. It  is known (e.g., Davis, 1958) that there exists no algorithm 
to decide whether S~ < oo or S~ ~- oo for an aribtrarily given a ~ 3 (the 
halting problem of a Tur ing machine). 

(a) We 5rst prove (1) and (2) for an r-sdp and an r-msdp. Denne an 
r-msdp (hence an r-sdp) Ha = (M, ha, ~0) given by M = (Q, X, q0, A, Q~) 
where Q = {qo, ql ,-.., qk} (h is a given constant greater than 1), 2Z = {a, b}, 
A andQe  are given in Fig. 13; ~o = 0; h~(~:, %,  a) = ~: - -  1; h~(~, qo, b) = 0 
if S~ < ] ~ ], 1 if S~ >~ ] ~ [; h~(~, {ql, q2 ,..-, qk-1}, b) = ~; h~(~, qk, b) ~- 1; 
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h~(~, q, c) = 1 for all other combinations of q E Q and c ~ 27. ~ : Z* -+ Z 
obviously satisfies 

l 
- - i  if x = a i 

h~(x) = 0 if x = a ~ b  j ^  I < ~ j < ~ k ^ S ~ , < i  
1 for all other x ~ Z*, 

andF(Ha)  = Z* - -  {a~ l i >~ 0}, U~(~O(Ha)) = {a~b~ l 1 <~ j <~ k ^ S~ < i} 
if S~ < oo, {a*b(a u b)*} if S~ = oo. ha is a recursive function since//a(x) 
is computed for any x ~ Z* in a finite number  of steps as follows: (i) I f  

a 

a b  

QF = {ql'  q2 . . . . .  qk } 

FIG. 13. State transition diagram of fa M used in the proof of Theorem 10.2(a). 

x = a * for some i, /~(x) = -- i ;  otherwise go to (ii). (ii) I f  x =~ a~b s for any 
i ~> 0, j > /0 , / / (x )  = 1; otherwise go to (iii). (iii) For  x = #b~, let Tur ing 
machine ~ operate i steps. I f  ~ halts in less than i steps,//~(x) = 0; otherwise 
~(x)  = 1. Now assume that Sa < oo. Then  the above H a is a minimal r-sdp 
(hence a minimal r-msdp) s-equivalent (or w-equivalent) to Ha ,  as 
proved next. U J R u  consists of the following k equivalence classes: 
Aj  = {a~b ~ [ i > S~},j = 1, 2,..., k. Thus  any T e AF(2* ) J-separating U~/Rtz 
must have at least k equivalence classes of Z*/T .  Furthermore T requires 
at least k -t- 1 equivalence classes since a t ~ U~, l > S~,  cannot satisfy 
a~Ta~b ~, for j = 1, 2,..., k, by the fact that aZb ~ A 1 and aZb~b ~ A s ,  s > 1. 
(Note that T is right invariant.) Thus  any r-sdp w-representing (and hence 
s-representing) Ya has at least k + 1 states and it proves the minimality of  
H~ under the assumption S~ < oo. Next consider the case in which S~ = oo. 
Then  H = (M, h, ~o) is s-equivalent (hence w-equivalent) to H~,  where H 
is defined by M = (Q, X, qo, ~, QF); Q = {qo, q~}; h is given by A(qo, a) = q0, 
a(q0, b) = h(q I , {a, b}) = q~ ; QF = {qa}; ~:0 = 0; and h(~:, q, c) = 1 for all 
~: e Z, q e Q, and c ~ Z. Consequently, for k > 1, a minimal r-sdp (or r-msdp) 
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s (or w)-equivalent to Ha has no more than two states if and only if S~ = oo. 
Therefore,  if there were an algorithm as stated in (1) and (2) for an r-sdp or 
an r-msdp,  the halting problem of a Tur ing  machine would be solved as 
follows: (i) obtain a minimal r-sdp (or r-msdp) s (or w)-equivalent to H a . 
(ii) S~ = oo if and only if the resulting r-sdp (or r-msdp) has at most two 
states. This  is of course a contradiction. 

(b) We prove (2) for an r-smsdp and an r-pmsdp.  Let  Ha ---- (M, ha,  ~:0) 
be an r-smsdp (and an r-pmsdp) defined by M = (Q, 27, % ,  A, QF); 
Q = {qo, ql}, Z = {a, b}, h and QF be given by Fig. 14; ~0 = 0; h~(~, q0, a) = 
h~(~,{q0,ql},b) = ~ +  1;h~(~,q~,a)  = ~ + l i f ~ < S ~ , ~ + 2 i f ~ > S ~ .  
Then  F(H~) -~ 27* and ha satisfies 

l l x [  if I x ]  ~<S~ 
h~(x) = [ x [ + N ~ ( z )  if Ix  L > S~,  

where x = y z A  [ y I  = max[Sa - -  l, 0], 

b a 

b 

QF = {q0 '  q] } 

FIG. 14. State transition diagram of fa 2k/used in the proof of Theorem 10.2(b). 

where ] w ] for w e 27* denotes the length of w, and Na,(Z) denotes the number  
of subsequence aa's in z (for example aaa is counted as two subsequences of 
aa). The  recursiveness of/z~ can be proved in a manner similar to//~ of (a). 
Now, assume Sa < oo. Then  H a is a minimal r -smsdp (and r-pmsdp) 
s-equivalent to H a ,  as proved below. Let  Y~ be the r-ddp s-represented 
by H a .  Then  we have 7 t ~ = { A , B } ,  where m = m a x [ S ~ , l ] ,  A = 
{ x a l x e 2 7 * A ] X ]  = m - - l }  and B = { x b l x e 2 7 * A  Ix] = m - -  1} 
(W~ was defined in Section 4 prior to Theorem 4.3). Thus  any s-represen- 
tation of Y~ by an r-sdp (hence by an r-smsdp or by an r-pmsdp) requires 
at least two states since any TeAF(X*  ) J-separating ~P~ satisfies I 27"/T I >~ 2 
(see Theorem 4.3 and L e m m a  7.1). On the other hand, if S~ = 0% there exists 
a minimal r-smsdp (and r-pmsdp) H with one state s-equivalent to H~.  Such 
H is given by (M, h, ~0) where M = ({q0}, 27, q0, A, {%}); Z(%, {a, b}) = % ; 
h(~:, q0, {a, b}) = ~ -t- 1; ~:0 = 0. ( H  is s-equivalent to //~ since 



324 TOSHIHIDE IBARAKI 

(Vx~Z*)(h(x) = ]x I= /~(x) ) . )  Consequently there exists a minimal 
r-smsdp (and r-pmsdp) with one state which is s-equivalent to H~ if and only 
if S~ = oo. Therefore, if there were an algorithm as stated in (2) for an 
r-smsdp or for an r-pmsdp, the halting problem of a Turing machine would 
be again solvable. This is a contradiction. Q.E.D. 

TABLE 1 

Solvability of Each Minimization Problem ~ 

Represen- Type of 
tation Algorithm r-sdp r-msdp r-imsdp r-smsdp r-pmsdp r-lmsdp 

w 
18 U U U U U U 

2 ~ U U U S S S 

1 b U U U U U S 

2 c U U U U U S 

a U: Unsolvable, S: Solvable. 
b Algorithm 1 first decides whether a given r-ddp Y is *-representable a by an sdp 

of the corresponding type (column), and then finds a minimal *-representation a of Y 
by an sdp of the corresponding type (column) in case it is *-representable. a 

0 Algorithra 2 obtains a minimal sdp of the corresponding type (column) *-equi- 
valent a to a given sdp of the corresponding type (column). 

a , should read w or s depending on the row of the entry (see the first column) under 
consideration. 

Summing up the results obtained so far, we have Table 1 which shows the 
solvability or the unsolvability of each of the minimization problems. 
Although the definition of r-imsdp is not given in this paper (see Ibaraki, 
1974), its results are also included because proofs of Theorems 10.1 and 10.2 
can be directly modified for an r-imsdp. 

11. NONUNIQUENESS OF MINIMAL REPRESENTATIONS 

T h i s  sect ion shows the  n o n u n i q u e n e s s  of  various min ima l  represen ta t ions .  

THEOREM 11.1. Minimal s-representations of an r-ddp Y by an r-sdp, 
r-msdp, r-smsdp, r-pmsdp, and r-lmsdp are not generally unique, respectively. 
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Pro@ Consider  an r -ddp  Y = (X, Z * , f )  where X = {a} and f (e )  = 
f(a) = 0 ,  f (a  k ) = k - 1  for k = 2 , 3 , . . . .  T h e n  X*/Rr consists of the 
equivalence classes Ai = {ai}, i = 0, 1, 2,.... Since T o = {_do, Ax}, any 
r-sdp s-representing Y has at least two states since T e AF(S ) J-separat ing 
T o has at least two equivalence classes (see T h e o r e m  4.3). T h u s  the following 
two s-representations are bo th  minimal. 

qo : [e l i  qO = [Ci] 
QF = {Fq] ' [c2]}  ~F : {[cl]'Ccz]} 

a,c a,b,c 
a s ~  L 

b ~ a,b,ca ,b ,c 
b ( q 2 )  QF = {ql 'q2'q3 } 

FIG. 15. 

a a,b,¢ 

(d) a,b,c a,5,c 

b,c ,c 

State transition diagrams of fa's used in the proof of Theorem 11.1. 

(a) H = (21//((2, 2:, q0, A, QF), h, ~:0) where h is given by Fig. 15(a) for 
A two states corresponding to C 1 = A o and C 2 = Ui=l i • ~0 and h are given 

by ~o ~ 0, h(~, [C1], a) = f and h(~, [Ca] , a) = ~ + 1. 

(b) A is given by  Fig. 15(b) for two states corresponding to C 1 = 
U {Ai] i = 0, 2, 4, . .} and C2 = U {Ai ] i = 1, 3, 5,...}. ~0 and h are given 
by fo = 0, h(~, [C~], a) = ~ if ~ ~< 0, f + 1 if ~ > 0, and h(f,  [Ca] , a) = f + 1. 

Since (a) and (b) are both  r -msdp 's ,  r -smsdp's ,  r -pmsdp ' s  as well as r-sdp's ,  
the theorem is proved for them. T o  prove the theorem for an r- lmsdp,  let 
Y = ( Z , S , f )  be an r -ddp  with 2: = {a, b, c), S = {x e 2 *  l l x ] = 1 o r 2 }  
and f(a) = f(b) = O, f(c) = 1, f(aa) -= 1, f (x)  = 2 for other  x e 2]* with 
Ix[ ~ 2. Z*/R s consists of  the equivalence classes C1, Ca, Ca, C 4 
where C 1 = {e}, C 2 = {a, b, c}, C a = {x [ [ x ] = 2}, C 4 = X* - -  C 1 - -  C a - -  C 3. 
Z*/Rr consists of  the following equivalence classes: A 0 = {e}, A 1 ~ {a}, 
As  = { b } ,  A a = { c } ,  A4 = { a a } ,  A 5 = {x e Z* [ Ix[  = 2  A X ¢ aa}, 

5 
A G = 2 :  - - U i = o A i .  C1 = A  o , C  a = A  1 U A 2 w A  s , C  a = A ~ U A  5 ,and 
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C a = A 6 hold. Furthermore, A 1 ~ r  As ,  As % r  A3, A 1 % r  As ,  A4 % r  As ,  
and 71o = {Aa, A2}. Since I 27*/Rs ] = 4 and A1, A2 e C1, at least five 
states are required to s-represent Y by an r-msdp ( T ~ A F ( S )  satisfying 
Theorem 4.3 has at least five equivalence classes: four from the fact T <~ R s 
and one more to J-separate gt0). Then  we have the following minimal 
r-lmsdp's s-representing Y. 

(c) H =  (M,h ,  ~o) where M is given in Fig. 15(e). ~ o = 0  and 
h(~, qo, {a, b}) = 0, h(~, qo, c) = 1, h(~, ql ,  a) = 1 if ~ ~< 0, 2, if ~ ~> 1, 
h(~:, q, d) = 2 for all other q e Q, d ~ 27. 

(d) /7  = (M,h ,  ~o) where M is given in Fig. 15(d). ~:o = 0 and 
h(~, q0, {a, b}) = 0, h(~, qo, c) = 1, h(~, q l ,  a) = 1, h(~, q, d) = 2 for all 
other q e Q and d ~ 27. 

This proves the theorem for an r-lmsdp. Q.E.D. 

THEOREM 11.2. Minimal w-representations of an r-ddp Y by an r-sdp, 
r-msdp, r-smsdp, r-pmsdp, and r-lmsdp are not generally unique, respectively. 

Proof. Consider the first r-ddp Y used in the proof of Theorem 11.1. 
Since U(=O(Y))  = {e,a} and U/R u = { n o , A 1 )  where A o = {e) and 
A 1 = {a}, any w-representation by an r-sdp requires at least two states 
(see Theorem 4.2). Thus  r-sdp's (a) and (b) used in the proof of Theorem 1 1.1 
are also minimal w-representations by an r-sdp, r-msdp, r-smsdp, or r-pmsdp. 
This proves the theorem for an r-sdp, r-msdp, r-smsdp, and r-pmsdp. 
Finally to prove the theorem for an r-lmsdp, let Y = (27, S , f )  be an r-ddp 
with Z' = {a, b, c}, and U ( ~ O ( Y ) )  = {a, b, aa, ab, ba, ca}. X* /Rv  consists 
of the equivalence classes A 0 = {E}, A 1 = {a}, A2 = {b}, A 3 = {c}, A 4 = 

4 A , {aa, ab, ba, ca}, A s = X* --  04=o ~ and Pv'  = {(A~, 13), (Aj ,  15) [i = 0, 1, 
2 , j  = 0, 1,..., 4}. Then  T e AF(27* ) that gives rise to an r-lmsdp w-represent- 
ing Y has at least five equivalence classes: four to J-separate {A 0 , A 1 , A2,  
A4} e Nv '  and one more to include As ,  since ]F(H)] < oo. Then  the 
following two r-lmsdp's w-representing Y" are minimal. 

(a) /7 = (M, h, ~:o), where M is given by Fig. 15(c); ~0 = 0; h(~:, qo, 
{a, b}) = ~, h(~:, qo, c) = ~ + 1, h(f, {ql, q2}, a) = 0, h(~, q l ,  b) = 
~, h(~, ql ,  c) = h(~:, qs, {b, c}) = ~ + 1, h(~:, q, d) = s e for other q ~ Q, d ~ 2J. 

(b) H = (M, h, ~:o), where M is given by Fig. 15(d); ~:o ----- 0; h is the same 
as h of (a). 

This proves the theorem for an r-lmsdp. Q.E.D. 
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The nonuniqueness of w-representation may appear somewhat trivial 
since we can easily obtain an infinite number of different r-sdp's (or other 
classes of r-sdp's) by simply adjusting the cost function h o f /7  = (M, h, ~o) 
without altering 0(1I). However, the above theorem says that the w-represen- 
tation is nonunique in the stronger sense that there are w-representations 
having essentially different fa's M of 11 = (M, h, ~o). 

CONCLUSION 

Various minimization problems associated with each class of sequential 
decision processes were considered in this paper. As summarized in Table 1, 
there are five solvable cases and all the other problems are unsolvable. I t  
should also be emphasized that, except for the problem of finding a minimal 
r-smsdp w-equivalent to a given r-smsdp, all algorithms presented in the 
paper are extremely inefficient (though finite) because they are based on the 
effective enumeration of fa's or T's in Av(Z* ). Thus the improvement of 
their efficiency would be one of the main subjects in the future research. 
Since it is noticed that our problems have certain similarity with the well- 
known minimization problem of incompletely specified sequential machines, 
an attempt is being made to increase the efficiency through the use of 
techniques developed for incompletely specified sequential machines. 

Although the minimization of a single sequential decision process was 
investigated throughout this paper, it may be more important in practice 
to consider the minimization of a family of sequential decision processes, 
which are obtained by changing some parameters involved in the processes. 
(A model of this type was discussed in Karp and Held (1967).) I t  is expected 
that the results obtained in this paper also work as a basis for such problems. 
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