NOTES ON TOLERANCE RELATIONS OF LATTICES:
A CONJECTURE OF R.N. McKenzie*

E. FRIED and G. GRÄTZER
Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2

Received 20 May 1986
Revised 1 February 1987

1. Introduction

A tolerance relation T on a lattice L is defined as a reflexive and symmetric binary relation having the substitution property. A maximal T-connected subset of L is a T-block. The quotient lattice L/T consists of the T-blocks with the natural ordering.

If V and W are lattice varieties, their product $V \circ W$ consists of all lattices L for which there is a congruence relation Θ satisfying: (i) all Θ-classes of L are in V; (ii) L/Θ is in W. In general, $V \circ W$ is not a variety; however, $H(V \circ W)$ (the class of all homomorphic images of members of $V \circ W$) always is.

If L is in $V \circ W$ (established by Θ), then L/Φ is a typical member of $H(V \circ W)$. On L/Φ, Θ/Φ is a tolerance relation. The following theorem was conjectured by R.N. McKenzie: a lattice K belongs to the variety generated by $V \circ W$ iff there is a tolerance relation T on K satisfying: (i) all T-classes of L are in V; (ii) L/T is in W.

In this paper we disprove this conjecture:

Theorem. The lattice F of Fig. 1 is in $H(M_3 \circ D)$. However, there is no A in $M_3 \circ D$ with congruence Θ establishing this such that F can be represented as A/Φ and $T = \Theta/\Phi$ satisfies (i) all T-classes of A are in M_3; (ii) A/T is in D.

In this theorem, M_3 is the variety generated by the modular lattice M_3 and D is the variety of all distributive lattices. The Theorem holds for some varieties other than M_3, see Section 5.

In Section 2 we introduce a new lattice construction, called **hinged-product** which

* The research of both authors was supported by the National Scientific and Research Council of Canada.

0022-4049/90/$03.50 \copyright$ 1990 — Elsevier Science Publishers B.V. (North-Holland)
we shall utilize to construct an interesting lattice. Since we hope that this construction will find other applications as well, we develop it in some detail.

In Section 3 we introduce the lattice F of Fig. 1, and using a hinged-product (see Figs 2 and 3), we show that F is in $\mathbf{M}_3 \circ \mathbf{D}$.

In Section 4 we investigate the tolerance relations of F; they form a lattice shown in Fig. 6.

Finally, in Section 5, we prove the Theorem.

For the basic concepts and unexplained notations, the reader is referred to [1].

2. Hinged-products

We start with a definition:

Definition 1. We are given a family, L_i, $i \in I$, of lattices; in each lattice L_i, we are given three elements, the hinge: $l_i \leq m_i \leq u_i$. The *hinged-product* $H = H(L_i, l_i, m_i, u_i)$ consists of the following subsets of the direct product of the L_i, $i \in I$:

(i) the ideal $l(H)$, the direct product of (l_i), $i \in I$;
(ii) the dual ideal $u(H)$, the direct product of (u_i), $i \in I$;
(iii) for every $i \in I$, the *ith frame*, $f_i(H)$, consisting of all elements whose jth coordinate is m_j for all $j \neq i$.

H is partially ordered componentwise.

Observe that these sets may not be disjoint: for instance, if $m_i = l_i$, then $l(H) \cap f_i(H)$ is non-empty; if $m_i = u_i$, then $u(H) \cap f_i(H)$ is non-empty. The element μ whose ith coordinate is u_i for all $i \in I$ belongs to all $f_j(H)$, $j \in I$.
Lemma 2. H is a lattice.

Proof. Let $\alpha, \beta \in H$. Then the componentwise join, $\alpha \lor \beta$, is always in H (hence it is also the join in H) with one possible exception: $\alpha \in f_i(H)$ and $\beta \in f_j(H)$, $i \neq j$. Let $\alpha = \langle a_k \rangle$, $\beta = \langle b_k \rangle$; now if $a_i \lor m_i > m_i$ and $b_j \lor m_j > m_j$, then $\alpha \lor \beta$ has no upper bound in $l(H)$, in any $f_k(H)$, and it has a least upper bound, namely, $\alpha \lor \beta \lor \mu$, in $u(H)$. Hence, α and β have a least upper bound in H, namely, $\alpha \lor \beta \lor \mu$. We can argue the meets dually. This completes the proof of Lemma 2. \Box

We shall continue to denote componentwise join and meet with \lor and \land; the join and meet in H will be denoted by \vee and \wedge, respectively.

It is not very easy to visualize H. The ith frame, $f_i(H)$, is isomorphic to L_i. The $f_i(H)$ are glued together at the hinges: l_i, m_i, u_i. The glued frames are completed into a lattice by $l(H)$ and $u(H)$. The example of Section 3 may help illuminate this point.

If we have homomorphisms $\phi_i : L_i \to L'_i$, then under certain conditions these homomorphisms have a joint extension from the hinged-product H to the hinged-product H':

Lemma 3. Let $H = H(L_i, l_i, m_i, u_i)$ and $H' = H(L'_i, l'_i, m'_i, u'_i)$ be hinged-products with the same index set I. Let $\phi_i : L_i \to L'_i$ be homomorphisms for $i \in I$. Let us assume that $\phi_i(l_i) = l'_i$, $\phi_i(m_i) = m'_i$, and $\phi_i(u_i) = u'_i$. If (i) or (ii) below holds, then the restriction ϕ of the product of the homomorphisms ϕ_i, $i \in I$, to H is a homomorphism of H into H'.

(i) For all $i \in I$, $x_i \lor m_i > m_i$ implies that $\phi(x_i) \lor m'_i > m'_i$; and the dual condition for \land.

(ii) For all $i \in I$, $\phi(l_i) = \phi(u_i)$.

Proof. Under the first condition, whenever $\alpha \lor \beta \neq \alpha \lor \beta$, then $\phi(\alpha) \lor \phi(\beta) \neq \phi(\alpha) \lor \phi(\beta)$; therefore, $\alpha \lor \beta = \alpha \lor \beta \lor \mu$ and $\phi(\alpha) \lor \phi(\beta) = \phi(\alpha) \lor \phi(\beta) \lor \phi(\mu)$. It now follows that $\phi(\alpha) \lor \phi(\beta) = \phi(\alpha \lor \beta)$. The argument for the meet is dual.
Under the second condition, \(\phi(m_i) = \phi(u_i) \), so \(\phi(\alpha \lor \phi(\beta)) = \phi(\alpha \lor \beta) \) is obvious.

\[\square \]

Note that a necessary and sufficient condition for \(\phi \) to be a homomorphism can be easily formulated. We only need the sufficient conditions of Lemma 3 in this paper.

3. \(F \) is in \(H(M_3 \circ D) \)

We start with the lattice of Fig. 2. We take three copies of \(L, L_1, L_2, \) and \(L_3 \). The elements will be denoted accordingly: \(u_1, u_2, \) and so on. Let \(A \) denote the hinged-product (power) of \(L_1, L_2, \) and \(L_3 \). The diagram of \(A \) is given in Fig. 3; \(l(H) = \{0\}, u(H) = [\mu] \).

Now consider the congruence relation \(\Theta(0,\mu) \) of \(L \), where \(0 = \langle l_1, l_2, l_3 \rangle \) and \(\mu = \langle m_1, m_2, m_3 \rangle = \langle u_1, u_2, u_3 \rangle \). The natural homomorphism of \(L \) onto \(L/\Theta(0,\mu) \) obviously satisfies (ii) of Lemma 3, hence \(A \) has a natural homomorphism onto the appropriate hinged-product of three copies of \(L/\Theta(0,\mu) \); this new lattice is isomorphic to \((C_2)^3 \).

There are eight \(\Theta \)-classes: four are isomorphic to \(M_3 \), three to \((C_2)^2 \), and one to \((C_2)^3 \). Since the congruence classes of \(\Theta \) are either distributive or isomorphic to \(M_3 \), and \(A/\Theta \) is distributive, we conclude that \(A \) belongs to \(M_3 \circ D \).
Next consider the congruence $\Theta(\mu, k)$ on L, where $k = \langle k_1, k_2, k_3 \rangle$. $L/\Theta(\mu, k)$ is the lattice of Fig. 4. The hinged cube of that lattice is isomorphic to the lattice F of Fig. 1. Hence $F \in \mathbb{H}(M_3 \circ D)$. This proves the first sentence of the Theorem.

4. The tolerance relations of F

Fig. 5 represents F with the tolerance relation $T = \Theta/\Theta(0.\mu)$. T is a natural tolerance on F; unfortunately, F/T is isomorphic to M_3, and it is not distributive.

This makes the Theorem plausible. If there are A, Θ, Φ such that $A \in M_3 \circ D$ is established by Θ, and $T = \Theta/\Phi$ satisfies that (i) all T-classes of A are in M_3; (ii) A/T is in D, then A must be the lattice of Fig. 3 (or a fatter version with larger distributive classes), and Θ and Φ must be as in Section 3.

In Section 5 we shall prove this. As a first step, we have to describe all the tolerance relations on F.
Lemma 4. The lattice F has nine tolerance relations; they form a lattice as shown in Fig. 6. The tolerance T_0 is depicted in Fig. 5, and the tolerance T_1 in Fig. 7.

Proof. Since F is a finite, simple, modular lattice, any two prime intervals of F are projective. Therefore, F has a unique minimal proper tolerance relation, T_0, generated by any prime interval. Moreover, if any two distinct elements of a sublattice isomorphic to M_3 are collapsed by a tolerance relation, then the whole sublattice is collapsed. It follows immediately that T_0 is as described in Fig. 5.

Next consider the tolerance relation T_1 of Fig. 7. Symmetrically, we can define T_2, and T_3. We shall prove that any proper tolerance relation is either a T_i or of the form $T_i \lor T_j$, $i \neq j$.
So let T be a tolerance relation, $T > T_0$. Then there are $x, y \in F, x < y$, such that $x = y (T)$ but not modulo T_0.

Claim. $0 = d_i (T)$ for some i.

Proof. Up to symmetry, there are three cases to consider:

- **Case 1.** $a_1 \leq x < d_1$ and $d_1 \lor d_2 \leq y$. Then
 \[b_2 = b_2 \land (d_1 \lor d_2) \equiv b_2 \land x = 0 \quad (T) . \]
 Similarly, $c_2 \equiv 0 (T)$, so $d_2 \equiv 0 (T)$, as claimed.
- **Case 2.** $a_1 = x$ and $d_1 \leq y$. Then
 \[0 = 0 \lor 0 = (x \land b_3) \lor (x \land c_3) = (y \land b_3) \lor (y \land c_3) = b_3 \lor c_3 = d_3 \quad (T) \]
 as claimed.
- **Case 3.** $x = 0$ and $b_3 \leq y$. Then
 \[0 = 0 \lor 0 = x \lor x = (x \land b_3) \lor ((x \land a_3) \lor a_2) \land a_1 \equiv (y \land b_3) \lor (((y \land a_3) \lor a_2) \land a_1) = b_3 \lor a_1 = d_3 \quad (T) \]
 as claimed. This completes the proof of the Claim. \(\Box\)

Now we complete the proof of Lemma 4. The relation $d_i \equiv 0$ obviously generates the tolerance T_i. Similarly we get T_2, and T_3.

Finally, let T be a tolerance relation satisfying $T > T_i$. Then we must have $x = y (T), x < y$, such that $[x, y]$ properly contains a T_i-block. We distinguish four cases according to which T_i-block $[x, y]$ contains.

- **Case 1.** The block $[u, 1]$. $x < u$ and $1 \leq y$ imply that, say, $x \leq a_2$ and $y = 1$. Thus $a_2 = 1 (T)$. Hence,
 \[0 = 0 \lor 0 = (c_1 \land a_2) \lor (c_3 \land a_2) \equiv (c_1 \land 1) \lor (c_3 \land 1) = d_1 \lor d_3 \quad (T) . \]
- **Case 2.** The block $[0, d_1]$. $x \leq 0$ and $d_1 \leq y$ imply that $x = 0$ and, say, $d_1 \lor d_3 \leq y$. Thus $0 = d_1 \lor d_3 \quad (T)$. Hence,
 \[a_2 = b_2 \land c_2 = (0 \lor b_2) \land (0 \lor c_2) \equiv ((d_1 \lor d_3) \lor b_2) \land ((d_1 \lor d_3) \lor c_2) = 1 \quad (T) . \]
- **Case 3.** The block $[a_2, d_1 \lor d_3]$. $x \leq a_2$ and $d_1 \lor d_3 \leq y$, but not both $x = a_2$ and $d_1 \lor d_3 = y$. Hence either $x = 0$ and $d_1 \lor d_3 \leq y$, in which case we proceed as in Case 2, or $x \leq a_2$ and $y = 1$, and we proceed as in Case 1.
- **Case 4.** The block $[a_3, d_1 \lor d_2]$. We proceed, by symmetry, as in Case 3.

Thus in all four cases we have $0 = d_1 \lor d_3 \quad (T)$ and $a_2 = 1 (T)$ or $0 = d_1 \lor d_2 \quad (T)$ and $a_3 = 1 (T)$. These, obviously, describe the tolerances $T_1 \lor T_3$ and $T_1 \lor T_2$, respectively.

Since $T_i \lor T_j, i \neq j$ are maximal tolerances, the proof of Lemma 4 is complete. \(\Box\)
5. The proof of the Theorem

Let us assume that there is an A in $M_3 \circ D$ with congruence Θ establishing this such that F can be represented as A/Φ and $T = \Theta/\Phi$ satisfies (i) all T-classes of A in M_3; (ii) A/T is in D.

It is easy to see that the lattice $A/\Theta \wedge \Phi$ and the congruences $\Phi/\Theta \wedge \Phi$ and $\Theta/\Theta \wedge \Phi$ satisfy the same conditions, and the new congruences are disjoint. In other words, we can assume that $\Theta \wedge \Phi = \omega$.

An element x of F is represented as a Φ congruence class, $C(x)$. A/T is distributive; since A/T_0 is isomorphic to M_3, $T > T_0$. Thus by the Claim in the proof of Lemma 4, we can assume that $\Theta = d_3 (T)$.

Hence there are elements $0' \in C(0)$ and $d_3' \in C(d_3)$ satisfying $0' = d_3'$ (Θ). We can obviously assume that $0' < d_3'$. Substituting an arbitrary $a_3' \in C(a_3)$ by $(0' \vee a_3') \wedge d_3'$, we obtain $a_3' \in C(a_3)$ satisfying $0' < a_3' < d_3'$. Similarly, we can choose $u' \in C(u)$, $b_3' \in C(b_3)$, and $c_3' \in C(c_3)$ satisfying $u', b_3', c_3' \in [a_3', d_3']$ and elements $a_3' \in C(a_3)$, $\; a_2' \in C(a_2)$ in $[0', u']$.

Now it is easy to see that the elements $0'$, a_1', a_2', a_3', u', b_3', c_3', and d_3' form a sublattice of A isomorphic to the interval $[0, d_3]$ of F. Indeed, the map $\phi : x \rightarrow x'$ is obviously one-to-one. Since $0' = d_3'$ (Θ), all these elements belong to the same Θ class. We have to show that the \vee and \wedge work properly. As an example, let us show that $a_1' \vee a_2' = u'$. Indeed, $a_1' \vee a_2' = u'$ (Θ) since all these elements are in the same Θ class. On the other hand, $a_1' \vee a_2' = u'$ (Φ) since both $a_1' \vee a_2'$ and u' map onto u. Therefore, $a_1' \vee a_2' = u'$ ($\Theta \wedge \Phi$). Since $\Theta \wedge \Phi = \omega$, we conclude that $a_1' \vee a_2' = u'$ (ω), that is, $a_1' \vee a_2' = u'$, as claimed.

Since every Θ class is in M_3, we get that the interval $[0, d_3]$ of F is in M_3, an obvious contradiction which proves the Theorem.

It is obvious from the proof, that the Theorem holds for any lattice variety V in place of M_3 that does not contain the interval $[0, d_3]$ of F. The most general such variety is M_ω, the lattice variety generated by M_ω, the modular lattice of length two with countably infinite atoms.

References