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1. INTRODUCTION

In a group G the set of all subgroups. partially ordered by inclusion, is
a complete algebraic lattice which we denote by (G). A map t from {G)
to a complete lattice . is called a complete lattice homomorphism (or a
complete I-homomorphism) if for all non-empty subsets & of /(G) we have

<ﬂ X) = N\ XT and X|Xe¥ > =\ X~ (+)
Xe Xewr Ve S
Usually we shall write simply 7: G —» ¥ to denote the map t and speak of
a complete /-homomorphism from G to . We call 1 trivial if all subgroups
of G have the same image under t; and we call © proper if t is not trivial
and not injective. If (+) holds for all finite subsets %, then 7 is called a
lattice homomorphism (or I-homomorphism). An [~homomorphism from G
to the lattice /(G) of a group G is called a projectivity if it is a bijection. Of
course, a projectivity is always complete. A projectivity a: G — G is said to
be index-preserving if, for K< H< G with |H : K| finite.

|H  K|=|H":K"|

The existence of either a proper /-homomorphism from a finite group G
to some lattice or a4 non-index-preserving projectivity of G imposes severe
restrictions on the structure of G (seec [91). In this work we consider com-
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plete /-homomorphisms of non-periodic groups. Our aim is to give some
general conditions satisfied by a group G which guarantee that every non-
trivial complete /-homomorphism of G is injective and every complete
l-epimorphism from a group G to G (#1) is necessarily an index-
preserving projectivity.

To be able to state our main results we need some notation and defini-
tions. If H < G, then [G/H] denotes the lattice of all subgroups of G con-
taining H; and [G/H] is said to be non-periodic if there is an element ge G
such that |{g>: Hn {g>| is infinite. We write H <, G if H is a Dedekind
subgroup of G (see [17]). Suppose that H<,G. If for all ge G and sub-
groups K such that

H<K<{(H,g)>=1L,
say,
|L : K| is finite if and only if [L/K] is finite,

then we write H <, G and say that H is D-embedded in G. A group G is
called modular if I(G) is a modular lattice. Suppose that a group G has an
ascending normal series whose factors are locally finite or abelian. Then we
define the Hirsch length h(G) of G to be the sum of the torsion-free ranks
of the abelian factors. Thus A(G) is an invariant of G. Our main results are
then contained in

THEOREM A. Let 0 G— G ( # 1) be a complete l-epimorphism of groups,
& a complete lattice and t: G — ¥ a non-trivial complete I-homomorphism.
Suppose that H<,, G and that H has an ascending normal series with factors
locally finite or abelian. If

(i) h(HY=3 or

(i) h(H)=2 and either H is modular or [G/H is non-periodic, then
(a) o is an index-preserving projectivity and
(b) 1 is injective.

An idea used by Ivanov [5] for handling certain infinite systems of
algebraic equations will play an important role in our argument (see
Section 3). Several known criteria for /-homomorphisms to be injective or

for projectivities to be index-preserving will be used many times and for
convenience we list them here.

1.1. Let t: G- & be an -homomorphism and let H be a subgroup
of G. If t is injective on the intervals [ {H, ¢g>/H], for all ge G, then t is
injective on [G/H] [ 15, Proposition 2.17.
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1.2. Let 0: G — G be a projectivity. If o is index-preserving on all the
cyelic subgroups of G, then o is index-preserving on G [12, Corollary 3].

1.3. Let N=Ny<N, < - <N, =G be a finite chain of subgroups
of G with cach N, <,G and let ©: G— & be an l-homomorphism. If © is
injective on all intervals [N, /N,], then t is injective on [G/N] [15,
Corollary 2.2(i)].

14. Let o: G- G be a projectivity and let N be a quasinormal sub-
group of G. If ¢ is index-preserving on N and on all cyclic intervals
[{g>N/N] of [G/N], then o is index-preserving on G [13, Theorem 2.7].

1.5. Let 1: G- & be a complete l-epimorphism, where G is a non-
periodic group and & is a non-trivial complete lattice, and let H be a locally
finite Dedekind subgroup of G. Then |, is injective. Moreover, if & is the
lattice of a group, then Tl is index-preserving [ 15, Proposition 3.17).

1.6. Let ©: G— ¥ be a complete l-epimorphism, where G is a non-
periodic locally polyvcyclic group and & is a non-trivial complete lattice. Then
(1) 1 is injective on all periodic subgroups of G; and
(it) 1 is injective on G if G contains two elements a, b of infinite order
with {ayn{b>=1.
Moreover, if & is the lattice of a group, then T is index-preserving on the

periodic subgroups of G; and t is index-preserving on G if the hypothesis of
(i) holds [ 15, Proposition 3.27.

We define classes I, ©Q of groups as follows. A group G belongs to I if
every non-trivial complete /~homomorphism . G - ¢ (& a complete
lattice) is injective; and a group G belongs to @ if every projectivity
o: G — G is index-preserving. Then, by 1.1 and 1.2,

Gel(GeQ) if and only if for each ge G the restriction
Tlegs (Oleg,) is injective (index-preserving). (1)

Easy consequences are
Li'=1r, L =Q. (2)

(For the definition of L and other closure operations, see [77].)
When dealing with a non-trivial complete /-homomorphism 7 of a non-
periodic group G, it is important to recall the useful fact that

the lower kernel of © is 1. (3)
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“(See [9, Theorem 5, p. 637].) In particular T cannot be trivial on the non-
periodic sections of G. A consequence of this is the following. Let I} be the
class of non-periodic groups in I". Then

pry =T,

For, let 1 G— ¥ be a non-trivial complete /-homomorphism and let
1 X,|2< B} be an ascending I,-series of G. Suppose for a contradiction
that 7 is not injective and choose « minimal such that t|, is not injective.
Thus «>1 (assuming X,=1) and z cannot be a limit ordinal by (1).
Therefore 7 is injective on X, | and on X, /X, _, (being non-trivial on this
quotient). Then t is injective on X,, by 1.3, a contradiction. Similarly,

PQ =0,
using 1.4.

Let G, =N N, with N, <G, N,el'| (i=1,2) and let ©: G —> & be a
non-trivial complete -homomorphism. Then t is injective on each N,
hence on G/N, and therefore on G, again by 1.3. Similarly, using 1.4, we
find that Ge Q2 if N|, N,e Q. Combining these results with (2), we obtain

N =T, NQ=Q.

Next we point out that if' H, K are non-periodic groups, then the direct
product G=HxK belongs to I'|. For, let t be a non-trivial complete
I-homomorphism of G. Every periodic element x of H belongs to a non-
periodic abelian subgroup of G; and every non-periodic element x of H
belongs to an abelian subgroup of G of Hirsch length 2. Thus, by 1.6, t is
injective on {x ) in both cases and hence 7!, is injective, by 1.1. Similarly
7|y is injective. Therefore 7 is injective, by 1.3, and so Ge I,. In the same
way we find that Ge Q.

A few words about cyclic subgroups will be appropriate. Firstif t: G » G
is an /-epimorphism, then T maps cyclic subgroups of G to cyclic subgroups
of G. Moreover, if X is an infinite cyclic subgroup of G and t is complete,
then either X* is an infinite cyclic subgroup of G or 7 is trivial, by (3).
Conversely. if 7 is complete and X is a cyclic subgroup of G, then there is
a cyclic subgroup X of G such that X" =X (see [9, p. 60, 61]).

The organization of the remaining sections is as follows. Section 2
contains preliminary results of a fairly general nature relating to complete
l-homomorphisms and projectivities. Then in Section 3 we consider a
critical case of Theorem A(b); and in Section4 we do the same for
Theorem A(a). Section 5 contains applications of the preceding results,
leading to the proof of Theorem A. Finally in Section 6 we establish some
examples (Theorems B and C) which indicate the necessity of the
hypotheses in Theorem A.
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Further notation. 1f . G —» ¥ is a complete /-epimorphism and Le ¥.
then L is the maximal subgroup of G which maps under 7 to L. If ¢ is
the lattice of a group G, then we write H* = H for all H < G. For any group
G, P(G) denotes the maximal normal periodic subgroup of G. By [13,
Proposition 1.12], P(G) is also the join of all the periodic Dedekind sub-
groups of G. The class of groups which possess an ascending normal series
with the factors abelian or locally finite will be denoted by X. The derived
length of a soluble group G is denoted by d(G); and C (H) is the

a SUILUIL g 1% (8L 8 L2 Lwie ) Y Wy, &l L)y

centralizer in a group G of a subgroup H. Also HY is the normal closure
of Hin G and H, is the intersection of the conjugates of H in G. The centre
of G is denoted by Z(G). The subgroup of G generated by the elements of
infinite order is denoted by a(G); and if A <G, then

aA)={gl geG.|<gr:{grnd|=%).

The multiplicative group of non-zero complex numbers is written as C*
and Z, denotes the positive integers. The set of positive prime divisors of
ne Z is denoted by n(#n).

2. PRELIMINARY RESULTS

We coliect together various results about compiete /~epimorphisms
between groups. Throughout the section:

G and G are groups and o: G -G denotes a complete
l-epimorphism from G 1o G.

LEmMMA 2.1. Let N<aG, N=N°", T=N,., and M=N° Then TG
and M <1 G.

Proof. Let L=(T°)"". Then T<L<N. By [15, Theorem 2.12], L <1 G
and so T=1L,1ie, T=L<1G. Now let

U=(Mg)".

Then N< U and, by [15, Theorem 29], U<G. Thus M<U and so
M: MG =1 (7 '

Regarding periodic radicals we have
LEMMA 2.2, If G # 1, then P (G)=P(G).
Proof. Clearly we may assume that G is not periodic. Also

P(G)<,G
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and therefore P°(G) < P(G). Hence
P(G)< P (G). (n

Conversely, P°"(G) is periodic. Let g be an element of infinite order in G.
Then

(g, P7(G))"= (& P(G)),
where (g> = {(g>° So g has infinite order. Choose
xelg, P(G)>=T,
say, with x of finite order. Then {x>° < P(G); hence
xeP(G)
and therefore P (G)=P(T) < T. It follows that
P7(G) <P(a(G)) < P(G).

Together with (1) this gives the desired result. |

When G is not periodic and P(G) is locally finite, then we can say much
more.

LemMA 2.3, Suppose that P(G)< G and P(G) is locally finite. Then o
induces an index-preserving projectivity from P(G) to P(G). In particular
P(G) is locally finite.

Proof. Since G is not periodic, it follows that G is not periodic and so
the lower kernel of ¢ is 1, by (3) in Section 1. Let

P(G)=K xKyx ---

be the maximal Hall decomposition of P(G), i.e., the orders of the elements
of K, (# 1) are relatively prime to the orders of the elements of K, all i # j,
and, for each i, K, cannot be expressed non-trivially as a direct product of
subgroups whose elements have relatively prime orders. Let

K,=K"".
By Lemma 2.2, P(G)=P""(G) and then, by [ 15, Proposition 1.4].
P(G)=K, x Kyx ---

is a maximal Hall decomposition of P(G).
If we can show that P(G) is locally finite, then 1.5 will complete our
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argument. Thus it suffices to show that each subgroup K, is locally finite.
Let K=K, and K= K,. We distinguish two cases.

(a) Suppose first that K is not locally cyclic. Assume, for a contra-
diction, that K is not locally finite. Then there are elements #,, ..., 4, in K
such that

T=7<h( . h,>

is not finite. Let T=T, x --- x T, be the maximal Hall decomposition of
the finite subgroup 7. If
T,=T7

J /

T

(the full preimage of T, under o],), then, again by [15, Proposition 1.4],
T=T,x - xT,. By Proposition 1.5 of the same paper, for some j, T,
must be a cyclic p-group, for some prime p, with T, infinite. Supposec

without loss of generality that j=1. We further distinguish two cases.

(i) Suppose that K has a maximal p-subgroup which is not locally
cyclic. Then T, lies in a finite non-cyclic p-subgroup F of K, and F=F""
is finite, again by [15, Proposition 1.5]. But F> T, and T, is infinite, a
contradiction.

(iil) Now suppose that all the maximal p-subgroups of K are
locally cyclic. Since we are assuming that K is not locally cyclic, it follows
that K is not a p-group; and there is a maximal p-subgroup S of K and a
p'-element e K such that [S, 7]# 1. Choose Ze § such that [z, 7] # 1.
Then the finite subgroup <7, Z, ¥» = F, say, is not the direct product of a
p-group and a p'-group. Let §, be a Sylow p-subgroup of F containing 7.
Thus if

F=R, x ---xR

N

is the maximal Hall decomposition of F, then S, < R, (say) and R, cannot
be cyclic. Again by [15, Proposition 1.5, R?" is finite and contains 7, a
contradiction as before.

(b)  Now suppose that K is locally cyelic. Thus K is a p-group, for
some prime p. Choose P<K with P (#1) finite and let P=P°". Also
choose ge G with |g| infinite and ge G such that {(g>”=<{g>. So |g| is
infinite, K < G, and

K=K"=«gG.

We have P<aG and P=P{P, g>. By Lemma 2.2,

P=PL{P, g>
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and so P<a{P, g>. Let P, be the upper kernel of ¢|,. Then Py, <a P; and
P, is cyclic of prime power order, by [9, Proposition 3.1, p. 59]. Thus P§*’
is locally finite and then o is injective and index-preserving on PS*’, by 1.5,
Therefore Py= P$*’ is a p-group.

Consider the induced /~epimorphism,

<P’ g>//P()_><F7(Q>/P (;C/)a

in which P/P,— 1. The lower kernel of this homomorphism is 1, by (3) in
Section 1, and therefore P= P,. Thus K is a locally cyclic p-group and
hence locally finite. |

We shall need the folowing easy consequence of [9, Theorem 4, p. 617].

LEMMA 2.4. Suppose that G is a non-trivial torsion-free locally cyelic
group. Then G is also torsion-free and locally cyclic.

We pass now to a consideration of preimages of residually finite
p-groups.

LEMMA 2.5. Suppose that G is residually a finite p-group (p a prime), but
that G is not periodic and not locally cyclic. Then

(1) forall geG, [{g):<{g")|=1{g>":<{g">"|, and
(i1) G is residually a finite p-group.
Also there is a function f such that if G is soluble with d(G)=n, then
(1) G is soluble with d(G) < f(n).

Proof. (i) Clearly we may assume that G is finitely generated; and then
there are normal subgroups N, (i€ A) of G with (), N, =1 and each G/N,
a finite p-group of exponent > p. not cyclic. and (when p=2) not
generalized quaternion.

By [15, Corollary 1.3], N, = N¢" has finite index in G. Let T, =(N,),.
By Lemma 2.1, T, <u G and so ¢ induces an /-epimorphism

G/T,—»G/T,

between finite groups. Here T77/T, is the lower kernel and normal in G/T';;
hence T7" =T, ie.,

the lower kernel is 1. (2)
Let S/T, be a Sylow p-subgroup of G/T; and put S=S"". By [9, Proposi-

tion 3.9, p. 82], S/T, is a p-group and non-cyclic since §/T; is non-cyclic.
Thus if ¢ does not induce a projectivity from S/T; to §/T,. then S/T, must
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Since (m/n)A=A, it follows that A>Z[1/mn] <G and so we may
assume that

A=7[1/mn].
We distinguish two possibilities:
Case 1. Suppose that pf mn. Thus pA < A. Let
C<fg>(A//17A ) = <gl>

By 1.6, t is injective on A/pA and then it is easy to see that t must be
injective on

ALgHNpA g™ ) =C,x C,.
Hence
(ghHT > g (2)
However, (/, p)=1 and so
(g =Kg) ngH =g ngh  (by (1))
=({g"n<gH)=<g")",
contradicting (2).

Case 2. Suppose now that p|mn. Then pA = A. Replacing ¢ by g ' if
necessary, we may suppose that m > 2. Thus if n >0, then

m? Tm” Ch4 40t #E 4L (3)

If n<0 and p # 2, we may replace g by g’ and then (3) holds. On the other
hand, if p=2 and m+n= +1, it is easy to see that m' +n’# +1 and,
replacing g by g', again (3) holds. Thus in all cases there is a prime ¢
dividing m” ' +m” *n+ - +n” .

By Lemma 3.1,

g f mn and qf(m-—n). (4)
Thus |A/qA| =¢ and A/gA is generated by 1+ gA. Since

m m—n
Z 1=

n n

¢qA

(by (4)), we see that

g acts non-trivially on AjgA.
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group of G containing g with K not cyclic. Then K is residually a finite
g-group and applying (i) to K=K°" gives {g)> = {g‘), a contradiction.
Therefore (5) is true. It follows from [9, Theorem 3, p. 357, that G~ G and
hence G is residually a finite p-group.

Now suppose that G/N; is not cyclic for some . Then we can find a non-
empty subset 4, of A such that, for all Le A4,, G/N, is not cyclic, has expo-
nent > p’, is not generalized quaternion in case p=2, and Nies, N, =1
Fix feA, and let |G: N,|=p* Let N,=N?"and T, =(N,), as in (i). For
any ge G\N; and (g7 ={g).

¢ has order p” modulo N,

for some 1 < f<a We claim that

gy : (g > =p (6)

For. this is clear if |¢] = oc. Thus suppose that |g| is finite. Then |g| is
finite and so g has p-power order. Let S/T; be a Sylow p-subgroup of G/T,
containing g and let S=S". As in (i), S/T, is a finite p-group and ¢
induces a projectivity from S/T, to S/T,. Since p” divides the order of g
modulo T, p” divides the order of g modulo T.. Hence p”||g| and (6)
follows.

By (1),
[<g> g > =1¢g> g

and therefore g”" € N,. Thus
el <N,

and so G”<T,. Therefore G/T, is a finite p-group and, since
Niea, T, =1, G is residually a finite p-group.

(iit)  Finally suppose that G is soluble with derived length n. Arguing
as in (i) and adopting the notation used there, we have G/T; is a finite
p-group, all 1e A, and

( T,=1

AC A
If ¢ is not injective on G/T;, then d(G/T.)<2, by [9, Proposition 3.4,
p. 70]. Otherwise if ¢ is injective on G/T,, then d(G/T,) is bounded by a
function of n, by [11]. Thus d(G) is bounded by a function of n. ||

Remark. Under the hypotheses of Lemma 2.5, (i) and (ii) show that ¢
is injective and index-preserving on the periodic subgroups of G (using 1.1
and 1.2).
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Now we impose additional hypotheses on G. Recall that X denotes the
class of groups which possess an ascending normal series with the factors
abelian or locally finite.

LEMMA 2.6. Let P=P(G), P=P(G).

(i) Suppose that G e X with i(G)= 1. Then a|, is an index-preserving
projectivity from P 10 P. Also either G/P and G/P are torsion-free locally
eyclic groups or o is an index-preserving projectivity and G/P and G/P are
extensions of torsion-free locally cyclic groups by an involution which acts by
inversion. And if G is soluble, then so is G with d(G) bounded by a function
of d(G).

(i) If G is nilpotent with W(G)=2, then ¢ is an index-preserving
projectivity; and o is induced by an isomorphism from G to G if G is abelian.

Proof. (1) The first statement follows from Lemma 2.3. For the rest, by
Lemma 2.3 and [11], we may assume that P=P=1.

Let A be a maximal normal abelian subgroup of G. Then 4 (#1) is
torsion-free and locally cyclic. Also G/A4 is locally finite and if C= Cz(A4),
then |G :C|<2. Moreover, ' is locally finite and hence 1. Therefore
C=A.1If A=G, then G is torsion-free and locally cyclic, by Lemma 2.4.

Thus suppose that |G : A| =2. If ge G 4, then ¢ must act by inversion
on A and so |g| = 2. Using a local argument, it follows from Lemma 2.5(i)
and (ii) that if {g>?={g>, then |g|=2. Now we may assume that G is
finitely generated, so G is an infinite dihedral group. As in the proof of
Lemma 2.5(ii), there are subgroups T, <G such that T, <A, G/T, is a
dihedral 2-group,

(T =1
and, with T,=T7", we have T,<G, G/T; is a finite 2-group, and ¢
induces an /-epimorphism from G/T, to G/T ;.

If ¢ is not injective on G/T;, then G/T, must be generalized quaternion,
by [9, Proposition 3.4, p. 7071, and we obtain a contradiction as in Lem-
ma 2.5(i). Thus ¢ induces a projectivity from G/T, to G/T;. Since G/T; is
generated by two involutions, so is G/T,; ic., G/T, i1s a dihedral 2-group,
for all 4.

Let A=A"". Then A < G, A is abelian, and if a€ A, then aa®e T, all 4.
Hence a*=a ' Let K< H< A with |H: K| = p (prime). Then {H, g>/K
is dihedral of order 2p and ¢ must induce a projectivity from (H, g>/K
to (H, g>/K. Therefore thesc two quotients are isomorphic and hencc
|H:K|=p. Thus g{, is injective and index-preserving and therefore so is
o (by 1.3 and 1.4). Finally, we see that A is infinite cyclic and G is infinite
dihedral.
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(ii} To show that ¢ is an index-preserving projectivity, we may
assume that G is finitely generated (by 1.1 and 1.2). Also, by Lemma 2.3,
we may assume that P= P=1. Then G is residually a finite p-group, for all
primes p (see [3]); and, by Lemma 2.5(i), it follows that ¢ is an index-
preserving projectivity.

That ¢ is induced by an isomorphism when G is abelian is a well-known
theorem of Baer (see [9, Theorem 3, p. 357). 1

A further case when the solubility of G can be deduced from that
of G is

LemMma 2.7.  Suppose that G is soluble, residually finite, und not periodic.
Then G is soluble and d(G) is bounded by a function of d(G).

Proof. By Lemma 2.6(i), we may assume that 4(G) > 2. By hypothesis
there are normal subgroups N, (zeA) of G with G/N, finite and
N, N,=1. Also we may assume that each G/N, is not cyclic (by
Lemma 2.6(i1)).

Let C,/N, be the intersection of all the maximal cyclic subgroups of
G/N,. Thus [G, C,;]<N,. Take C,=C9". By [15, Corollary 1.3], |G : C,]
is finite. Let T,=(C,),. Then T,<aG, by Lemma2.1. Now the lower
kernel of g/, is contained in C,/T; and is normal in G/T,. Therefore the
lower kernel is 1. It follows from [9, Proposition 3.8, p. 73; 11] that G/T;
is soluble with d(G/T,) bounded by a function f of d(G)=n, say.

Let 7=, T,and C=(),C,. So [G,C]=1 and hence [G, T]=1. Let
7=, T,. Thus G/T is soluble and (G)< f(n). If T is not periodic, then
T is not periodic and Lemma 2.6 applied to ¢| gives T soluble with d(T')
bounded. On the other hand, if 7 is periodic, then T<P(G)= P, say;
and, by Lemma 2.3, |, is a projectivity from P to P(G), hence T is
metabelian. ||

Recent work (as yet unpublished) by G. Busetto and F. Napolitani
shows that f(n)=4n suffices.

3. LAaTTiICE HOMOMORPHISMS AND INJECTIVITY

In our main results the critical situation is that of an infinite cyclic exten-
sion G of an abelian group 4 and we begin with the case #(A4)= 1. We need
information about the G-action on certain chief factors of prime order lying
in A. The following elementary fact will be required.
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LemMa 3.1. Let m, n be relatively prime integers and p be a prime
dividing m. If ¢ is a prime dividing
m? m” ht oo+n” ),
then g f mn and q f (m —n).

Proof. The first statement is clear. Assume, for a contradiction, that
g|(m—mn). Then, for all £, 1 <k<p—1,

g divides (km” *n* ' —km” * 'n*).

Adding for all & gives
g divides (m” '+ m? ‘n4+ - +mn” T —(p—1)n" ")

and therefore by hypothesis ¢|pn” ‘. Since p|m and ¢} mn, g+ p. Then
g|n, a contradiction. ||

Now we can prove

THEOREM 3.2. Let G be a group, A<aG with A abelian, h(A)=1 and
G/A infinite cvcelic. If T is a non-trivial complete I-homomorphism from G to
some complete lartice, then t|,. , is injective.

Proof. By (3) in Section 1, the lower kernel of 7 is | and so 7|, , is
non-trivial. In particular, if 7 is the torsion subgroup of A, then 1|,
is non-trivial and so we may assume that 7= 1.

Suppose, for a contradiction, that t|, , is not injective. For some
clement ¢ge G we have

G=Ax{g)

and without loss of generality we may assume that
(gr'=<g"> (1)

for some prime p. Identify 4 with an additive subgroup of @ containing 1.
The conjugation action of ¢ on 4 is multiplication by some rational m/n
with (m,n)=1 Suppose that m/m= 41 and let aed, a#0. Then
H = {a, g> i1s metacyclic with two independent elements of infinite order
and t|,, is non-trivial. Thus 1|, is injective, by 1.6, contradicting (1). There-
fore we may assume that

min# +1.



LATTICE HOMOMORPHISMS 61

Since (m/n)A=A, it follows that A>Z[1/mn] <G and so we may
assume that

A=7[1/mn].
We distinguish two possibilities:
Case 1. Suppose that pf mn. Thus pA < A. Let
C<fg>(A//17A ) = <gl>

By 1.6, t is injective on A/pA and then it is easy to see that t must be
injective on

ALgHNpA g™ ) =C,x C,.
Hence
(ghHT > g (2)
However, (/, p)=1 and so
(g =Kg) ngH =g ngh  (by (1))
=({g"n<gH)=<g")",
contradicting (2).

Case 2. Suppose now that p|mn. Then pA = A. Replacing ¢ by g ' if
necessary, we may suppose that m > 2. Thus if n >0, then

m? Tm” Ch4 40t #E 4L (3)

If n<0 and p # 2, we may replace g by g’ and then (3) holds. On the other
hand, if p=2 and m+n= +1, it is easy to see that m' +n’# +1 and,
replacing g by g', again (3) holds. Thus in all cases there is a prime ¢
dividing m” ' +m” *n+ - +n” .

By Lemma 3.1,

g f mn and qf(m-—n). (4)
Thus |A/qA| =¢ and A/gA is generated by 1+ gA. Since

m m—n
Z 1=

n n

¢qA

(by (4)), we see that

g acts non-trivially on AjgA.
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However, (m/n)” —1=(m”—n")/n"e g4 and hence g” acts trivially on
AjqA. Therefore (¢4){g"> <G and G/(qA4){g”) is non-abelian of order
pq. A non-trivial -homomorphism of such a group is injective; and t is
injective on 4/¢A, by 1.6. Hence {g>"> {g”>", contradicting (1). |

In the situation of Theorem 3.2 we can show that, in fact, distinct
subgroups of G with the same image under t must lie in 4. This will
follow from

LEMMA 33, Let N<aG with G/N (#1) torsion-free and let T be u com-
plete I-homomorphism from G to some complete lattice such that T is
injective. If X # Y are subgroups of G with X*=Y~, then (X, Y > <N.

Proof.  Without loss of generality we may assume that X < Y and, by
choosing X to be the minimal preimage of X under 7, we have X <1 Y,
by [9, Theorem 1, p.58]. Now (YN)'=(XN)" and so XN=YN by
hypothesis. Therefore X~ N < Y~ N. Suppose, for a contradiction, that
Y £ N. Then X £ N, otherwise X" < N°, whereas Y* £ N' by hypothesis.

Choose xe X\ N and ye (Y N\ X. Then

Ni=XnNa{xH({X, y>nN)=G,
say, and
N,={X, y>nN=<G,.

Using bars to denote factors modulo N,, we have

Gy=N,x{x),

N, (#1) is cyclic, and {(x)=(,. Moreover, by hypothesis, 7 is injective
on {x) and so 7 is injective on N,, by 1.6. Therefore,

(XON)Y=(YNNYZNI >N =(XnN),

giving the required contradiction. ||

Combining Theorem 3.2 and Lemma 3.3 gives

COROLLARY 3.4.  Assume the hypotheses of Theorem 3.2 and let X # Y be
subgroups of G with XT=Y". Then (X, Y)><A.

In Section 6 we shall construct examples which show that, under the
hypotheses of Theorem 3.2, t need not be injective on 4. However, when
the torsion-free rank of A4 is at least 2 (ic., when A{A4)=2), then 1 has
to be injective. In order to prove this, we need a result of Ivanov [S,
Lemma 5 ]:
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LEMMA 3.5, Let EeC, E#£0, and let p be a prime. Then there is a
positive integer k, not divisible by p, such that

is not invertible in Z[ &, & '].
Then we have
THEOREM 3.6. Let G be a group, A<aG, with A abelian, {(A) =2 and

G/A infinite cyclic. If T is a non-trivial complete [-homomorphismn from G to
some complete lattice, then 1 is injective.

Proof. By (3) in Section 1, the lower kernel of 71is 1. Thus t|, is injec-
tive, by 1.6. Therefore, using 1.3, we may assume that 4 is torsion-free.
Assume, for a contradiction, that 7 is not injective. Then, by 1.1, there is
an element xe G, x# 1, and a prime p such that

xpr=<Kx"n (5)

Thus x¢ 4 and so {x>nA=1.
Let x(# 1) be any element of G satisfying (5). If k& is an integer not
divisible by p, then (as in the argument of case 1 of Theorem 3.2)

DT = (e (6)
Let «e A. We claim that
{xay = {xa)’ )" (7)
For,
yay'={x. A n{xay = (x AT (xa)’
=X Ay {xay) =L(xa)" >t (by (5)).

Also we have

Cays =cay " (8)

To see this,
({ad™ )y <la, x> nA ' ={a, X"y nA
=(a,x"ynA) =(ay ") (by (5)).
Therefore, since 1|, is injective,
>y

and (8) follows.

PO RES R
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Now suppose that ¢ # 1 and let k be an integer not divisible by p. Then

& pk
(X“a)'=x"¢,,

where
"szll I I ENT \]A.
Let
A= {ad.
We claim that
Ay = e >, )

For,
e xhay = (O (ayy
= (M t= (x>t (by (6)and (7)),
Intersecting with 4, gives
Ap =X e, > N AL = (x>0 AT
and, hence,
A=< o N d = (oo™

giving (9).
Next we show that

h(A,) is finite. (10)

For, by (8), there is a non-zero polynomial ¢ over Z such that

a" =1,

Let ¢ have degree m and let
Ay=<a" i <m—1).

Then A, is finitely generated and 4,/4, is periodic. Hence (10) is true.
For any integer &, let

gt)=1+1 4% 4 g qlo DA

(1 indeterminate) and from now on view A, as an <{x)»-module. Then A4,
embeds in

V=C®, A,
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a finite dimensional C-space, by (10). Let ; denote the non-singular linear
map induced by x on V. If p | k, then, by (9), there is an element

flyeZlet ']

such that
a=co-fili" ) =a-quly) L"),

Therefore g,(y) f,(77*) is the identity map on V. Thus if ¢ is an eigenvalue
of v, then we have

4(&) fulC7) =1,

qu&) 'eZ[&E ]
for all k not divisible by p, contradicting Lemma 3.5. ||

We conclude this section with a generalization of Ivanov’s main result
in [S].

THEOREM 3.7.  Let G be a non-periodic group and let H be a proper, non-
trivial subgroup of G such that the map

X—>HnX

(for all X< @) is an l-endomorphism of G. If He LX, then all the periodic
elements of G lie in H and form a subgroup and h(H)=1. Moreover, if
Ge X and H is torsion-free, then G is locally cyclic.

Remark. A subgroup of a group G has been called dually standard (d.s.)
if the map X+ Hn X (all X< G) is an /-endomorphism of G. Ivanov
established the special case of Theorem 3.7 when G is locally soluble and
torsion-free.

Proof of Theorem 3.7. Let t be the complete /-epimorphism defined by
X—HnX. Then H is the upper kernel of t and so H<1G, by [9.
Theorem 1, p. 58]. Since the lower kernel of 7 is 1 (by (3) in Section 1), we
must have G/H periodic and hence H is not periodic. Then, by Lemma 2.3,
r is injective on P(G), therefore P(G)< H and so P(G)=P(H). Thus we
may assume that P(G)=1.

If K< G, then clearly Hn K is a d.s. subgroup of K. Therefore, from now
on, we may assume that G is finitely generated and G/H is finite. Thus H
1s finitely generated and (assuming that H e £ X) we see that G € X. It suffices
to show that G is cyclic.
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Now H contains a torsion-free abelian subgroup A (# 1) with A < G. It
tollows, from 1.6, that the periodic elements of ¢ must lie in H. Choose

ge G\H. By Theorems 3.2 and 3.6, (g, 4>/A4 is finite. Thus A(4)=1, by
1.6, Since H/A is a d.s. subgroup of G/A4, it follows from what we have
already proved that H/A4 is periodic. Therefore #(H)=1 and then G is an
infinite cyclic group, by Corollary 2.6(i). |

If H is not torsion-free, then G need not be locally cyclic. For, let
G={uy>x<{h>,

where |a| = o and |h] = p (prime); and let
H="{a"yx<{h>,

where ¢ is a prime different from p. Then H is a d.s. subgroup of G. For,
if U, V<G, we must show that

HAUV=(HnUNHNV).

This is clear if U or ¥ lies in H. On the other hand, if W £ H, then
\W/W9 =q¢ and so Hn W= W< Thus our claim follows.

4, INDEX-PRESERVING PROJECTIVITIES

Suppose that the group G has a normal abelian subgroup 4 with G/A
infinite cyclic. If 7 1s a non-trivial complete /-homomorphism of G, then we
have seen that | , is injective if #/(A4)=1 (Theorem 3.2) and 7 is injective
if (A4)=2 (Theorem 3.6). Again these will be the critical cases in
Theorem A when (rying to show certain projectivities are index-preserving.
Indeed the principal results of this section should be compared with
Theorems 3.2 and 3.6.

THEOREM 4.1. Let G be a group, A<a G, A abelian with h(A)=1 and
G/A infinite cyclic. Then every non-trivial complete l-epimorphism from G to
a group G is index-preserving on G/A.

In order to prove this theorem we need a result about algebraic numbers

bearing the flavour of Lemma 3.5, This in turn requires Lemma § of [5]
which we now state.

LEMMA 4.2, Let 7, denote the additive semigroup of positive integers.
Suppose that ¢,. ... @, are homomorphisms from Z , to the multiplicative
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group E* of some field E and let zeZ ,. Suppose also that there are

elements ¢, ..., c,e E* such that
crex)+ - +ep(x)=0

for all xeZ | with (x, z)= 1. Then there exists a partition

f

,..sl=P,u--uP,

with P; non-empty (1 <i<w) such that

(1) 3cpc;0Ax)=0, for all x relatively prime to =; and

(it} if j, ke P, (any i), then there is a zth root ¢ of 1 in E such that
@ ()= ilx)- &

Jorall xeZ .
In this situation we say that ¢, and ¢, differ by a zth root of 1. Then we

can prove
Suppose that ¢
Z[& ¢ =212 471 =S,

say. Let w be a non-identity element of the restricted symmetric group on the

. A are non-periodic elements of C* with

LEMMA 4.3.

set of all primes and let
k— k'

be the unique extension of m to an automorphism of the multiplicative semi-
group Z . For k, leZ ,, write

o+t
T =R T

S EU
R TI

(Note that numerator and denominator here are non-zero.) Then there are
positive integers k, | such that either n, ¢S or n, | ¢ S.
Proof. Suppose, for a contradiction, that the lemma is false. Then, for

all k. le?
it 'TAJ] es.

First we show that
and 4 are algebraic numbers.

g
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Clearly ()= Q(4) and so ¢ is algebraic if and only if / is algebraic.
Suppose, for a contradiction, that & and 2 are transcendental. Then
_ai+b
G+ d

e

(3)

where a, b, ¢, de Z. (See [ 10, Section 63, p. 198].) By hypothesis there are
prime numbers p < ¢ such that p'=g¢. Taking k=k"=1and [=p, ' =¢q, we
have

T+E+8+ 487 "=l 44274 -+ 27 g, (4)

Also n, ,= g(4)/A", where g(4)e Z[ 4] and s >0. Substituting for ¢ from (3)
in (4), we obtain

[(cA+d) "+ (al+b)Nci+d) "+ - +(arit+h) 'TA
=(cA+d) (14 A+a74 - +07 ) g(a) (5)

Thus s 0. If s> 1, we may assume that 4 does not divide g(4) and there-
fore s < p— 1. But then the two sides of (5) do not have the same degree.
Thus (2) follows.

Let Ky =@Q(<). By [ 1, Theorem 20.14, p. 1307, there is a finite extension
field of K, say K, with ring / of integers such that every element { of K|,
can be written as a quotient {,/{, with {,, {, relatively prime integers of
I Thus

E=¢,/E, and f= 4y [ As
Let
- :gtl/ 1A _}_‘:11/ Z'Afé'*‘ +;v(2/ 1)k (6)
and
(51\7’//:2(1/' 1»/\»'_}_/1([/' 2)A'/~ué'+ Jr/;v(z/’ DA
Then 7y, and 9, are non-zero elements of /; and
1 +ék+52k+ R 1)k :}'/\»/,”f'g/' k.
I S D 7S
We claim that, for all k, /e 7, ,
v and & &, are relatively prime. (7}

For, if this is not the case, then there is a prime ideal P of / containing 7,
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and &,¢&,. Thus P contains &, or &, and suppose, without loss of generality,
that &, € P. Then from (6) it follows that ¢, € P, contradicting the fact that
&, and &, are relatively prime. Therefore (7) is true and similarly

0, and 4,4, are relatively prime, (8)

forall k', I'e 7, .
Next we prove that

/O 18 A unit of 7, (9)
for all k, le Z .. For, we can write
1""/</‘5k'/1’:P1"‘P,-Q11"‘Q\1~ (10)

where P,, Q; are prime ideals of /, P, # Q, for all i, j, and

¥y

Tk € ﬂ P.owre() Q.

i=1 j=1

By (1),

o W Lkys xU- Ok - Q_ 7r; 5 |
Mo =7ty ) s eS=Z[+,+ ]

Therefore 5, , = f(4,, A,)/A1'45, for some f(4,, A)eZ[4,. 4], m, n=0.
Then from (10),

Pl"’P,./ﬂ.’]”/ki!_,I’ rl)k'+n:Q1 Qsé’(g[ 1'/\:/‘(/:17/12)-

If =1, then each Q, contains 4,4, along with ., contradicting (8).
Therefore s = 0. Similarly, since

e €S=2[¢7'0,

we have r=0. Thus (9) follows from (10).
The major step now is to show that

&y, &5, A, and 4, are units of 1. (1)

Then it will follow that ¢ and A are also units of /. To prove (11), let E be
the normal closure of K over @. By (9), 7.,/0,, 1s a unit in the ring of
integers of £, for all k, /e Z _ . Hence, writing N for the norm of E/Q, we
have

N(ye)= £ N, (12)

Let I'={7,,..1,} be the Galois group of E/Q and write

(&) =S T,(&y) =

¥

p
et

2
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Then from (6)

where

Similarly, with z,(7,)=A,; and 7,(2:)=45;.
[’ -~
N@yr)= 2 P,k
j=1
where
v (k') = ﬁ AR DR = N RN TR e 2.
foe ]

(Observe that / can be arbitrary, but the maps ¢,, zZ, depend on /, /',
respectively.)

Let &, be the smallest even positive integer such that &k, =k, and let = be
the product of the primes p for which p'#p. For all positive integers &
relatively prime to z, we have (ky k) =k k. For these values of k, define

@, (kY= (kok) =@, (k)" <<,
Wok) = (kok) =, (kY 1<l
Then
@ k), (ke . (13)

Therefore, from (12),

for all k relatively prime to z.
Now choose />/". Then, by Lemma 4.2, there are integers j,, j,, | < j, #
J»</, such that ¢, and ¢, differ by a zth root of 1. Thus, by (13),

@ )= (ro,/z(l ).
Therefore,

N(él)(/' Jko N(éﬁ‘))(/l I)/\u:N(fl)(/ 2)ka N(f;)”] I)/«n;
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N(él)(h ke N(éz)(/r ko

and hence

Similarly choosing /< /', we obtain

N(i,) = + N(iy). (15)

Again by Lemma 4.2 there are integers j,, j,, 1 </, </ 1< j,</', such
that ¢; and ¢, differ by a zth root of 1. Thus, from (13), we have

‘P}/I(l):‘///:(l)l.
and (14) and (15) then give
N(gl)(/ l)ko:N(/:])l/’ - I)Ao.

Choosing /=1"#1, we get N(&,)= + N(4,). Then choosing /# /', it follows
that

N(E)) = iI:N(M);

and therefore, by (14) and (15),

Thus (11) is proved and so
&, A are units of L

Finally we see now that S is a free additive group of finite rank (equal
to the degree of ¢ over 7). Let p be a prime such that p’=¢ # p and let
S=§/pS, a finite ring of characteristic p. By our initial assumption (1),

ii,., is an invertible element of S. (16)

But there are integers n,, n,e Z . such that
5»11 — )trz'z — T

Choose k=n,#n,. Then

k' =n\n,
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and taking /=p (and hence /' =gq), we have
e = pligl =0,
contradicting (16). This concludes the proof of Lemma 4.3. |

Now we can prove the main result of this section.

Proof of Theorem 4.1. We have 4 <G with 4 abelian, #(A4)>= 1, and
G/A infinite cyclic. We must show that any complete /-epimorphism ¢ from
G 1o a group G ( # 1) is index-preserving on G/A. By Theorems 3.2 and 3.6,
6| 4 is injective.

Let bars denote images of subgroups of G under ¢. If B is any subgroup
of A which is normal in G, then B<a G, by [13, Proposition 1.6]. Thus we
may assume that 4 is torsion-free and so A is also torsion-free and there-
fore abelian ([6; see also 9, Proposition 1.12, p. 19]). Then h(A4)=h(A4)
and A <1 G. Also, by Theorem 3.6, ¢ is a projectivity if #(A4)>2; and in this
case o, is induced by an isomorphism A4 — A, by Baer’s theorem (see [9,
Theorem 3, p. 35]). Let

G=A4x{g) and G=Ax{g>,

where (g>={g>". We may assume that 4 is a cyclic {g>-module,
generated by a,. say. Suppose that /i(4) is infinite. Then the elements

af (ieZ)

are independent and so A is free abelian. Since, for any prime p, G/47 is
residually finite [4], there is a normal subgroup V of G with A7 <V < 4
and A/V finite. Then ¥ <aG and, since G/V is polycyclic, o preserves
p-indices in G/V [13, Corollary 2.10(ii)]. Thus ¢ is index-preserving on
G/A, as required.

From now on we may assume that

h(A) is finite
and, by induction on A(A), that
A is rationally irreducible.

Then A is divisible by only finitely many primes. (See, for example, the
argument in [4, pp. 596, 597].) On the other hand,

if '@ is p-singular on G/A, then A is p-divisible.

For, if 47 < A, then 4/47 is finitc and non-trivial and so ¢ is injective on
G/A” (by 1.5) and preserves p-indices on G/47 [13, Corollary 2.10(ii)].
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hence on G/A. In particular |, is singular for at most finitely many
primes.
Denote the g-action on A4 by 6. Then we may assume that, for all e Z,
1#0,
(1 -89, is injective. (17)

For, if not, there exists an element « € A, « # 1, such that

(gha)y=Kg"Hxay=C, xC,

and then, by 1.6, ¢ is index-preserving on {g’, ¢, therefore on (g and
hence on G/A.
For each ke Z ., there exists a unique &’ e Z _ such that

(ghH7=<g">.

The map k> k' is an automorphism of the multiplicative semigroup 7
induced by a permuation of the positive primes with support equal to the
(finite) set of primes for which o], is singular. (See [2].) Choose any
acAand keZ . Then

(ghay =<g"b>
for some he A. Now, with (a)>" = {a),
(g ay={ghay =gk ghayT
=<5 &by =g" . h).

Therefore,
(g, ay=<{gh) (18)

Denote the g-action on 4 by . Choose /e Z . and let
H={g (ga)>={g all +0* +87 + ... +0" "5)>. (19)
So
Ho={g (g"h) > =Cg b(1+0"+0% + ... 40" D)5 (20)
We distinguish the cases #(A)=1 and #(A4)=2:

Case 1. Suppose that h(4)=1. We may consider 4 and 4 embedded
(as additive subgroups) in @ with 1e 4 n A. Then 6 is multiplication in A4
by a rational number m/n and 0 is multiplication in A by a rational m, /n,.
We suppose that (m, n)=(m,, n,)=1. By (17),

m/n# + 1.
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Clearly mnA = A4 and m,n, A=A. Since U=7{1/mn]< A4 and U< G, we
may assume that A = U.
Let B< A with B<aG. If B= Bo*, then we find B< 4 and

({(¢&B)nAlg=8B

Hence B={g, B)n 4 <(.
We claim that

n(mn)=mn(mn,) (21)

For, let B<aG, B<A. Then B<aG and so m,;n,B=B. Also, for any
prime p,

pB=B il and only if pB= B. (22)

For, if pB < B, then ¢ is index-preserving on B/pB and if pB < B, then ¢ is
index-preserving on B/B (pB)c*, whose image under o is B/pB (both by
1.6). Therefore (22) follows and by choosing B= A4, we see that n(m n,) <
n(mn). Conversely, let pen(mn) and put B=Z[1/m,n,] < A. Then B< G,
B=Bo* <G, and B< A. Thus pB= B and so p|m, n,, by (22). Hence (21)
holds.

Observe that if a prime p J mn, then it follows easily that of , preserves
all p-indices (using 1.5). Now suppose that some p-index (p prime) in A
maps under ¢ to a g-index (g prime, g # p) in A. Then, by above, p|mn.
Also g|mn. For otherwise o], preserves g-indices, while there exists ue A
(a #0) such that

(payo=<{qayo=q4({aya),

giving {ayo=g({a)a), a contradiction.
Now, by (19),

=& all+ 0540 + - 407 1K) >a>

/'_ }’l“ l)/c+n(/ Z;An7/<+ +I7l
&g’ “ ntl Dk
B Uk gt Dk -k
(s -

r

where r is a n(mn)-number. Notice that the numerator in the inner bracket
of (23) is relatively prime to mn and |, preserves such indices. Also, from
(18), b= au, where u is a unit in S=Z[1/mn] and hence

B(L+ 0K + 0% 4 ... 4 g 1)

=all +(m, /n)* +m,/m)* + -+ (mm)" "
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Substituting in (20), comparing with (23) and putting &= 1, we obtain

(1+ (m/n)k+ (m,/n)“ 4o+ (m/n)” 'l'k)S
=1+ (my /n)F 4+ (my iV + -+ (m, im0 RS,

Then to avoid contradicting Lemma 4.3 (with & =m/n, A=m,/n,), we must
have k =K', for all ke Z , and hence o], , 1s index-preserving,

Case 2. Suppose now that #(A)>=2. Then o], is induced by an
isomorphism A — 4 which we also denote by 0. From (19), H =
(g ac "L+ 0" +0%+ ... +0Y "> Then from (18) and (20) we
obtain

ac (14084 0%+ - 409 kg -7{g)>
—a(1+ 05 +0% 4 .. +07 V)7 g

Thus

a(l+@*+ ¢+ - +o" "My 7{g>
U+M+wk 0 TR T8, (24)

where @ =a 'fo. Also the isomorphism o: 4 — 4 extends to a C-iso-
morphism (again denoted by o) from

V=A®.C to FV=A®,C.

and we write #=v0o. all e V. Moreover, V, I become C<g>, C{(g)-
spaces, respectively, and we continue to denote the g, g-actions on V, V
by 0. 8.

Then we claim that Eq. (24) holds for all ae V. To sce this, let fe V.
£#0. and let I be a basis for C over Q. Then

r= Z r.&7,
el
where ©.€ 4®, Q. Choose neZ , such that, for all ye /. nv. e A. (Here
we identify 4 with A® 1 and 4 with 4®1.) Since 0, it follows that
r#0 and we can find 7 such that v #0. Recall that 4 is rationally
irreducible as Z<{ g>-module and hence cach non-zcro element « of A
generates A®, @ as Q< gd-module. Therefore the annihilator of « in
1 g> coincides with the annihilator of A® . Q in Q@< g>. It follows that
ne— ne. defines a Z{ g »-isomorphism

(ne) Z{gy — (nv.) Z<{g>
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and hence
e, g = (v, ) (25)
in the split extension V' x {g>. Also o restricts to a projectivity
{ne,, gy —<ni, g). (26)
Similarly, no, > nt defines a Z{gp-isomorphism from (ni,)Z{g) to
(nt) Z<{g>. Thus
(b, 8= (ni, &) (27)
in x <{g> Combining (25), (26), and (27), we obtain a projectivity
{ne, gy = {ni, g

Therefore the argument establishing (24) shows that (24) remains valid
with a replaced by s, and then, dividing by n, also with 4 replaced by .
Now let ve V. Then

v is an eigenvector for 0 if and only if ¢ is an eigenvector for
0; moreover, if &, 4 are eigenvalues corresponding to eigen-
vectors v, U, respectively, then Z[E. ¢ '1=7[4/ '] (28)

For, take k=1, /=2 in (24). Thus, for all ce V,
FI+@)Z{gy=0(1+0+0"+ - +0" "YZ{g). (29)

Let ¢ be an eigenvector for ¢ with corresponding eigenvalue /. From (29)
we see that

ipeZ[/, 4 "]C

and so ¢ is an eigenvector for ¢ with eigenvalue ¢e/Z[4, 2 ']. Then
v¢=¢_r, ie., v0=<E& and v is an eigenvector for ¢. Replacing g, g
throughout by g ', g ', respectively, we obtain, similarly, ¢ 'e Z[4, 4 '].
Thus each eigenvector for # is the image under ¢ of an eigenvector for )
and in the above notation

7[&¢ ezl i ']

', we have the reversc

By an analogous argument, interchanging ¢ and ¢
inclusion and so (28) holds.
Finally, let ¢ (e V) be an eigenvector for ¢ with eigenvalue &. Then ¢ is

an eigenvector for ¢ and # with corresponding eigenvalues ¢ and 4 (say).
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respectively; and Z[¢, ¢ '1=7[4, 74 ']1=S, say. Taking a=7¢ in (24), we
obtain

(1+ék+52k+ “'+(f(l 1"‘)5=(]+}_"/+)12"'+ ._.+/*le’ Hk/)S,

Note that & and /2 are not periodic, by (17) and its analogue for # and A.
Thus, as in Case 1, in order to avoid contradicting Lemma 4.3, we must
have ¢}, , index-preserving.

This completes the proof of Theorem 4.1. ||

COROLLARY 4.4, Let A~<aG with A abelian, h(A)=2 and G/A infinite
cyelic. Then every non-trivial complete [-epimorphism ¢: G — G is an index-
preserving projectivity.

Proof. By Theorem 3.6, ¢ 1s a projectivity. Also, by 1.6, o], is index-
preserving; and, by Theorem 4.1, |, , is index-preserving. The result
follows, by 1.4. |}

5. APPLICATIONS

First we require two technical results about groups with a normal
torsion-free locally cyclic subgroup.

LeMMA 5.1. Let A<aG with A torsion-free and locally cyclic and let
C=C,(A). Suppose that MG/C)=2. If ©: G- ¥ is a non-trivial complete
[-homomorphism, then t| , is injective.

Proof. Consider A embedded in @ and suppose, for a contradiction,
that the lemma is false. Thus there are subgroups
Y<X<A4
with [X : Y|=p, a prime, and X*=Y". Let
H=\{u/vluve d, (v, p)=1}.

Since A(G/C)=2, 1t is easy to see that there is an element g€ G\C such
that the conjugation action of g on A is multiplication by m/n, where
(myn)y=1 and p}mn Then H<a {4, g> and A/H is a p-group. By L.5,
| 4.4 18 injective and hence X+ H= Y + H. Therefore |XnH:YH|=p
and since (XN H) = (Y n H)", we may assume that ¥ < X < H. Clearly

() p'H=0.

i=0
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Choose i maximal such that p’H> X. Then p'*'H 2 X, but

v lry

ptHZpX=Y.

Thus (p'H) = (p' " 'H)". Again by 1.5,  is injective on H/p'* 'H, giving the
required contradiction. ||

In a similar vein we have

LEmMMmA 5.2, Let A<aG with A torsion-free and locally cvelic and let
C=C,(A). Suppose that h(G/C)Y=2 and let a: G — G (# 1) be a complete
l-epimorphism. Then o), is index-preserving.

Proof.  Again consider 4 embedded in @ and let p be any prime. Take
H and ¢ as in Lemma 5.1. Then H <« {H, ¢ ) and pH < H. Hence, by 1.5,

[H (pH)| = p.

Since o], is injective (by Lemma 5.1) it follows easily that g, preserves
p-indices, all p, and so g, is index-preserving. |

Now we apply results from Section 3 in order to analyse a situation
which will be critical in proving Theorem A.

Lemma 53. Let G= (g Ay with A<aG, A abelian, and let & be
non-trivial complete laitice. Let 6. G — G be a complete l-epimorphism with
G=<g A where

A=A" and CghT =g
and let 11 G — & be a non-trivial complete I-homomorphism:

(i) Suppose that l(A)=1 and {g> A is finite. Then
(a) ol . is index-preserving; and if | {g> (&) N Al =, then
A <Gy and
) Tl is injective.
Suppose that h(A)=2. Then

(b

)

{a) o is an index-preserving projectivity; and
(b

(11

) T s injective.

Proof. By Lemma 2.6, A is soluble (assuming h(A)=1), A/P(A) is
abelian and #(A4) = h(A). Also A4 is abelian if i(A) > 2. Moreover, by a local
argument and Lemma 2.7, G is soluble. We distinguish two cases.

Case 1. Suppose that |{g> :{g>nA| is finite.
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(i) We have A(A4)=1 with {g) finite. Take ae 4 with |a| infinite
and write K=<g,a), K={g, a), where (a)’=<{a). In order to prove
(a), we may assume, by Lemma 2.3, that P(K)=P(K)=1. Then, by Lem-
ma 2.6(i), o}, is index-preserving. The truth of (b) follows from 1.6(i).

(i) Now h(A)=2 and we may assume that G and G are finitely
generated. Then G is polycyclic. It is easy to see that there exists B<aG.
B< A, G/B finite and with the non-trivial Sylow subgroups of G/B neither
cyclic nor generalized quaternion. Thus the intersection of the maximal
cyclic subgroups of G/B is trivial and then, by [15, Corollary 1.3], B= B""
has finite index in G. Therefore |G : 4| is finite and so G is polycyclic.
Hence (a) and (b) follow from 1.6.

Case 2. Suppose that |{g> : {g§>n A| = oc. By 1.5 and Lemma 2.3, we
may assume that P(G)=P(G)=1. So G and G are torsion-free and A4 is
abelian. Let x = g”, for some integer n. If #1(4)=1, then

hAY)=h(A")=1 and A~ 1s abelian.

I h(A)=2, then h(A¥) =2 and, by 1.6(ii), ¢ is injective on 4*, whence VE
is abelian and A(A%)= h(A). o

Suppose that 4# A% If 4 < A4, then 4* '> 4 and so 4* >4, giving
h(A* 'y> h(A). But this contradicts the above (with x~ ' for x). Therefore,

B={(A4,4>>A4 and D=4AnA <A (n

Moreover, since B/A =~ A4*/D, we have A°/D=C,, . Now without loss we
may assume that A is a cyclic { g)-module, generated by a, say. Thus if
h(A)= oc, then A is free abelian with basis {a@<|ie 7. But then h(D)= x
and D is centralized by some non-trivial power of g, a contradiction.
Therefore 7(A) is finite and then

h(A/D)=1.
Thus h(B/D)=2. Let C=Cg(A).

(i)(a) By Theorem 4.1, it is sufficient to show that 4 <aG. We

distinguish three possibilities:
(1 C=a; (2) A<C<G: (3) C=4.

(1) Here G is abelian and so G is abelian, by Lemma 2.6(ii).

~ (2) Now C={g")» x 4 has Hirsch length 2 and so, replacing 4 by
C, it follows from Case 1(ii) that ¢ is an index-preserving projectivity. Then
4 <1 G, by [13, Proposition 1.6].

AR 1N Ten
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(3) Assume that 4=C. Let E ( # 1) be a normal abelian subgroup
of G. Then E is torsion-free, £ (1) is abelian and E<,G. If EnA=1,
it follows that En A =1 and E <1 EA, by [8, Theorem 2.1]. Thus E<C, a
contradiction. Therefore En A # 1 and so

| #ENA<SZ({A ED).

Since the g-action on A (< @) is multiplication by a rational ( # + 1),
we must have E< 4. Then E<1 G (loc. cit.) and E< A. Now ¢ induces a
complete /-epimorphism from G/E to G/E and, by Lemma 2.2,

P(G/EY=(A/E)" = A/E < G/E.
Hence 4 < G.
(1)(b) This follows from Theorem 3.2.
(ija) If 4<1G, then o is an index-prescrving projectivity, by
Corollary 4.4. Suppose therefore that
A# A9,

for some integer n. Referring to (1), A/D <1 B/D with h(A/D)=1. Let
x=g" B={A4, A", D=4~ A" Since 4 is abelian, D <1 B; and (i)(a)
applied to a: B/D — B/D gives A <1 B. Therefore

A<14Y <.

Now g"e A, for some n>1, and so 4¢ is generated by finitely many
conjugates of 4. Therefore A is nilpotent. Let

Z=Z(4A)Y<1 4" < G.

By 1.6(ii), ¢ is injective on 4“. Suppose that Zn {g>=1. Then, by
Theorems 3.2 and 3.6, ¢ is injective on { g > and therefore o is a projectivity
(1.1). But then 4 <1 G, by [13, Proposition 1.6 ], a contradiction. Therefore

Zn{gy#1

and {(Z, g is locally polycyclic.

If W{(Z) =2, then o|, ., is injective, by 1.6(ii), and we obtain a contra-
diction as before. We are left with #/(Z)=1. Since H(A)=2, G/Z is not
periodic. Since G is locally polycyclic, ¢ is injective on all the periodic
subgroups of G/Z, by 1.6(i). Hence d| . is injective, leading to 4 <1 G yet
again, a contradiction.

(i1)(b) This follows from Theorem 3.6. |

Finally, before proving Theorem A, we need
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LEMMA 5.4. Let 0: G — G be a complete l-epimorphism of groups and let

., K, and M = (T, K» be subgroups of G, g€ K, and P=P(T). Suppose tha
<K, KeX, (K)=2 and that there exists A<a M with P< A< T K and
/P abelian (and therefore torsion-free) with h(A/P)=1. Let

g~

C=C3(A/P)

and assume that either W(T/CY=2 or C/A is not periodic. Let g€ G such
that {g»"={g>. Then a|,,, is an index-preserving projectivity from {g>

1o {g>.

Proof. Put A=A4"", T=T", K=K, P=P"", B=(g, 45, and
B={g 4. Since P<KeX, P is locally finite. Also P(4)= P and so, by
Lemma 2.2, P=P(A4); and P is locally finite, by Lemma 2.3. By Lemma 2.4,
A/P is torsion-free abelian with A(A/P)= 1. Moreover, it follows from 1.5
that, for any xe G,

(39
—

a| pv Is an index-preserving projectivity. (
Let M = M°". Consider an element x e M such that
[{x>:An{x)]l=x.

If (x)=<(x)" then An{x)=1 and P({A £>)=P. Again by
Lemma 2.2, P(_<A,.\'>):P. Thus we may apply Lemma 5.3(i)(a) to o:
(A, x»/P— (A, /P and deduce that 4 <1 (A, x). It follows that

AZzar(d) and 4 Fa(4). (3)

Let E=a;(A)and D=C,(A/P). For xe G, ¥e G with {x)>" = (), we
have 4~ (x> =1 if and only if 4~ (%) =1. Therefore,

E'=E=a+(A) and (ai(A))" =a(A).
Moreover, the interval [ T/E] is periodic. We claim that
either E/D) =2 or D/A is non-periodic. (4)

For, if D/A4 is periodic, then £/D is abelian and not periodic, by (3). Thus
D < E, by [15, Proposition 3.4], and E/D is a modular group. If C/A1 is
not periodic, then D/A4 is not periodic, by Lemma 2.6(ii), a contradiction.
Therefore C/A4 is periodic. Thus, by hypothesis 4(T/C)=2. Also, since
[T/E] is periodic, we have [T/E] periodic and so h(E/E~ C)>=2. But it
is easy to see, from Lemma 2.6(i), that D < C, and therefore E/D is abelian,
by [9, Theorem 16, p.207. Then h(£/D)=2, by Lemma 2.6(ii), and (4)
follows.
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Now we can show that, for all integers i,
o is an index-preserving projectivity on A*. (5)

For, if h(£/D) > 2, then this follows from (2) and Lemma 5.2. In the other
case, by (4), there is an element ¢ e D¢ such that

{e, A% >/P¥ is abelian of Hirsch length 2.

Then (5) follows from (2) and 1.6.

By Lemma 5.3(i)(a), we may suppose that [{g>: An{g>| is finite.
Consider xeG such that [{x): An<{x)[=oc. Then [{x}?|=00 and
An<{x>7=1.Thus Bn<{x>°=1 and so B (x> = 1. Therefore, for each
integer i,

1=B N =Bn{xd¥=An {x)¥
Hence, for each i and xe G,
[{x>:An{x)]=0oc if and only il |{x)*: AN {x>¥|=oc.
Then, using (3),
A¥ Dag(A9)=ag(A) < {ag(4), g> =L, (6)
say. Thus, by [8, Theorem 2.1],
(A% <a (A< L(=L"). (7)

From (6) we obtain 4<¢” <1 L and, using (5) and 1.4, we see that o] ;... is
an index-preserving projectivity. Also, from (7),

(A7) <ag(A)
and hence (4°47)" <a L.
Now consider the induced /-epimorphism

o LIA® > Li(A)",

The subgroup P(L/(A¢°)7) = F/(A<%”)? (say) is locally finite, since Le X.
Let
F/A gy P(L/A“')).

Then, from Lemma 2.3 (observing that L/F is not periodic), we deduce that
|, is an index-preserving projectivity from F to F. Finally, L/F has a non-
trivial torsion-free abelian normal subgroup and hence, by Lemma 5.3,
. is index-preserving. Thus o], is index-preserving, as required.
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We come now to our main result.

Proof of Theorem A. By 1.1 and 1.2, it suffices to show that ¢ restricted
to each cyclic subgroup of G is an index-preserving projectivity and ¢
restricted to each cyclic subgroup of G is injective. Thus let geG.
(g> =<{g>and K= (H, g>, K=K"". By hypothesis,

(K/H1=[{g)/Hn &>

Therefore KeX, for if [K/H] is not finite, then H< K, by [8,
Theorem 2.17].

Let P=P(K) and suppose first that K/P has a normal abelian subgroup
A/P of Hirsch length >2. (This is certainly the case if A(f)>2 and H is
modular, for then A is abelian, by [9, Theorem 16, p. 20].) Let P =P(K).
Then ¢/, is an index-preserving projectivity from P to P, by Lemma 2.3;
and, by Lemma 5.3(ii)(a), ¢ induces an index-preserving projectivity from
(g P)/Pto (g, P>/P. Therefore o| ., is an index-preserving projectivity
from (g> to (g, as required. Similarly, by Lemma 5.3(i1)(b), 7 is injective
on {g, P)/P. By 1.5, 1|5 is injective. Thus 1|, is injective.

From now on we may assume that the non-trivial normal abelian sub-
groups of K/P have Hirsch length 1. We distinguish two cases:

(i) Suppose that h(K)>3. In Lemma 5.4, take T= K and let 4/P be
a normal abelian (torsion-free) subgroup of K/P with A(A/P)= 1. Then the
hypotheses of Lemma 5.4 are satisfied and we conclude that ¢/, . is an
index-preserving projectivity.
With regard to t, assume without loss of generality that P=1 (since 1|,
is injective, by 1.5), and let C= Cg(A4). We claim that

1| 7 1S injective. (8)

For, either h(K/C)>2 and then (8) follows from Lemma 5.1; or /4 is not
periodic and so there exists ¢e C such that (¢, A is abelian with Hirsch
length 2; then (8) follows from 1.6(ii). Now if (g > n 4 is finite, then 7|,
is injective, by Lemma 5.3(i)(b). If, on the other hand, (&> n A is infinite,
let F/A=P(K/A). By Lemma 5.3(i)(b) or (ii)(b), 7 is injective on { g, F)/F.
But 7 is injective on F/A4, by 1.5, and so t is injective on (g, F), by (8).
Therefore 7|, is injective.

(il) Suppose now that h(K)=2. Then h(H)=2 and H <, G implies
that |K: H| is finite. We may replace # by A*, for, by [14, Theorem 3.2],
H* <, G. Thus H <t K. Since we are left with the case when [G/H ] is not
periodic, there is an element e G such that

I<Fy  Ha (i)l = =.
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Let 7= (H, i>. Then

H<TeX and MNT)=3.

Let M= (T, K>. Thus H-< M. Our previous notation for P(K) will not
appear again and so let

P=P(T)=P(H)< M

and let A/P be a non-trivial abelian normal subgroup of H/P. Then

AP < H/P

and AY/P is locally nilpotent, torsion-free, and has Hirsch length <2.
Thus AY/P is abelian and hence has Hirsch length 1. Therefore we may
assume that 4 < M and h(A)=1.

Applying Lemma 5.4 to this situation, we find that o|, ., is index-
preserving.

Finally, arguing with 7 in place of K in case (i), we find 1] 7 is injective

and then 1|, is injective as in that case. |

6. CriticaL ExaMPLES

Let G be a non-periodic soluble group, ¥ a complete lattice and t:
G — & a proper complete -homomorphism. By Theorem A we must have
WGY< 2. We proceed to construct a metabelian group G with #(G) =2 and
a proper complete /~epimorphism t from G to G.

Let G=Ax{g)> with (g infinite and 4 torsion-free abelian of rank 1.
We can identify 4 with an additive subgroup of @@ and the action of g on
A with multiplication by a rational m/n, (m,n)=1. Let 1: G- ¥ be a
proper complete /-homomorphism. Then there are subgroups X, Y of G
with Y<X and X°= Y. By Theorem 3.2, 7 is injective on G/4 and then,
by Lemma 3.3, X< 4. Without loss of generality we may assume that
|X: Y| =p, a prime. By the argument in the proof of Lemma 5.1, p|ma.
Hence m/n# +1 and p4 = A.

Before defining 1, an easy technical result will be useful.

LEMMA 6.1. Let S be an additive subgroup of Q@ and let p be a prime.
Suppose that S contains rationals u/p™v, p fu, for each integer 2 =0. Then
pS=S.

Proof. Let u/re S and write v=p”s,, $ =0, p|v,. By hypothesis therc
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exists u, /p" e S, u,eZ, ptu,. Thus uu,/p”* '€ S. Also there are integers
/4, ft such that

Ap+pu v, =1

f+1

and so w/pv=(ip+ pu v )u/pv=iujt+ pu ujp belongs to S, as

required. |

Now let G have the structure described above with Y <X <A,
|X : Y| = p (prime), p|mn, and p4 = A. We define a map ©: (G) - /[(G) as
follows:

U if U< A4,
Ur=<pU if Usdand UnX L7,
U if UsAandUnX<Y.

We claim that
T is a proper complete l-epimorphism. (1)

To see this, let {U,|ie A} be a sct of subgroups of G. We distinguish
various cases.

(i) Suppose that U, & A, for all i€ A. Then
(U1 ieA> =U,|red)=U lied)
and
(muy:muyu:mu<4
Thus suppose that /< A. Then
UnA<U,={g%,,U,nA>

with o, #0 and «, € A. Hence U, n A is invariant under multiplication by
(m/my* and so p(U, n 4)=U, n A. Therefore, pI=1 and

(mUJ:ﬂUL
(it)  Suppose that U, <A and U, X £ Y, for all e A. Then each

X/U,~nX is a p'-group. If N, (U,nX)#0, then X/, (U,nX) is a
p'-group and so

<ﬂ U,)mX:ﬂ (U,.nX) &Y.
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Therefore (N, U,)'=p(N; U;)=N, pU,=(), U:. On the other hand, if
N; (U, nX)=0, then (; U, =0 and

oz(m U) <O U= pU; < U, =0.

-

In both cases, (U;lie 4> "X £ Y and hence

U NheAY =plU;lredd>=L{pU;|licA)={UllLed).

(iii)  Suppose that U, <A and U, " X <Y, for all /. ¢ A. We have

<ﬂ U,;)m)(é Y  andso <ﬂ U;V>r=ﬂ U,=(\U3:

and
(U 12ed>nX=U;nX|red><LY
gives
(U;|12eA=U%|Aed).

(iv)  Suppose that U,<A, for all ‘eA. Let UnX£LY for
reAd#EFFand U, n X< Yfor ieA,# . So A is the disjoint union of A,
and A,. Put

U= U, V=) U,.

e Ay s€ A7

Using (it) and (iii), we have

f L’£=<ﬂ Uﬁ_)m( L"j)zb”mV":Ufm V.
reds

ie A se Ay

If UnX<Y, then U'=U and (UnV) =UnV, as required. If
UnX £ Y, then U'=pU. Since (Un V)'=Un V, we have to show that

pUnV=0UnV. (2)
We may assume that F'#0. Since Un X £ Y,
XY=(UnX)/(UnY)

and, hence, p(Un X)=UnY=pUn Y. Then Vn X< Y implies Vn X =
V'~ Y and, therefore,

UnVnX=UnVnY=pUn¥VnY=N\,
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say. Now (UnV)/(pUn~ V) and X/Y are p-sections of the finite cyclic
group (Un V)X/N and so we must have

pUnV=UnV.

Thus (2) follows. Also we have shown that

7| , preserves intersections. (3)

Regarding joins, now let U=(U;|Ae A, >, V=(U,|ieA,). Then
UnXL£LY and o X<Y.
Therefore U= pU, V=V, and (U, V>"= plU, V). We claim that
CpU VY =plU V). (4)

For, if pU=U, then A/U is a p’-group and so A/{U, V> is a p’-group.
Therefore,

AU VY =pA/p U VS = Ajp<U V>
is a p’-group and hence p U, V> =<U, V>. Thus

CUVY2LpU VHZpU, V) =U V)

and (4) holds. On the other hand, if pU < U, since Un V=pUn V (see the
derivation of (2) above), we have

U V> pU V)= plU V).
Then [<U, V) : p(U, V)| = p implies (4) holds again. Now
(U IeA =0 VY =UL YV  (by(4))

= Ujlred ), (U I1eAy)),

by (ii) and (ii1). It follows that 7|, is a complete /-endomorphism of 4.
(v) Suppose that the U, are arbitrary. Define

Ay =1ilU, £ A), Ay=1ilU,<A)

By (1) and (iv), we may assume that A, # (§ # A,. Let

U=U,|Aed, >, V=/KU,|ie A5
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Then U £ A4 and V< A4. By (i) and (iv),
U reAy=UAed, 5. UL iedy )y
=(UL VT =U V).
Since (U, V)"=<U. V>, we have to show that
U VY=<{U, V). (5)
HVAX<Y, then V:=V and (5) holds. f VX £ Y, then V°= p} and

(U pVy=U(ph)* = U p(rY)).

But, by Lemma 6.1, p(V*)= " and so again (5) holds. Thus t preserves
joins.
Regarding intersections, we show first that, for any U £ 4 and V' < A,
(UnVy=UnV", (6)

If VAX<Y, then UnVnX<Y and (6) holds. If VX £ Y. then
Vi=pV. Thus

(UnV)y=((UnA)n Py =(UnA)y ",
by (iv). Since p(Un A)=Un 4 (by Lemma 6.1},
(UnAY=UnA
and so
(UnV)y=UnAnVi=UnV =U0'n¥"

and (6) holds.
Finally,

(o) =((ne)(ne)

:< 0 U/;>rﬁ< L> (by (3) or (6)).

e Ay

Then, by case (i) and (3),

(no)=(nuv)a(nv)=ne
re A A€ 2 ¢ A se A

as required.
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We have shown that 7 is a complete /-endomorphism of G and 7 is
proper since X = Y. Moreover, 1 is surjective. For, let H<G. If H £ 4,
then H'=H. If H<A4 and HAX<Y, then H'=H; and if Hn X £ Y.
then p '"HnX £ Y and so (p 'H)"= H. (Note that 4 is p-divisible, by
Lemma 6.1.)

Now (1) has been established. Summing up, we have proved

THEOREM B. Let G=Ax{g> with 0# A< Q and {g) infinite. Let g
act on A by conjugation as multiplication by the rational m/n, (m, n)=1, and
let Y<X<A with|X:Y]|=p, aprime.

(1) If pimn, then there exists a complete l-epimorphism ©. G — G with
X'=Y"

(1) If pltmn, then there does not exist any non-trivial complete
I-homomorphism t of G with X" =YY"

If G is a non-periodic soluble group and ¢: G— G is a non-index-
preserving projectivity, then by Theorem A, #(G)< 2. We show finally that
there exists a metabelian torsion-free group G with 4(G)=2 and an auto-
projectivity of G which is not index-preserving.

Let G=A4Ax<{g>, where Z< A< Q, |g|= 0, and the conjugation action
of g on A4 is multiplication by m/n, (m, n)=1. Let ¢: G— G be an auto-
projectivity and suppose that there is an element x€ G and a prime p such
that some p-index in {x) is mapped under ¢ to a g-index, where ¢ is a
prime different from p. By 1.6, we know that m/n # +1; by Theorem 4.1,
xe A; and, by the argument of Lemma 5.2, p and ¢ belong to the set © of
prime divisors of mn.

Now let p (# 1) be a permutation of the set of all primes with the sup-
port of p contained in n. Consider the map 6: 4 — A4 defined as follows:

ifris=(-1)" H pre A, then (r/s)"=(—1) H (p(p))-
From [2] (see Section 4), we know that ¢ is a bijection which induces an
autoprojectivity of A, singular for the primes permuted by p. Denote this
projectivity also by ¢. We extend ¢ to G by defining

U’=1U, forall U £ A.

Clearly ¢ is a bijection from /(G) to /(G). We claim that ¢ and ¢ ! preserve
inclusions (and then o is an autoprojectivity of G.) For, let V< U<G. If
V& A4 or U< A, then the conclusion is immediate. Thus assume that
V<A and U £ 4. We may suppose that V+#0 and so

0#V<UnmA=<l.
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Therefore U A is divisible by all primes in 7 and so (Un A)°=Un A.
Hence
Vis(UnA)Y=UnA<U=U".

Similarly, ¢ ! preserves inclusions. Summing up, we have proved

THEOREM C. Let G=Ax{g)> with 7 <AL Q and {g) infinite cyclic.
Suppose that the conjugation action of g on A is multiplication by m/n,
(m, n)=1. Let 7 be the set of prime divisors of mn.

(i} If p, q are distinct primes in n, then there exists an autoprojectivity
o of G and an element x (necessarily in A) such that

[{x>7: {px)7| =gq.

(i1) If pé¢m, then each autoprojectivity of G preserves the p-indices.
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