
doi:10.1006/jsco.2000.0464
Available online at http://www.idealibrary.com on

J. Symbolic Computation (2001) 32, 305–332

The Control Layer in Open Mechanized Reasoning
Systems: Annotations and Tactics

ALESSANDRO ARMANDO†, ALESSANDRO COGLIO‡,
FAUSTO GIUNCHIGLIA§¶ AND SILVIO RANISE†‖

†DIST, University of Genova, 16145 Genova, Italy
‡Kestrel Institute, Palo Alto, CA 94304, U.S.A.
§DISA, University of Trento, 38100 Trento, Italy

¶IRST (Inst. for Scient. and Techn. Research), 38050 Trento, Italy
‖LORIA – Université Henri Poincaré, 54506 Nancy, France

We are interested in developing a methodology for integrating mechanized reasoning sys-
tems such as Theorem Provers, Computer Algebra Systems, and Model Checkers. Our

approach is to provide a framework for specifying mechanized reasoning systems and to

use specifications as a starting point for integration. We build on the work presented
by Giunchiglia et al. (1994) which introduces the notion of Open Mechanized Reason-

ing Systems (OMRS) as a specification framework for integrating reasoning systems.
An OMRS specification consists of three components: the logic component, the control

component, and the interaction component. In this paper we focus on the control level.

We propose to specify the control component by first adding control knowledge to the
data structures representing the logic by means of annotations and then by specifying

proof strategies via tactics. To show the adequacy of the approach we present and dis-
cuss a structured specification of constraint contextual rewriting as a set of cooperating

specialized reasoning modules.

c© 2001 Academic Press

1. Introduction

We are interested in developing a methodology for integrating mechanized reasoning
systems such as, e.g. Theorem Provers (TPs), Computer Algebra Systems (CASs), and
Model Checkers (MCs). The interest in this problem stems from the consideration that
even though a variety of reasoning systems capable of very sophisticated reasoning ac-
tivities in specific domains are now available, the services provided by each single system
hardly encompass the wide range of functionalities needed in real-world applications
(e.g. the development of a mathematical theory, the design and validation of hardware
and software components). However, it is often the case that functionalities missing in a
system are available in another.

By looking at the relevant literature it turns out that there are essentially two pos-
sible strategies to cope with the problem: system extension (Clarke and Zhao, 1992;
Buchberger et al., 1997; Harrison, 1998) and system integration (Jackson, 1994; Ballarin
et al., 1995; Armando and Ranise, 1998b; Bertoli et al., 1998; Harrison and Théry, 1998).
In both cases the main source of difficulty is the complexity of the services provided by
state-of-the-art implementations. One critical issue in this endeavor is the integration

0747–7171/01/100305 + 28 $35.00/0 c© 2001 Academic Press

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81161375?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


306 A. Armando et al.

of the systems’ underlying logics in a meaningful and semantically sound way. However
there is more to integration than combining logics. As Boyer and Moore experienced when
they integrated a decision procedure for linear arithmetic within their prover NQTHM
(Boyer and Moore, 1979), the problem of integration is also a problem of control:

“The view of the decision procedure as a ‘black box’ is frequently destroyed by the
need to pass large amounts of search strategic information back and forth between
the two components.” (Boyer and Moore, 1988)

Our approach to the problem is to provide a framework for specifying mechanized rea-
soning systems and to use specifications as a starting point for integration. Specifications
play a crucial role if properties such as, e.g. soundness and termination of the compound
system need to be established. We build on the work presented in Giunchiglia et al.
(1994) which introduces the notion of Open Mechanized Reasoning Systems (OMRS) as
a specification framework for extending or integrating reasoning systems. An OMRS spec-
ification consists of three layers: the logic layer (specifying the assertions manipulated
by the system and the elementary deductions upon them), the control layer (specify-
ing the inference strategies), and the interaction layer (specifying the interaction of the
system with the environment). Notice that this layering allows for an additional and
complementary way to structure the specifications w.r.t. the standard approach based
on modularity. As a consequence, OMRS specifications are therefore more structured
than conventional specifications. This domain-specific feature of the OMRS specification
framework is fundamental to cope with the complexity of functionalities provided by
state-of-the-art implementations. While the problem of specifying reasoning systems at
the logic level has been addressed in Giunchiglia et al. (1994), in this paper we focus on
the control level. We propose to specify the control layer by:

(1) adding control knowledge to the data structures representing the logic by means of
annotations; this leads naturally to an extended notion of inference which accounts
for the simultaneous manipulation of logic and control information;

(2) specifying proof strategies via tactics, i.e. expressions denoting sets of admissible
derivations.

As a case study we give the OMRS specification of (a simplified form of) Constraint
Contextual Rewriting. Constraint Contextual Rewriting (Armando and Ranise, 1998a)
(CCR(X) for short) is a generalized form of contextual rewriting (Zhang, 1995) which in-
corporates (and is parametric in) the services provided by an external decision procedure.
The case study is non-trivial since CCR(X) results from the combination of three distin-
guished reasoning modules: a simplifier, a rewrite engine, and a decision procedure. The
OMRS specification we propose reflects this modularity and provides us with a detailed
and formal account of the logic and the control aspects of the functionalities provided
by each module as well as of their interplay.

The paper is organized as follows. In Section 2 we give an overview of the OMRS frame-
work. We start in Section 2.1 by giving a formal account of the logic layer by introducing
the notion of reasoning theory;† we then focus on the control layer by defining the notion
of annotated reasoning theory (Section 2.2) and that of tactic theory (Section 2.3). In

†The concepts presented in Section 2.1 are a simplified account of analogous notions introduced in
Giunchiglia et al. (1994) and Coglio et al. (2000).



The Control Layer in OMRS 307

Section 2.1 we also illustrate how reasoning theories, annotated reasoning theories, and
tactic theories can be composed and made parametric. The complexity of the notions and
notations we introduce are necessary to give a rigorous and reasonably concise account
of the services provided by state-of-the-art reasoning systems. In Section 3 we substan-
tiate this claim by outlining a structured specification of CCR(X). Section 4 is devoted
to a comparison with the related work. Finally, in Section 5, we give some concluding
remarks.

In this paper we focus on the validity and flexibility of the proposed framework to
specify state-of-the-art mechanized reasoning systems. As a consequence, the discussion
of general results following from the proposed theory (although there are some interesting
ones) are outside the scope of the present paper. However, the paper shows that the
OMRS framework provides the necessary concepts which allow to formally state and
prove important properties of the specified systems as illustrated in the case study.

1.1. mathematical notations

Let A be a set, then A∗ is the set of all finite sequences of elements of A; we write
[ ], [a|a∗], a∗1@a∗2, and |a∗| to denote the empty sequence, the sequence with head the
element a and tail the sequence a∗, the concatenation of the sequences a∗1 and a∗2, and
the length of the sequence a∗, respectively. If A is a set then Pω(A) denotes the set of
all finite subsets of A. If A is a set and ≈ an equivalence relation over A, A/≈ is the set
of all equivalence classes of A, i.e. A/≈ = {[[a]] | a ∈ A}, where [[a]] = {a′ ∈ A | a′ ≈ a}. If
A and B are sets, we write A]B to denote the disjoint union of A and B. If f : A→ A′

and g : B → B′, (f ] g) : A ]B → A′ ]B′ is defined by (f ] g)(a) = f(a) for a ∈ A and
(f ] g)(b) = g(b) for b ∈ B.

Given a set T , a T -typed set is a pair S = 〈S0, τ〉 where S0 is a set and τ : S0 → T .†

If S is a typed set, bSc = S0. We lift ∈, ⊆, ∩, ∪, ], and × to typed sets as follows:

(elem) s ∈ S iff s ∈ S0;
(sub) S ⊆ S′ iff S0 ⊆ S′0 and τ(s) = τ ′(s) for s ∈ S0;
(int) S = S′ ∩ S′′ iff S0 = S′0 ∩ S′′0 and τ(s) = τ ′(s) = τ ′′(s) for s ∈ S0;
(un) S = S′ ∪ S′′ iff S0 = S′0 ∪ S′′0 , τ(s) = τ ′(s) = τ ′′(s) for s ∈ S′0 ∩ S′′0 , τ(s) = τ ′(s)

for s ∈ S′0 − S′′0 , and τ(s) = τ ′′(s) for s ∈ S′′0 − S′0;
(djun) S = S′ ] S′′ iff S0 = S′0 ] S′′0 and τ = τ ′ ] τ ′′;
(prod) S = S′ × S′′ iff S0 = S′0 × S′′0 and τ(〈s′, s′′〉) = 〈τ ′(s′), τ ′′(s′′)〉 for 〈s′, s′′〉 ∈ S0.

If S′ and S′′ are T -typed sets, the T -typed set S = S′ ⊗ S′′ is defined by S0 =
{〈s′, s′′〉 ∈ S′0 × S′′0 | τ ′(s′) = τ ′′(s′′)} and τ(〈s′, s′′〉) = τ ′(s′) = τ ′′(s′′) for 〈s′, s′′〉 ∈ S0.
If S is a typed set, we write s : t ∈ S as an abbreviation for (s ∈ S0 ∧ τ(s) = t). For any
set T , we write ∅ to denote the empty T -typed set S characterized by bSc = ∅. If S is a T -
typed set and T ′ ⊆ T , the T ′-typed set S′ = S |T ′ is defined by S′0 = {s ∈ S0 | τ(s) ∈ T ′}
and τ ′(s) = τ(s) for s ∈ S′0. If S is a T -typed set, the T ∗-typed set S′ = S∗ is defined by
S′0 = S∗0 and τ ′([s1, . . . , sn]) = [τ(s1), . . . , τ(sn)] for [s1, . . . , sn] ∈ S′0. We write {s : t | . . .}
to denote a typed set whose elements s and corresponding types t are defined as indi-
cated by the expression in “. . . ”. When we write a typed set S where an ordinary set is

†In other words, a T -typed set is a set whose elements are uniquely labeled by elements of T . The
definition implies that the same S is a T -typed set for each T that includes the range of τ (i.e. for each
T such that T ⊇ {τ(s) | s ∈ S0}).



308 A. Armando et al.

expected (i.e. where the typed set would make the expression not defined), S just stands
for bSc.

If g : T → T ′, a g-typed function f from a T -typed set S to a T ′-typed set S′, also
written f : S →g S

′, is a function f : S0 → S′0 such that τ ′(f(s)) = g(τ(s)) for s ∈ S0. A
T -typed function f from a T -typed set S to a T -typed set S′, also written f : S →T S

′,
is an id -typed function f : S →id S

′, where id : T → T and id(t) = t for t ∈ T . When we
define an (ordinary or typed) function f : A → B, we assume it is automatically lifted
to f : A∗ × A → B∗ × B by f(〈[a1, . . . , an], a〉) = 〈[f(a1), . . . , f(an)], f(a)〉. A T -typed
relation r over a T -typed set S is a T -typed set r ⊆ S.† If S is a T -typed set, a T -typed
relation ≈ over S ⊗ S is a T -typed equivalence over S iff ≈0 is an equivalence over S0;
in this case, we have S/≈ = S′ iff T ′ = T , S′0 = S0/≈, and τ ′([[s]]) = τ(s) for s ∈ S0.

2. Theory

2.1. logic layer

The logic layer of an OMRS specification describes the assertions manipulated by the
system as well as the elementary deduction steps the system performs upon such asser-
tions. For example, a resolution-based theorem prover may manipulate first-order clauses
by resolving and factorizing them. As another example, a decider for linear arithmetic
may manipulate polynomial inequalities by cross-multiplication and sum. At the logical
level, the computations carried out by the system amount to constructing and manipu-
lating structures consisting of assertions connected through elementary deduction steps
(like proof trees).

There are two basic mechanisms to compose OMRS specifications at the logical level.
The first mechanism consists in putting together the constituent elements (assertions and
elementary deduction steps) of the specifications to form a larger specification. This form
of composition is “well-defined” if the components satisfy some conditions relative to each
other, namely that their common constituent elements are defined “in the same way”. For
example, a (logical) specification for term rewriting and one for clause resolution, which
use the same entities as terms and atoms (respectively), can be put together yielding a
specification for both rewriting and resolution over the common terms/atoms. The second
mechanism is parameterization: the logic layer of an OMRS specification can contain
some “replaceable” template parts. For each possible replacement, we obtain a (slightly)
different specification. For example, the (logical) specification for a propositional decider
may have propositional atoms as replaceable parts: such atoms can be replaced by first-
order atomic formulas, polynomial inequalities, term equalities, and so on.

2.1.1. sequent systems

A sequent system is a quadruple Ssys = 〈Σ, X,E,Q〉. Σ = 〈S,O〉 is a signature where S
is a set of sorts, and O is an (S∗×S)-typed set of operations. If o :〈[s1, . . . , sn], s〉 ∈ O, then
〈[s1, . . . , sn], s〉, also written [s1, . . . , sn]→s or s1 · · · sn→s, is the arity of o; s1, . . . , sn
are the argument sorts of o, and s is the result sort of o. X is an S-typed set of variables,
such that bXc ∩ bO |{[ ]}×Sc = ∅ and X |{s} is infinite for any s ∈ S. The S-typed set T
of terms is the smallest one satisfying:

†Note that r0 is an ordinary relation over S0.



The Control Layer in OMRS 309

(var) X ⊆ T ;

(op) o :s1 · · · sn→s ∈ O ∧ t1 :s1, . . . , tn :sn ∈ T ⇒ o(t1, . . . , tn) :s ∈ T .

We may write o instead of o(). The S-typed set OT of operation terms is OT =
{o(x1, . . . , xn) :s | o :s1 · · · sn→s ∈ O ∧ x1 :s1, . . . , xn :sn ∈X ∧ x1 6= · · · 6= xn}. An in-
stantiation is an S-typed function ι : X →S T , which is lifted to terms, ι : T →S T ,
by ι(o(t1, . . . , tn)) = o(ι(t1), . . . , ι(tn)). I is the set of all instantiations. The instantia-
tion composition function ◦ : I × I → I is defined by (ι ◦ ι′)(x) = ι(ι′(x)). The identity
instantiation idi ∈ I is defined by idi(x) = x for all x ∈ X. The S-typed set of equa-
tions is E = T ⊗ T . For each 〈t1, t2〉 ∈ E , we may write t1 = t2 instead of 〈t1, t2〉.†
The consequence relation ` ⊆ Pω(E) × E over equations is the usual entailment rela-
tion for equational logic‡—see, e.g., Ehrig and Mahr (1985). Let E be an S-typed set
of equations, i.e. E ⊆ E . The S-typed equivalence relation ≡ ⊆ T ⊗ T is defined by
(t1 ≡ t2 ⇔ E ` t1 = t2). Q is a set of sorts in S, i.e. Q ⊆ S. The Q-typed set of sequents
is Sq = T̃ |Q, where T̃ = T /≡. An instantiation ι ∈ I is lifted to sequents, ι : Sq →Q Sq ,
by ι(sq) = [[ι(t)]] where t ∈ T |Q and [[t]] = sq . We may write sq [ι] instead of ι(sq).

Sequents represent the logical assertions manipulated by the reasoning system being
specified and provide a more general concept than the notion of sequent used in sequent
calculi as, e.g. in Gentzen (1934). Sorts identify kinds of syntactical entities (e.g. literals,
atoms, clauses, polynomials, polynomial inequalities) used, directly or indirectly, to build
sequents. Operations identify constructions and manipulations of such entities (e.g. build-
ing a unary clause from a literal, multiplying a polynomial by a coefficient, conjoining
two clauses). Equations express properties of these constructions and manipulations (e.g.
that conjoining clauses are commutative, associative, and idempotent; that multiplying
a polynomial by a coefficient amounts to multiplying all monomial coefficients by such
a coefficient). Q indicates which kinds of entities count as sequents (e.g. clauses, poly-
nomial inequalities), as opposed to the others (e.g. literals, atoms, polynomials) that are
typically used as component parts of sequents. Sequents are defined as equivalence classes
of terms in order to take equations into account: for example, if the operation of conjoin-
ing clauses is commutative, associative, and idempotent (through suitable equations), a
clause can be effectively regarded as a (finite) set of literals. Because of the presence
of variables, sequents can be regarded as “schematic”, i.e. containing placeholders for
unspecified pieces of syntax; instantiations serve to fill in such placeholders.

2.1.2. reasoning theories

A reasoning theory (RTh) is a pair Rth = 〈Ssys, R〉, where Ssys is a sequent system, and
R is an (Sq∗×Sq)-typed set whose elements are called rules. If r :〈[sq1, . . . , sqn], sq〉 ∈ R,
we may write r : [sq1, . . . , sqn]→sq , r :sq1 · · · sqn→sq , or

sq1 · · · sqn
sq r (1)

†Context will always disambiguate these object-level equations from the meta-level equations we use
in formal definitions.
‡Note that ` is not a typed relation, but just an ordinary relation.



310 A. Armando et al.

instead of r :〈[sq1, . . . , sqn], sq〉, and we may write terms (of sorts inQ) instead of sequents
(i.e. instead of terms’ equivalence classes); sq1, . . . , sqn are the premises of r, and sq the
conclusion of r.†

An RTh constitutes the logic layer of an OMRS specification. The sequent system
describes the assertions manipulated by the reasoning system by means of sequents and
some auxiliary information (instantiations, etc.). The rules describe the elementary de-
duction steps over the assertions. A rule r :sq1 · · · sqn→sq expresses the fact that validity
of sq [ι] is implied by the validity of sq1[ι], . . . , sqn[ι] for any ι ∈ I. For example, we may
have a rule with two (terms representing) polynomial inequalities as premises, and as
conclusion the result of cross-multiplying and adding them (expressed symbolically as a
term with suitable operations applied to the polynomials). Such a rule expresses that the
result of cross-multiplying and adding two polynomial inequalities logically follows from
them: it is typically used to derive simpler polynomials by canceling monomials.

2.1.3. derivation structures

Let Rth be an RTh. The (Sq∗×Sq)-typed set ∆ of derivation structures is the smallest
one satisfying:

(sq) sq ∈ Sq ⇒ sq :〈[sq ], sq〉 ∈ ∆;
(rul) r :sq1 · · · sqn→sq ∈ R ∧ ι ∈ I ∧ δ1 :〈 ~sq1, sq1[ι]〉, . . . , δn :〈 ~sqn, sqn[ι]〉 ∈ ∆ ⇒

〈[δ1, . . . , δn], r, ι〉 :〈 ~sq1@ · · ·@ ~sqn, sq [ι]〉 ∈ ∆.

If δ :〈[sq1, . . . , sqn], sq〉 ∈ ∆, we may write δ : [sq1, . . . , sqn]→sq or δ :sq1 · · · sqn→sq
instead of δ :〈[sq1, . . . , sqn], sq〉; sq1, . . . , sqn are the open sequents of δ, and sq is the
conclusion of δ.‡ An instantiation ι ∈ I is lifted to derivation structures, ι : ∆→ι ∆, by
ι(〈[δ1, . . . , δn], r, ι′〉) = 〈[ι(δ1), . . . , ι(δn)], r, ι ◦ ι′〉.§ We may write δ[ι] instead of ι(δ). The
(partial) derivation structure composition function ; : ∆∗×∆

p→ ∆ is the smallest one
satisfying:

(sq) sq ∈ Sq ∧ δ : ~sq→sq ∈ ∆ ⇒ [δ]; sq = δ;
(rul) 〈[δ1, . . . , δn], r, ι〉 ∈ ∆ ∧ ~δ1; δ1, . . . , ~δn; δn ∈ ∆ ⇒

[~δ1@ · · ·@~δn]; 〈[δ1, . . . , δn], r, ι〉 = 〈[~δ1; δ1, . . . , ~δn; δn], r, ι〉.

A derivation structure corresponds to a proof tree. A derivation structure consisting of a
single sequent corresponds to a tree with a single node that is both the root and the (only)
leaf. A derivation structure of the form 〈[δ1, . . . , δn], r, ι〉, with r :sq1 · · · sqn→sq ∈ R,
corresponds to a tree with sq [ι] as root, and the n trees corresponding to δ1, . . . , δn as

†In this definition, we call “rules” the elements r of the (untyped) set bRc, and use typing (R is a typed
set) to associate premises ~sq and a conclusion sq with a rule r. In similar formalisms in the literature,
r is called the “rule label” and the “rule” is considered to be the whole triple 〈r, ~sq, sq〉. Our approach
of expressing premises and conclusion as information that is “external”, but closely connected (through
the typing), to a rule, is consistent with our treatment of operations, variables, etc., whose arities and
sorts are also given “externally” through typing.
‡Note that the typing of a derivation structure δ can be determined from δ itself. The reason why we

define ∆ as a typed set, as opposed to an ordinary set, is to enable some conveniently compact definitions
for annotated reasoning theories (see Section 2.2).
§Note that ι is indeed a ι-typed function over derivation structures, because it changes the open sequents

and conclusion (by applying ι to them).



The Control Layer in OMRS 311

subtrees (which have sq1[ι], . . . , sqn[ι] as roots); the root is labeled by r and ι, which
provide the “justification” for the connection between the root and the subtrees. If
δ :sq1 · · · sqn→sq ∈ ∆, then sq and sq1, . . . , sqn are respectively the root and leaves of
the tree corresponding to δ. Applying an instantiation to a derivation structure amounts
to applying it to all the constituent sequents, and updating the justifications accordingly.
The derivation structure composition “;” corresponds to replacing the leaves of a tree
(open sequents) with subtrees having such sequents as roots.

At the logical level, the computations performed by a system amount to creating and
manipulating derivation structures. For example, a resolution-based theorem prover may
start with some sequents (the clauses given as input), and incrementally generate new
sequents (resolvents) by resolution: this amounts to building a derivation structure from
leaves to root. As another example, a goal-directed theorem prover may start with a single
sequent and incrementally generate new sequents by backward inference: this amounts to
building a derivation structure from root to leaves (possibly, having no leaves in the end
and thus proving the initial goal). In other cases, derivation structures may be built in
a mixed fashion (i.e. partly from leaves to root, partly from root to leaves). In addition,
during construction instantiations may be applied to the whole derivation structure:
this may happen, for instance, when a system eliminates an existential quantifier from
a formula, and later in the proof it finds (and applies) a suitable substitution for the
variable that was eliminated.

2.1.4. faithful inclusions

An RTh Rth0 is faithfully included in an RTh Rth1, also written Rth0 ↪→ Rth1, iff
S0 ⊆ S1, O1 |S∗1×S0 = O0, X1 |S0 = X0, E1 |S0 = E0, Q1 ∩ S0 = Q0, and R0 ⊆ R1.†

If Rth0 ↪→ Rth1 then T1 |S0 = T0, T̃1 |S0 = T̃0, Sq1 |Q0 = Sq0, and there exist functions
φ : I0 → I1 and ψ : I1 → I0 such that φ(ι)(x) = if x ∈ X0 then ι(x) else x and
ψ(ι)(x) = ι(x). ↪→, as a binary relation over RThs, is a partial order.

The notion of faithful inclusion formally captures the intuition of an RTh being part
of another RTh. If Rth0 ↪→ Rth1, all the sorts, operations, variables, terms, equations,
sequents, and rules of Rth0 are also in Rth1. In order for sequents of Rth0 to be also
sequents of Rth1, it is necessary that all equations in Rth1 of sort in Rth0 are also
equations of Rth0, and that all terms in Rth1 of sort in Rth0 are also terms of Rth0

(otherwise, sequents would be different equivalence classes in Rth0 and in Rth1). In order
for the latter requirement to be satisfied, it is necessary that all variables in Rth1 of sort
in Rth0 are also variables of Rth0, and that all operations in Rth1 with result sort in Rth0

are also operations in Rth0 (and therefore all their argument sorts must be in Rth0). All
these requirements are indeed enforced in the formal definition above. A faithful inclusion
also guarantees that instantiations can be “extended” from Rth0 to Rth1 and “restricted”
from Rth1 to Rth0.

An example of faithful inclusion is that of an RTh specifying propositional reasoning
over first-order atomic formulas, into an RTh specifying a complex first-order theorem
prover that employs various reasoning techniques (propositional being one of them).
Conceivably, RThs specifying the other reasoning techniques are faithfully included in it
as well. Another example is that of an RTh specifying polynomials, into an RTh specifying
arithmetical reasoning. The RTh for polynomials has no sequents and no rules (i.e. Q = ∅

†Note that R1 may include “new” (i.e. not in R0) rules involving sequents of Rth0 only.



312 A. Armando et al.

and R = ∅), but just specifies terms representing polynomials; this is indeed a perfectly
legal RTh, which represents the part of the RTh for arithmetic reasoning that defines the
polynomials. Faithful inclusions of RThs with no sequents and no rules frequently arise
in practice when composing RThs together (see examples below).

2.1.5. gluing

Let Rth1 and Rth2 be RThs. Let shared(Rth1,Rth2) = Rth0, where S0 = S1 ∩ S2,
O0 = O1∩O2, X0 = X1∩X2, E0 = E1∩E2, Q0 = Q1∩Q2, and R0 = R1∩R2. If Rth0 is
defined† and if X0 |{s} is infinite for any s ∈ S0, then Rth0 is an RTh. Rth1 and Rth2 are
glueable, also written Rth1 1 Rth2, iff Rth0 is an RTh, Rth0 ↪→ Rth1, and Rth0 ↪→ Rth2.
If Rth1 1 Rth2, the result of gluing Rth1 and Rth2 is the RTh Rth = Rth1 +Rth2 defined
by S = S1 ∪ S2, O = O1 ∪O2, X = X1 ∪X2, E = E1 ∪E2, Q = Q1 ∪Q2, R = R1 ∪R2.
We have Rth1 ↪→ Rth, Rth2 ↪→ Rth, T0 = T1 ∩ T2, Sq0 = Sq1 ∩ Sq2, T = T1 ∪ T2, and
Sq = Sq1 ∪ Sq2. Gluing of RThs is associative, commutative, and idempotent.

Gluing formalizes the intuition of “putting together” the constituent elements (sorts,
operations, etc.) of two or more RThs. In order for this to make sense, it is required
that the “intersection” of the RThs is a well-defined RTh and that it is a well-defined
part of (i.e. faithfully included in) each of the RThs. If these conditions are met, the
result is indeed a well-defined RTh, in which the components are faithfully included. The
associativity, commutativity, and idempotence properties of gluing expose the fact that
given two or more RThs, if they are glueable then they can be glued in any relative order
counting each RTh any number of times, and the same result is obtained in all cases.
This amounts to saying that + can be lifted to a (partial) operator over sets of RThs.

As an example of gluing, consider an RTh for term rewriting, and an RTh for clause
resolution. If these two RThs define the same entities as terms and atoms (respectively)
(i.e. if their intersection is a well-defined RTh that defines the common terms/atoms),
then we can glue them together and obtain a new RTh specifying both term rewriting
and clause resolution over the same terms/atoms. Note that the intersection RTh defining
the terms/atoms has no rules.

2.1.6. parameterization

A parameterized RTh (pRTh) is a pair PRth = 〈Rthπ,Rthβ〉, where Rthπ and Rthβ
are RThs, and Rthπ ↪→ Rthβ . Rthπ and Rthβ are, respectively, the parameter and body
of PRth. We may write Rthβ [Rthπ] instead of 〈Rthπ,Rthβ〉.

A replacement mapping ρ from an RTh Rth1 to an RTh Rth2, also written ρ : Rth1 →
Rth2, is a quadruple ρ = 〈ρS, ρO, ρX, ρR〉, where:

(srt) ρS : S1 → S2;
(op) ρO : O1 →ρS O2;

(var) ρX : X1 →ρS X2, such that if ρX(x) = ρX(x′) then x = x′;
(eq) if (t1 = t2) ∈ E1 then E2 ` (ρT(t1) = ρT(t2)), where ρT : T1 →ρS T2 is defined

by ρT(x) = ρX(x) for x ∈ X1, and ρT(o(t1, . . . , tn)) = ρO(o)(ρT(t1), . . . , ρT(tn));
(sqsrt) s ∈ Q1 ⇒ ρS(s) ∈ Q2;

†Recall that the intersection of two typed sets is defined only if the common elements of the sets have
the same type; see Section 1. For example, R0 is defined only if each rule r belonging to both R1 and
R2 has the same type 〈 ~sq, sq〉 in both R1 and R2.



The Control Layer in OMRS 313

(rul) ρR : R1 →ρQ R2, where ρQ : Sq1 →ρS Sq2 is defined by ρQ(sq) = [[ρT(t)]] where
t ∈ T1 |Q1 and [[t]] = sq .

ρI : I1 → I2 is defined by

ρI(ι)(x) = if (x = ρX(x′)) then ρT(ι(x′)) else x.

ρ∆ : ∆1 →ρQ ∆2 is defined by

(sq) sq ∈ Sq ⇒ ρ∆(sq) = ρQ(sq);
(rul) ρ∆(〈[δ1, . . . , δn], r, ι〉) = 〈[ρ∆(δ1), . . . , ρ∆(δn)], ρR(r), ρI(ι)〉.

We may drop the indices and just write ρ instead of ρS, ρO, etc.
Let PRth be a pRTh. Let Rth0 be an RTh. Let ρ : Rthπ → Rth0. The result of replacing

the parameter of PRth with Rth0 by ρ is the RTh Rth defined as follows, where we also
lift ρ to Rthβ , ρ : Rthβ → Rth:

(srt) S = S0 ] (Sβ − Sπ);
(srplc) s ∈ Sβ − Sπ ⇒ ρ(s) = s;

(op) O = O0 ] {o :ρ(~s→s) | o :~s→s ∈ Oβ −Oπ};
(orplc) o ∈ Oβ −Oπ ⇒ ρ(o) = o;

(var) X = X0 ] (Xβ −Xπ);
(vrplc) x ∈ Xβ −Xπ ⇒ ρ(x) = x;

(eq) E = E0 ] {(ρ(t1) = ρ(t2)) :s | (t1 = t2) :s ∈ Eβ − Eπ};
(sqsrt) Q = Q0 ] (Qβ −Qπ);

(rul) R = R0 ] {r :ρ( ~sq→sq) | r : ~sq→sq ∈ Rβ −Rπ};
(rrplc) r ∈ Rβ −Rπ ⇒ ρ(r) = r.

We have Rth0 ↪→ Rth. When ρ is clear from context, we may write Rthβ [Rth0/Rthπ] to
denote Rth.

A pRTh is substantially an RTh (the body Rthβ) with a distinguished well-defined (i.e.
faithfully included) part (the parameter Rthπ). In order to replace the parameter with
another RTh Rth0, it is necessary to indicate, for each constituent element of Rthπ (sorts,
operations, etc.), the element of Rth0 that replaces it. This is expressed by a replacement
mapping from Rthπ to Rth0. Rthβ [Rth0/Rthπ] is obtained by taking the disjoint union
(to avoid unintended “name conflicts”) of the elements of Rth0 and the elements of Rthβ
that are not in Rthπ (because those in Rthπ have been replaced by those in Rth0); the
latter elements must be suitably changed to reflect the replacement.

A pRTh constitutes the logic layer of an OMRS specification for a system that is
parameterized over some aspect(s), or, in other words, that contains some “generic”
parts, with explicit, visible “hooks” to these generic parts. By suitably connecting the
hooks to another system (that “fits” the hooks), a new, more specific system is obtained.
Parameterization is indeed a key to building open, re-usable, and compositional systems.
A simple example of pRTh is one whose body specifies propositional reasoning, where
atoms are generic in the sense that their structure is not specified; there is just a sort for
atoms. The parameter of the pRTh basically consists of the sort for atoms only. Now, if
we have an RTh for arithmetic reasoning over polynomial inequalities, we can replace the
sort for atoms with the sort of such inequalities. The result is an RTh specifying both
arithmetic and propositional reasoning over polynomial inequalities.



314 A. Armando et al.

2.2. control layer: annotations

The logic layer of an OMRS specification (an RTh or pRTh) describes how the system
may manipulate the logical information (i.e. the logical assertions). The control layer
must specify how the system actually manipulates such information, i.e. which strategies
are used to select and apply the inference steps at each point of the computation. Most
real-world systems carry out their control strategies by making use of (often extensive)
non-logical information, used exactly for control purposes. Examples of such control
information are some history about how an assertion was produced, the number of times
a certain inference step has been applied, the order in which some assertions must be
selected for applying some reasoning steps, etc. Control information is used and modified
during computation, at the same time as logical inferences are performed.

In OMRS specifications, we represent control information by enriching the sequents
with annotations carrying this additional information. The use and manipulations of
these annotations are expressed by lifting rules to also consider annotations (i.e. express
how annotations are used and modified). More precisely, given an RTh for the logic layer
of an OMRS specification, the control layer contains another RTh whose sequents and
rules constitute the “annotated counterpart” of the first RTh. There is a formal relation
between the two RThs: intuitively, that by discarding the annotations from the second
RTh we obtain the first RTh. The RTh with annotations is just like any other RTh,
but its sequents and rules deal with both logical and control information. This allows to
nicely lift to control the formal notions developed for RThs (e.g. derivation structures,
gluing, parameterization).

2.2.1. annotated reasoning theories

An annotated RTh (ARTh) over an RTh Rth is a pair ARth = 〈RthA, ε〉, where RthA

is an RTh, and ε is an erasing mapping from RthA to Rth, also written† ε : RthA 6→ Rth,
i.e. a quadruple ε = 〈εS, εX, εO, εR〉 where:

(srt) εS : SA → S ] {·};
(var) εX : XA →εS X ] {· : ·}‡ such that if εX(x) = εX(x′) 6= · then x = x′;
(op) εO : OT A →εS T ] {· : ·} such that if εO(o(x1, . . . , xn)) 6= · then all the variables

occurring in εO(o(x1, . . . , xn)) are in {εX(xi) | 1 ≤ i ≤ n ∧ εX(xi) 6= ·};
(eq) if (t1 = t2) :s ∈ EA and εS(s) 6= · then E ` (εT(t1) = εT(t2)), where εT : T A →εS

T ] {· : ·} is defined by εT(x) = εX(x) for x ∈ XA, and εT(o(t1, . . . , tn)) =
ι(εO(o(x1, . . . , xn))) where ι(εX(xi)) = ti for 1 ≤ i ≤ n with εX(xi) 6= ·;

(sqsrt) s ∈ QA ∧ εS(s) 6= · ⇒ εS(s) ∈ Q;
(rul) εR : RA →εQ ∆ ] {· : ·}, where εQ : SqA →εS Sq ] {· : ·} is defined by εQ(sq) =

[[εT(t)]] where t ∈ T A |QA and [[t]] = sq , where we consider [[·]] = ·, 〈 ~sq , ·〉 = ·, and
[·| ~sq ] = ~sq for ~sq ∈ (Sq ] {·})∗.

†We use slashed arrows 6→ in order to distinguish erasing mappings from replacement mappings between
RThs.
‡By {· : ·} we denote the {·}-typed singleton set containing · as the only element (whose type is obvi-

ously ·). We are using the same entity · to type itself, which is perfectly allowed by the definition of a
typed set given in Section 1.



The Control Layer in OMRS 315

εI : IA → I is defined by

εI(ι)(x) = if (x = εX(x′)) then εT(ι(x′)) else x.

ε∆ : ∆A →εQ ∆ ] {· : ·} is defined by:

(sq) sq ∈ SqA ⇒ ε∆(sq) = εQ(sq);
(rul) ε∆(〈[δ1, . . . , δn], r, ι〉) = [ε∆(δ1), . . . , ε∆(δn)]; (εR(r)[εI(ι)]), where we consider ~δ; · = ·

and [·|~δ] = ~δ for ~δ ∈ (∆ ] {·})∗.

We may drop the indices and just write ε instead of εS, εX, etc.
An ARTh is just an RTh RthA, plus an erasing mapping ε from RthA to its non-

annotated counterpart Rth. The terms of RthA encode both logical and control informa-
tion, while the terms of Rth encode logical information only. The action of ε on terms
consists of erasing the control content, leaving the logical content untouched. Some terms
of RthA might contain only control (i.e. no logical) information; such terms are mapped
to · by ε.† ε maps each sort s of RthA either to a sort of Rth whose terms have the
same logical content of the terms of sort s in RthA, or to · if the terms of sort s have no
logical content. Variables are injectively mapped by ε consistently with the sort mapping:
this establishes a bijective correspondence between variables in RthA “carrying” logical
content (i.e. having sorts whose terms carry logical content) and variables in Rth. Such
a correspondence allows instantiations of RthA to be uniquely mapped to instantiations
in Rth, and obviously serves to map terms of RthA to terms of Rth. Rather than just
mapping each operation of RthA to an operation of Rth (or to ·) consistently with the
sort mapping, ε maps each term in RthA of the form o(x1, . . . , xn), with x1, . . . , xn all
distinct variables, to a term in Rth whose variables are all among ε(x1), . . . , ε(xn). This
is more general than mapping operations to operations, which would correspond to map
o(x1, . . . , xn) to ε(o)(ε(xi1), . . . , ε(xim)) (where i1 < · · · < im are all the indices between
1, . . . , n which are not mapped to · by ε). This generality is necessary in most prac-
tical cases to avoid introducing additional operations into Rth just to serve as images
for ε.‡ The action of ε over generic terms is determined by its action on variables and
on the terms of the form o(x1, . . . , xn). It is required that the ε-images of equations in
RthA involving logical information, are consequences of the equations in Rth. This in-
duces a well-defined erasing mapping from sequents of RthA (asserting logical and control
information) to sequents of Rth (asserting logical information only); sequents of RthA

asserting no logical information are just mapped to ·.
An important requirement is that each rule in RthA having as conclusion a sequent with

logical content, is mapped by ε to a derivation structure in Rth whose target and open
sequents correspond to the results of applying ε to conclusion and premises of the rule.

†An equivalent point of view is that ε is a partial mapping. We have chosen to define it as a total
mapping, with an adjoined element ·, because it allows more convenient formulations. Indeed, ε can also
be defined as a special case of a mapping from lists of terms to lists of terms, in the Lawvere theories
associated with the sequent systems, that maps each singleton list in RthA to either another singleton
list in Rth or to the empty list (· in our formulation).
‡A case that frequently arises in practice is having in RthA an operation o :s1, s2→s, where ε(s1) = s1,
ε(s2) = ·, and ε(s) = s1. o(t1, t2) associates some logical information (encoded by t1) with some control
information (encoded by t2). ε should discard t2 leaving t1 untouched, i.e. ε(o(t1, t2)) = t1. If o were
to be mapped to some operation in Rth, Rth should explicitly contain an operation id :s1→s1 and an
equation id(x1) = x1 (which achieve the desired effect). By mapping o(x1, x2) to x1 the same effect is
achieved without any need to introduce operations and equations in Rth.



316 A. Armando et al.

This requirement guarantees logical “soundness”: the annotated inferences expressed by
RthA “agree” with those in Rth w.r.t. the logical content. ε maps each rule of RthA

to a derivation structure of Rth, rather than just to a rule (which is less general), to
provide more flexibility: an annotated inference step may thus correspond to multiple non-
annotated inference steps.† Annotated derivation structures of RthA are mapped by ε to
non-annotated derivation structures of Rth. Viewing derivation structures as proof trees,
the mapping works by replacing the connection between the root and the immediately
connected nodes by the non-annotated proof tree corresponding to the annotated rule,
and recursively carrying out the same kind of replacement on subtrees. Note that a
subtree whose root carries no logical information is just discarded from the whole tree
(because it does not contribute to the logical inferences).

Given an RTh for (first-order) clause resolution, an example of ARTh is one that anno-
tates the literals of clauses by numeric indices. Such ARTh contains, among others, terms
for indexed literals (i.e. literals paired with indices) and indexed clauses (i.e. disjunctions
of indexed literals). ε maps them to terms for literals and clauses, respectively. Annotated
rules express resolution constrained by indices in same way (e.g. resolve literals with the
same index, or the literals with the greatest indices within their clauses), and possibly
express how indices are updated (e.g. increment some indices after each resolution, take
the maximum of various indices). A mundane instance of this example is lock resolution
(Boyer, 1971).

2.2.2. gluing and parameterization

An ARTh ARth0 over an RTh Rth0 is faithfully included in an ARTh ARth1 over
an RTh Rth1, also written ARth0 ↪→ ARth1, iff Rth0 ↪→ Rth1, RthA

0 ↪→ RthA
1 , and

ε0(α) = ε1(α) for all α ∈ SA
0 ]XA ]OT A

0 ]RA
0 . ↪→, as a binary relation over ARThs, is

a partial order.
An ARTh ARth1 over an RTh Rth1 and an ARTh ARth2 over an RTh Rth2 are

glueable, also written ARth1 1 ARth2, iff Rth1 1 Rth2, RthA
1 1 RthA

2 , and ε1(α) = ε2(α)
for all α ∈ (SA

1 ∩ SA
2 ) ] (XA

1 ∩ XA
2 ) ] (OT A

1 ∩ OT
A
2 ) ] (RA

1 ∩ RA
2 ). If ARth1 1 ARth2

then ARth0 = 〈RthA
0 , ε0〉 is an ARTh over Rth0, where RthA

0 = shared(RthA
1 ,RthA

2 ),
Rth0 = shared(Rth1,Rth2), and ε0(α) = ε1(α) = ε2(α) for α ∈ SA

0 ]T A
0 ]RA

0 . If ARth1 1

ARth2, the result of gluing ARth1 and ARth2 is the ARTh ARth = ARth1 + ARth2 over
Rth = Rth1 + Rth2 defined by:

(rth) RthA = RthA
1 + RthA

2 ;
(eras0) α ∈ SA

0 ]XA
0 ] OT

A
0 ]RA

0 ⇒ ε(α) = ε1(α) = ε2(α);
(eras1) α ∈ (SA

1 ]XA
1 ] OT

A
1 ]RA

1 )− (SA
0 ]XA

0 ] OT
A
0 ]RA

0 ) ⇒ ε(α) = ε1(α);
(eras2) α ∈ (SA

2 ]XA
2 ] OT

A
2 ]RA

2 )− (SA
0 ]XA

0 ] OT
A
0 ]RA

0 ) ⇒ ε(α) = ε2(α).

Gluing of ARThs is associative, commutative, and idempotent.
A parameterized ARTh (pARTh) over a pRTh PRth is a pair PARth = 〈ARthπ,ARthβ〉

where ARthπ and ARthβ are ARThs over Rthπ and Rthβ , respectively, and ARthπ ↪→

†Further flexibility is possible by relaxing the requirement that if ~sq are the premises of r then the
open sequents of ε(r) must be exactly ε( ~sq), and just requiring instead that all the open sequents of
ε(r) are among ε( ~sq). This makes it necessary to slightly extend the notion of derivation structure so
to allow extension, duplication, and re-ordering of the open sequents; see Meseguer and Talcott (1998).
Therefore, we do not consider it in this paper for brevity.



The Control Layer in OMRS 317

ARthβ . ARthπ and ARthβ are, respectively, the parameter and body of PARth. We have
that RthA

β [RthA
π ] is a pRTh. We may write ARthβ [ARthπ] instead of 〈ARthπ,ARthβ〉.

Let ARth1 and ARth1 be ARThs over RThs Rth1 and Rth2, respectively. Let ρ :
Rth1 → Rth2. A replacement mapping ρA from ARth1 to ARth2 over ρ, also written
ρA : ARth1 →ρ ARth2, is a replacement mapping ρA : RthA

1 → RthA
2 such that

α ∈ SA
1 ]XA

1 ] OT
A
1 ]RA

1 ⇒ ε2(ρA(α)) = ρ(ε1(α))

where we consider ρ(·) = ·.
Let PARth be a pARTh over a pRTh PRth. Let ARth0 be an ARTh over an RTh

Rth0. Let ρ : Rthπ → Rth0, and let ρA : ARthπ →ρ ARth0. The result of replacing the
parameter of PARth with ARth0 by ρA is the ARTh ARth over Rth = Rthβ [Rth0/Rthπ]
defined as follows:

(rth) RthA = RthA
β [RthA

0 /RthA
π ];

(erasp) α ∈ SA
0 ]XA

0 ] OT
A
0 ]RA

0 ⇒ ε(α) = ε0(α);
(erasb) α ∈ (SA

β ]XA
β ]OT

A
β ]RA

β )− (SA
π ]XA

π ]OT
A
π ]RA

π ) ⇒ ε(ρA(α)) = ρ(εβ(α)).

When ρA is clear from its context, we may write ARthβ [ARth0/ARthπ] to denote ARth.
The fact that an ARTh is essentially an RTh (accompanied by an erasing mapping)

allows the composition mechanisms for RThs to be lifted to ARThs in a relatively straight-
forward way. The mechanisms apply to the non-annotated and annotated levels (i.e. Rth
and RthA), and the erasing mappings must satisfy some “consistency” conditions insur-
ing that a unique erasing mapping can be computed for the result. The notion of faithful
inclusion requires erasing mappings to agree on the common part, as does the notion
of composability. The notion of replacement mapping requires replacement to commute
with erasing, i.e. replacing and then erasing must yield the same result as erasing and
then replacing (note that different erasing and replacement mappings are used in the two
cases). If such conditions are fulfilled, a unique erasing mapping is determined for the
result of gluing and replacing a parameter.

2.3. control layer: tactics

At the control level, we can view the computations performed by a system as con-
structions and manipulations of annotated derivation structures. Such computations in
fact perform the logical inferences, at the same time using and changing the control
information encoded by annotations. These constructions and manipulations of anno-
tated derivation structures can be “projected” to constructions and manipulations of
non-annotated derivation structures at the logical level. While annotations in general
narrow the search space of proofs (by constraining the applicability of logical inferences),
an ARTh does not describe the actual strategies used to build and modify (annotated)
derivation structures.

An interesting class of proof strategies can be expressed by means of tactics (although
they certainly do not cover all the possible interesting strategies). Tactics, first introduced
in LCF (Gordon et al., 1979) and later adopted in many popular theorem provers such
as NuPrl (Constable et al., 1986) and Isabelle (Paulson, 1989), are an effective means
to specify backward proof strategies in a modular fashion. Roughly speaking, a tactic
is a function that takes an assertion and returns a (possibly empty) list of assertions
as output: the validity of the input assertion follows from that of the output assertions.



318 A. Armando et al.

In other words, a tactic reduces the goal of proving an assertion to (hopefully simpler)
subgoals (if the list of subgoals is empty, the input assertion is just proved). Typically,
a tactic will not always return a list of subgoals: it will fail when given some particular
assertions as input.† Failure means that the tactic is unable to reduce the goal into
subgoals, but other tactics can instead succeed on the same goal. There are usually
primitive tactics corresponding to the backward application of rules of inference. More
complex tactics can be built out of simpler ones by means of tacticals, i.e. higher-order
functions operating on tactics. Tacticals can express strategies of application of their
argument tactics: for example, apply a tactic, if it fails apply another one, otherwise (if
it succeeds) apply yet another one on the result(s). Therefore, we can view tactics as
strategies for construction of proof trees.

In the remainder of this section we present formal notions to describe strategies of
construction of derivation structures by means of tactics. Our notion of tactic constitutes
a slight extension of the notion found in the literature. First, our tactics are relational
rather than just functional. Second, our tactics can explicitly manipulate instantiations
and thus express richer strategies where instantiations are applied to derivation structures
under construction. Third, we allow tactics to return different failure values (rather than
just one), which can convey more information about the cause of the failure and thus allow
more sophisticated choices of alternative tactics to be applied. Since there is no formal
difference between an RTh containing logical information only and an RTh also containing
control information (that constitutes an ARTh, together with an erasing mapping), for
simplicity we present our formal definitions w.r.t. RThs rather than ARThs.

2.3.1. tactic systems

A tactic system is a quadruple Tsys = 〈ΣT, ET, T, F 〉. ΣT and ET are such that the
quadruple 〈ΣT, ∅, ET, ∅〉 is a sequent system. This defines (for the tactic system), the
ST-typed set T T of terms, the ST-typed set ET of equations, the consequence relation
` ⊆ Pω(ET) × ET, and the ST-typed equivalence relation ≡ ⊆ T T ⊗ T T. T and F are
sets of sorts in ST, i.e. T ⊆ ST and F ⊆ ST. The T -typed set of tactics is Tac = T̃ T |T ,
and the F -typed set of failures is Fail = T̃ T |F , where T̃ T = T T/≡.

There are obvious similarities (exploited in the formal definition above) between the
notion of sequent system and that of tactic system. The difference is that a tactic system
has no variables (X = ∅), and instead of a set Q for sequents it has two sets (not
necessarily disjoint, although they often are) T and F . The purpose of a tactic system
is to introduce a vocabulary of tactics and failures. Terms of sort in T denote tactics,
and terms of sort in F denote failures. Typically, a tactic system contains constants
of sort in T (i.e. operations of arity→s with s ∈ T ) that are understood as “names”
for tactics. Operations with a result sort in T and some of the argument sorts also in
T play the role of tacticals, because they build a new tactic (the result) from other
tactics (the arguments). Equations are generally used to equate a constant (i.e. a named
tactic) to a term involving operations applied to constants (i.e. a tactic built out of
tacticals): this corresponds to tactic definitions found in the literature (in the setting
of functional programming languages), because tactics are equivalence classes of terms,

†In the theorem provers mentioned above, failure concretely happens as exception raising. Mathemat-
ically, we can think of the codomain of a tactic as consisting of lists of assertions plus a distinguished
value denoting failure.



The Control Layer in OMRS 319

and therefore the two terms denote the same tactic. Often, failures just consist of some
disjoint constants, but the notion of a tactic system allows more sophisticated failures.
The reason why a tactic system does not include variables and instantiations is that its
goal is just to define a vocabulary of tactics and failures, for which ground terms suffice.

2.3.2. tactic theories

A tactic theory (TTh) over an RTh Rth is a pair Tth = 〈Tsys,TR〉, where Tsys is a
tactic system and TR ⊆ Tevl∗ × Tevl , where Tevl = Tac × Sq × (Fail ] (∆ × I)). The
elements of Tevl are called tactic evaluations, and if 〈τ, sq , res〉 ∈ Tevl we may write
τ / sq ; res instead of 〈τ, sq , res〉. The elements of TR are called tactic rules, and if
〈[τ1 / sq1 ; res1, . . . , τn / sqn ; resn], τ / sq ; res〉 ∈ TR we may write

τ1 / sq1 ; res1 · · · τn / sqn ; resn
τ / sq ; res

instead of 〈[τ1 / sq1 ; res1, . . . , τn / sqn ; resn], τ / sq ; res〉, and we may write terms
(of sorts in T and F ) instead of tactics and failures (i.e. instead of the terms’ equivalence
classes). The evaluation relation ( / ;∗ ) ⊆ Tac×Sq× (Fail ] (∆× I)) is the smallest
one such that

〈[τ1 / sq1 ; res1, . . . , τn / sqn ; resn], τ / sq ; res〉 ∈ TR ∧
(1 ≤ i ≤ n ⇒ τi / sq i ;∗ resi) ⇒ τ / sq ;∗ res.

It is required that if τ / sq ;∗ 〈δ, ι〉 then sq [ι] is the conclusion of δ.
A TTh consists of a tactic system, which describes a vocabulary of tactics and failures,

and of tactic rules, which describe how tactics “work”. τ / sq ;∗ res expresses that the
application of tactic τ to sequent sq yields res as result. res can be either a failure
fail ∈ Fail , or a pair 〈δ, ι〉 ∈ ∆ × I. The first case models that τ failed on sq , and fail
gives information about the reason for that. The second case models that τ succeeded
on sq , yielding a derivation structure δ and an instantiation ι. As required by definition,
the conclusion of δ must be sq [ι]. If ι = idi, this just means that δ has exactly sq as
conclusion. In other words, the tactic has reduced the problem of proving sq (goal) to the
problem of proving the (zero or more) open sequents of δ (subgoals), and δ constitutes a
logical justification for that. This closely resembles the working of tactics as found in the
literature. If ι 6= idi, in general sq [ι] may differ from sq . This allows us to conveniently
specify some reasoning strategies (commonly employed by practical systems) where rather
than proving a particular assertion (given by the user or generated during computation)
the system proves a particular instance of a “schematic” assertion. For example, a first-
order theorem prover may eliminate an existential quantifier by replacing the variable
with a “meta-variable” (i.e. some data structure that denotes a place-holder for a term),
and later replace such meta-variable with a term (because the term is computed as part
of the subsequent reasoning). In our framework, the place-holder would be a variable
in X, and the replacement would be an instantiation ι, returned by some tactic and
propagated to the derivation structure under construction by suitable tactic rules.

Tactic rules describe which results may be returned by applying tactics to sequents;
they specify the operational semantics of tactics. Note that non-determinism is allowed
(i.e. relational tactics), with determinism (i.e. functional tactics) as a special case. Tactic
rules of the form 〈[ ], τ / sq ; res〉 directly express that applying τ to sq yields res.
Tactic rules of the form 〈[τ1 / sq1 ; res1, . . . , τn / sqn ; resn]τ / sq ; res〉 with n 6= 0



320 A. Armando et al.

express that if applying τi to sq i yields resi for 1 ≤ i ≤ n, then applying τ to sq yields
res. This second form allows us to specify how tactics work together: they typically
describe how complex tactic applications are decomposed into simpler ones, and how
results are combined. The evaluation relation is basically the closure of all the tactic
rules. Note that the notion of TTh includes no explicit notion of a primitive tactic
(i.e. a tactic corresponding to the backward application of a single rule of inference)
and nor of a tactical (i.e. an operator to combine tactics). These concepts can indeed be
conveniently modeled in our framework. A primitive tactic is typically described by means
of tactic rules of the form 〈[ ], τ / sq ; res〉, and we can have different rules corresponding
to different (backward) applications of the same inference rule. Tacticals, as already
mentioned, can be described by suitable operations in the signature of a tactic system,
and suitable tactic rules that express how the argument tactics of a tactical are combined
together.

2.3.3. gluing and parameterization

A TTh Tth0 over an RTh Rth0 is faithfully included in a TTh Tth1 over an RTh
Rth1, also written Tth0 ↪→ Tth1, iff Rth0 ↪→ Rth1, ST

0 ⊆ ST
1 , OT

1 |(ST
1 )∗×ST

0
= OT

0 ,
ET

1 |ST
0

= ET
0 , T1 ∩ ST

0 = T0, F1 ∩ ST
0 = F0, and TR0 ⊆ TR1. If Tth0 ↪→ Tth1 then

T T
1 |ST

0
= T T

0 , T̃ T
1 |ST

0
= T̃ T

0 , Tac1 |T0 = Tac0, and Fail1 |F0 = Fail0. ↪→, as a binary
relation over TThs, is a partial order.

Let Tth1 and Tth2 be TThs over RThs Rth1 and Rth2, respectively. If Rth1 1 Rth2,
let shared(Tth1,Tth2) = Tth0, where ST

0 = ST
1 ∩ ST

2 , OT
0 = OT

1 ∩ OT
2 , ET

0 = ET
1 ∩ ET

2 ,
T0 = T1 ∩ T2, F0 = F1 ∩ F2, and TR0 = TR1 ∩ TR2. If Tth0 is defined then it is a TTh
over Rth0 = shared(Rth1,Rth2). Tth1 and Tth2 are glueable, also written Tth1 1 Tth2, iff
Rth1 1 Rth2, Tth0 is defined, Tth0 ↪→ Tth1, Tth0 ↪→ Tth2. If Tth1 1 Tth2, the result of
gluing Tth1 and Tth2 is the TTh Tth = Tth1 +Tth2 over RTh Rth = Rth1 +Rth2 defined
by ST = ST

1 ∪ST
2 , OT = OT

1 ∪OT
2 , ET = ET

1 ∪ET
2 , T = T1 ∪T2, F = F1 ∪F2, and TR =

TR1 ∪ TR2. We have Tth1 ↪→ Tth, Tth2 ↪→ Tth, T T
0 = T T

1 ∩ T T
2 , Tac0 = Tac1 ∩ Tac2,

Fail0 = Fail1 ∩ Fail2, T T = T T
1 ∪ T T

2 , Tac = Tac1 ∪ Tac2, and Fail = Fail1 ∪ Fail2.
Gluing of TThs is associative, commutative, and idempotent.

A parameterized TTh (pTTh) over a pRTh PRth is a pair PTth = 〈Tthπ,Tthβ〉, where
Tthπ and Tthβ are TThs over Rthπ and Rthπ, respectively, and Tthπ ↪→ Tthβ . Tthπ
and Tthβ are, respectively, the parameter and body of PTth. We may write Tthβ [Tthπ]
instead of 〈Tthπ,Tthβ〉.

Let Tth1 and Tth2 be TThs over RThs Rth1 and Rth2, respectively. Let ρ : Rth1 →
Rth2. A replacement mapping ρT from Tth1 to Tth2 over ρ, also written ρT : Tth1 →ρ

Tth2, is a pair ρT = 〈ρT
S , ρ

T
O〉, where:

(srt) ρT
S : ST

1 → ST
2 ;

(op) ρT
O : OT

1 →ρT
S
OT

2 ;
(eq) if (t1 = t2) ∈ ET

1 then ET
2 ` (ρT

T(t1) = ρT
T(t2)), where ρT

T : T T
1 →ρT

S
T T

2 is defined
by ρT

T(o(t1, . . . , tn)) = ρT
O(o)(ρT

T(t1), . . . , ρT
T(tn));

(tcsrt) s ∈ T1 ⇒ ρT
S (s) ∈ T2;

(flsrt) s ∈ F1 ⇒ ρT
S (s) ∈ F2;

(trul) if 〈[τ1 / sq1 ; res1, . . . , τn / sqn ; resn], τ / sq ; res〉 ∈ TR1 then
〈[ρT

E(τ1 / sq1 ; res1), . . . , ρT
E(τn / sqn ; resn)], ρT

E(τ / sq ; res)〉 ∈ TR2, where



The Control Layer in OMRS 321

ρT
E : Tevl1 → Tevl2 is defined by ρT

E(τ / sq ; res) = ρT
TF(τ) / ρ(sq) ; ρT

R(res),
where ρT

TF : Tac1 ∪ Fail1 →ρT
S

Tac2 ∪ Fail2 is defined by ρT
TF([[t]]) = [[ρT

T(t)]]
for t ∈ T T

1 |T1∪F1 , and ρT
R : Fail1 ] (∆1 × I1) →(ρT

TF]ρ) Fail2 ] (∆2 × I2) is
defined by ρT

R(fail) = ρT
TF(fail) for fail ∈ Fail1 and ρT

R(〈δ, ι〉) = 〈ρ(δ), ρ(ι)〉 for
〈δ, ι〉 ∈ ∆1 × I1.

We may drop the indices and just write ρT instead of ρT
S , ρT

O, etc.
Let PTth be a pTTh over a pRTh PRth. Let Tth0 be a TTh over an RTh Rth0. Let

ρ : Rthπ → Rth0, and let ρT : Tthπ →ρ Tth0. The result of replacing the parameter of
PTth with Tth0 by ρT is the TTh Tth over Rthβ [Rth0/Rthπ] defined as follows, where
we also lift ρT to Tthβ , ρT : Tthβ →ρ Tth0:

(srt) ST = ST
0 ] (ST

β − ST
π );

(srplc) s ∈ ST
β − ST

π ⇒ ρT(s) = s;
(op) OT = OT

0 ] {o :ρT(~s→s) | o :~s→s ∈ OT
β −OT

π };
(orplc) o ∈ OT

β −OT
π ⇒ ρT(o) = o;

(eq) ET = ET
0 ] {(ρT(t1) = ρT(t2)) :s | (t1 = t2) :s ∈ ET

β − ET
π };

(tcsrt) T = T0 ] (Tβ − Tπ);
(flsrt) F = F0 ] (Fβ − Fπ);
(trul) TR = TR0 ] {ρT(tr) | tr ∈ TRβ − TRπ}.

We have Tth0 ↪→ Tth. When ρT is clear from its context, we may write Tthβ [Tth0/Tthπ]
to denote Tth.

Because of the structural similarity between TThs and RThs, the composition mech-
anisms for TThs are very analogous to those for RThs. Note that since every TTh is
associated with an RTh, the composition mechanisms for TThs involve the underlying
RThs. As already mentioned, for simplicity we have presented the formal notions for
TThs with reference to RThs, rather than ARThs. However, an OMRS specification con-
tains (1) an RTh Rth, (2) an ARTh ARth over Rth, and (3) a TTh Tth over RthA.
Rth specifies the logic, while ARth and Tth constitute the control. These three formal
objects are organized in layers: Rth is at the bottom, ARth is over Rth, and Tth is
over ARth. When composition mechanisms (gluing and parameterization) are used to
compose OMRS specifications together, composition takes place at each layer.

3. Constraint Contextual Rewriting as a Case Study

Let us consider the problem of simplifying the clause

(log(x · y) > 0) ∨ (2 · log y < 0) ∨ (log x ≤ 3) ∨ (x ≤ 0) ∨ (y < x) (2)

using the following conditional rewrite rule:

U > 0 ∧ V > 0→ log(U · V ) = logU + log V (3)

(+, < and ≤ have their usual arithmetic interpretation). The key idea of Constraint
Contextual Rewriting is that while rewriting a literal (the focus literal) the negation of
the remaining literals in the clause (the context) can be assumed true. For instance, let
log(x · y) > 0 be the focus literal in (refeq:ex), then the context is {2 · log y 6< 0, log x 6≤
3, x 6≤ 0, y 6< x}. Application of (3) to the focus literal yields log x+ log y > 0, under the



322 A. Armando et al.

Figure 1. CCR(X): the integration schema.

proviso that the instantiated conditions, namely x > 0 and y > 0, can be established.
Indeed, both conditions follow from the context by simple arithmetic reasoning. Moreover,
the rewritten version of the focus literal, i.e. log x+log y > 0, follows from the context by
simple arithmetic reasoning and this allows us to rewrite the focus literal (and hence the
whole clause) to true. In general, in order to establish whether a given literal l follows
from a context c it is possible to invoke a decision procedure for some decidable fragment
of the background theory to check the satisfiability of the set of literals obtained by
adding the negation of l to c. In our example a decision procedure for linear arithmetic
would suffice. The key observation here is that the reasoning involved can be mechanized
by combining traditional conditional rewriting with a decision procedure. Furthermore
the pattern of interaction between rewriting and the decision procedure does not depend
on the theory decided by the decision procedure. The notation CCR(X) (by analogy
with CLP(X) used to denote the Constraint Logic Programming paradigm (Jaffar and
Maher, 1994)) emphasizes the independence of Constraint Contextual Rewriting from
the theory (X) decided by the decision procedure. The traditional notion of contextual
rewriting (Zhang, 1995) is an instance of CCR(X) whereby X is instantiated to a decision
procedure for ground equalities and new forms of contextual rewriting can be obtained
by instantiating X to decision procedures for different decidable theories.†

The interplay between the simplifier (simp), the rewrite engine (cr), and the decision
procedure (cs) in CCR(X) is depicted in Figure 1. simp takes a clause (cl) and returns
a simplified clause (cl′). cr performs conditional rewriting on the input literal by using
cs as rewriting context and returns a rewritten literal. cs can be invoked by both simp
and cr. In the first case, cs takes a conjunction of literals cnj and a context cs as input
and returns a new context cs′ obtained by extending cs with the literals in cnj. In the
second case, cs takes a context cs and a literal l and returns true whenever it is able to
determine that l is entailed by cs; otherwise, it reports failure.

3.1. an OMRS specification of constraint contextual rewriting

CCR(X) can be conveniently specified in the OMRS framework by exploiting the
modularity as well as the distinction between the logic and the control layers. The logic

†Armando and Ranise (1998a) show that the integration schemas employed in the simplifiers of NQTHM
(Boyer and Moore, 1988) and Tecton (Kapur and Nie, 1994) are both instances of CCR(X).



The Control Layer in OMRS 323

layer is specified by a pRTh Rthccr (Section 3.1.1) obtained by (i) specifying the logic of
the simplifier, of the rewrite engine, and of the decision procedure by means of suitably
defined RThs (Rthsimp, Rthcr, and Rthcs, respectively), (ii) by gluing together Rthsimp,
Rthcr, and Rthcs, and then (iii) by making the resulting RTh parametric in Rthcs. The
control layer is specified analogously by defining a pARTh ARthccr (Section 3.1.2) and a
pTTh Tthccr (Section 3.1.3) along the same lines.

3.1.1. a reasoning theory for CCR(X)

simplification

Ssimp consists of the sorts term (terms), lit (literals), cl (clauses), cnj (conjunctions),
and seq (sequents). Qsimp = {seq}. Osimp contains the symbols false : [ ] → lit, true :
[ ] → lit, and ≈: [term, term] → lit for truth, falsity, and equality, respectively. ¬
is an operation of arities [ lit] → lit and [cl] → cnj.† ∨ (∧) is an associative and
commutative operation of arities [s1, s2] → cl ([s1, s2] → cnj) for all s1, s2 ∈ {lit,cl}
(s1, s2 ∈ {lit,cnj}, resp.).‡ Esimp is such that ¬true ≡ false, ¬false ≡ true, ¬¬l ≡ l for
all l ∈ T |{lit}, (c∨ false) ≡ c, (c∨ true) ≡ true for all c ∈ T |{lit,cl}, (c∧ false) ≡ false,
(c∧ true) ≡ c for all c ∈ T |{lit,cnj}, and ¬(l1 ∨ l2) ≡ (¬l1 ∧¬l2) for all l1, l2 ∈ T |{lit}.
Osimp contains also the operations −→

simp
: [cl,cl]→ seq, :: −→

cr
: [cnj, lit, lit]→

seq, :: −→
cs

: [cnj,cnj,cnj] → seq, and cs-init : [cnj] → seq. Intuitively, cl−→
simp

cl′

asserts that cl′ is the result of simplifying cl; cs :: l−→
cr

l′ asserts that l′ is the result of

rewriting l′ using cs (also called constraint store) as context; cnj :: cs−→
cs

cs′ asserts that

cs′ is the result of extending cs with the literals in cnj; finally, cs-init(cs) asserts that cs
is the “empty” constraint store.

A sequent of the form c :: e−→
λ

e′ represents a (contextual) reduction relation, i.e. it

asserts that e′ is the result of reducing e to e′ in context c. In what follows, symbols
beginning with a question mark denote variables of the sequent system under consider-
ation. The reflexivity and transitivity properties of such relations are formalized by the
following rules in Rsimp:

?c ::?e−→
λ

?e refl

?c ::?e−→
λ

?e′ ?c ::?e′−→
λ

?e′′

?c ::?e−→
λ

?e′′
trans

where ?c, ?e, and ?e′ are variables of appropriate sort. Rsimp contains analogous rules for
the sequents e−→

simp
e′ and the rule:

cs-init(?cs0) ¬?cl ::?cs0−→
cs

?cs ?cs ::?l−→
cr

?l′

?cl∨?l−→
simp

?cl∨?l′
cl-simp

which states that a literal ?l in a clause ?cl∨?l can be rewritten to ?l′ provided that ?l′

†To simplify the presentation we assign multiple arities to operations, with the convention that when we
say that an operation o has arities aty1, aty2, . . . , atym (for m > 1) we mean that there exist operations
o1 : aty1, o2 : aty2, . . ., and om : atym.
‡We say that a binary operation ? : [s, s] → s is associative iff e1 ? (e2 ? e3) ≡ (e1 ? e2) ? e3 and it is

commutative iff e1 ? e2 ≡ e2 ? e1, for all e1, e2, e3 ∈ T |{s}.



324 A. Armando et al.

is the result of rewriting ?l in the context obtained by extending the empty constraint
store ?cs0 with the negation of the literals in ?cl.

Finally, let α ∈ T |{cl,cnj} and Γ ⊆ T{cl,cnj}, then α is a logical consequence of Γ
iff Γ |= α, where |= denotes the entailment relation in classical logic. A theory is a subset
of T |{cl,cnj, lit} closed under logical consequence. If T is a theory, then Γ |=T α
abbreviates T ∪ Γ |= α and Γ |=T α ↔ β abbreviates the conjunction of Γ ∪ {α} |=T β
and Γ∪{β} |=T α. α is T -consistent iff there exists a model of T∪{α}, and T -inconsistent
otherwise. α is T -valid iff α is a logical consequence of T or, equivalently, iff α ∈ T . In
what follows, Tc and Tj are theories such that Tc ⊆ Tj and R is a finite set of Tj-valid
clauses.

rewriting

The sequent system of Rthcr can be obtained from that of Rthsimp by removing the
sort cl and the operations ∨, −→

simp
, and cs-init and adding the sorts pos (positions) and

subst (substitutions), the operations | of arities [term,pos]→ term and [lit,pos]→
term, [ ] of arities [term,term, pos] → term and [lit,term,pos] → term, /
of arities [term, subst] → term, [lit, subst] → lit, and cs-unsat of arity [cnj] →
seq. Intuitively, s|u denotes the sub-term at position u in s, s[t]u denotes the results of
replacing the sub-term at position u in s with the term t, s / σ denotes the result of
applying the substitution σ to s, and cs-unsat(cs) asserts the unsatisfiability of cs. Ecr is
obtained from Esimp by removing the axioms for ∨ and adding a suitable axiomatization
for | , [ ] , and / .
Rcr contains the rules refl and trans for all sequents of the form c :: e−→

λ
e′ in Rthcr.

The following rule formalizes the interface between the rewrite engine and the decision
procedure:

¬?l ::?cs−→
cs

?cs′ cs-unsat(?cs′)

?cs ::?l−→
cr

true
cxt-entails

by stating that a literal ?l can be rewritten to true in context ?cs provided that the
constraint store obtained by extending ?cs with the negation of ?l is unsatisfiable. Finally
the rules

?cs :: cnj/?σ−→
cr

true

?cs ::?l[s/?σ]?u−→
cr

?l[t/?σ]?u
crew

for all (cnj → s ≈ t) ∈ R,† formalize conditional rewriting by asserting that a sub-term
s/?σ at position ?u in a literal ?l can be replaced with t/?σ in context ?cs provided that
there exists a clause cnj → s ≈ t in R and the instantiated conditions can be recursively
rewritten to true.

constraint solving

The sequent system for Rthcs can be obtained from that for Rthsimp by removing
the sort cl, the operations ∨, −→

simp
, :: −→

cr
and then by adding the operation cs-unsat

†cnj → (l ≈ r) abbreviates the clause ¬cnj∨ (l ≈ r), where cnj is a conjunction, and l and r are terms.
We call conditions the literals in cnj.



The Control Layer in OMRS 325

of arity [cnj] → seq. Rcs contains the rules refl and trans for all sequents of the
form c :: e−→

λ
e′ as well as rules of the form cs-init : [ ] → cs-init(cs), cs-unsat :

[ ] → cs-unsat(cs), and cs-simp : [ ] → cnj :: cs−→
cs

cs′. The rules are such that if

cs-init : [ ]→ cs-init(cs) ∈ Rcs, then cs is Tc-valid; if cs-unsat : [ ]→ cs-unsat(cs) ∈ Rcs,
then cs is Tc-inconsistent; and finally if cs-simp : [ ] → cnj :: cs−→

cs
cs′ ∈ Rcs, then

{cnj, cs} |=Tc cs
′.

gluing and parameterization

A pRTh for CCR(X) in given by:

Rthccr := (Rthsimp + Rthcr + Rthcs)[Rthcs].

It can be readily verified that Rthsimp, Rthcr, and Rthcs are glueable and that Rthcs is
faithfully included in Rthsimp + Rthcr + Rthcs.

We are now in the position to state and prove the soundness of the simplification
schema obtained by putting together the various reasoning theories as specified above.
The soundness of CCR(X) within the OMRS framework is formally stated as follows.

Proposition 3.1. (Soundness of Rthccr)

If there exists a derivation δ : 〈[ ], cl−→
simp

cl′〉 in Rthccr, then |=Tj cl↔ cl′.

The proof of this proposition follows from the soundness of Rthcr and Rthcs. The sound-
ness of these two Rths can be proved by induction on the structure of the derivations.
The interested reader is referred to Armando and Ranise (1998a, 2000) for more details.
Here, it is important to notice how the OMRS framework provides the necessary con-
cepts which allow for a formal specification and proof of important properties such as
the soundness of CCR(X).

3.1.2. an annotated reasoning theory for CCR(X)

We define the ARThs ARthsimp, ARthcr, and ARthcs over the RThs Rthsimp, Rthcr, and
Rthcs (resp.) defined in Section 3.1.1.

simplification

The ARTh for simplification is ARthsimp = 〈RthAsimp, εsimp〉 where RthAsimp is equal to
Rthsimp with the only difference being that the operation ∨ is no longer commutative (it
is still associative though) and εsimp is the identity mapping. The fact that ∨ is no longer
commutative means that the relative order of literals in clauses matters at the control
level. This affects the derivability relation presented by ARthsimp (when compared to that
of Rthsimp). For instance, Rthsimp has derivation structures of the type 〈[ ], a∨ b−→

simp
b∨a〉

whereas no derivation structures of such a type exist in ARthsimp.

rewriting

The ARTh for rewriting is ARthcr = 〈RthAcr, εcr〉 where RthAcr is obtained from Rthcr

by adding the operation ≺≺ : [cnj,cnj]→ seq and replacing crew by:



326 A. Armando et al.

(cnj/?σ∧?l[t/?σ]?u)≺≺ ?l[s/?σ]?u ?cs :: cnj/?σ−→
cr

true

?cs ::?l[s/?σ]?u−→
cr

?l[t/?σ]?u
crew

for all (cnj → s ≈ t) ∈ R. Intuitively, cnj≺≺ cnj′ asserts that the set of literals in cnj
is smaller than the set of literals in cnj′ w.r.t. the multiset extension of a simplification
ordering.† This is reflected by the existence in RAcr of a set of axioms of the form msetord :
[ ] → cnj≺≺ cnj′ such that {〈|cnj|, |cnj′|〉 | msetord : [ ] → cnj≺≺ cnj′ ∈ RAcr} is the
multiset extension of a simplification ordering. (|cnj| denotes the set of literals occurring
in cnj.) εcr is such that εcr(cnj≺≺ cnj′) = · (i.e. the sequents cnj≺≺ cnj′ have no logical
counterpart) and it is the identity mapping elsewhere.

constraint solving

The ARth for modeling the decision procedure is ARthcs = 〈RthAcs, εcs〉 where εcs is
the identity mapping. RthAcs closely resembles Rthcs, the only difference being that if
cs-simp : [ ]→ cnj :: cs−→

cs
cs′ ∈ RAcs, then {cnj, cs} |=Tc cs

′ and 〈cnj, cs′〉 ≺cs 〈cnj, cs〉,
where ≺cs is a well-founded relation.

gluing and parameterization

A pARTh for CCR(X) is given by:

ARthccr := (ARthsimp + ARthcr + ARthcs)[ARthcs].

It can be readily verified that ARthsimp, ARthcr, and ARthcs are glueable and that ARthcs

is faithfully included in ARthsimp + ARthcr + ARthcs.

Proposition 3.2. (Soundness of ARthccr) If there exists a derivation δ : 〈[ ], cl−→
simp

cl′〉

in ARthccr, then |=Tj εccr(cl′)↔ εccr(cl).

Besides the soundness of ARthccr, we are now in the position to formally state and prove
the termination of the integration schema. The recasting of the termination argument
given in Armando and Ranise (2000) into the OMRS framework is a routine exercise and
therefore is not discussed here.

3.1.3. a tactic theory for CCR(X)

We define the TThs Tthsimp, Tthcr, and Tthcs over the ARThs ARthsimp, ARthcr, and
ARthcs (resp.) defined in Section 3.1.2.

†A simplification ordering is a well-founded relation closed under substitution and replacement that
contains the sub-term relation. See Dershowitz and Jouannaud (1990) for the details.



The Control Layer in OMRS 327

simplification

The simplification strategy is specified by the TTh Tthsimp = 〈Tsyssimp,TRsimp〉 over
the ARTh ARthsimp. TTsimp = {tac, tacs}, FTsimp = {fail}, and STsimp = TTsimp∪FTsimp. OTsimp

contains a failure symbol fail : [ ]→ fail, a tactic simplify : [ ]→ tac, a tactic r : [ ]→
tac for each rule r in ARthsimp (namely the tactic refl, trans, and cl-simp of arity
[ ]→ tac), and the tacticals THENL : [tac,tacs]→ tac, ORELSE : [tac,tac]→ tac, and
NF : [tac] → tac. OTsimp also contains the constructors for lists of tactics [ ] : [ ] → tacs

and [ | ] : [tac,tacs]→ tacs.‡

For each rule in Rsimp of the form r :〈[sq1, . . . , sqn], (c :: e−→
λ

e′)〉, the following tactic

rule is in TRsimp:

r / (c0 :: e0−→
λ

?e) ; res

with res = 〈[sq1[ιp], . . . , sqn[ιp]], r, ιp〉, ιc〉 if there exists an instantiation ι such that
(c :: e−→

λ
e′)[ι] ≡ (c0 :: e0−→

λ
?e)[ι] (and in such a case ιp is the restriction of ι to the

variables in {sq1, . . . , sqn} and ιc is the restriction of ι to ?e) and res = fail otherwise.
For instance, the tactic rule associated to cl-simp is:

cl-simp / (cl−→
simp

?cl′) ; res

with res = 〈〈[cs-init(?cs0),¬cl ::?cs0 −→
cs−simp

?cs, ?cs ::?l−→
cr

?l′], cl-simp, ιp〉, ιc〉 if there

exists an instantiation ι s.t. (?cl∨?l)[ι] ≡ cl (in such a case ιp = ι and ιc is such that
?cl′[ιc] ≡ (?cl∨?l′)[ι]) and res = fail otherwise.

(t0 ORELSE t1) denotes the following proof strategy: try t0 and in the case of failure
try t1. This is formalized by the following tactic rules:

t0 / sq ; 〈δ, ι〉
(t0 ORELSE t1) / sq ; 〈δ, ι〉

t0 / sq ; fail t1 / sq ; res

(t0 ORELSE t1) / sq ; res

(t0 THENL[t1 . . . tn]) tries t0 on the input sequent. If this yields a derivation of the form
[sq1, . . . , sqn]; δ then ti is applied to sqi for i = 1, . . . , n (in this order). The resulting
derivations and instantiations are then combined in the obvious way. (t0 THENL [t1 . . . tn])
fails if one of its argument tactics does. The tactic rules for THENL are not given here due
to the lack of space.

When applied to a sequent of the form c :: e−→
λ

?e, NF computes the derivation struc-

ture of a sequent c :: e−→
λ

e′ and binds ?e to e′, where e′ is the maximally reduced

version of e in context c w.r.t. the tactic t. This is formalized by means of the following
equations in ETi (for all t ∈ T Ti ):

NF(t) = (trans THENL [t , NF(t)]) ORELSE refl.

The overall simplification strategy is modeled by the following equation in ETsimp:

simplify = NF(cl-simp THENL [ cs-init, NF(cs-simp), NF(ccr) ])

‡For notational convenience we write (t0 ORELSE t1) and (t0 THENL [t1, . . . , tn]), in place of ORELSE(t0, t1)
and THENL(t1, [t1, . . . , tn]), respectively. We also assume that THENL has precedence over ORELSE and that
ORELSE associates to the right.



328 A. Armando et al.

When applied to a sequent of the form cl−→
simp

?cl, simplify computes the derivation

structure of a sequent cl−→
simp

cl′, where cl′ is the maximally reduced version of cl w.r.t.

the application of cl-simp followed by the application of suitable tactics to the resulting
sub-goals.

rewriting

The simplification strategy is specified by the TTh Tthcr = 〈Tsyscr,TRcr〉 over the
ARTh ARthcr. TTcr = {tac, tacs}, FTcr = {fail}, and STcr = TTcr ∪ FTcr . OTcr contains
the operations refl, trans, crew, cxt-entails, msetord, and ccr of arity 〈[ ],tac〉
and the tacticals THENL : [tac,tacs] → tac, ORELSE : [tac,tac] → tac, and NF :
[tac] → tac. OTsimp also contains the constructors for lists of tactics [ ] : [ ] → tacs and
[ | ] : [tac,tacs] → tacs. The tactic rules for the tacticals are those of Tthsimp. The
tactic rules associated to the rules of ARthcr are defined similarly to those in Tthsimp.
For instance, the tactic rule associated to cxt-entails is as follows:

cxt-entails / (cs :: l−→
cr

?l′) ; 〈〈[δ1, δ2], cxt-entails, ιp〉, ιc〉

where δ1 = ¬l :: cs−→
cs

?cs′, δ2 = cs-unsat(?cs′), ιp is such that ?l[ιp] = l, ?cs[ιp] = cs

and ιc is such that ?l′[ιc] = true.
The overall rewriting strategy is expressed by the following equation in ETccr:

ccr = (cxt-entails THENL [NF(cs-simp), cs-unsat])
ORELSE (crew THENL [msetord, NF(ccr)])

which expresses the strategy of first applying the rule cxt-entails and to resort to crew
only in the case of failure.

constraint solving

The decision procedure is specified by the TTh Tthcs = 〈Tsyscs,TRcs〉 over the ARTh
ARthcs. TTcs = {tac}, FTcs = {fail}, and STcs = TTcs ∪ FTcs . OTcr contains the operations
cs-init, cs-unsat, and cs-simp of arity 〈[ ],tac〉. The tactic rules associated with the
rules of ARthcr are defined along the same lines as those in Tthsimp. For instance, the
tactic rules associated with cs-init are:

cs-init / cs-init(?cs) ; res

with res = 〈〈[ ], cs-init, idi〉, ιc〉 if there exists cs-init : [ ]→ cs-init(cs) ∈ Rcs (and in
such a case ιc is such that ?cs[ιc] = cs) and res = fail otherwise.

gluing and parameterization

A pTTh for CCR(X) is given by:

Tthccr := (Tthsimp + Tthcr + Tthcs)[Tthcs]

It can be readily verified that Tthsimp, Tthcr, and Tthcs are glueable and that Tthcs is
faithfully included in Tthsimp + Tthcr + Tthcs.



The Control Layer in OMRS 329

Proposition 3.3. (Soundness of Tthccr) If simplify / (cl−→
simp

?cl) ;∗ res then res =

fail or res = 〈δ, ι〉 where δ : [ ]→ (cl−→
simp

?cl[ι]) is a derivation structure of ARthccr and

|=Tj εccr(cl)↔ εccr(?cl[ι]).

4. Related Work

This paper is not a complete account of the OMRS specification framework, but fo-
cuses on the most recent work on the formalization of annotations and tactics. As a
consequence, we have presented simplified versions of some formal concepts, whose more
general formulations can be found in other papers (Giunchiglia et al., 1994; Coglio, 1996;
Coglio et al., 2000). As shown in Bertoli et al. (1998) the OMRS framework can be
easily adapted to support both the specification of the computational services provided
by CASs and their interaction with TPs. More generally, an OMRS specification can be
used to support a variety of fundamental activities, ranging from the design and imple-
mentation phases up to the formal analysis of the properties of reasoning systems and
the synthesis of provably correct reasoning components.

Among the features of CCR(X) neglected in this paper it is worth mentioning the
augmentation heuristic. Such heuristics allow for the extension of the rewriting context
with information about symbols which are uninterpreted for the decision procedure. As
shown in Boyer and Moore (1988), augmentation can improve dramatically the effective-
ness of the decision procedure at the cost of increasing the complexity of the resulting
integration schema. However, the extension of the specification of CCR(X) given in this
paper to incorporate augmentation should be straightforward.

OpenMath (Abbott et al., 1998) is a language for representing and communicating
mathematics initially intended as an interlingua for CASs. Recently OpenMath has been
extended to support the encoding of generic mathematical entities (e.g. formulae and
proofs) and therefore it can be conveniently used to support communication among a
variety of reasoning systems: CASs, TPs, and MCs. (Caprotti and Cohen (1999) reports
on the use of OpenMath to interconnect the computer algebra system Maple with inter-
active proof development systems such as Coq or Lego.) OMRS is a framework for the
specification of the services provided by reasoning systems. If fleshed out with a concrete
syntax (possibly based on OpenMath’s) OMRS can provide a language and a theory
for representing, communicating, and reasoning about mathematical services. The task
of specifying mathematical services (intentionally left out of the scope of OpenMath)
is crucial if the combination/integration issue is at stake. From these considerations it
turns out that OMRS is largely complementary to OpenMath.

MathWeb (Franke et al., 1999) is a distributed network architecture for automated
and interactive theorem proving based on the Agent-Oriented Programming (Shoham,
1993) aiming at supporting modularization, interoperability, robustness, and scalability
of mathematical software systems. In MathWeb each reasoning system is implemented as
an agent which maintains information about the capabilities of other agents in a lookup
table. However the agents’ capabilities are modeled by a predefined set of “performatives”
(e.g. evaluate, ask-one) whose semantics are left informal. It would be an interesting
case study to see whether the semantics of such performatives could be specified in the
OMRS framework.

The relationships between OMRS and Rewriting Logic (M.-Oliet and Meseguer, 1996)
are investigated in Meseguer and Talcott (1998), where a category theoretic approach



330 A. Armando et al.

allows the obvious analogies to be made more precisely. Roughly speaking, the sequent
system of a reasoning theory corresponds to the equational part of a rewriting logic
theory, reasoning theory rules correspond to the rule part of a rewriting logic theory,
and the derivations in a reasoning theory correspond to proof terms of a rewriting logic
theory. Formally, these connections are stated by introducing the notions of abstract rea-
soning theory (ARTh), algebra of derivation structures for ARThs, and functor between
an ARTh and the associated rewriting logic theory. As for the OMRS concepts pre-
sented in this paper, the reflective capabilities of Rewriting Logic (Clavel and Meseguer,
1996) allow for the specification of annotations at the meta-level, and the specification
of strategies for the application of annotated rules at the meta-meta-level. The OMRS
specification framework, therefore, offers a suitable way of structuring specifications in
Rewriting Logic. On the other hand, the reflection mechanism provides a formal and
rigorous foundation to specify the semantical relationships between the logic and control
layers. One of the main advantages in establishing a correspondence between Rewriting
Logic and the OMRS specification framework is the capability of exploiting the available
efficient implementations of Rewriting Logic (e.g. Maude and ELAN (Borovansky et al.,
1998)) to fast-prototype reasoning systems directly from OMRS specifications.

5. Conclusions

In this paper we have presented the control layer of the OMRS specification framework.
The layer allows for the specification of the control component of mechanized reasoning
systems via annotations and tactics. We have shown that the additional layering offered
by the OMRS framework complements and smoothly extends the standard approach
to structure specifications based on modularity. As a case study we have outlined an
OMRS specification of CCR(X) as a set of cooperating specialized reasoning modules.
The case study has shown that the additional structure provided by the OMRS specifi-
cation framework is fundamental to cope with the complexity of functionalities provided
by state-of-the-art implementations.

Acknowledgements

We especially thank Paolo Pecchiari for his initial contributions to this work, and
Carolyn Talcott for contributing to the technical development of the theory. We also
would like to thank the anonymous referees for their valuable comments about the paper.

References
Abbott, J., van Leuwen, A., Strotmann, A. (1998). OpenMath: communicating mathematical information

between co-operating agents in a knowledge network. J. Intell. Syst., 8, 401–426.
Armando, A., Ranise, S. (1998a). Constraint contextual rewriting. In Caferra, R., Salzer, G. eds, Pro-

ceedings of the 2nd International Workshop on First Order Theorem Proving (FTP’98), Vienna,
Austria, November 23–25, 1998, pp. 65–75.

Armando, A., Ranise, S. (1998b). From integrated reasoning specialists to “Plug-and-Play” reasoning
components. In Proceedings of the Fourth International Conference Artificial Intelligence and Sym-
bolic Computation (AISC98), Plattsburgh (USA), LNCS 1476, pp. 42–54.

Armando, A., Ranise, S. (2000). Termination of constraint contextual rewriting. In Proceedings of 3rd
International Workshop on Frontiers of Combining Systems (FroCoS’2000), France, Nancy, LNAI
1794, pp. 47–61.

Ballarin, C., Homann, K., Calmet, J. (1995). Theorems and algorithms: an interface between Isabelle and
Maple. In Levelt, A. H. M. ed., Proceedings of International Symposium on Symbolic and Algebraic
Computation (ISSAC’95), Montreal, Canada, pp. 150–157. New York, ACM Press.



The Control Layer in OMRS 331

Bertoli, P. G., Calmet, J., Giunchiglia, F., Homann, K. (1998). Specification and integration of theorem
provers and computer algebra systems. In Calmet, J., Plaza, J. eds, Proceedings of the International
Conference on Artificial Intelligence and Symbolic Computation (AISC-98), LNAI 1476, pp. 94–106.
Berlin, Springer.

Borovansky, P., Kirchner, C., Kirchner, H., Moreau, P., Ringeissen, C. (1998). An overview of ELAN.
In Kirchner, C., Kirchner, H. eds, Proceedings of the 2nd International Workshop on Rewriting Logic
and its Applications, Pont-A-Mousson, France.

Boyer, R. S. (1971). Locking: A Restriction of Resolution. Ph.D. Thesis, University of Texas, Austin,
Texas.

Boyer, R., Moore, J. S. (1979). A Computational Logic. New York, NY, Academic Press.
Boyer, R., Moore, J. S. (1988). Integrating decision procedures into heuristic theorem provers: a case

study of linear arithmetic. Mach. Intell., 11, 83–124.
Buchberger, B., Jebelean, T., Kriftner, F., Marin, M., Tomuţa, E., Vāsaru, D. (1997). A survey of the

theorema project. In Küchlin, W. W. ed., ISSAC ’97. Proceedings of the 1997 International Sympo-
sium on Symbolic and Algebraic Computation, July 21–23, 1997, Maui, Hawaii, pp. 384–391. New
York, NY, USA, ACM Press.

Caprotti, O., Cohen, A. M. (1999). Integrating computational and deduction systems using openmath.
Electron. Notes Theor. Comput. Sci., 23.

Clarke, E., Zhao, X. (1992). Analytica—a theorem prover in mathematica, Lecture Notes in Computer
Science, 607, 761–765.

Clavel, M., Meseguer, J. (1996). Axiomatizing reflective logics and languages. In Kiczales, G. ed., Pro-
ceedings of the Reflection’96, Xerox PARC, pp. 263–288.

Coglio, A. (1996). Definizione di un formalismo per la specifica delle strategie di inferenza dei sistemi
di ragionamento meccanizzato e sua applicazione ad un sistema allo stato dell’arte. Thesis, DIST—
University of Genoa (Italy).

Coglio, A., Giunchiglia, F., Meseguer, J., Talcott, C. (2000). Composing and controlling deduction in
reasoning theories using mappings. In Third International Workshop on Frontiers of Combining Sys-
tems, FroCoS 2000, LNAI 1794, pp. 200–216.

Constable, R., Allen, S., Bromley, H. et al. (1986). Implementing Mathematics with the NuPRL Proof De-
velopment System. Englewood Cliffs, NJ, Prentice Hall.

Dershowitz, N., Jouannaud, J. (1990). Rewriting systems. In Handbook of Theoretical Computer Science,
pp. 243–320. Amsterdam, Elsevier.

Ehrig, H., Mahr, B. (1985). Fundamentals of Algebraic Specification 1: Equations and Initial Semantics,
volume 6 of EATCS Monographs on Theoretical Computer Science. New York, NY, Springer.

Franke, A., Hess, S., Jung, C., Sorge, V. (1999). Agent-oriented integration of distributed mathemati-
cal services. J. Universal Comput. Sci., 5, 156–187.

Gentzen, G. (1934). Untersuchungen über das logische schließ. Math. Z., 39, 176–210, 405–433. English
translation in Gentzen (1969).

Gentzen, G. (1969). Investigations into logical deduction. In Szabo, M. ed., The Collected Papers of
Gerhard Gentzen, pp. 68–128. Amsterdam, North-Holland.

Giunchiglia, F., Pecchiari, P., Talcott, C. (1994). Reasoning Theories: Towards an Architecture for Open
Mechanized Reasoning Systems. Technical Report 9409-15, IRST, Trento, Italy. Also published as
Stanford Computer Science Department Technical note number STAN-CS-TN-94-15, Stanford Uni-
versity. Short version published in Proceedings of the First International Workshop on Frontiers of
Combining Systems (FroCoS’96), Munich, Germany, March 1996.

Gordon, M., Milner, A., Wadsworth, C. (1979). Edinburgh LCF—A Mechanized Logic of Computation,
LNCS 78. Berlin, Springer.

Harrison, J. (1998). Theorem Proving with the Real Numbers. Berlin, Springer.
Harrison, J., Théry, L. (1998). A skeptic’s approach to combining Hol and Maple. J. Autom. Reasoning,

21, 279–294.
Jackson, P. (1994). Exploring abstract algebra in constructive type theory, Lecture Notes in Computer

Science, 814, 590–604.
Jaffar, J., Maher, M. (1994). Constraint logic programming: a survey. J. Log. Program., 19/20, 503–581.
Kapur, D., Nie, X. (March 1994). Reasoning about Numbers in Tecton. Technical Report, Department

of Computer Science, State University of New York, Albany, 12222 NY.
M.-Oliet, N., Meseguer, J. (1996). Rewriting logic as a logical and semantic framework. In Meseguer,

J. ed., First International Workshop on Rewriting Logic and its Applications, RWLW96, volume
4 of Electronic Notes in Theoretical Computer Science. http://www.elsevier.nl/locate/entcs/
volume4.html.

Meseguer, J., Talcott, C. (1998). Mapping OMRS to rewriting logic. In Kirchner, C., Kirchner, H. eds, 2nd
International Workshop on Rewriting Logic and its Applications, WRLA’98, volume 15 of Electronic
Notes in Theoretical Computer Science. http://www.elsevier.nl/locate/entcs/volume15.html.

Paulson, L. (1989). The foundation of a generic theorem prover. J. Autom. Reasoning, 5, 363–396.
Shoham, Y. (1993). Agent-oriented programming. Artif. Intell., 60, 51–92.

http://www.elsevier.nl/locate/entcs/volume4.html
http://www.elsevier.nl/locate/entcs/volume4.html
http://www.elsevier.nl/locate/entcs/volume15.html


332 A. Armando et al.

Zhang, H. (1995). Contextual rewriting in automated reasoning. Fundam. Inform., 24, 107–123.

Originally Received 7 November 1999
Revised 29 September 2000
Accepted 1 November 2000


	Introduction
	Theory
	Constraint Contextual Rewriting as a Case Study
	Fig. 1

	Related Work
	Conclusions
	References

