
FEBS 28782 FEBS Letters 575 (2004) 71–76

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Wheat pathogenesis-related protein
s of class 4 have ribonuclease activity
Carlo Caporale, Iris Di Berardino, Luca Leonardi, Laura Bertini, Annunziata Cascone,
Vincenzo Buonocore, Carla Caruso*

Dipartimento di Agrobiologia ed Agrochimica, Universit�a della Tuscia, via S. Camillo de Lellis, 01100 Viterbo, Italy

Received 7 July 2004; revised 23 July 2004; accepted 23 July 2004

Available online 28 August 2004

Edited by Richard Cogdell
Abstract We have demonstrated that wheatwin1, a wheat
pathogenesis-related protein of class 4 (PR4), has ribonuclease
activity. Both native and recombinant proteins hydrolyse RNA
from wheat coleoptils and have antifungal activity. Sepharose-
bound wheatwin1 is able to interact with either wheat or
Fusarium culmorum RNA. 3D modelling studies showed that,
like ribonucleases A and T1, the action mechanism should
involve two His residues, an Arg residue and an Asp residue.
� 2004 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

Plants respond to pathogens by defence strategies leading to

the synthesis of several protective compounds such as the

pathogenesis-related (PR) proteins; these molecules were first

described in tobacco plants infected with tobacco mosaic virus

(TMV) and then in a variety of species submitted to various

kinds of biotic and abiotic injury [1]. At present, a large

number of PR-proteins have been characterised and grouped

into 17 families based on their primary structure, serological

relationships, and biological activities [2]. Most of them show

antifungal activity against specific pathogens, while just a few

of them possess enzymatic or inhibitory activity such as

chitinases (PR3, PR8, PR11), glucanases (PR2), peroxidases

(PR9), ribonuclease-like (PR10) and proteinase inhibitors

(PR6). It is thought that the wide-ranging modes of action of

these molecules make them an ideal tool in defence strategies

against ‘‘all comers’’. Among the less extensively studied PR

proteins are those belonging to the number 4 family. Up to

now, although their effect in inhibiting the pathogen hyphal

growth and spore germination has been reported [3], their

action mechanism and interaction with pathogen molecular

targets are still unknown. In the last years, we have isolated

and sequenced four PR4 proteins from wheat kernels, named

wheatwin1 to wheatwin4, that inhibit phytopathogenic fungi

with a wide host range (e.g., Botrytis cinerea) and host specific

pathogens (e.g., Fusarium culmorum, F. graminearum) [3–5].

We demonstrated that wheatwin1 and wheatwin2 and their
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genes are specifically induced in wheat seedlings infected with

Fusarium culmorum and upon treatment with systemic ac-

quired resistance activators [6,7]; the cDNAs have been cloned

and the recombinant proteins expressed in E. coli [8,9]. The

three-dimensional model of wheatwin1 has been already de-

signed (PDB code 1C2Z) and experimentally validated [14],

based on the knowledge of the tertiary structure in solution of

barwin [10,11, PDB code 1BW3], a highly homologous protein

from barley [12] showing a six-stranded double-psi � barrel

[13]. We also compared the 3D structures of the four wheatwin

proteins by homology modelling and related their micro dif-

ferences to the different antifungal activity [15]. In this paper,

we report that both native and recombinant wheatwin1 have a

ribonuclease activity that cannot be related to the action

mechanism of the PR10 family proteins, but rather to the

classical acid–base mechanism of ribonucleases A and T1 in-

volving two His residues [16, and references therein].
2. Materials and methods

2.1. Recombinant protein production
pGEM�-4Z vector containing the full-length wPR4a gene coding for

wheatwin1 (win1) [8] was engineered to introduce EcoRI sites at both
5
0
and 3

0
ends of the coding regions by PCR using the oligonucleotides

5
0
-CCGGAATTCATCAGCAGGCGACC-3

0
and 5

0
-CCGGAATTC-

CTAGTCGCGGCA-3
0
as forward and reverse primer, respectively.

The PCR-amplified DNA fragment was subcloned into the EcoRI site
of pGEX-2T plasmid in frame. The recombinant vector, containing the
coding sequence corresponding to the mature wheatwin1 linked to
glutathione-S-transferase (GST), was named pGEX-win1. Sequence
analyses performed on the recombinant vector confirmed the addition
of EcoRI sites at both 5

0
and 3

0
ends of the mature protein. The ex-

pression construct was transformed into E. coli strain BL21 for pro-
duction of recombinant protein.
E. coli strain BL21 transformed with pGEX-win1 was grown in 2·

YT medium containing ampicillin (100 lg/ml) at 37 �C to an absor-
bance of 0.5–0.6 at 600 nm. The protein expression was induced by the
addition of 0.1 mM isopropyl b-DD-1-thiogalactopyranoside. Cells were
harvested two hours after induction by centrifugation (8000 rpm, 4 �C,
10 min). Bacterial cell pellets containing recombinant fusion protein
(GST-win1) were resuspended in 50 mM Tris–HCl, pH 8.0, containing
1 mM EDTA (TE buffer), 100 lg/ml lysozyme and a protease inhibitor
cocktail. After incubation on ice for 15 min, the mixture was lysed by
sonication and treated with DNase at 37 �C for 60 min, afterwards the
inclusion bodies were collected by centrifugation at 12 000 rpm, 4 �C
for 30 min. The pellet was resuspended in 100 mM Tris–HCl, pH 8.0,
containing 5 mM EDTA, 6 M guanidine and 30 mM dithiothreitol and
fully reduced under nitrogen atmosphere at 37 �C for 1 h. After cen-
trifugation at 12 000 rpm at 4 �C for 10 min, the supernatant was di-
luted into the refolding buffer (Tris–HCl 100 mM, pH 8, containing 2
mM oxidised glutathione (GSSG), 3 mM reduced glutathione (GSH),
0.5 M LL-arginine and 5 mM EDTA), to a final protein concentration of
ation of European Biochemical Societies.
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30 lg/ml, allowing the renaturation of recombinant GST-win1 for two
days at 15 �C.

2.2. Purification of recombinant proteins
Refolded GST-wheatwin1 was purified on preparative scale by gel

filtration chromatography on a Superdex 75 column at a flow rate of
1.0 ml/min using an FPLC apparatus and monitoring the absorbance
at 280 nm. The fraction containing recombinant GST-win1 was
analysed by SDS–PAGE and immunoblot analysis using either anti-
wheatwin1 or anti-GST polyclonal antibodies. The protein concen-
tration was determined according to Bradford [17] using bovine serum
albumin as a standard.
Removal of the N-terminal GST tag was achieved by digesting the

fusion protein with thrombin in 50 mM Tris–HCl buffer, pH 8.0,
containing 100 mM NaCl for 18 h using one enzyme unit for 100 lg of
protein. GST tag and recombinant wheatwin1 (r-win1) were purified
on a preparative scale by gel filtration chromatography on a Superdex
75 column as described above and on analytical scale by RP-HPLC. In
the latter case, a reverse phase l-Bondapak C18 column was utilised
using aqueous 0.07% trifluoroacetic acid as eluent A and 0.05% tri-
fluoroacetic acid in acetonitrile as eluent B. Elution was accomplished
at a flow rate of 1 ml/min according to the following program: isocratic
elution for 5 min at 25% B, followed by linear gradient from 25% to
60% B in 60 min. The eluate was monitored measuring the absorbance
at 220 nm.

2.3. Mass spectrometry analysis
Molecular mass of both GST-win1 and r-win1, as well as the absence

of molecules containing mixed disulfides with glutathione, were con-
firmed by electrospray mass spectrometry (ES-MS) using a ZQ single
quadrupole mass spectrometer (Micromass, Waters) at CEINGE
Biotecnologie Avanzate (Naples, Italy).

2.4. In vitro antifungal assay
In vitro antifungal activity assays were performed using either the

GST fusion protein or the thrombin-cleaved r-win1. Native whea-
twin1, purified as already described [3], was used as control. Germi-
nating spores of F. culmorum were grown in the presence of native and
recombinant PR4 proteins (40 lg/ml) using sterile water as control.
Hyphal growth inhibition was evaluated after 8 h at 21 �C and ex-
pressed as IC50.
2.5. Affinity chromatography
CH-Sepharose 4B (Amersham Biosciences) (1 ml) was used to couple

native wheatwin1 (1 mg) in 50 mM Tris–HCl, pH 7.2, allowing the
production of an affinity matrix (Sepharose-win1) to be used to isolate
putative ligands of PR4 proteins. Affinity chromatography was carried
out using a crude proteic extract from coleoptils (50 mg) harvested
seven days after germination of salycilic acid (SA) treated wheat seeds
prepared as previously described [7]. A crude proteic extract was also
prepared from F. culmorum mycelium grown in liquid potato dextrose
broth for 7 days at 22 �C under stirring. The cultural broth was ho-
mogenised with an UltraTurrax mixer TP-18N (Ika-Werk Janke and
Kunfel, Germany) and total proteins were extracted with 50 mM Tris–
HCl, pH 7.2, containing 1% polyvinylpyrrolidone and 0.5 mM phen-
ylmethylsulfonylfluoride. Sepharose-win1 (1 ml) was equilibrated with
50 mM Tris–HCl, pH 7.2, and either wheat (50 mg) or fungal extract (1
mg) was dissolved in the same buffer. Elution of the unbound material
was accomplished using the same buffer at a flow rate of 0.4 ml/min,
monitoring the absorbance at 280 nm. Elution of the bound material
was accomplished with 100 mM Tris–HCl, pH 8.0, containing 500 mM
NaCl. All fractions eluted from the affinity chromatography were
further characterised by SDS–PAGE and agarose gel electrophoresis
after digesting the samples either with bovine pancreas RNase (50 lg/
ml) or DNase (80 lg/ml) at 37 �C for 1 h in 100 mM Tris–HCl, pH 8.0,
containing 500 mM NaCl.

2.6. Ribonuclease activity
Total RNA was isolated from wheat coleoptils according to Prescott

and Martin [18]. RNase activity of native wheatwin1, recombinant
fusion protein (GST-win1) and recombinant protein purified after re-
moval of the GST tag (r-win1) was assayed at room temperature. The
reaction mixture (20 ll) contained 12 lg of wheat coleoptil RNA and 4
lg of each protein in10 mM Tris–HCl, pH 7.5, containing 10 mM
imidazole and 5 mM NaCl. After 1 h incubation, the proteins were
removed by phenol-chloroform (1:1) extraction and the results were
observed on 1.2% agarose gel. Heat-inactivated native wheatwin1 was
used as control.
2.7. Molecular modelling
3D structure models of wheatwin1 were based on the availability of

the NMR three-dimensional co-ordinates of the homologous protein
barwin [10–12] (PDB code 1BW3) and performed as previously de-
scribed [14,15]. The alignment of wheatwin1 and barwin did not re-
quire deletion or insertion of gap. The program MODELLER [19] and
Quanta (Accelrys, Inc.) were used to build protein models according to
the comparative protein modelling methodology. Figures were drawn
with Swiss PDB Viewer program [20].
3. Results and discussion

3.1. Isolation and characterisation of recombinant wheatwin1

We already described a procedure to produce recombinant

wheatwin1 [9]. The new approach reported in this paper al-

lowed a faster and higher-yield production (15 mg/100 ml of

bacterial culture) of the GST-fusion protein (GST-win1).

When analysed by ES-MS, purified GST-win1 showed a mo-

lecular mass of 40363.13� 0.38 Da, corresponding to the fu-

sion protein. The GST tag was efficiently removed with

thrombin and the recombinant protein (r-win1) and GST were

separated by RP-HPLC (Fig. 1A) and analysed by SDS–

PAGE (Fig. 1B). The final yield of purified r-win1 was about

2.0 mg/100 ml of culture. The mass spectrometry analysis of

r-win1 showed a molecular weight of 14214.69� 0.40 Da,

corresponding to the processed wheatwin1 containing the

spacer peptide GSPGIH at its N-terminus.

3.2. Antifungal and ribonuclease activity

GST-win1 and r-win1 were characterised for their biological

activities by in vitro antifungal assays. The hyphal growth of

Fusarium culmorum was evaluated in their presence and ab-

sence using the native protein as control. Fig. 2 shows that

both wheatwin1 (panel C) and r-win1 (panel D) display anti-

microbial activity toward F. culmorum hyphal growth. The

antifungal effect is exerted either on spore germination or germ

tube elongation combined with morphological alterations like

swelling and wrinkling; r-win1 was able to inhibit the fungal

growth with the same efficiency with respect to the native

protein showing IC50 values of about 40 lg/ml (data not

shown). On the contrary, GST-win1 was found to be fully

inactive either on spore germination or hyphal growth (panel

B) as no alterations were evident like in the control (panel A).

Affinity chromatography on Sepharose-win1 was carried out

using either wheat or F. culmorum crude extracts in order to

isolate putative wheat or fungal ligands, respectively. In both

cases, one species was bound to the matrix and subsequently

eluted as a single peak with the elution buffer (data not shown).

SDS–PAGE analysis performed on both ligands indicated that

they were not proteins; the A260/A280 nm ratio indicated that

the ligands could be nucleic acids (not shown). In order to

verify whether the ligands were deoxyribonucleic or ribonu-

cleic acid, DNase and RNase digestions were performed on

both of them. Results presented in Fig. 3A clearly indicate that

the fungal ligand is a small RNA as it is digested only by

RNase; similar results were obtained using the wheat ligand

(not shown). With the aim of ascertaining whether wheatwin1

was not only able to bind RNA but also to degrade it, its



Fig. 1. (A) Separation of r-win1 and GST tag by RP-HPLC; (B) SDS–PAGE of recombinant proteins; M: prestained molecular markers (phos-
phorylase B – 110 kDa; bovine serum albumin – 90 kDa; ovalbumin – 51 kDa; carbonic anhydrase – 36 kDa; soybean trypsin inhibitor – 29 kDa;
lysozyme – 21 kDa); 1: GST-win1; 2: r-win1; 3: GST tag.

Fig. 2. Antifungal effect of wheatwin1 on Fusarium culmorum growth revealed by optical microscopy (40· objective). Fungal spores germinated in the
presence of sterile water (A), GST-win1 (B), wheatwin1 (C) and r-win1 (D).
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RNase activity was examined on wheat total RNA. As shown

in Fig. 3B, both native and r-win1 are able to degrade RNA,

whereas GST-win1 is inactive. In addition, heat-inactivated
wheatwin1 is no longer able to exhibit ribonucleolytic activity

suggesting that RNase activity requires a correctly folded

protein. Preliminary results indicated that, as expected, native



Fig. 3. Panel A: Agarose gel electrophoresis of the F. culmorum ligand
eluted from the affinity column. M: Gibco BRL RNA Ladder markers;
DNase-digested (1) and undigested (2) sample; RNase-digested (3) and
undigested (4) sample. Panel B: Ribonuclease activity tested against
wheat total RNA. Control (1), incubation with native wheatwin1 (2),
heat-inactivated wheatwin1 (3), GST-win1 (4), r-win1 (5).
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wheatwin2 was also able to degrade RNA (not shown). We are

going to produce GST recombinant wheatwin2, wheatwin3

and wheatwin4 to fully characterise the RNase activity of all
Fig. 4. Amino acid sequences of (A) lipr10.1A; (B) wheatwin1; (C) barwin;
action mechanism are underlined and in boldface. The five different residues
these proteins. In fact, further studies are needed to determine

if the differences in the antifungal activity, that have been al-

ready related to micro diversities in the 3D structure [15], are

also endowed with dissimilar enzymatic efficiency.

3.3. Structural studies

Plant PR proteins with ribonuclease activity have been

classified in the PR10 family [1]. The amino acid sequences

(about 150 residues) of most of them are known [21] together

with some 3D structures allowing the identification of highly

conserved residues and regions involved in the action mecha-

nism. These proteins consist of a seven-stranded beta-sheet

wrapped around a long C-terminal helix [22,23]. Fig. 4A shows

the sequence of the lupine PR10 protein Lipr10.1A, whose 3D

structure has been determined by X-ray diffraction (PDB code

1ICX) [23]. The conserved residues with side chains that can be

involved in the catalytic reaction are Glu95, Glu146 and

Tyr148. Furthermore, PR10 proteins conserve a P-loop

structure with the sequence GXGGXGXXK (positions 45–53

in Fig. 4A), which should be the binding site for a phosphate

group of RNA [22,23]; another surface loop, showing an un-

usual structural conservation and rigidity, has been supposed

to play a role in ligand binding [23]. There is no similarity with

the 3D structures of other ribonucleases, as can be also de-

duced from the absence of conserved histidine residues in the

PR10 family. Wheatwin1, although showing a ribonuclease

activity, is completely unrelated to the PR10 proteins. In fact,

its amino acid sequence is 125 residues long, no Glu residue is

present, and the P-loop is lacking (Fig. 4B). Furthermore, like

the highly homologous protein barwin (95, 2% identity,

Fig. 4C), its structure consists of a main beta-sheet of four

anti-parallel strands, two short parallel beta strands consti-

tuting a little independent beta-sheet, and few short helices

[10,11,14]. Consequently, the ribonuclease activity of whea-

twin1 can be explained by the classical acid–base mechanism

common to other ribonucleases involving two His residues [16,

and references therein]. Ribonucleases A (124 residues, PDB
(D) ribonuclease A; (E) ribonuclease T1. The residues involved in the
in the sequences of wheatwin1 and barwin are in boldface.
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code 5RSA, Fig. 4D) [24] and T1 (104 residues, PDB code

1RLS, Fig. 4E) [25] are the most similar in size to wheatwin1.

The mechanism proposed for the catalytic action of bovine

pancreatic RNase A postulates that four amino acid residues

(His12, Lys41, His119, and Asp121) are involved in the acid–

base catalytic process [16]. The relative positions of these

residues in the 3D structure of Bos Taurus Ribonuclease A,

determined by X-ray diffraction (PDB code 5RSA) [24], are

shown in Fig. 5A. The minimal distance between the side

chains of the His residues is 6.31 �A, while that of the same

residues in the backbone is 8.87 �A. The distances His119–

Asp121 and His12–Lys41 in the backbone are 6.02 and 12.72
�A, respectively. Although the primary structure of ribonucle-

ase T1 (Fig. 4E) is completely different from that of RNase A,
Fig. 5. Relative spatial positions of the residues involved in the action
mechanism; (A) ribonuclease A; (B) ribonuclease T1; (C) wheatwin1.
The distances are measured in angstrom (�A).
the residues involved in the action mechanism are conserved

and efficiently positioned in the 3D structure determined by X-

ray diffraction (PDB code 1RLS, Fig. 5B) [25]. Similarly to

RNase A, the amino acid residues involved in the mechanism

are two His residues (His40 and His92), an acid residue

(Glu58) and a basic residue (Arg 77). In this case, the minimal

distance between the His side chains is quite higher (9.14 �A) as

well as that of these residues in the backbone (16.37 �A). The

distances His40–Glu57 and His92–Arg77 in the backbone are

5.70 and 8.68 �A, respectively. A similar situation occurs in

wheatwin1 and barwin. In fact, although their amino acid se-

quences are unrelated to that of both ribonucleases A and T1

(Fig. 4), the residues conserved in the 3D structure and in-

volved in the acid–base mechanism should be His11, His113,

Asp92 and Arg7. It should be noted that the 3D structure of

barwin has been determined in solution by NMR [10,11].

Using this technique, the side chains are likely to be less well

resolved than in X-ray diffraction, and errors in the initial side

chain placement might alter the results of the refinement. As a

matter of fact, 20 similar models of wheatwin1 can be con-

structed using the 20 NMR structures of barwin (PDB code

1BW3) as template; like in the reference protein, the minimal

distance between His11 and His113 side chains in all of them is

variable from 13.56 �A (not shown) to 8.84 �A (Fig. 5C). In this

case, the distance of these residues in the backbone is 9.42 �A,

while the distances His11–Asp92 and His113–Arg7 in the

backbone are 7.90 and 5.94 �A, respectively. The 3D structure

similarity of RNase A, RNase T1 and wheatwin1 in regions

involving residues able to participate to an acid–base action

mechanism should be the key to explain the ribonuclease ac-

tivity of wheatwin1. It should be remarked that the re-

combinant protein r-win1 with the N-terminal spacer peptide

is also active, while the fusion protein GST-win1 is not. Since

the His residues are very accessible [14] and close to the N-

terminus in the 3D structure (not shown), it is reasonable to

suppose that the presence of the spacer peptide GSPGIH does

not affect their interaction with the phosphate group, while the

whole GST tag does. This observation is in agreement with our

previous results showing that the N-terminal region 15–21

could play a role in the biological activity of PR4 proteins [15].
4. Conclusion

To our knowledge, this is the first report of a PR4 protein

with RNase activity; both native and recombinant wheatwin1

show enzymatic and antifungal activities, degrading wheat

coleoptil RNA and inhibiting hyphal growth and spore ger-

mination of F. culmorum. Up to now, the action mechanism of

PR4 proteins has been completely unknown, since no enzy-

matic activity has been ascribed to these molecules. Besides,

they have been classified as chitinases on the basis of the

presence of a chitin binding domain found only in a few of

them [1]. Actually, the chitin binding domain has been found

also in several lectins and in other chitin-unrelated proteins

[26]. In our opinion, PR4 proteins should not be considered as

belonging to the chitinase superfamily but could constitute a

distinct protein group. In fact, wheatwin1 has been shown to

possess ribonuclease activity even though its action mechanism

is different from that of PR10 proteins. Probably, this is not

the only activity related to its biological function; anyway, it
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should be possible that PR4 proteins operate on the invading

pathogen by a translation-inhibitory process that could be

ascribed to their ribonuclease activity.
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