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a b s t r a c t

Stress can have lasting effects on the brain and behavior. Delineating the impact of stress on the
developing brain is fundamental for understanding mechanisms through which stress induces persistent
effects on behavior that can lead to psychopathology. The growing field of translational developmental
neuroscience has revealed a significant role of the timing of stress on risk, resilience, and neuroplasticity.
Studies of stress across species have provided essential insight into the mechanisms by which the brain
changes and the timing of those changes on outcome. In this article, we review the neurobiological
effects of stress and propose a model by which sensitive periods of neural development interact with
stressful life events to affect plasticity and the effects of stress on functional outcomes. We then highlight
how early-life stress can alter the course of brain development. Finally, we examine mechanisms of
buffering against early-life stress that may promote resilience and positive outcomes. The findings are
discussed in the context of implications for early identification of risk and resilience factors and devel-
opment of novel interventions that target the biological state of the developing brain to ultimately
ameliorate the adverse consequences of stress during childhood and adolescence.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Stress is a potent environmental risk factor for both mental and
physical illness. The effects of stress on the brain depend critically
on the timing (age of onset and duration). When stress occurs early
in life it can have profound and lasting effects on brain organization
and function. Approximately 10% of youth have anxiety and stress-
related disorders (Newman et al., 1996; Kim-Cohen et al., 2003;
Kessler et al., 2005), and early childhood adversity accounts for over
30% of all mental illnesses (Green et al., 2010). Yet not all children
who experience stressful life events develop mental illness. Un-
derstanding the mechanisms by which stress alters the developing
brain is fundamental for: 1) delineating adaptive and maladaptive
changes; 2) identifying resilience and risk factors; and 3) devel-
oping interventions for ameliorating risk. This article highlights
recent studies that examine the neurobiological effects of the
timing and buffering of stressful life events.
Inc. This is an open access article u
2. Brain development and sensitive periods

The brain undergoes dynamic changes throughout the course of
development, with important implications for how stress in-
fluences the brain and the efficacy of treatments targeting stress-
related mental illness at different developmental time points.
Nonhuman primate studies show that typical brain development is
marked by an initial period of overproduction of synapses, followed
by selective stabilization and elimination of a substantial propor-
tion of synapses (Huttenlocher, 1979; Huttenlocher et al., 1982;
Bourgeois and Rakic, 1993; LaMantia and Rakic, 1994). Human
neuroimaging studies show corresponding patterns, in which gray
matter volumes typically peak around 10e12 years of age (Giedd
et al., 1999), with significant gray matter loss throughout adoles-
cence and adulthood (Sowell et al., 2001, 2003). Simultaneously,
increases in white matter occur through myelination of axons
(Brody et al., 1987; Benes et al., 1994). Substantial regional variation
exists, with maturation of low-level sensory and motor cortices
occurring prior to prefrontal and temporal cortices involved in
higher-level cognition and regulation of behavior (Yakovlev and
Lecours, 1967; Benes et al., 1994; Sowell et al., 1999, 2001; Gogtay
et al., 2004). Such regional changes in brain structure and func-
tion across development, as well as changes in the availability of
neurochemicals and patterns of cortical cell firing, are posited to
lead to transient imbalances that underlie behavioral changes
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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during adolescence (Galvan et al., 2006; Casey, Galvan, Getz, 2008).
These dynamic changes in brain and behavioral development likely
influence how stress at unique developmental time periods alters
the brain and how children and adolescents cope with stressors.
Exacerbations of transient imbalances in brain circuitry, such as the
effects of acute or chronic stress, may lead to altered stress reac-
tivity and ultimately increase the risk for mental illness.

Understanding neurodevelopmental changes that influence
stress reactivity and recovery are critical for enhancing mental
health. Sensitive periods refer to times in development when
heightened neuroplasticity renders the brain especially amenable
to environmental influences (Moriceau and Sullivan, 2006;
Callaghan and Richardson, 2011; Yang et al., 2012). The timing of
sensitive periods differs by neural circuit and behavioral system,
but it may be that sensitive periods occur when brain development
is most dynamic, such as infancy and adolescence (Fig. 1). During
these periods, environmental input can lead to a series of devel-
opmental cascades (Masten and Cicchetti, 2010) that ultimately
have significant influences on behavior, of a positive or negative
nature. A sensitive period may render the brain more capable of
responding to stress in adaptive ways. It could also magnify con-
sequences of stressful life events in maladaptive ways. By contrast,
stress that occurs during windows of reduced plasticity (e.g., after
the closing of a sensitive period) may yield a brain that is less
capable of remodeling itself. Thus, sensitive periods in neuro-
development may render the developing brain more vulnerable to
the effects of later stress, but they could also serve as windows of
opportunity, during which there is increased potential for positive
adaptation or effective intervention.

Delineating sensitive periods could reveal how the effects of
stress differ depending on when in development and what type of
stress occurs, as well as when in development certain types of
intervention may be most effective for buffering against maladap-
tive consequences of stress. In this way we may begin to direct the
timing and type of interventions at the level of the individual and
the nature of the stressor. The extent to which neuroplasticity and
brain function change throughout childhood and adolescence
suggests that interventions based on the adult brain cannot be
Fig. 1. Model of sensitive periods of brain development. Periods of rapid and substantial cha
in gray), may provide the most opportunity for adaptive behavioral changes. These sensitive p
the effects of stress. Figure adapted with permission from Lee et al., 2014 (Copyright 2014
simply applied to youth who experience stress-related mental
health disorders (Lee et al., 2014). Understanding how sensitive
periods shift, constrict, or expand in individuals at different points
in development will allow treatments to precisely target the bio-
logical state of the developing brain to optimize stress-related
interventions.

3. Neurobiology of stress

Studies of mature animals have provided the majority of extant
knowledge on the effects of stress at the cellular level and show
that stress can significantly remodel brain structure and function
(reviewed in McEwen, 2012). Stress results in changes in fronto-
limbic circuitry that are regional in nature. Chronic stress can lead
to hypermetabolism and morphological changes within the
amygdala, which is critical for learning about the emotional sig-
nificance of environmental cues and helping the organism react to
the challenge or threat of these cues. In contrast, chronic stress
downregulates the hippocampus and prefrontal cortex (PFC),
which regulate the stress response. Specifically, studies of rodents
show that stress increases dendritic arborization and spine density
of the amygdala, with concomitant increases in anxiety-like be-
haviors (Vyas et al., 2002; Vyas et al., 2003; Mitra et al., 2005). By
contrast, stress results in atrophy of the hippocampus and medial
PFC (mPFC) (Magari~nos et al., 1997; Vyas et al., 2002; Radley et al.,
2006). Parallel findings of increased amygdala volume and func-
tional reactivity, smaller hippocampal volume, and altered pre-
frontal function and connectivity have been observed in humans
following stress (Ganzel et al., 2007, 2008; Liston et al., 2006; Liston
et al., 2009; Sheridan et al., 2012a,b).

The reversibility of the effects of stress is regional as well. There
is a growing body of evidence to suggest that the hippocampus and
PFC may have greater capacity for change or plasticity following
stress with many of the effects being reversible following the
termination of stress (McEwen, 1999; Vyas et al., 2004; Liston et al.,
2009). In contrast, stress-induced amygdala morphology and vol-
ume changes seem to persist (Vyas et al., 2002; Adamec et al., 2005;
Tottenham et al., 2010). Due to its cellular properties, the amygdala
nges in brain development, such as the first three years of life and adolescence (shaded
eriods of neural development may also render the developing brain most vulnerable to
AAAS).
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might be particularly sensitive to stress (Plotsky et al., 2005;
Sabatini et al., 2007; reviewed in Tottenham and Sheridan, 2009)
and therefore more resistant to recovery following chronic stress
(Ganzel et al., 2007; Lupien et al., 2011; Malter Cohen et al.,
2013a,b).

These inverse effects of stress on frontolimbic regions are due in
part to complex interactions within the neuroendocrine system of
the Limbic-Hypothalamic-Pituitary-Adrenal Axis (LHPA). An
important function of the LHPA stress response is to release glu-
cocorticoids that facilitate mobilizationwith threat and by doing so
inhibit “non-essential” systems for immediate survival such as
growth, reproduction, and immunity. Under non-stressful or basal
conditions, the LHPA functions to support growth and development
(De Kloet et al., 1998). Under conditions of threat or challenge, LHPA
activity increases resulting in the release of hormones and peptides
that suppress growth and repair in order to support functions
necessary for immediate survival. Failure to activate the stress
response places the organism in a vulnerable state, and failure to
inhibit the stress response results in adverse effects on growth and
development and can lead to diseased states. The amygdala is
critical in activating the LHPA axis in response to threat and stress
(Dunn and Whitener, 1986; Feldman et al., 1995; Redgate and
Fahringer, 1973), and levels of glucocorticoids are regulated via
negative feedback loops at several levels of the axis including the
hippocampus and PFC (Diorio et al., 1993; Jacobson and Sapolsky,
1991). Opposing regulatory actions occur in amygdala and fronto-
hippocampal regions with upregulation of the former and down-
regulation of the latter providing a partial explanation for inverse
effects of stress within frontolimbic circuitry. This review focuses
on the impact of psychological stressors on neuroplasticity,
although glucocorticoids, and their directmanipulation, canmodify
the brain in anatomically selective ways (Sapolsky, 1986; Liston
et al., 2013) and alter the expression of neurotrophic factors
essential for neuroplasticity (Smith et al., 1995).

4. Developmental changes in the effects of acute stressors

Adolescence is a unique period in development with many
implications for the effects of stress. As adolescents transition from
dependence on their caregivers to a more independent state, they
face many new challenges to which they must adapt (Romeo, 2010;
Spear, 2010; Malter Cohen et al., 2013b). Several studies demon-
strate changes in emotional reactivity and frontoamygdala circuitry
in adolescence with important implications for how stress affects
adolescents. For example, we have provided evidence of height-
ened emotional reactivity during adolescence that leads to anxiety
when that reactivity persists long after a potential threat is
removed (Hare et al., 2008). These findings parallel findings of
increased hormonal stress reactivity during puberty and adoles-
cence (Romeo et al., 2006; Folib et al., 2011).

Potential threats can be stressors depending on how they are
perceived. Fear conditioning and extinction paradigms provide a
powerful way to examine stress reactivity to and regulation of acute
threat. During fear extinction, cues previously associated with
threat are presented without the threatening stimulus until the
cues are learned to be safe and fear responses decrease. This pro-
cess is critical to the etiology and treatment of anxiety disorders
such as phobias and posttraumatic stress disorder (PTSD), which
are characterized by an inappropriate fear response to a cue that is
no longer dangerous (Rothbaum and Davis, 2003).

Recently we examined fear learning in mice and humans across
development. Consistent with work in rats (McCallum et al., 2010;
Kim et al., 2011) we showed differential effects of fear extinction in
adolescent mice and humans, relative to younger and older ages.
Although all groups showed similar acquisition of cued fear, the
adolescents showed attenuated fear extinction learning relative to
children and adults (Pattwell et al., 2012). Parallel findings were
observed in mice, such that adolescent (postnatal day (P) 29) mice
showed diminished fear extinction compared with pre- (P23) and
post-adolescent (P70) mice. Examination of frontolimbic circuitry
in the mice suggested reduced infralimbic prefrontal activity in
adolescence during extinction learning. Taken together, this work
suggests that adolescence is marked by prominent changes in
neurodevelopment that are likely to interact with the effects of
stress to influence behavioral phenotypes later in life.

5. Developmental changes in the effects of chronic stress

The timing of stress and its interactions with dynamic devel-
opmental processes are critical to subsequent outcomes (e.g.,
Lupien et al., 2009; Monk, 2008; Monk et al., 2002; Pechtel and
Pizzagalli, 2011; Eiland and Romeo, 2013). Manipulating the
timing of stress is challenging in humans. However, a series of
studies in developing nonhuman primates has shed new light on
the effects of stress as a function of timing. The stress manipulation
was amaternal separation paradigm that occurred at either 1 week,
1 month, or 3 months after birth (Cameron, 2001; McCormick et al.,
2005). The results showed qualitatively distinct behavioral out-
comes depending on the timing of the separation. Monkeys who
experienced maternal separation at 1 week exhibited less social-
contact behaviors than maternally reared animals. By contrast,
monkeys who experiencedmaternal separation at 1month showed
significantly more social behavior. Examination of gene expression
changes in the amygdala at 3 months of age in each group indicated
downregulation of mRNA expression throughout the amygdala in
the monkeys who were separated from their mothers the earliest
(Sabatini et al., 2007). These results suggest that the timing (and
duration) of stressors may interact with dynamically changing
brain systems to alter behavior in complex and unique ways.
Moreover, evidence from rodent models suggests that early-life
stress may affect different phenotypes in childhood than adoles-
cence (Raineki et al., 2012; Rinc�on-Cort�es and Sullivan, 2014).

Investigations of naturally occurring stressors in humans pro-
vide evidence that the onset and duration of stress matters. In
studies of children reared in orphanages abroad and later adopted
into stable families, the findings consistently suggest that earlier
adoption is better (Rutter, 1998; Gunnar et al., 2000; Tottenham
et al., 2010). It remains unclear whether earlier adoption is asso-
ciated with increased resilience due to a shorter duration of stress
or because the stress may interact with sensitive periods for
emotional development, or both. It may be that the malleability of
the brain decreases over time, such that stress and remediation
occurring later in development have differential consequences due
to changes in the brain's ability to adapt or recover.

A study of the impact of the 9/11 terrorist attacks on healthy
adults provides further evidence of the importance of timing of
stress on its neural and behavioral effects (Ganzel et al., 2007).
More than three years after 9/11, individuals who were within 1.5
miles of the disaster had higher amygdala reactivity than thosewho
were over 200 miles away. Notably, the association between
proximity and amygdala activation was accounted for by the time
since the last worst trauma. These findings show that recovery,
even in healthy adults, occurs across many years, while also high-
lighting the importance of the recency of trauma.

6. Lasting effects of early-life chronic stress

Stress can arise through any number of environments that
challenge an individual cognitively, emotionally, or physically, such
as uncontrollable or unpredictable settings (e.g., Lupien et al., 2000;
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McEwen, 2012; Pollak, 2008; Sheridan et al., 2013; Teicher et al.,
2006). However, environments that result in a mismatch between
the expected and actual environment may prove particularly
stressful (Finlay, 2007; Casey et al., 2010). Environmental stability
across a long evolutionary history has led to species-expected ex-
periences, such as caregiving for humans early in life. Consistent
with this idea, poor caregiving is one of the most potent stressors
for an infant and has long-lasting effects on the brain and behavior
(e.g., Sheridan et al., 2012a,b; reviewed in Tottenham, 2012).
Maternal separation in rodent pups is associated with greater LHPA
axis reactivity (Moriceau et al., 2010), accelerated amygdala
development (Moriceau and Sullivan, 2006; Ono et al., 2008),
increased anxiety-like behaviors (Romeo et al., 2003), and more
social instability in adulthood (Kikusui and Mori, 2009). Human
studies of maternal deprivation early in life have shown atypical
frontoamygdala development and function with greater amygdala
volume, amygdala hyperactivity, and less prefrontal activity to
emotional stimuli, as well as long-term impairments in anxiety and
social behavior (Mehta et al., 2009; Zeanah et al., 2009; Tottenham
et al., 2010, 2011). The enhanced amygdala activity and decreased
prefrontal activity in the children with a history of maternal
deprivation may suggest that they are less able to suppress irrele-
vant emotional information leading to dysregulation of emotions.
By preschool these children have a rate of mental health disorders
that is more than twice that in children who did not experience
institutional rearing (Zeanah et al., 2009).

Until recently, less has been known about changes in the long-
term course of brain development following early-life stress.
Recent studies in our respective laboratories indicate that early-life
stress has lasting effects on the organization of frontolimbic cir-
cuitry. We specifically examined the effects of orphanage rearing on
development of frontoamygdala activity and connectivity. With
typical development, task-based frontoamygdala functional con-
nectivity switches from positive coupling in childhood to inverse
coupling during the transition to adolescence (Gee et al., 2013a,b)
(Fig. 2). This mature pattern of inverse amygdala-mPFC functional
connectivity is consistent with the inverse connectivity observed in
the literature of emotion regulation in healthy adults (Banks et al.,
2007; Hare et al., 2008; Hariri et al., 2003; Kim et al., 2003).

Based on evidence that early-life stress accelerates amygdala
development in rodents, we hypothesized that children who
Fig. 2. Mature frontoamygdala functional connectivity following maternal deprivation. Left
that group differences emerged when participants viewed fearful faces. Right) Unlike compa
with a history of early-life stress (previous institutionalized care) exhibited the mature pa
adolescents. The results suggest an early closure of a sensitive period in frontoamygdala d
reproduced with permission from Gee et al., 2013a (Copyright 2013 Proceedings of the Nati
experienced maternal deprivation early in life would display
altered development of frontoamygdala circuitry. Children who
were reared in international orphanages as infants and were sub-
sequently adopted into stable families in the U.S. provided a means
of examining an isolated period of early-life stress (i.e., institu-
tionalized care) on later brain development and behavior. In
contrast to the immature positive functional connectivity displayed
in comparison children, the children who experienced early-life
stress showed the adult-like pattern of inverse amygdala-mPFC
functional connectivity (Gee et al., 2013a,b) (Fig. 2). This marked
shift in connectivity may reflect early closure of a neural sensitive
period that could have long-term consequences for later affective
behaviors.

To better understand the functional significance of accelerated
neural circuit development we tested whether amygdala-mPFC
functional connectivity was related to anxiety. Children with a
history of early-life stress had higher levels of anxiety than com-
parison children, consistent with prior findings. However, youth in
the early-life stress group with the mature phenotype of inverse
functional connectivity had lower anxiety than those with the
immature phenotype of positive functional connectivity. It may be
that the earlier emergence of mature connectivity is adaptive in the
context of early-life stress. Cortisol levels mediated the relationship
between early-life experience and frontoamygdala connectivity,
suggesting that stress-related modifications of the LHPA axis may
shape the early development of amygdala-mPFC connections.
Accelerated frontoamygdala development may serve as an onto-
genetic adaptation that reprioritizes development to cope with an
early adverse environment. However, the long-term consequences
of this accelerated development remain unclear.

7. Translational studies of early-life stress

Naturalistic studies of stress effects in humans have provided
critical insight into the neurobiological mechanisms through which
stress has lasting effects on emotional behavior. However, the
interpretation of these studies is limited by confounds of uncon-
trolled genetic and environmental factors. To address these con-
cerns we recently conducted a translational study in mice in which
wewere able tomanipulate the type and timing of stress in rodents
to mimic the orphanage-rearing environment in humans and
) A group by emotion interaction was observed in the mPFC (p < 0.01, corrected), such
rison children who showed immature (positive) amygdala-mPFC connectivity, children
ttern of inverse amygdala-mPFC coupling, such that the stressed children resembled
evelopment following early-life stress. Error bars ¼ þ/� 1 SEM; *p < 0.05. Data are
onal Academy of Sciences of the United States of America).
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examine the long-term effects (Malter Cohen et al., 2013a,b). The
early-life stress manipulation involved limiting the nesting mate-
rial provided to the dams, which disrupted maternal care of the
pups (Gilles et al., 1996; Ivy et al., 2008; Rice et al., 2008). This
stressor was limited to the pre-weaning period (P2eP21) that
paralleled the adoption of most children from orphanages during
early childhood.

To capture the heightened emotional reactivity and slowing of
response latencies in anticipation of negative emotional informa-
tion in children reared in the orphanage (Tottenham et al., 2011)
Fig. 3. Greater amygdala activity in humans and mice following early-life stress. (A)
Human participants were instructed to detect frequently presented neutral targets
embedded among rare threat non-target cues. Mice were trained where to obtain
sweetened milk in their home cage for 3 consecutive days and then latency to
approach the milk was measured in the home cage on the 4th day, and in an odorless,
brightly lit novel cage on the 5th day. (B) Stressed preadolescent humans and mice
take longer than their standard-reared counterparts to approach targets in the context
of potential threat. (C) Amygdala activity in response to threat was greater in stressed
preadolescent humans and mice than their standard-reared counterparts. Error
bars ¼ þ/� 1 SEM. Data are reproduced with permission from Malter Cohen et al.,
2013a (Copyright 2013 Proceedings of the National Academy of Sciences of the United
States of America).
(Fig. 3), we modified a task for the mice to get them to approach
potential threat. Specifically we used a paradigm through which
mice were trained where to obtain sweetened condensed milk in
their home cage. After several days of training we then tested the
mice in a brightly lit novel cage. Both juvenile and adult mice that
grew up with the stressed dam took longer than the nonstressed
mice to approach the milk in the novel cage of potential threat
relative to the home cage.

We used measures of c-Fos expression to examine the effects of
early-life stress on frontoamygdala circuitry. Mice exposed to early-
life stress had persistently elevated levels of c-Fos in the basolateral
amygdala relative to the nonstressed mice across development
(Fig. 4a). These effects persisted even after the stressor was
removed and after maturity of infralimbic (prefrontal) cortical
maturation in adulthood (Fig. 4b). These findings in the mice pro-
vide converging evidence with that of alterations in amygdala
function in humans following early-life stress. Specifically, both
mice and humanswho experienced early-life stress showed greater
amygdala activity and took longer to approach a target in the
context of potential threat than nonstressed mice and humans.
These results suggest that early-life stress impairs the ability to
suppress fear responses in favor of goal-directed behavior, and that
these effects persist into adulthood even after the cessation of the
stressor and the development of the PFC.

8. Buffering against the effects of stress during development:
toward resilience and intervention

Identifying mechanisms to buffer against stressful life events is
critical to promoting healthy outcomes following stress, treating
stress-related mental health disorders, and ultimately, preventing
stress-related forms of mental and physical illness. These efforts
must also focus on understanding when specific buffers are most
effective in development and how to enhance resilience at unique
developmental stages. Resilience involves not only the ability to
recover from stress-related damage but also to adapt to changes in
the environment (McEwen, 2012). Individuals accustomed to sta-
ble, safe environments may vary in the extent to which they can
adapt to novel, riskier environments, such as young infants being
placed in orphanage care. By contrast, the process of transitioning
from a risky environment to a safe, stable environment also re-
quires plasticity and resilience. Childrenwhowere reared as infants
in orphanage care who are then adopted into stable, loving families
face drastic (though typically positive) shifts in their environment.

Caregiving provides a host of regulatory functions in humans,
such as buffering against emotion dysregulation and stress reac-
tivity in youth (Campos et al., 1975; Hofer, 1994; McCoy and
Masters, 1985; Gunnar and Donzella, 2002). One way in which
plasticity may be increased following the closure of sensitive pe-
riods is through exercise and environmental enrichment, such as
the influence of an exceptionally nurturing, stable family who
adopts a child who previously experienced early-life stress.
Consistent with this idea, findings from the Bucharest Early Inter-
vention Project show that children who were removed from insti-
tutionalized care and placed in foster families had lower rates of
internalizing disorders than those who continued in institutional
care (Zeanah et al., 2009). Parent-child relationships may thus be
central to buffering against stressful life events during certain times
in development.

In rodents, a sensitive period for the effects of maternal pres-
ence on amygdala development has been identified (Moriceau and
Sullivan, 2006; Callaghan and Richardson, 2011). Specifically,
maternal presence suppresses corticosterone and amygdala reac-
tivity during an early sensitive period in pre-weaned rodent pups
(before P21) that appears to reduce fear and promote attachment



Fig. 4. c-Fos activity by group and age. (A) The density of c-Fos protein in the amygdala following exposure to the threatening context (i.e. novel cage) was elevated in stressed mice
across development relative to nonstressed animals. (B) The density of c-Fos protein in the infralimbic PFC increases with age regardless of stress history. Error bars ¼ þ/� 1 SEM;
*p < 0.05. Data are reproduced with permission from Malter Cohen et al., 2013a (Copyright 2013 Proceedings of the National Academy of Sciences of the United States of America).
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behaviors. In addition, maternal presence has been shown to
reduce cortisol levels in childhood (Hostinar et al., 2014). Though
sensitive periods have been more elusive in human development,
recent work highlights possible periods during which the envi-
ronment may have greater influence on the neural circuitry
affected by early-life stress in human development.

Frontoamygdala circuitry is particularly sensitive to the effects
of the environment in childhood. Based on the identification of a
sensitive period for maternal influence in rodents, we tested
whether caregiver presence differentially affected frontoamygdala
circuitry in children versus adolescents (Gee et al., 2014). We
designed an fMRI task that manipulated visual presence of the
caregiver with an image of the participant's mother's face or a
stranger's face. Participants also completed a laboratory-based
behavioral task of affect regulation in the presence of their
mother and in the presence of a stranger (order of administration
was counterbalanced). Findings revealed that the maternal stim-
ulus buffered against heightened amygdala reactivity in childhood,
but stopped being effective in adolescence (Fig. 5a). Moreover, the
maternal stimulus phasically induced an adult-like pattern of
frontoamygdala negative connectivity in children, such that chil-
dren resembled adolescents when viewing their mother's face
(Fig. 5b). Children also displayed evidence of maternal buffering of
behavior, such that they performed with enhanced affect-related
regulatory behavior in the presence of their mother compared
with a stranger. Individual difference analyses suggested that
children with greater neural modulation by the mother had lower
separation anxiety and more secure attachment, as well as better
emotion regulation in their mother's presence. These findings
suggest a potential sensitive period for environmental influences
on frontoamygdala development and provide a neurobiological
mechanism for how the caregiver serves as an external regulatory
influence to buffer against stress reactivity in childhood.

Evidence suggests that stress itself might also buffer against
stress reactivity, depending on the nature and timing of stress
exposure. Chronic LHPA axis activation or the persistence of stress-
induced physiological changes in the absence of acute stressors is
more likely to be associated with deleterious effects to frontolimbic
circuitry and increased risk for psychopathology. However, expo-
sure to moderate stress might actually alter this system to enhance
resilience. Research on nonhuman primates has shown that mod-
erate stress exposure is associated with lower cortisol following
stress and decreased anxiety (Parker et al., 2004), as well as
increased prefrontal volume and enhanced prefrontal function
(Parker et al., 2005; Katz et al., 2009).

Though the concept of stress inoculation remains relatively
unexplored in human development, the notion of too much or too
little stress yielding suboptimal effects on brain and behavior, but
moderate stress yielding benefits in an inverted-U pattern, has
been around for some time (Arnsten and Goldman-Rakic, 1990,
1998; McEwen and Sapolsky, 1995). Partial evidence for this notion
in humans has been shownwith moderate stress early in life being
associated with reduced cortisol reactivity to subsequent stressors,
compared with mild or severe stress early in life (Gunnar et al.,
2009; Hagan et al., 2014). Thus, whether physiological responses
to stress are adaptive or maladaptive depends on the nature as well
as the timing of the stress.

In addition to environmental interventions, novel studies of
brain plasticity are beginning to shed light on ways in which it may
be possible to alter plasticity by re-opening sensitive periods
(reviewed in Davidson and McEwen, 2012). Evidence from a
promising line of studies suggests that shifting the excitatory-
inhibitory balance in relevant neural circuits may increase plas-
ticity (Thompson et al., 2008; Bavelier et al., 2010). For example,
reductions of inhibitory neural activity in adulthood have increased
visual plasticity in rodents (He et al., 2007; Sugiyama et al., 2008;
Harauzov et al., 2010) and even restored visual function in ambly-
opic adult rats (Vetencourt et al., 2008). Interventions to recapitu-
late sensitive periods have been less explored in humans, but hold
promise with future research that will be critical for understanding
how behavioral interventions, pharmacological interventions, and
environmental manipulations may alter plasticity following the
closure of sensitive periods.



Fig. 5. Maternal buffering of amygdala reactivity and mature-like connectivity in childhood. (A) Presence of the maternal stimulus phasically buffered right amygdala reactivity in
children but not adolescents (p ¼ 0.049). Specifically, children showed lower activation of the right amygdala to their mother compared with a stranger (i.e., the mother of another
youth). (B) The psychophysiological interaction analysis of amygdalaemPFC functional connectivity revealed an interaction between age group and the maternal stimulus
manipulation (p ¼ 0.034). Specifically, adolescents showed a mature pattern of inverse amygdalaemPFC functional connectivity to both their mother and the stranger. In contrast,
children exhibited a mature-like, inverse pattern of functional connectivity to their mother (p ¼ 0.019). However, functional connectivity to the stranger did not differ from implicit
baseline in children, suggesting that the phasic presence of the maternal stimulus may induce a more mature-like pattern of amygdalaeprefrontal interaction in childhood.
*p < 0.05. Data are reproduced with permission from Gee et al., 2014 (Copyright 2014 Psychological Science).
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9. Neuroplasticity and the effects of stress in adults

Though much remains unknown about the relationship be-
tween stress and neuroplasticity during development, recent
studies in adult rodents and humans have examined the effects of
moderate stress on the plasticity of prefrontal circuitry and func-
tion. In these studies, we (Liston et al., 2009) have shown enhanced
focus of attention and rewiring of prefrontal circuitry during stress
that was reversible when the stressor was of moderate intensity
and short-lived (a few weeks). Specifically we tested medical stu-
dents studying for the boards reporting high levels of stress relative
to other students not experiencing examination-related stress.
Those individuals reporting high levels of stress showed dimin-
ished capacity to shift attention. This enhanced focus of attention
was paralleled by diminished functional connectivity within pre-
frontal circuitry (Fig. 6). Importantly, the attentional and connec-
tivity effects were reversed several weeks later following the board
examination (Liston et al., 2009).



Fig. 6. Stress effects on human PFC function (Bottom) are consistent with those observed in a rodent model of chronic stress (Top). (A) Chronic stress disrupted dorsolateral PFC
functional connectivity in human participants (t ¼ 5.74, p < 0.001) and reduces apical dendritic arborization in rats (t ¼ 2.83, p ¼ 0.007). Human functional connectivity values
represent the group means for peak voxels in each of the affected regions. (B) Stress-induced corresponding impairments in attention shifting [humans (Bottom), t ¼ 2.10, p ¼ 0.04;
rats (Top), t ¼ 3.51, p ¼ 0.002)]. (C) Measures of PFC integrity predicted attention-shifting impairments in humans (Bottom) (r ¼ �0.64, p < 0.001) and showed a similar trend in rats
(Top) (r ¼ �0.74, p ¼ 0.09). Human functional connectivity values represent the means for peak voxels in each of 6 regions. Error bars ¼ þ/� 1 SEM; *p < 0.05; **p < 0.01;
***p < 0.005. Data from the rodent model are reproduced with permission from Liston et al., 2006 (Copyright 2006 The Journal of Neuroscience). Data from the human study are
reproduced with permission from Liston et al., 2009 (Copyright 2009 Proceedings of the National Academy of Sciences of the United States of America).
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These stress-induced alterations of prefrontal circuitry and
resulting attentional focus in humans may be best understood in
the context of a parallel study in rodents (Liston et al., 2006). Rats
were exposed to three weeks of restraint stress. This stress selec-
tively altered prefrontal circuitry and function specific to attention
shifting, but not other processes of comparable difficulty (Liston
et al., 2006, 2009). The stressed rats showed reduced dendritic
arborization and spine density in mPFC (Fig. 6) consistent with
prior work showing similar effects following chronic stress (Cook
and Wellman, 2004; Radley et al., 2004, 2006), with some evi-
dence that effects on mPFC were reversible (Radley et al., 2005).
Stress appears to restrict feedforward projections to PFC, which
may focus and maintain attention on the relevant stressor and
minimize attentional shifting to irrelevant events that are less
important in the face of current stressors. Alterations in prefrontal
functional connectivity that bias attention toward one salient
category of inputs may be adaptive for dealing with psychosocial
stress in the short-term, particularly when these effects reverse
following reductions in stress. However, less is known about the
reversibility of moderate stress-induced effects during develop-
ment. Given the reversibility of the effects of stress on hippocampal
and prefrontal regions (McEwen, 1999; Vyas et al., 2004; Liston
et al., 2009), it may be possible to design interventions that spe-
cifically target these regions to reverse negative effects of stress.
Moreover, the consideration of sensitive periods will provide
important insight into when neuroplasticity may be heightened in
these regions such that interventions can be delivered during
developmental windows of opportunity.
10. Conclusions

There is an expanding literature on the profound effects of stress
on the organization and function of the brain. The timing and na-
ture of stressful events can dictate the adaptiveness or malad-
aptiveness of the stress response. When stress occurs, how long it
lasts, and how its timing interacts with sensitive periods in brain
development shape the effects of stress on behavior and risk for
psychopathology. Stress-induced remodeling of the brain may help
the organism to adapt to short-term needs in a stressful environ-
ment; however, changes that were once adaptive may be mal-
adaptive following cessation of the stressor. Stress that occurs early
in life has lasting effects that often do not reverse even after
cessation of the stressor or after maturity of prefrontal regions
implicated in downregulation of stress. Most chronic early-life
stressors studied to date involve a mismatch between species-
expected experiences and actual experiences, such as sparse and
unstable caregiving. Stable parental care plays a significant role in
mitigating or buffering the offspring from the effects of early-life
stress and facilitates the development of typical emotional regu-
lation. Studies of dynamic models that consider the age and timing
of stress and changing environments are critical for moving toward
an understanding of how stress promotes and hinders resilience to
inform developmentally-tailored interventions that target the
biological state of the developing brain for at-risk youth.
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