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1 Introduction

The experimental evidence that Lorentz symmetry is preserved for effective four-
dimensional theories is overwhelming. In curved space-time this Lorentz symmetry is
realized as a local symmetry of the tangent manifold [1, 2]. Moreover, to incorporate
spinors in general relativity, we are forced to consider this local symmetry because there
are no spinor representations of the diffeomorphism group. Usually the dimension of the
tangent space is taken to be equal to the dimension of the curved manifold and then the
Lorentz symmetry is simply a manifestation of the equivalence principle, which is valid in
torsion-free theories. General relativity could then be formulated as a gauge theory of the
Lorentz group where the gauge fields are the spin-connection. In reality one can search
for all possible tangent groups in d-dimensional space-time [3]. In this paper we will in-
vestigate whether it is possible to have a larger group of symmetry in the tangent space
and still unambiguously reproduce general relativity. We will show in section 2, that this
is indeed possible by taking the tangent space to be real with de Sitter group symmetry.
The de Sitter gauge invariant action which is linear in curvature is shown to be identical to
Einstein gravity, provided that metricity condition is imposed on the spin and affine con-
nections. In section 3 we consider matter interactions of gravity with the de Sitter group as
the tangent group. We then, in section 4, consider a complex tangent space and show that
the relevant symmetry in this case is the unitary symmetry. The resultant theory is the
Einstein-Strauss theory. Section 5 is the conclusion. An appendix treats the special limit
of Poincare symmetry, and examines the relation of our new formalism in three dimensions
with Witten’s formulation of Chern-Simons gravity.



2 Gravity with de Sitter tangent group

Let us begin with a d-dimensional manifold and assume that at every point of this manifold
there is a real N-dimensional tangent space spanned by linearly independent vectors v,
where A = 1,2... N. Assuming that d < N, the coordinate basis vectors e, = 9/9z%,
where o = 1,2...d, span d-dimensional space. Next we define the scalar product in the
tangent space and take the vectors v4 to be orthonormall

VA-VEB =NAB. (2.1)
where n4p is Minkowski matrix. The Lorentz transformations
Va=Alvg, A nepAL =nas (2.2)

preserve the orthogonality of the vielbein, v4-vp = nap. The scalar product of coordinate
basis vectors then induces the metric in d-dimensional manifold

€q €3 = gop(z7). (2.3)
Expanding e, in v 4-basis
€a = eva, (2.4)

and substituting in (2.3) we obtain the following expression for the metric gngs
Jop = 636577,413, (2.5)

in terms of components. Tangent space indices are raised and lowered with the Minkowski
metric, thus

€CAa = 77AB€§ = (VA : ea) 5 (26)

and nP is inverse to Minkowski matrix nap. Next we consider parallel transport on the
manifold relating vectors in “nearby” tangent spaces. The affine and spin connections
determining the rules for parallel transport of the coordinate basis vectors and vielbein are
defined via

Ves€a = Ve, = Fgﬁe,,, Vgva = —wﬁABvB, (2.7)

where Vg is the derivative defining the rate of change of vectors along a basis vector
eg. When applied to a scalar function f this derivative acts as a partial derivative with
respect to the appropriate coordinates, that is, Vgf = 0f /0xP. Notice that nsp and
gap as defined in (2.1) and (2.3) are the sets of scalar functions and, hence, Vgnap = 0,
V1908 = 09ap/0xY = 0ygas-

Given 1n4B, gap and eﬁ we derive the consistency (metricity) conditions for the con-
nections by taking derivative of equations (2.1), (2.3) and (2.6). In particular, we obtain

(VCVVA) "Vp+va- (VC\!VB) = ~WaAB — WaBA = Voﬂ?AB =0, (28)

!We use the notation and methods of Misner, Thorne and Wheeler ([4]), in particular sections 9 and 10.



that is, the spin connection should be antisymmetric with respect to tangent space indices,
Woap = —Wapa- Applying the derivative V., to (2.3) gives

I’Zﬁ{gyg + nggw = 0v9a8 (2.9)

Assuming that torsion is absent, F;ﬁ = F;a, these equations are solved unambiguously,
giving the well known result

1
[ls= 29“/0 (Gao,8 + GoB.a — Gop,o) » (2.10)

where ¢g77 is inverse to g.g, that is, g7 gs3 = 5%‘. We would like to stress that affine con-
nections are determined unambiguously irrespective of the group of tangent space. Finally,
from (2.6) we obtain

0gean = —wﬁABeBa —|—I’356A,,. (2.11)

Let us find when these equations can unambiguously be solved for wsp 4'in terms of the
soldering form eZ and metric gas- The total number of components of eB is Nd. Given
a metric gog, whose derivatives determine I'; 5 via (2.10), and hence impose Va2 (d+1)
constraints on dgeaq, leaves us with d (Nd — 1d (d+ 1)) independent equations (2.11) to
determine %dN (N — 1) antisymmetric spin connections wgap- Note that for any N and
d the number of equations can never exceed the number of independent wgap to be de-
termined, and hence for any dimension of tangent space the system of equations is not
overdetermined. However, the spin connection is unambiguously determined only if the
number of equations is equal to the number of its unknown components:

d<Nd— ;d(d+1)> - ;dN(N—l).

The only solutions of this equation are N = d and N = d + 1. The first case is well
known and thus we shall concentrate on the second case which corresponds to the larger
symmetry group SO(1,d) of the tangent space. In the case of a four-dimensional manifold
the tangent space is five dimensional. The metric in 5d tangent space can then be taken
either to be nap = diag(1,—1,—1,—1,—1) or nap = diag(1,1,—1,—1,—1). In the first
case the gauge group is 5d Lorentz group SO(1,4) which is also the group of symmetry
of 4d de Sitter space (de Sitter group), while in the second case the group is SO(2,3)
(the group of symmetry of 4d anti de Sitter space). For definiteness and from here on,
we consider these cases only. Note that although the consistency equations do not lead to
any contradiction for an arbitrary dimension of tangent space the connections are entirely
determined by the soldering form only if N = d or N = d+1. Otherwise the spin connection
is not unambiguously determined by the fundamental soldering form and the theory is not
well defined.

In order to construct gauge invariant Lagrangians we need to define
el =9""eya = ga'ynABef. (2.12)
Rewritten in terms of e%, equation (2.11) becomes

Jpey = —wga Beo — Ioges. (2.13)



The soldering form €9 is inverse to eg only if the dimension of the tangent space and the
dimension of the manifold match. In case of a de Sitter tangent group contraction over
tangent space indices gives

ehes = g mapelel = g g.5 = 65, (2.14)
however, contraction over space-time indices gives

eSel #64. (2.15)

To prove this, let us introduce the unit vector n orthogonal to all e,, that is, n-e, = 0
and n - n =¢, where ¢ = —1 or +1 for de Sitter and anti de Sitter groups correspondingly.
The vectors n and e, form a complete basis in tangent space and therefore

VA = vieq + nan. (2.16)
Taking into account (2.6) we have
vG =97 (va-ey) = g* napel = €4, (2.17)
that is, the soldering form €9 coincides with the coefficient v% in expansion (2.16). Taking
this into account one gets
NAB =VA- VB :vﬁvggaﬁ—l—enAnB = eQean +ENANE, (2.18)

or after rasing the tangent space index we obtain

eSel = 68 —enyn® = P4 (2.19)
where Pg is a projection operator: P(‘;‘Pg = Pjsf‘.

The components n 4 satisfy the following relations

nte§ =0, nant =c. (2.20)
To prove this let us note that it follows from (2.16) that v4 - n = eny4. Substituting here

the expansion
n=nPvg, (2.21)

we infer that 7n? = en® and hence

n=cenlvp=c¢ (nBe%ea + anBn) , (2.22)
from which (2.20) immediately follows.
In vielbein formalism the soldering form e is a fundamental quantity and the group of
symmetry under which the theory is required to be invariant is the group of local Lorentz
transformations (2.2), where A, ® = A, P (x). Under Lorentz transformation we have

Va=APvp =ALP (e%e, +npn) = e, + fian, (2.23)



and hence
€% — % =ALel (2.24)

The transformation law for the spin connection follows from its definition:
Substituting vz = A, “ve and taking into account (2.7) we infer that
wa® = 0,47 = (Aw, A T+ (A9, A7) T (2.25)
nA BA w A B A :

where A and A~! are the matrices corresponding to Lorentz transformation and its inverse.
Up to this point, we have considered only vector representations of the Lorentz group. In

general,
A =exp (AP J4p) (2.26)

where Jup are corresponding generators of the Lie algebra which satisfy the commutation
relations

1
[JaB,Jep) =  (nBcJap —nacIBp —NBpJAC + NapJBC) (2.27)

5 (
Consider spinors ¢ which transforms according to

) — exp <iAABFAB> b, (2.28)

where I'yp = ; (T4T'p — I'pT"4) are generators of the Lie algebra in the spinor representa-

tion and I'4 are d + 1 Dirac matrices satisfying
{rA 18} =298, 11 =1o7410, (2.29)

We note that the signature of 748 does not play any significant role in the derivations that
follow, and thus our results holds equally well for both de Sitter and anti de Sitter tangent
groups. The Dirac action

/ d /g il e Do, (2.30)

where 1
Do =00+  wPT 4B, (2.31)

is invariant under gauge transformations (2.24), (2.25) and (2.28). This action is real,
thanks to the metricity conditions (2.13).
Next one constructs the curvature of the connection D,, defined by [5, 6]

1
[D,,D,] = 4RWABF ABs (2.32)
where
wa‘B (W) = Fuw, P — 8VwMAB + wMACwVCB — wVACwMCB. (2.33)
This curvature transforms as
_1\ B
(Ruw) i — (ARATY) 7, (2.34)



and hence
R(w) = eiRWAB (w) e, (2.35)

is invariant under local gauge transformations. The gauge invariant action is then given by

5= —2; / o JgR () (2.36)

Although this action appears to depend on the non-diagonal €y, it is a function of g,,, only.
To prove this we first find how the tangent space covariant derivative acts on the
components of a vector 1 =I¢v¢. Using spinor representation for the vector we have

1
D, (I°Tp) = 9,1°Tp + 4%30 T, TpliP. (2.37)

Taking into account the commutation relation [['pc,I'p] = 2 (nepl's — nppl'c) one gets
D, (I°Tp) = (9,1 + w,'19) Tp, (2.38)

and hence we deduce
D,IP = 8,1P + w F1C. (2.39)

In particular, it follows that
D,ePt = 8,eP + w,AzefP, (2.40)
which in turn implies that
Dy D) e = R AP () €. (2.41)
On the other hand, using metricity condition (2.13), we have
D,ePt = —TP 74, (2.42)
and therefore
A A A A
D, (DyeP?) = =Dy, (I,e7%) = — (0,1%,) €7 =T, (De”)
= =9I, e7 + 10,19, . (2.43)

Taking the commutator one gets

(D, D) eP? = — (9,10, — 9,10, + T T, —T0T% ) e

puKt vo VKT o

= —Rr_,, ()e™, (2.44)

ouv

Comparing this result with (2.41) we arrive at the identity

RMVAB (w) epB = _Rpauy (F) BUA’ (245)
which in turn leads to
R(w) = eiRWAB (w)ep =—R",,, (T e(’Aei
= Ryovu (I ¢°* =R(I). (2.46)



This completes the proof that the gauge invariant action (2.36) is equivalent to Einstein
action and involves only those combinations of e/ which reduce to the metric g,,. The
remaining 5d (d + 1) independent combinations of €/; components represent the Jd (d + 1)
gauge degrees of freedom associated with SO(1,d). Thus, we conclude that it is possible
to formulate Einstein gravity as a gauge invariant theory with the tangent group being de
Sitter or anti de Sitter.

We would like to stress that in proving identity (2.46) we never (and could not) assume
that the soldering form e’} has an inverse and, moreover, this result is valid for an arbitrary
dimension of tangent space. However, as it was noticed above the theory is well defined
only if N =dor N =d+ 1. We could also consider a gauge invariant action involving
higher order curvature invariants. One can show that even in this case the action depends
only on the metric g,,,,. To give an example consider all possible terms which are of second
order in curvature

RWABRPUCD (c1 efyepelied + o elyeten el + cs efehelied) (2.47)

because other terms are related to these three by symmetry. The first term is identical to
R? (T"), while for the second term we have

R, (w)eheg R, P (w)etel, = g R7,,, (T) g R, , (T). (2.48)

Ky
after using the identity (2.45) twice. Similarly, the third term gives
R, (w)efheh Ry P (W) el = g R, (D) Ry 0 (T) (2.49)

which proves that the most general action which is second order in spin-connection curva-
ture is identical to the one that depends on affine-connection curvature.

3 Matter couplings

We have seen that gravity is insensitive to the gauge group of the tangent space. In this
section we will show that, to the contrary, matter “feels” the tangent space group. Let
us consider the matter couplings in the case of de Sitter tangent group. In this case the
fundamental spinors, vectors and tensors are defined as representations of the 5d Lorentz
group of tangent space, and their Lagrangians must be invariant with respect to de Sitter
symmetry. In vierbein formulation of gravity, we can exchange space-time tensors with
Lorentz tensors. This is no longer valid for de Sitter tangent group because in this case
the vielbein €/j is not invertible and, for example, a vector in the tangent space is not
equivalent to a space-time vector. In fact as we will show now the 5d de Sitter vector is
equivalent to 4d space time vector and real space time scalar. Therefore, de Sitter tangent
space “unifies” 4d vectors and scalars.

Let us consider a 5d vector H, which can be expanded in terms of components as
(see (2.16), (2.17)):

H = H'v, = H e, + H nan =H%, + ¢n, (3.1)



where
H® = HA%, ¢ = H"ny, (3.2)

are the components of a 4d vector and a scalar, respectively. Multiplying the first equation
by eZ and taking into account (2.19) we derive

HB = HYB + con?; (3.3)

B

Bpp =0and nny = e (see (2.20)) it follows from here that

since e
HPHp = go g HYH® + c¢*. (3.4)
Let us construct the curvature of H 4

Fap=DyHp — DpHjy, (3.5)

where Dy = e4D, and D, is covariant derivative with respect to tangent space vector
indices (see (2.39)); therefore, the components with only space time indices are scalars
with respect to this derivative, for example, Doy H? = 9, HP. Taking this into account and
using decomposition (3.3) we find

D HP = eﬁefagHa + eﬁHo‘Dgef + 6eﬁn385¢ + €6ﬁ¢D5TLB. (3.6)
The last term here is equal to zero. In fact, using the definition (2.7) we have
Opna =eVp(va-n) = —wgy Bnp +eva - Vgn, (3.7)

and hence Dgny = —ev4-Vgn. In turn, one can immediately conclude from Vi (e, -n) =0
and Vg (n-n) = 0 that Vgn =0 and therefore Dgn4 = 0. Using metricity condition (2.42)
to express Dgef in terms of I'), and interchanging indices we then find

Fap = eie% (0pHo — 0o Hg) + € (eﬁnB — e%nA> 0. (3.8)
Note that Fiup is invariant under the U(1) gauge transformation
Hy— Hp+ eﬁaaA, (3.9)

which in terms of the space time components become H, — H, + 0,A, ¢ — ¢. Squar-
ing (3.8) we will find the gauge invariant Lagrangian density for the massless vector field

1 1 1
L= —4FABFAB =, wg P — 266a¢6a¢, (3.10)

where
Fo3 = 0,Hg — 03H,. (3.11)

Notice that we get the correct sign for the kinetic energy of the scalar field ¢ only in the
case of de Sitter group (¢ = —1) while for anti de Sitter group ¢ = 1 we get a ghost.
We deduce that the formulation of gravity where the tangent group is SO(1,d) instead of



SO(1,d—1) unifies spins zero and spin one in one vector field. If we add to the Lagrangian
the term (3.4) both fields acquire the same mass.

We now turn to spinors. Because they should respect 5d tangent Lorentz group it is
well known that neither Majorana or Weyl conditions can be imposed on them [7]. Thus
the spinors ¢ must be Dirac spinors. The Dirac action in this case is

/ Vad*z (T Dy — iD 4T 49)

The spinors do feel the full SO(1,4) local symmetry. This seems to be a very strong
constraint as it implies that chiral spinors cannot exist if the tangent group is SO(1,4).
This is similar to the situation in case of supersymmetry in five dimensions [8, 9], or
N = 2 supersymmetry. There, it was shown that it is possible to generalize the Majorana
condition by taking a doublet of spinors [7]. The conclusion we must draw is then that
the SO(1,4) tangent group implies that spinors must be treated in the same way as in
N = 2 supersymmetry. To couple the spinors to vectors, some gauge symmetry must be
introduced. As an example, let us assume the existence of a U(1) gauge symmetry. In this
case the covariant derivative D 41 becomes

1
Dayp = <e‘j <8ﬂ + 4wMABFAB> + iHA> P, (3.12)

which shows that the spinors exist in a unified interactions with both a scalar and a vector
field, as was seen in the decomposition of the vector H, into a vector H, and a scalar ¢.

4 Complex gravity and unitary U(1,d — 1) tangent group

As a tangent space one can also consider a complex vector space with Hermitian scalar

product satisfying

(v,u) = (u,v)*, (v,ou)=a(v,u), (4.1)
where « is a complex number. It follows from here that (av,u) = o (v,u). As before let
us introduce in this space the orthonormal basis v4 (A=1,...N):

(VaA,VB) =14B- (4.2)

The condition of orthogonality is preserved under U(1, N — 1) transformations
Va=U{ve,  Ufnop (UL)" =nap. (43)

For generality let us first consider the complex coordinate basis vectors e, (o = 1,...d)
in d-dimensional manifold and show that in this case we obtain the Hermitian theory of
gravity as formulated by Einstein and Strauss [10, 11]. Later on we will show that this
theory can be consistently truncated to General Relativity while preserving the unitary
structure of the tangent space.

Assuming that NV > d we can expand the coordinate basis vectors in terms of vielbein

vectors, e, = eAvy, and then the metric on the manifold can be expressed as

o = (€ar€8) = €ael NAB. (4.4)



This metric is Hermitian

Jap = (emeﬁ) = (657604)* = QEa-

In the case under consideration the affine and spin connections are defined exactly as
in (2.7). Taking derivative of (4.4) and using definition in (2.7) we obtain

OvyGap = (v“/eaa eﬁ) + (€a; V’Yeﬁ) = FZ;;QVB + F%ygau- (4.5)

These d? equations can be solved unambiguously for 'k, in terms of metric g, only if we
impose the hermiticity condition

L =T (4.6)
which leaves us with d® components to be determined. Unlike the real case equations (4.6)
can be solved only perturbatively. They were first imposed by Einstein in his formulation
of Hermitian gravity which he referred to as the “+—" condition [10-12]. Similar to (2.8)

we derive a condition on spin connection

C *
waACnCB = - (waB ) NcA, (47)
which leaves N2d independent components. Taking derivative of (va,en) = eZnap we
derive the following metricity conditions

(%eﬁ = wVBAeg + TV el (4.8)

aytv .

Taking into account that d® equations (4.5) determine I’EV through &,eé we are left with
2N d?—d? equations to find N2d independent components of w N AC. The number of equations
match the number of unknown components only if N = d, that is, when dimension of
complex tangent space coincides with the dimension of the manifold. Hence the gauge
group of the tangent space can be only U(1,d — 1) [13]. In this case we can define the

soldering form e%, which is inverse to e :
eSeld = o4, e%eé = 03. (4.9)

The metric with upper indices is then given by
g = eff‘e%*nAB, (4.10)
and it is inverse to g.g
gal/gﬁy = 55 7 gal/gyﬁ- (4'11)
Similar to (2.41) the curvature of the connection wMAB can be defined as
o B o
[Du’ DV] €A = R;WA (w) B
= (8 (A)VAB — &,quB + WMACWVCB — WVACWMCB) 6%. (412)
On the other hand, using the metricity condition, we have

[Dy, D)) el = — (9,1, — 8,15, +T7,T%, —T7,T%) el

=-Rr%,, (I') e, (4.13)

,10,



and it follows from here that

R, (T)=—elR,, 1" (w)ep. (4.14)
In particular, the scalar curvature
R(w) =" el Ry a” (W) elp = —n T R, (D) ¢
=9"Rr",, [T)=R(T), (4.15)

is U (1,d — 1) gauge invariant. The scalar curvature is real,
R*(w)=R(w). (4.16)
To prove this we first note the identity

(RMVAB (w)) = _R;WCD (@) n“Pnpa, (4.17)

which follows from equation (4.12) taking into account (4.7). Using this relation together
with (4.14) we obtain

(Rop,ul/ (P))* = —6?* (R,ul/AB (w))* eUB>'< - eA*R;wC ( )UCBUDAGU*

= -0 Pelef Ry, (D) pacl e, = —g" R, (T) gap. (4.18)

It follows from here that the tensor

Rpmu/ (F) = R)\ (P) 9xp> (419)

Kuv

is antihermitian with respect to exchange of first two indices

(Reppr (D) = =Ry (1) (4.20)

and it is antisymmetric with respect to exchange of the last two indices (see (4.13). Taking
this into account we have

R* (F) — (gpugyaRUpuu)* _ g“ngVRpO'MV = R(P), (421)

and because R (w) = R(I"), this completes the proof of reality of gauge invariant scalar
curvature.

The identity (4.20) was not noticed by Einstein and this forced him to construct
Hermitian combinations of the curvature tensor. As we see this is not necessary because
one can use instead the real scalar curvature as Lagrangian density.

If we write the connection as

1
B - B ~ B
qu = (,()“A + de5A7 (422)

where

@t =0, @y =uw,", (4.23)

— 11 —



the curvature splits into two pieces

Rypa” (@) = Ry i’ @)+ Ryo” (@) 04, (4.24)
where
R;,LVA (u—j) = (aﬂa)uA - l/qu + qu wyo b - GJVAC@MC B) ’
R, (W) = 0uy — Ouop. (4.25)

It follows from here that

L0 RE (0) = R(@) +

R (W) = nAcelCL’*RMVAB (u—j) elé + d uvC R (dj) ’ (426)

1
d
where R = g”“RW AA is another scalar curvature invariant. Therefore it can be added to the
action with an arbitrary coefficient leading to the following most general gauge invariant
first order action

S = /d4x |det elﬂ (aR (@) + BR (d))) . (4.27)

It must be stressed that we are using here a second order formalism where the field w, AB

is determined by the metricity condition and not by the field equations. The best strategy
to analyze this action is to solve for w, AB in a perturbative expansion in terms of ef}.

We can understand the above results by noting that the gauge invariant action allows
to use the gauge invariance to reduce the independent components of e/ to those of 9a-
In other words we expect that because of U(1,d — 1) gauge invariance, the action depends
only on the metric

Jop = eéeg*nAB = Gaﬁ + Z'Baﬁ.

This theory was considered before using a first order formalism where the spin-connection
was determined from the equations of motion [13] . This is possible only when the action
depends quadratically on the spin-connection. However, the U(1) part w of the U(1,d —1)
connection being abelian, appears linearly. This then imposes a constraint on the antisym-
metric part of the metric

Ou ([det eft] B7) =0, (4.28)

which thus remains undetermined [13]. This is to be contrasted with the second order
formalism where all spin-connections are determined from the metricity condition.

We arrive to an interesting case by requiring that the metric g,3 to be real. This is
equivalent to truncating the B,gs field. Let

€4 = o) T i€y (4.29)

so that
Gap = (edoyehlo) + comebn) ma. (4.30)
Bas = (eduyebio — edochn)) mas. (4:31)

- 12 —



Truncating Bos gives 3d(d — 1) constraints on the 2d* (real) fields eé(o) and 63(1)' In
this case the affine connection is also real and its %d2 (d+ 1) components are Christoffel
connection for the metric G3. The remaining

1 1
2d% — Qdd(d—l)— 2d2 (d+1)=d®

independent equations (4.8) are then enough to unambiguously determine d® components
of w " AB . This implies that it is possible to enlarge the tangent group to become U(1,d—1)
and still obtain the Einstein gravity without any modification. The coupling to matter
will, however, feel the tangent group U(1,d — 1).

Matter coupling. When the tangent group is U(1,3) then from the previous discussion
it should be clear that neither the Majorana nor the Weyl condition could be imposed,
except if a doublet of spinors is taken. Thus, as with the SO(1,4) case we must take a Dirac
spinor, or a doublet of Majorana or Weyl spinors, again as in the N = 2 supersymmetric
case. We note the isomorphism of the algebras

U (1,3) ~ SO(1,5) x SO(1,1). (4.32)

It is easy to see that U (1,3) has ten compact generators and six non-compact generators,
while SO(1,5) has ten compact generators and five non-compact generators and SO(1,1)
has one non-compact generator. Thus spinors in the case of unitary tangent group will
exhibit conformal local symmetry.

Gravity has a universal coupling to matter. One way to classify the fields is according to
their behavior under the diffeomorphism group, or equivalently under the tangent Lorentz
group. A complex scalar field has the following couplings

/ d*z+/det 99" 0,0, 9. (4.33)

For a massless vector it can be easily seen that the action can be written in terms of a

complex space-time vector H,, with the action

/d4x\/det 99" 9" F I, . (4.34)

Similarly we can treat the case of fields which are in the vector representations of the
gauge group. The fermions have more complicated couplings. First, a Dirac spinor has the
U(1,d — 1) transformation

W — eMBTATy, (4.35)

where T'4 and T'4 satisfy the relations
{TA TP} =0, {Ta,Te}=0, {T4Ts}=0d3
and thus I'4T'? are the generators of U(1,d—1). We can define the Hermitian Dirac matrices
P = efflI‘A + et 4,

{4} =g + g,

,13,



The covariant derivative is given by
Dyt = 9p + w, 5 T al Py,
Hermitian Dirac action is then
/ d'z |det e/} | 1y Dy, (4.36)

Therefore, Dirac spinors do couple to both the symmetric and antisymmetric components
of the Hermitian metric.

5 Conclusions

We have shown that Einstein gravity exhibits universality when formulated as a gauge the-
ory of tangent space group. Besides of the well known natural case when the tangent space
has the same dimension as the manifold, we discovered two other possibilities for General
Relativity to be reproduced and the theory still remains unambiguous. Namely, we have
shown that in the four dimensional case the tangent space can be five dimensional and
possess (anti) de Sitter group of symmetry. This group is important when we incorporate
matter couplings to the gravitational field. As an example, we have shown that de Sitter
tangent space group allows us to “unify” 4d vectors and scalars which become components
of the same five dimensional vector in tangent space. Even more dramatic are the conse-
quences of the tangent space symmetry group on fermions. They become fundamentally
five dimensional and neither Majorana nor Weyl conditions could be imposed on them.
This situations is similar to N = 2 supersymmetry where we are forced to generalize the
Majorana condition by taking a doublet of spinors. We also would like to note that if we
impose an extra U(1) local symmetry in the tangent space then the spinors would exist in
a unified interaction with both scalar and vector fields.

Another interesting possibility arise when we consider complex tangent space of the
same dimension as the manifold. In this case the group of symmetry is the unitary group.
This gives rise generically to the theory of Hermitian gravity, where the basic fields are
the symmetric and antisymmetric components of the metric, which coincide with the basic
fields appearing in effective open string field theory. It is interesting that this theory can
be consistently truncated to Einstein gravity, while still preserving the unitary group of
tangent space. In turn, this has interesting and nontrivial consequences for the coupling to
matter which should respect this symmetry. In a forthcoming paper [14] we shall explore the
implications of these new formulations of gravity, especially in regard to the spontaneous
breakdown of these larger symmetries down to the SO(1,d — 1) symmetry.

A The Poincare limit and 3d CS gravity

In this appendix we examine the special case when the radius of the de Sitter tangent group
becomes infinite, which corresponds to Poincare symmetry. Later we shall also investigate
the correspondence with Chern-Simons gravity in three dimensions which also have de
Sitter or Poincare symmetry [15, 16].
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The SO(1,d) group generators satisfy the commutation relations

1
[JaB, Jop] = — (nacJBp —nBcJap —napJsc +nepJac) - (A1)
Splitting the range of the index A = a,d, where a = 0,1,--- ,d — 1, and similarly for the
other indices we get the usual SO(1,d — 1) for the Jy, while for J_, = RP, we have

1

[Pa7pb] = _R2 Jab- (A2)

Thus, in the limit R — oo the de Sitter tangent group becomes the inhomogeneous Lorentz
group, i.e. ISO(1,d — 1) also known as the Poincare group. The covariant derivative

Dy =0y +wJas, (A.3)
implies that the field wgd must be defined as wzd = 2% bf, so that

Dy =0y +w,Jap + b Py, (A4)

is independent of the radius R. The curvatures in terms of the redefined fields are

1
RMV ab — a“wyab - 8ywuab + wuacwuc b wuacwuc b— AR2 (bgbllj - bﬁbl(/l> ) (A5)
1

R, = op (0ub = 0ubs + w,“bye — w,"buc) - (A.6)

The zero torsion condition on effl is consistent in the limit R — oo if we define
el = ! ct (A7)

d— R '
so that 1

Opuc” — le‘fez +T},c” =0, (A.8)

ab

which allows us to calculate bZ in terms of ¢*. The field w, is solved from the condition

1
b’ + T ef = 0. (A.9)

v b v
ey +wWyua" ey + oR2 K pu€a

s ol s . . AB
Writing the gravitational action in terms of the rescaled fields, we expand eZRW (w) e

to get
1
eley <8“wl,“b - &,w““b +w, Wy b_ W, "Wy, b AR? (bﬁbf - bﬁbf))
1
+ 2 elic” (9,b) — by + w, by — W, bye) - (A.10)

ab
I

SO(1,d — 1) Lorentz connection and the action becomes identical to the Einstein-Hilbert
action. The fields b and ¢ drop out of the action. Thus in the limit of 7SO(1,d — 1) the
action is indistinguishable from the SO(1,d — 1) invariant action for gravity.

Therefore it is clear that in the limit R — oo the connection w,* coincides with the
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For matter couplings, especially for the vector H 4, the gauge transformation is
0Ha = apH", Aap =—Apa.

Denoting H; = ¢ and A\ ; = 2%,% Aa, the gauge transformations of H, and ¢ are
1
OHy = AapH" + o N
1
0b = — N H"
6= ypha
Thus, in the limit R — oo the fields H, and ¢ remain in the action as spin one and spin
zero fields, but they decouple in the transformations and become independent.
When our SO(1,d) gauge invariant gravitational action is taken in three dimensions,
it is natural to ask whether the action obtained is identical to the Chern-Simons action
which was also shown by Achucarro-Townsend [15] and Witten [16] to be equivalent to the

Finstein action in three dimensions, but with a cosmological constant. In the Chern-Simons
construction one uses only the gauge field w;‘B where the CS action is

1 2
ICS = 9 /dsxew/peABCD (quB&,prD + 3w“ABwVCEwaD> . (A.ll)
Using the same decomposition for w;fB as before, we get
1 1
R / PP €y, <ayw,f’c 0 Wpe © = o bfb;) : (A.12)

which is the the first order formulation of the Einstein action plus a cosmological constant,
with the dreibein field b;. The special case with the ISO(1,d — 1) gauge group can be
recovered by rescaling the action by R and then taking the limit R — oo. In our treatment,
there is also the additional field e/, which is not a gauge field. The field b is given by

a __ a 17
b, =2,V c”,

where e is the inverse of e;. Our action can be expressed in terms of e/, and a non-
propagating field ¢*'. Comparing the two formulations, we deduce that the field b; must
be identified with ej;. Although e} is not a gauge field, it can be shown, using the tor-
sion constraint, that its diffeomorphism transformation with parameters ¢# can yield the
same gauge transformation as b with the gauge parameter \* = ej;¢* [16]. It then clear
that although both formulations have the same gauge symmetry, they have different field
configurations. Moreover, the usual matter couplings in the CS formulation are not possi-
ble because the dreibein by is a gauge field. Any direct coupling to matter breaks gauge
invariance, except for coupling to Wilson lines. In our case since ey is not a gauge field,
a gauge invariant metric can be easily formed g"” = eff‘e”A and coupled to any form of
matter desired.
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