
J
H
E
P
0
3
(
2
0
1
0
)
0
3
3

Published for SISSA by Springer

Received: February 14, 2010

Accepted: February 16, 2010

Published: March 5, 2010

Gravity with de Sitter and unitary tangent groups

Ali H. Chamseddinea,c and Viatcheslav Mukhanovb,d

aPhysics Department, American University of Beirut, Lebanon
bTheoretical Physics, Ludwig Maxmillians University,

Theresienstr. 37, 80333 Munich, Germany
cI.H.E.S. F-91440 Bures-sur-Yvette, France
dDepartment of Physics, New York University, NY 10003, U.S.A.

E-mail: achamseddine@gmail.com,

mukhanov@theorie.physik.uni-muenchen.de

Abstract: Einstein Gravity can be formulated as a gauge theory with the tangent space

respecting the Lorentz symmetry. In this paper we show that the dimension of the tangent

space can be larger than the dimension of the manifold and by requiring the invariance of

the theory with respect to 5d Lorentz group (de Sitter group) Einstein theory is reproduced

unambiguously. The other possibility is to have unitary symmetry on a complex tangent

space of the same dimension as the manifold. In this case the resultant theory is Einstein-

Strauss Hermitian gravity. The tangent group is important for matter couplings. We show

that in the de Sitter case the 4 dimensional space time vector and scalar are naturally

unified by a hidden symmetry being components of a 5d vector in the tangent space. With

a de Sitter tangent group spinors can exist only when they are made complex or taken in

doublets in a way similar to N=2 supersymmetry.

Keywords: Gauge Symmetry, Classical Theories of Gravity, Space-Time Symmetries

ArXiv ePrint: 1002.0541

Open Access doi:10.1007/JHEP03(2010)033

mailto:achamseddine@gmail.com
mailto:mukhanov@theorie.physik.uni-muenchen.de
http://arxiv.org/abs/1002.0541
http://dx.doi.org/10.1007/JHEP03(2010)033


J
H
E
P
0
3
(
2
0
1
0
)
0
3
3

Contents

1 Introduction 1

2 Gravity with de Sitter tangent group 2

3 Matter couplings 7

4 Complex gravity and unitary U(1, d − 1) tangent group 9

5 Conclusions 14

A The Poincare limit and 3d CS gravity 14

1 Introduction

The experimental evidence that Lorentz symmetry is preserved for effective four-

dimensional theories is overwhelming. In curved space-time this Lorentz symmetry is

realized as a local symmetry of the tangent manifold [1, 2]. Moreover, to incorporate

spinors in general relativity, we are forced to consider this local symmetry because there

are no spinor representations of the diffeomorphism group. Usually the dimension of the

tangent space is taken to be equal to the dimension of the curved manifold and then the

Lorentz symmetry is simply a manifestation of the equivalence principle, which is valid in

torsion-free theories. General relativity could then be formulated as a gauge theory of the

Lorentz group where the gauge fields are the spin-connection. In reality one can search

for all possible tangent groups in d-dimensional space-time [3]. In this paper we will in-

vestigate whether it is possible to have a larger group of symmetry in the tangent space

and still unambiguously reproduce general relativity. We will show in section 2, that this

is indeed possible by taking the tangent space to be real with de Sitter group symmetry.

The de Sitter gauge invariant action which is linear in curvature is shown to be identical to

Einstein gravity, provided that metricity condition is imposed on the spin and affine con-

nections. In section 3 we consider matter interactions of gravity with the de Sitter group as

the tangent group. We then, in section 4, consider a complex tangent space and show that

the relevant symmetry in this case is the unitary symmetry. The resultant theory is the

Einstein-Strauss theory. Section 5 is the conclusion. An appendix treats the special limit

of Poincare symmetry, and examines the relation of our new formalism in three dimensions

with Witten’s formulation of Chern-Simons gravity.
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2 Gravity with de Sitter tangent group

Let us begin with a d-dimensional manifold and assume that at every point of this manifold

there is a real N -dimensional tangent space spanned by linearly independent vectors vA,

where A = 1, 2 . . . N. Assuming that d ≤ N , the coordinate basis vectors eα ≡ ∂/∂xα,

where α = 1, 2 . . . d, span d-dimensional space. Next we define the scalar product in the

tangent space and take the vectors vA to be orthonormal1

vA · vB = ηAB. (2.1)

where ηAB is Minkowski matrix. The Lorentz transformations

ṽA = Λ B
A vB , Λ C

A ηCDΛ D
A = ηAB (2.2)

preserve the orthogonality of the vielbein, ṽA · ṽB = ηAB . The scalar product of coordinate

basis vectors then induces the metric in d-dimensional manifold

eα · eβ = gαβ(xγ). (2.3)

Expanding eα in vA-basis

eα = eBα vB, (2.4)

and substituting in (2.3) we obtain the following expression for the metric gαβ

gαβ = eAαe
B
β ηAB , (2.5)

in terms of components. Tangent space indices are raised and lowered with the Minkowski

metric, thus

eAα = ηABe
B
α = (vA · eα) , (2.6)

and ηAB is inverse to Minkowski matrix ηAB . Next we consider parallel transport on the

manifold relating vectors in “nearby” tangent spaces. The affine and spin connections

determining the rules for parallel transport of the coordinate basis vectors and vielbein are

defined via

∇eβ
eα ≡ ∇βeα = Γν

αβeν , ∇βvA = −ω B
βA vB , (2.7)

where ∇β is the derivative defining the rate of change of vectors along a basis vector

eβ . When applied to a scalar function f this derivative acts as a partial derivative with

respect to the appropriate coordinates, that is, ∇βf = ∂f/∂xβ . Notice that ηAB and

gαβ as defined in (2.1) and (2.3) are the sets of scalar functions and, hence, ∇βηAB = 0,

∇γgαβ = ∂gαβ/∂x
γ ≡ ∂γgαβ .

Given ηAB, gαβ and eAα we derive the consistency (metricity) conditions for the con-

nections by taking derivative of equations (2.1), (2.3) and (2.6). In particular, we obtain

(∇αvA) · vB + vA · (∇αvB) = −ωαAB − ωαBA = ∇αηAB = 0, (2.8)

1We use the notation and methods of Misner, Thorne and Wheeler ([4]), in particular sections 9 and 10.
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that is, the spin connection should be antisymmetric with respect to tangent space indices,

ωαAB = −ωαBA. Applying the derivative ∇γ to (2.3) gives

Γν
αγgνβ + Γν

βγgαν = ∂γgαβ (2.9)

Assuming that torsion is absent, Γν
αβ = Γν

βα, these equations are solved unambiguously,

giving the well known result

Γγ
αβ =

1

2
gγσ (gασ,β + gσβ,α − gαβ,σ) , (2.10)

where gγσ is inverse to gαβ , that is, gασgσβ = δα
β . We would like to stress that affine con-

nections are determined unambiguously irrespective of the group of tangent space. Finally,

from (2.6) we obtain

∂βeAα = −ω B
βA eBα + Γν

αβeAν . (2.11)

Let us find when these equations can unambiguously be solved for ω A
βB in terms of the

soldering form eBα and metric gαβ . The total number of components of eBα is Nd. Given

a metric gαβ , whose derivatives determine Γν
αβ via (2.10), and hence impose 1

2d
2 (d+ 1)

constraints on ∂βeAα, leaves us with d
(

Nd− 1
2d (d+ 1)

)

independent equations (2.11) to

determine 1
2dN (N − 1) antisymmetric spin connections ωβAB. Note that for any N and

d the number of equations can never exceed the number of independent ωβAB to be de-

termined, and hence for any dimension of tangent space the system of equations is not

overdetermined. However, the spin connection is unambiguously determined only if the

number of equations is equal to the number of its unknown components:

d

(

Nd− 1

2
d (d+ 1)

)

=
1

2
dN (N − 1) .

The only solutions of this equation are N = d and N = d + 1. The first case is well

known and thus we shall concentrate on the second case which corresponds to the larger

symmetry group SO(1, d) of the tangent space. In the case of a four-dimensional manifold

the tangent space is five dimensional. The metric in 5d tangent space can then be taken

either to be ηAB = diag (1,−1,−1,−1,−1) or ηAB = diag (1, 1,−1,−1,−1). In the first

case the gauge group is 5d Lorentz group SO(1, 4) which is also the group of symmetry

of 4d de Sitter space (de Sitter group), while in the second case the group is SO(2, 3)

(the group of symmetry of 4d anti de Sitter space). For definiteness and from here on,

we consider these cases only. Note that although the consistency equations do not lead to

any contradiction for an arbitrary dimension of tangent space the connections are entirely

determined by the soldering form only if N = d or N = d+1. Otherwise the spin connection

is not unambiguously determined by the fundamental soldering form and the theory is not

well defined.

In order to construct gauge invariant Lagrangians we need to define

eαA = gαγeγA = gαγηABe
B
γ . (2.12)

Rewritten in terms of eαA, equation (2.11) becomes

∂βe
α
A = −ω B

βA eαB − Γα
νβe

ν
A. (2.13)
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The soldering form eαA is inverse to eBβ only if the dimension of the tangent space and the

dimension of the manifold match. In case of a de Sitter tangent group contraction over

tangent space indices gives

eαAe
A
β = gαγηABe

B
γ e

A
β = gαγgγβ = δα

β , (2.14)

however, contraction over space-time indices gives

eαAe
B
α 6= δA

B . (2.15)

To prove this, let us introduce the unit vector n orthogonal to all eα, that is, n · eα = 0

and n · n =ε, where ε = −1 or +1 for de Sitter and anti de Sitter groups correspondingly.

The vectors n and eα form a complete basis in tangent space and therefore

vA = vα
Aeα + nAn. (2.16)

Taking into account (2.6) we have

vα
A = gαγ (vA · eγ) = gαγηABe

B
γ = eαA, (2.17)

that is, the soldering form eαA coincides with the coefficient vα
A in expansion (2.16). Taking

this into account one gets

ηAB = vA · vB = vα
Av

β
Bgαβ + εnAnB = eαAeαB + εnAnB , (2.18)

or after rasing the tangent space index we obtain

eαAe
B
α = δB

A − εnAn
B ≡ PA

B (2.19)

where PA
B is a projection operator: PA

C P
C
B = PA

B .

The components nA satisfy the following relations

nAeαA = 0, nAn
A = ε. (2.20)

To prove this let us note that it follows from (2.16) that vA · n = εnA. Substituting here

the expansion

n = ñBvB , (2.21)

we infer that ñB = εnB and hence

n = εnBvB = ε
(

nBeαBeα + nBnBn
)

, (2.22)

from which (2.20) immediately follows.

In vielbein formalism the soldering form eαA is a fundamental quantity and the group of

symmetry under which the theory is required to be invariant is the group of local Lorentz

transformations (2.2), where Λ B
A = Λ B

A (x) . Under Lorentz transformation we have

ṽA = Λ B
A vB = Λ B

A (eαBeα + nBn) = ẽαAeα + ñAn, (2.23)

– 4 –



J
H
E
P
0
3
(
2
0
1
0
)
0
3
3

and hence

eαA → ẽαA = Λ B
A eαB (2.24)

The transformation law for the spin connection follows from its definition:

ω̃ B
βA ṽB = −∇βṽA

Substituting ṽB = Λ C
A vC and taking into account (2.7) we infer that

ω B
µA → ω̃ B

µA =
(

ΛωµΛ−1
)B

A
+

(

Λ∂µΛ−1
)B

A
, (2.25)

where Λ and Λ−1 are the matrices corresponding to Lorentz transformation and its inverse.

Up to this point, we have considered only vector representations of the Lorentz group. In

general,

Λ = exp
(

λABJAB

)

(2.26)

where JAB are corresponding generators of the Lie algebra which satisfy the commutation

relations

[JAB , JCD] =
1

2
(ηBCJAD − ηACJBD − ηBDJAC + ηADJBC) (2.27)

Consider spinors ψ which transforms according to

ψ → exp

(

1

4
λABΓAB

)

ψ, (2.28)

where ΓAB = 1
2 (ΓAΓB − ΓBΓA) are generators of the Lie algebra in the spinor representa-

tion and ΓA are d+ 1 Dirac matrices satisfying

{

ΓA,ΓB
}

= 2ηAB , Γ†A = Γ0ΓAΓ0. (2.29)

We note that the signature of ηAB does not play any significant role in the derivations that

follow, and thus our results holds equally well for both de Sitter and anti de Sitter tangent

groups. The Dirac action
∫

d4x
√
g ψiΓCeαCDαψ, (2.30)

where

Dα ≡ ∂α +
1

4
ω AB

α ΓAB , (2.31)

is invariant under gauge transformations (2.24), (2.25) and (2.28). This action is real,

thanks to the metricity conditions (2.13).

Next one constructs the curvature of the connection Dµ defined by [5, 6]

[Dµ,Dν ] =
1

4
R AB

µν ΓAB, (2.32)

where

R AB
µν (ω) = ∂µω

AB
ν − ∂νω

AB
µ + ω AC

µ ω B
νC − ω AC

ν ω B
µC . (2.33)

This curvature transforms as

(Rµν) B
A

→
(

ΛRΛ−1
) B

A
, (2.34)
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and hence

R (ω) = eµAR
AB

µν (ω) eνB , (2.35)

is invariant under local gauge transformations. The gauge invariant action is then given by

S = − 1

2κ2

∫

d4x
√
gR (ω) (2.36)

Although this action appears to depend on the non-diagonal eµA, it is a function of gµν only.

To prove this we first find how the tangent space covariant derivative acts on the

components of a vector l =lCvC . Using spinor representation for the vector we have

Dν

(

lDΓD

)

= ∂ν l
DΓD +

1

4
ω BC

ν [ΓBC ,ΓD] lD. (2.37)

Taking into account the commutation relation [ΓBC ,ΓD] = 2 (ηCDΓB − ηBDΓC) one gets

Dν

(

lDΓD

)

=
(

∂ν l
D + ω D

ν C l
C
)

ΓD, (2.38)

and hence we deduce

Dν l
D = ∂ν l

D + ω D
ν C l

C . (2.39)

In particular, it follows that

Dνe
ρA = ∂νe

ρA + ω A
ν Be

ρB , (2.40)

which in turn implies that

[Dµ,Dν ] eρA = R AB
µν (ω) eρB . (2.41)

On the other hand, using metricity condition (2.13), we have

Dνe
ρA = −Γρ

νσe
σA, (2.42)

and therefore

Dµ

(

Dνe
ρA

)

= −Dµ

(

Γρ
νσe

σA
)

= − (∂µΓρ
νσ) eσA − Γρ

νσ

(

Dµe
σA

)

= −∂µΓρ
νσe

σA + Γρ
νσΓσ

µκe
κA. (2.43)

Taking the commutator one gets

[Dµ,Dν ] eρA = −
(

∂µΓρ
νσ − ∂νΓ

ρ
µσ + Γρ

µκΓκ
νσ − Γρ

νκΓκ
µσ

)

eσA

= −Rρ
σµν (Γ) eσA. (2.44)

Comparing this result with (2.41) we arrive at the identity

R AB
µν (ω) eρB = −Rρ

σµν (Γ) eσA, (2.45)

which in turn leads to

R (ω) = eµAR
AB

µν (ω) eνB = −Rν
σµν (Γ) eσAeµA

= Rν
σνµ (Γ) gσµ = R (Γ) . (2.46)
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This completes the proof that the gauge invariant action (2.36) is equivalent to Einstein

action and involves only those combinations of eµA which reduce to the metric gµν . The

remaining 1
2d (d+ 1) independent combinations of eµA components represent the 1

2d (d+ 1)

gauge degrees of freedom associated with SO(1, d). Thus, we conclude that it is possible

to formulate Einstein gravity as a gauge invariant theory with the tangent group being de

Sitter or anti de Sitter.

We would like to stress that in proving identity (2.46) we never (and could not) assume

that the soldering form eµA has an inverse and, moreover, this result is valid for an arbitrary

dimension of tangent space. However, as it was noticed above the theory is well defined

only if N = d or N = d + 1. We could also consider a gauge invariant action involving

higher order curvature invariants. One can show that even in this case the action depends

only on the metric gµν . To give an example consider all possible terms which are of second

order in curvature

R AB
µν R CD

ρσ

(

c1 e
µ
Ae

ν
Be

ρ
Ce

σ
D + c2 e

µ
Ae

ν
Ce

ρ
De

σ
B + c3 e

µ
Ce

ν
De

ρ
Ae

σ
B

)

, (2.47)

because other terms are related to these three by symmetry. The first term is identical to

R2 (Γ), while for the second term we have

R AB
µν (ω) eµAe

σ
BR

CD
ρσ (ω) eνCe

ρ
D = gµκRσ

κµν (Γ) gνλRρ
λρσ (Γ) . (2.48)

after using the identity (2.45) twice. Similarly, the third term gives

R AB
µν (ω) eρAe

σ
BR

CD
ρσ (ω) eµCe

ν
D = gκρRσ

κµν (Γ) gµλRν
λρσ (Γ) , (2.49)

which proves that the most general action which is second order in spin-connection curva-

ture is identical to the one that depends on affine-connection curvature.

3 Matter couplings

We have seen that gravity is insensitive to the gauge group of the tangent space. In this

section we will show that, to the contrary, matter “feels” the tangent space group. Let

us consider the matter couplings in the case of de Sitter tangent group. In this case the

fundamental spinors, vectors and tensors are defined as representations of the 5d Lorentz

group of tangent space, and their Lagrangians must be invariant with respect to de Sitter

symmetry. In vierbein formulation of gravity, we can exchange space-time tensors with

Lorentz tensors. This is no longer valid for de Sitter tangent group because in this case

the vielbein eµA is not invertible and, for example, a vector in the tangent space is not

equivalent to a space-time vector. In fact as we will show now the 5d de Sitter vector is

equivalent to 4d space time vector and real space time scalar. Therefore, de Sitter tangent

space “unifies” 4d vectors and scalars.

Let us consider a 5d vector H, which can be expanded in terms of components as

(see (2.16), (2.17)):

H = HAvA = HAeαAeα +HAnAn =Hαeα + φn, (3.1)

– 7 –
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where

Hα = HAeαA, φ = HAnA, (3.2)

are the components of a 4d vector and a scalar, respectively. Multiplying the first equation

by eBα and taking into account (2.19) we derive

HB = HαeBα + εφnB ; (3.3)

since eBαnB = 0 and nAnA = ε (see (2.20)) it follows from here that

HBHB = gαβH
αHβ + εφ2. (3.4)

Let us construct the curvature of HA

FAB = DAHB −DBHA, (3.5)

where DA ≡ eαADα and Dα is covariant derivative with respect to tangent space vector

indices (see (2.39)); therefore, the components with only space time indices are scalars

with respect to this derivative, for example, DαH
β = ∂αH

β. Taking this into account and

using decomposition (3.3) we find

DAH
B = eβAe

B
α ∂βH

α + eβAH
αDβe

B
α + εeβAn

B∂βφ+ εeβAφDβn
B . (3.6)

The last term here is equal to zero. In fact, using the definition (2.7) we have

∂βnA = ε∇β (vA · n) = −ω B
βA nB + εvA · ∇βn, (3.7)

and henceDβnA = −εvA·∇βn. In turn, one can immediately conclude from ∇β (eα · n) = 0

and ∇β (n · n) = 0 that ∇βn =0 and therefore DβnA = 0. Using metricity condition (2.42)

to express Dβe
B
α in terms of Γρ

νσ and interchanging indices we then find

FAB = eβAe
α
B (∂βHα − ∂αHβ) + ε

(

eβAnB − eβBnA

)

∂βφ. (3.8)

Note that FAB is invariant under the U(1) gauge transformation

HA → HA + eαA∂αΛ, (3.9)

which in terms of the space time components become Hα → Hα + ∂αΛ, φ → φ. Squar-

ing (3.8) we will find the gauge invariant Lagrangian density for the massless vector field

L = −1

4
FABF

AB = −1

4
FαβF

αβ − 1

2
ε∂αφ∂

αφ, (3.10)

where

Fαβ = ∂αHβ − ∂βHα. (3.11)

Notice that we get the correct sign for the kinetic energy of the scalar field φ only in the

case of de Sitter group (ε = −1) while for anti de Sitter group ε = 1 we get a ghost.

We deduce that the formulation of gravity where the tangent group is SO(1, d) instead of
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SO(1, d−1) unifies spins zero and spin one in one vector field. If we add to the Lagrangian

the term (3.4) both fields acquire the same mass.

We now turn to spinors. Because they should respect 5d tangent Lorentz group it is

well known that neither Majorana or Weyl conditions can be imposed on them [7]. Thus

the spinors ψ must be Dirac spinors. The Dirac action in this case is
∫ √

gd4x
(

iψΓADAψ − iDAψΓAψ
)

The spinors do feel the full SO(1, 4) local symmetry. This seems to be a very strong

constraint as it implies that chiral spinors cannot exist if the tangent group is SO(1, 4).

This is similar to the situation in case of supersymmetry in five dimensions [8, 9], or

N = 2 supersymmetry. There, it was shown that it is possible to generalize the Majorana

condition by taking a doublet of spinors [7]. The conclusion we must draw is then that

the SO(1, 4) tangent group implies that spinors must be treated in the same way as in

N = 2 supersymmetry. To couple the spinors to vectors, some gauge symmetry must be

introduced. As an example, let us assume the existence of a U(1) gauge symmetry. In this

case the covariant derivative DAψ becomes

DAψ =

(

eµA

(

∂µ +
1

4
ω AB

µ ΓAB

)

+ iHA

)

ψ , (3.12)

which shows that the spinors exist in a unified interactions with both a scalar and a vector

field, as was seen in the decomposition of the vector HA into a vector Hµ and a scalar φ.

4 Complex gravity and unitary U(1, d − 1) tangent group

As a tangent space one can also consider a complex vector space with Hermitian scalar

product satisfying

(v,u) = (u,v)∗ , (v, αu) = α (v,u) , (4.1)

where α is a complex number. It follows from here that (αv,u) = α∗ (v,u) . As before let

us introduce in this space the orthonormal basis vA (A = 1, . . . N):

(vA,vB) = ηAB . (4.2)

The condition of orthogonality is preserved under U(1, N − 1) transformations

ṽA = U C
A vC , U C

A ηCD

(

U D
A

)∗
= ηAB . (4.3)

For generality let us first consider the complex coordinate basis vectors eα (α = 1, . . . d)

in d-dimensional manifold and show that in this case we obtain the Hermitian theory of

gravity as formulated by Einstein and Strauss [10, 11]. Later on we will show that this

theory can be consistently truncated to General Relativity while preserving the unitary

structure of the tangent space.

Assuming that N ≥ d we can expand the coordinate basis vectors in terms of vielbein

vectors, eα = eAαvA, and then the metric on the manifold can be expressed as

gαβ ≡ (eα, eβ) = eAαe
B∗
β ηAB . (4.4)
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This metric is Hermitian

gαβ = (eα, eβ) = (eβ, eα)∗ = g∗βα.

In the case under consideration the affine and spin connections are defined exactly as

in (2.7). Taking derivative of (4.4) and using definition in (2.7) we obtain

∂γgαβ = (∇γeα, eβ) + (eα,∇γeβ) = Γν∗
αγgνβ + Γν

βγgαν . (4.5)

These d 3 equations can be solved unambiguously for Γµ
κρ in terms of metric gαβ only if we

impose the hermiticity condition

Γν∗
ρµ = Γν

µρ, (4.6)

which leaves us with d3 components to be determined. Unlike the real case equations (4.6)

can be solved only perturbatively. They were first imposed by Einstein in his formulation

of Hermitian gravity which he referred to as the “+−” condition [10–12]. Similar to (2.8)

we derive a condition on spin connection

ω C
αA ηCB = −

(

ω C
αB

)∗
ηCA, (4.7)

which leaves N2d independent components. Taking derivative of (vA, eα) = eBα ηAB we

derive the following metricity conditions

∂γe
A
α = ω A

γB eBα + Γν
αγe

A
ν . (4.8)

Taking into account that d3 equations (4.5) determine Γν
βγ through ∂γe

A
α we are left with

2Nd2−d3 equations to findN2d independent components of ω C
αA . The number of equations

match the number of unknown components only if N = d, that is, when dimension of

complex tangent space coincides with the dimension of the manifold. Hence the gauge

group of the tangent space can be only U(1, d − 1) [13]. In this case we can define the

soldering form eβB , which is inverse to eAα :

eαBe
A
α = δA

B , eαAe
A
β = δα

β . (4.9)

The metric with upper indices is then given by

gµν = eµAe
ν∗
B η

AB, (4.10)

and it is inverse to gαβ

gανg
βν = δβ

α 6= gανg
νβ . (4.11)

Similar to (2.41) the curvature of the connection ω B
µA can be defined as

[Dµ,Dν ] eσA ≡ R B
µνA (ω) eσB

=
(

∂µω
B

νA − ∂νω
B

µA + ω C
µA ω B

νC − ω C
νA ω B

µC

)

eσB . (4.12)

On the other hand, using the metricity condition, we have

[Dµ,Dν ] eσA = −
(

∂µΓσ
ρν − ∂νΓ

σ
ρµ + Γσ

κµΓκ
ρν − Γσ

κνΓ
κ
ρµ

)

eσA

≡ −Rσ
ρµν (Γ) eρA, (4.13)
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and it follows from here that

Rσ
ρµν (Γ) = −eAρ R B

µνA (ω) eσB . (4.14)

In particular, the scalar curvature

R (ω) = ηACeµ∗C R B
µνA (ω) eνB = −ηACeµ∗C Rν

ρµν (Γ) eρA

= gρµRν
ρνµ (Γ) = R (Γ) , (4.15)

is U (1, d − 1) gauge invariant. The scalar curvature is real,

R∗ (ω) = R (ω) . (4.16)

To prove this we first note the identity

(

R B
µνA (ω)

)∗
= −R D

µνC (ω) ηCBηDA, (4.17)

which follows from equation (4.12) taking into account (4.7). Using this relation together

with (4.14) we obtain

(

Rσ
ρµν (Γ)

)∗
= −eA∗

ρ

(

R B
µνA (ω)

)∗
eσ∗B = eA∗

ρ R D
µνC (ω) ηCBηDAe

σ∗
B

= −ηCBeκCe
σ∗
B Rλ

κµν (Γ) ηDAe
D
λ e

A∗
ρ = −gκσRλ

κµν (Γ) gλρ. (4.18)

It follows from here that the tensor

Rρκµν (Γ) = Rλ
κµν (Γ) gλρ, (4.19)

is antihermitian with respect to exchange of first two indices

(Rκρµν (Γ))∗ = −Rρκµν (Γ) , (4.20)

and it is antisymmetric with respect to exchange of the last two indices (see (4.13). Taking

this into account we have

R∗ (Γ) = (gρµgνσRσρνµ)∗ = gµρgσνRρσµν = R (Γ) , (4.21)

and because R (ω) = R (Γ) , this completes the proof of reality of gauge invariant scalar

curvature.

The identity (4.20) was not noticed by Einstein and this forced him to construct

Hermitian combinations of the curvature tensor. As we see this is not necessary because

one can use instead the real scalar curvature as Lagrangian density.

If we write the connection as

ω B
µA = ω̄ B

µA +
1

d
ω̂µδ

B
A , (4.22)

where

ω̄ A
µA = 0, ω̂µ = ω A

µA , (4.23)
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the curvature splits into two pieces

R B
µνA (ω) = R B

µνA (ω̄) +
1

d
R C

µνC (ω̂) δB
A , (4.24)

where

R B
µνA (ω̄) =

(

∂µω̄
B

νA − ∂ν ω̄
B

µA + ω̄ C
µA ω̄ B

νC − ω̄ C
νA ω̄ B

µC

)

,

R C
µνC (ω) = ∂µω̂ν − ∂ν ω̂µ. (4.25)

It follows from here that

R (ω) = ηACeµ∗C R B
µνA (ω̄) eνB +

1

d
gνµR C

µνC (ω̂) = R (ω̄) +
1

d
R̃ (ω̂) , (4.26)

where R̃ = gνµR A
µνA is another scalar curvature invariant. Therefore it can be added to the

action with an arbitrary coefficient leading to the following most general gauge invariant

first order action

S =

∫

d4x
∣

∣det eAµ
∣

∣

(

αR (ω̄) + βR̃ (ω̂)
)

. (4.27)

It must be stressed that we are using here a second order formalism where the field ω B
µA

is determined by the metricity condition and not by the field equations. The best strategy

to analyze this action is to solve for ω B
µA in a perturbative expansion in terms of eAµ .

We can understand the above results by noting that the gauge invariant action allows

to use the gauge invariance to reduce the independent components of eAα to those of gαβ .

In other words we expect that because of U(1, d− 1) gauge invariance, the action depends

only on the metric

gαβ = eAαe
B∗
β ηAB ≡ Gαβ + iBαβ .

This theory was considered before using a first order formalism where the spin-connection

was determined from the equations of motion [13] . This is possible only when the action

depends quadratically on the spin-connection. However, the U(1) part ω̂ of the U(1, d− 1)

connection being abelian, appears linearly. This then imposes a constraint on the antisym-

metric part of the metric

∂α

(

∣

∣det eAµ
∣

∣Bαβ
)

= 0, (4.28)

which thus remains undetermined [13]. This is to be contrasted with the second order

formalism where all spin-connections are determined from the metricity condition.

We arrive to an interesting case by requiring that the metric gαβ to be real. This is

equivalent to truncating the Bαβ field. Let

eAα = eAα(0) + ieAα(1), (4.29)

so that

Gαβ =
(

eAα(0)e
B
β(0) + eAα(1)e

B
β(1)

)

ηAB, (4.30)

Bαβ =
(

eAα(1)e
B
β(0) − eAα(0)e

B
β(1)

)

ηAB, (4.31)
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Truncating Bαβ gives 1
2d (d− 1) constraints on the 2d2 (real) fields eA

α(0) and eA
α(1). In

this case the affine connection is also real and its 1
2d

2 (d+ 1) components are Christoffel

connection for the metric Gαβ . The remaining

2d3 − 1

2
dd (d− 1) − 1

2
d2 (d+ 1) = d3

independent equations (4.8) are then enough to unambiguously determine d3 components

of ω B
µA . This implies that it is possible to enlarge the tangent group to become U(1, d−1)

and still obtain the Einstein gravity without any modification. The coupling to matter

will, however, feel the tangent group U(1, d − 1).

Matter coupling. When the tangent group is U(1, 3) then from the previous discussion

it should be clear that neither the Majorana nor the Weyl condition could be imposed,

except if a doublet of spinors is taken. Thus, as with the SO(1, 4) case we must take a Dirac

spinor, or a doublet of Majorana or Weyl spinors, again as in the N = 2 supersymmetric

case. We note the isomorphism of the algebras

U (1, 3) ∼ SO(1, 5) × SO(1, 1). (4.32)

It is easy to see that U (1, 3) has ten compact generators and six non-compact generators,

while SO(1, 5) has ten compact generators and five non-compact generators and SO(1, 1)

has one non-compact generator. Thus spinors in the case of unitary tangent group will

exhibit conformal local symmetry.

Gravity has a universal coupling to matter. One way to classify the fields is according to

their behavior under the diffeomorphism group, or equivalently under the tangent Lorentz

group. A complex scalar field has the following couplings
∫

d4x
√

det ggµν∂µφ∂νφ
∗. (4.33)

For a massless vector it can be easily seen that the action can be written in terms of a

complex space-time vector Hµ with the action
∫

d4x
√

det ggµρgνσFµνF
∗
ρσ . (4.34)

Similarly we can treat the case of fields which are in the vector representations of the

gauge group. The fermions have more complicated couplings. First, a Dirac spinor has the

U(1, d − 1) transformation

ψ → eiλ
A

B
ΓAΓB

ψ, (4.35)

where ΓA and ΓA satisfy the relations

{

ΓA,ΓB
}

= 0, {ΓA,ΓB} = 0,
{

ΓA,ΓB

}

= δA
B ,

and thus ΓAΓB are the generators of U(1, d−1). We can define the Hermitian Dirac matrices

γµ = eµAΓA + eµAΓA,

{γµ, γν} = gµν + gνµ,
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The covariant derivative is given by

Dµψ = ∂µψ + ω A
µB ΓAΓBψ,

Hermitian Dirac action is then
∫

d4x
∣

∣det eAµ
∣

∣ψγµDµψ. (4.36)

Therefore, Dirac spinors do couple to both the symmetric and antisymmetric components

of the Hermitian metric.

5 Conclusions

We have shown that Einstein gravity exhibits universality when formulated as a gauge the-

ory of tangent space group. Besides of the well known natural case when the tangent space

has the same dimension as the manifold, we discovered two other possibilities for General

Relativity to be reproduced and the theory still remains unambiguous. Namely, we have

shown that in the four dimensional case the tangent space can be five dimensional and

possess (anti) de Sitter group of symmetry. This group is important when we incorporate

matter couplings to the gravitational field. As an example, we have shown that de Sitter

tangent space group allows us to “unify” 4d vectors and scalars which become components

of the same five dimensional vector in tangent space. Even more dramatic are the conse-

quences of the tangent space symmetry group on fermions. They become fundamentally

five dimensional and neither Majorana nor Weyl conditions could be imposed on them.

This situations is similar to N = 2 supersymmetry where we are forced to generalize the

Majorana condition by taking a doublet of spinors. We also would like to note that if we

impose an extra U(1) local symmetry in the tangent space then the spinors would exist in

a unified interaction with both scalar and vector fields.

Another interesting possibility arise when we consider complex tangent space of the

same dimension as the manifold. In this case the group of symmetry is the unitary group.

This gives rise generically to the theory of Hermitian gravity, where the basic fields are

the symmetric and antisymmetric components of the metric, which coincide with the basic

fields appearing in effective open string field theory. It is interesting that this theory can

be consistently truncated to Einstein gravity, while still preserving the unitary group of

tangent space. In turn, this has interesting and nontrivial consequences for the coupling to

matter which should respect this symmetry. In a forthcoming paper [14] we shall explore the

implications of these new formulations of gravity, especially in regard to the spontaneous

breakdown of these larger symmetries down to the SO(1, d− 1) symmetry.

A The Poincare limit and 3d CS gravity

In this appendix we examine the special case when the radius of the de Sitter tangent group

becomes infinite, which corresponds to Poincare symmetry. Later we shall also investigate

the correspondence with Chern-Simons gravity in three dimensions which also have de

Sitter or Poincare symmetry [15, 16].
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The SO(1, d) group generators satisfy the commutation relations

[JAB , JCD] = −1

2
(ηACJBD − ηBCJAD − ηADJBC + ηBDJAC) . (A.1)

Splitting the range of the index A = a, d, where a = 0, 1, · · · , d − 1, and similarly for the

other indices we get the usual SO(1, d − 1) for the Jab, while for Jad ≡ RPa we have

[Pa, Pb] = − 1

R2
Jab. (A.2)

Thus, in the limit R→ ∞ the de Sitter tangent group becomes the inhomogeneous Lorentz

group, i.e. ISO(1, d − 1) also known as the Poincare group. The covariant derivative

Dµ = ∂µ + ω AB
µ JAB , (A.3)

implies that the field ωad
µ must be defined as ωad

µ ≡ 1
2R
baµ so that

Dµ = ∂µ + ω ab
µ Jab + b a

µPa, (A.4)

is independent of the radius R. The curvatures in terms of the redefined fields are

R ab
µν = ∂µω

ab
ν − ∂νω

ab
µ + ω ac

µ ω b
νc − ω ac

ν ω b
µc − 1

4R2

(

b a
µb

b
ν − b b

µb
a
ν

)

, (A.5)

R ad
µν =

1

2R

(

∂µb
a
ν − ∂µb

a
ν + ω ac

µ bνc − ω ac
ν bµc

)

. (A.6)

The zero torsion condition on eµA is consistent in the limit R→ ∞ if we define

eµ
d
≡ 1

R
cµ, (A.7)

so that

∂µc
ν − 1

2
b a
µe

ν
a + Γν

ρµc
ρ = 0, (A.8)

which allows us to calculate baµ in terms of cµ. The field ω ab
µ is solved from the condition

∂µe
ν
a + ω b

µa eνb +
1

2R2
baµc

ν + Γν
ρµe

ρ
a = 0. (A.9)

Writing the gravitational action in terms of the rescaled fields, we expand eµAR
AB

µν (ω) eνB
to get

eµae
ν
b

(

∂µω
ab

ν − ∂νω
ab

µ + ω ac
µ ω b

νc − ω ac
ν ω b

µc − 1

4R2

(

b a
µb

b
ν − b b

µb
a
ν

)

)

+
1

R2
eµac

ν
(

∂µb
a
ν − ∂νb

a
µ + ω ac

µ bνc − ω ac
ν bµc

)

. (A.10)

Therefore it is clear that in the limit R → ∞ the connection ω ab
µ coincides with the

SO(1, d − 1) Lorentz connection and the action becomes identical to the Einstein-Hilbert

action. The fields b a
µ and cµ drop out of the action. Thus in the limit of ISO(1, d− 1) the

action is indistinguishable from the SO(1, d − 1) invariant action for gravity.
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For matter couplings, especially for the vector HA, the gauge transformation is

δHA = λABH
B, λAB = −λBA.

Denoting Hd = φ and λad = 1
2R
λa, the gauge transformations of Ha and φ are

δHa = λabH
b +

1

2R
λaφ,

δφ = − 1

2R
λaH

a.

Thus, in the limit R → ∞ the fields Ha and φ remain in the action as spin one and spin

zero fields, but they decouple in the transformations and become independent.

When our SO(1, d) gauge invariant gravitational action is taken in three dimensions,

it is natural to ask whether the action obtained is identical to the Chern-Simons action

which was also shown by Achucarro-Townsend [15] and Witten [16] to be equivalent to the

Einstein action in three dimensions, but with a cosmological constant. In the Chern-Simons

construction one uses only the gauge field ωAB
µ where the CS action is

ICS =
1

2

∫

d3xǫµνρǫABCD

(

ω AB
µ ∂νω

CD
ρ +

2

3
ω AB

µ ω CE
ν ω D

ρE

)

. (A.11)

Using the same decomposition for ωAB
µ as before, we get

1

R

∫

d3xǫµνρǫabcb
a
µ

(

∂νω
bc

ρ + ω be
ν ω c

ρe − 1

12R2
b b
νb

c
ρ

)

, (A.12)

which is the the first order formulation of the Einstein action plus a cosmological constant,

with the dreibein field b a
µ . The special case with the ISO(1, d − 1) gauge group can be

recovered by rescaling the action by R and then taking the limit R→ ∞. In our treatment,

there is also the additional field eµA which is not a gauge field. The field b a
µ is given by

b a
µ = 2eaν∇µc

ν ,

where eaν is the inverse of eνa. Our action can be expressed in terms of eνa and a non-

propagating field cµ. Comparing the two formulations, we deduce that the field b a
µ must

be identified with eaµ. Although eaµ is not a gauge field, it can be shown, using the tor-

sion constraint, that its diffeomorphism transformation with parameters ζµ can yield the

same gauge transformation as b a
µ with the gauge parameter λa = eaµζ

µ [16]. It then clear

that although both formulations have the same gauge symmetry, they have different field

configurations. Moreover, the usual matter couplings in the CS formulation are not possi-

ble because the dreibein b a
µ is a gauge field. Any direct coupling to matter breaks gauge

invariance, except for coupling to Wilson lines. In our case since eµA is not a gauge field,

a gauge invariant metric can be easily formed gµν = eµAe
νA and coupled to any form of

matter desired.
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