NOTE
 TRIVIALEY PERFECT GRAPHS*

Martin Charles GOLUMBIC
Courant Institu te of Mathematical Sciencts, New York University. New York. NY. U.S.A. und The Weizmann Institute of Science. Rehozot. Israel

Received 26 A ugust 1977
Revised 7 Feb uary 1978

Abstract

An undirected graph is trivially perject if for every induced subgraph the stability number equals the number of (maximal) cliques. We characterize the trivially perfect graphs as a proper subclass of the triangulated graphs (thus dis roving a claim of Buneman [3]). and we relati them to some n.l-known classes of perfect graphs.

Let $m(G)$ denote the number of cliques (maximal complete subgraphs) of an undirected graph G and let $\alpha(G)$ be the stability number, that is the cardinality of the largest set of pairwise nonadjacent vertices. Clearly,

$$
\begin{equation*}
\alpha(G) \leqslant m(G) \tag{1}
\end{equation*}
$$

since there must be $\alpha(G)$ distinct cliques cisntaining the members of a maximum stable set.

A graph is trianguiated if every simple cycle of length >3 has a chord. Buneman [3. p. 210] stated falsely that equality holds in (1) for triangulated graphs. For example, equality is not even true for trees. Fulkerson and Gross [6. p. 852] have proved the following for a graph with n vertices:

Theorem 1. If G is a triangulated graph, then $m(G) \leqslant n$.
This bound is tight if one considers the graph with no edges.
We may well ask, for which graphs is there equality in (1)? Unformately. we cannot expect to discover much about the structure of such graphs. Indeed, let G be any undirected graph with cliques $C_{1} . C_{2} \ldots . . C_{m}$: add new vertices $x_{1}, x_{2}, \ldots, x_{m}$ and connect x_{i} with each vertex of C, to form an augmented graph H. Clearly, $\alpha(H)=m(H)=m$. For this reason, we shall add a hereditary condition.

An undirected graph $G=(V, E)$ is said o be trivially perfect if for each $A \subseteq 1$: the incuuced subgraph G_{A} of G satisfes $x\left(G_{A}\right)=m\left(G_{A}\right)$. This naine was chosen since it is trivial to show that such a graph is perfect. A graph $G=(1$. El is perfect if for each $A \subseteq V$, the stability number $\alpha\left(G_{A}\right)$ equals the least number of clique-

[^0]

Fig. 9
of G_{A} whose union covers V (see $[1,2,9,10]$). The next theorem characterizes trivially perfect graples.

Theorem 2. A gruph $G=(V, E)$ is trivially perfect if ard only if it contains no induced subgraph isomorphic to C_{4} or P_{4} (see Fıg. 1).
mram. (\leqslant) I et S be a maximum stable set of G_{A}, and suppose that there is a vertex s in S which contained in two distinct cliques X and Y. Then there exist $v \in$ rtices $x \in X$ and $y \in Y$ such that $x y \notin E$. Hence, $|S|>1$.

Let $u \in S-\{s\}$. If $x u \in E$ (resp. $y u \in E$), then $G_{\{y, s, x, u\}}\left(\right.$ resp. $\left.G_{\{x, s, y, u\}}\right)$ would be i:omorphic to either C_{4} or P_{4}. Therefore, $x u \notin E$ and $y u \notin E$ which implies that $\{a, y\} \cup(G-\{s\})$ is a stable set larger than S, a contradiction.
$\left(\Rightarrow\right.$) Since $\alpha\left(G_{4}\right)=\alpha\left(P_{4}\right)=2$ and $m\left(C_{4}\right)=4$ and $m\left(P_{4}\right)=3$, the implication follows.

Remark 3. Every trivially perfect graph is triangulated, but not conversely.
Wolk's [11] characterization of graphs which admit a transitive orientation whose Hatse diagram is a rooted tree yields ihe next result.

Corollary 4. A connected graph is trivially perfect if and only if it is the comparability graph of a rooted tree.

Uniike the general case of pesfect graphs [$n, 10$], the complement of a trivially perfect graph may not ilself be trivially nerfect. The following characterization is immediate.

Tordilayy 5. Let \bar{G} denote the complement of an undirected graph G. Then G and Fare both trivially perfect :ff onains no induced subgraph isomorphic to C_{4}, P_{4} o) $2 K_{2}$ (sce Fig. i).
L. graph satisiying Corollary i is a threshold graph. By definition, an n-vertex
 tic vector: of the stable sets of 13 from the characteris tic vectors of whe nonstable :re Thre iheld jraphs were introdu ced by Chvátal and Hammer [4, 5] who gave

References

[1] C. Berge. Graphs and Hypergraphs (North-Holland. Amsterdam. 1973) Chapter 16.
[2] C. Berge, Perfect graphs, in: D.R. Fulkerson, ed., Studies in Graph Theory, Part I. M. A.A. Studies in Mathematics 11 (1975) 1-?2.
[3] P. Buneman, A characterization of rizid circuit graphs, Discrete Math. 9 (1974) 205-.212.
[4] V. Chvátal and P.L. Hammer, Set-packing and thresiold giaphs, University of Waterloo Reseaten Report, CORR 73-之, (August 1973).
[5] V. Chvátal and P.L. Hammer. A.ggregation of inequalities in integer programming, A.nn. Discrete Math. 1 (1977) 145-162.
[6] D.R. Fu!kerson and O.A. Gross, Incidence matrices and interval graphs, Pacific J. Math. 15 (1965) 855-855.
[7] M.C. Golumbic, Threshold graphs and synchronizing parallel processes, in: Proc. Fifth Hungarian Combinatorial Colloquium June 1976 (Vvorth-Holland. Amsterdam, 1977).
[8] P.B. Henderson and Y. Zalcstein, A graph-theoretic characterization of the PV chunk class of synchronizing primitives, SIAM J. Comput. 6 (1977) 88-108.
[9] L. Lovasz, A characterization of perfect graphs, J. Combin. Theory 13 (B) (197í) 95-98.
[10] L. Lovas:z, Normal hypergraphs and the perfect graph conjecture, Discret: Math. 2119721 253-267.
[11] E.S. Wolk, A note on the comparability graph of a tree, Proc. Am. Math. Soc. 16 (1965) 17-20.

[^0]: *This research was supfurted in par hy MSt mant HES-? - fraフi

