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An undirected graph i!. rriuially pcrfc~ if for cbzry induced s&graph the stability numbt~r 
equal; the number of (maximal) cliques. We 1 haracterize the trivialI> perfect graphs a\ a pr0pt.r 
subclass of the triangulated graphs (thus dis2roving a claim of Buneman 13]1. and we rclart> 
them to some n :‘I-known classes of perfect graphs. 

Let m(G) denote the number of cliques (maximal compll:te subgraphs) of an 
undirected graph G and let a(G) be the srubility number, that is the cardinality of 
the largest set of pairwise nonadjacent vertices. Clearly, 

a(G (1) 

since there must be a(G) distinct cliques cljntaining the members of a masimum 
stable set. 

A graph is trimpiated if every simple cycle of length >3 has a chord. 
Buneman [3. p. 2101 stated falsely that equality holds in (1) for triangulated 
graphs. For e,;ample, equality is not even true for trees. Fulkerson and Grtiss [6. 
p. 8521 have proved the following for a graph with n vertices: 

Theore;m 1. If G is a triangulated graph, &en nz( G) 5 II. 

This bound is tight if one considers the graph with no edges. 
We may well ask, for which graphs is there equality in (I I? Unfortunately. NY 

cannot expect to discover much about the structure of such graphs. Indeed. ict C; 
be any undirected graph wiih cliques C‘,. C,. . . . . C’,,, : add ntllb vertict:\ 

XI, X2,. - - 3 x, and connect -Xi with each vertex of C, to form an augmented graph 
If. Clearly. a(H) = m(H) = rn. For this reason. we shall add a hereditary sondi- 

tion. 
An undirected graph G = ( V, E) is said ‘o be lri~iufly p@cr it’ ior dach ,L\ c i’. 

the induced subgraph GA of G satisfes J (G-J = HIP & I. Thih nai;lc K;~S chown 

since it is trivial to show that such a graph IS perfect. .I graph G = ! Y. 15 is 1~(~‘.1;~( I 

if for each -4 G V, rhe stability number a( Gl, I equal\ ihc least number oi cliquc~ 
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of GA w.lose union covers V (see 111, 2, 9, lo]). The next theorem characterizes 
trivially perfect gl=aphs. 

i&P A gr;rph G = (V, El I:: 
induced m&raph 

trivially perfect if axd only if it contains no 
isounorpkic: to C4 or P4 (see Lg. 1). 

!&WE, (<i ) I .et S be a maximum stable set of GA, and suppose that there is a 
vertex s in S which contained in two distinct cliques X and Y, T?en there exi:.t 
vertices x E X and y E Y such that xy& E. Hence, IS] > 1. 

ht uF S_‘_l TC Y-I c = I---- pi. II AU t C) tts;sp. yu E Ej, theu G(y,s,guI (resp. c~,;&~,~,,J would be 
i!,omorphic to either Ca or P4. Therefore, xu& E and yu& E which implies that 
CA, y}U (S; -{s)) is a stable set larger thnn S, a contradiction. 

(=$+ j Since cy(GJ= ar(P,)= 2 and m(C,J-4 and m(P4)= 3, the implication 
foJ1ows. 

a& 3. Every trilrially perfect graph is triangulated, but not conversely. 

Woik’s [1 1] cha;racterizatian of graphs which admit a trilnsitive orientation 
-#hose H;tsse diagram is a rooted tree yields ihe next result. 

A connected grirplz is trivially per,kcr ij and only if it is the compara- 
bihy g~uph of a rooted tree. 

IMike the general case of perfect graphs [o, lo], the complement of a trivially 
perfect graph may not itself be lrivially perfect. The fnll -,..ov:ing characterization is 
Smmediatz. 
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