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Abstract

Christensen and Evans showed that, in the language of Hilbert modules, a bounded
derivation on a von Neumann algebra with values in a two-sided von Neumann module (i.e. a
sufficiently closed two-sided Hilbert module) are inner. Then they use this result to show that
the generator of a normal uniformly continuous completely positive (CP-) semigroup on a von
Neumann algebra decomposes into a (suitably normalized) CP-part and a derivation like part.
The backwards implication is left open.

In these notes we show that both statements are equivalent among themselves and
equivalent to a third one, namely, that any type I tensor product system of von Neumann
modules has a unital central unit. From existence of a central unit we deduce that each such
product system is isomorphic to a product system of time ordered Fock modules. We, thus,
find the analogue of Arveson’s result that type I product systems of Hilbert spaces are
symmetric Fock spaces.

On the way to our results we have to develop a number of tools interesting on their own
right. Inspired by a very similar notion due to Accardi and Kozyrev, we introduce the notion
of semigroups of completely positive definite kernels (CPD-semigroups), being a general-
ization of both CP-semigroups and Schur semigroups of positive definite C-valued kernels.
The structure of a type I system is determined completely by its associated CPD-semigroup
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and the generator of the CPD-semigroup replaces Arveson’s covariance function. As
another tool we give a complete characterization of morphisms among product systems of
time ordered Fock modules. In particular, the concrete form of the projection endomorphisms
allows us to show that subsystems of time ordered systems are again time ordered systems
and to find a necessary and sufficient criterion when a given set of units generates the
whole system. As a byproduct we find a couple of characterizations of other subclasses of
morphisms. We show that the set of contractive positive endomorphisms are order isomor-
phic to the set of CPD-semigroups dominated by the CPD-semigroup associated with type I
system.

© 2003 Elsevier Inc. All rights reserved.

1. Introduction

Arveson’s tensor product systems of Hilbert spaces [Arv89] (Arveson systems, for
short) arise in the theory of Ey-semigroups on #(G), where G is some Hilbert space.
They consist of a family $® = (5,)%} of Hilbert spaces §, such that H,® H, =
9., 1n an associative way (plus some measurability conditions). The most important
notion for Arveson systems is that of a unit 2/® = (h1),cr. consisting of vectors
h;e$9, such that hy®h, = hy,, (plus some measurability conditions). The most
prominent example of such an Arveson system is the symmetric Fock space, more
precisely, the family I'® (H) of symmetric Fock spaces I'(L*([0,7], H)) for some
Hilbert space H. The units of I'® (H) are precisely the exponential vectors ([} 4/)
possibly times a renormalizing factor ¢’ (ceC). The symmetric Fock space has the
property to be spanned by tensor product of such units. Arveson defines a product
system with this property to be a type I system and he shows that every type I system
is isomorphic to I'® (H) for a suitable H.

In these notes we show the analogue result for product systems of Hilbert modules
(more precisely, of von Neumann modules). Throughout these notes let 3 be a unital
C*-algebra. Product systems of Hilbert B-5-modules were discovered in dilation
theory of a completely positive semigroup (a CP-semigroup for short) in [BS00].
Meanwhile, we also have a construction of product systems starting from FEy-
semigroups on some algebra #*(E) of adjointable operators on a Hilbert module;
see [Ske02]. A product system E© = (E) rer, consists of (pre-)Hilbert B-B-modules
E, which compose (associatively) as E;© E; = E,, under (interior) tensor product of
two-sided Hilbert modules, and a unit is a family é© = (é,),eu;h of elements &, € E,
which composes as {,O&, = &,

The symmetric Fock space is canonically isomorphic to the time ordered
Fock space (i.e. the Guichardet picture). As shown in [BS00] it is this picture
which can be generalized to Hilbert modules. The (continuous) units for the time
ordered Fock module are considerably more complicated, but still can be computed
explicitly (see [LSO1]) and generate the time ordered Fock module in a suitable
sense.
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Now it makes sense to ask, whether all product systems generated by their units
are time ordered Fock modules. However, unlike for Hilbert spaces (where strong
and weak totality of some subset are the same, so that we do not need to distin-
guish topologies) in a Hilbert module there are several topologies, and the answer
to our question depends very much on the topology in which what the units
generate algebraically is closed. As one of our main results, we find an affirmative
answer, if we use the strong topology of von Neumann modules (as introduced in
[Ske00a]).

The crucial step is to establish the equivalence of the results by Christensen and
Evans [CE79] on the generator of a normal uniformly continuous CP-semigroup on
a von Neumann algebra and the fact that product systems of von Neumann modules
which have a continuous unit always have also a (continuous) central unit (i.e. the
members £, of the unit commute with the elements of the algebra). Example 4.2.4
describes a product system of Hilbert modules generated by a single continuous unit,
but without any central unit. It cannot be a time ordered Fock module, because these
always have a central unit, namely, the vacuum unit. Therefore, we may not hope
that our result generalizes to all product systems of Hilbert modules. (We know,
however, from [Ske0Olc] that it generalizes under the assumption of existence of a
central unit.)

On our way we have to establish several interesting tools. The main tool in [Arv89]
was the so-called covariance function, i.e. a conditionally positive definite kernel
defined on the set of units of an Arveson system which we obtain by differentiating
the semigroup <g;,g,> (for some units g®,¢'®) at r=0. What is the substitute
for modules? The matrix elements (&, &), in general, will not form a semi-

group. However, if we consider instead the mappings Zf"’:/ b (&, bE, Y, then the

definition of units (and the tensor product) is born to make 8¢ = (1?’5%6& a
semigroup. The right notion of positivity for such a kernel is completely positive
definiteness. The idea to consider semigroups of completely positive definite kernels
(CPD-semigroups for short) is inspired very much by a new idea from the paper
[AK99] by Accardi and Kozyrev. If a product system is generated by its units, then
its structure is determined completely by the structure of its associated CPD-
semigroup. The substitute for Arveson’s covariance function is just the generator
of the CPD-semigroup.

Whereas for Arveson systems the structure of the covariance function is well
known and easy to derive, in our case we do not know immediately the form of the
generator. Only after passing through the theory it turns out that it has a form which
generalizes that of the Christensen—Evans generator of CP- to CPD-semigroups.
This drops out immediately, when we know existence of a central unit. In order to
derive both existence of a central unit (from [CE79]) and that product systems of von
Neumann modules generated by their units are time ordered Fock modules we have
to master the problem whether a subsystem of a time ordered system is all, and if not
how it looks like. We solve this problem with the help of our second main tool,
namely, a complete characterization of morphisms among time ordered systems, in
particular, of projection morphisms.
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These notes are organized as follows. In Section 2 we start with preliminaries from
earlier papers. In Section 2.1 we collect the most important definitions and
constructions. In particular, we define von Neumann modules from [Ske00a] which is
not a standard definition. In Section 2.2 we recall quickly the exterior tensor product.
(The extensions to von Neumann modules are not standard, and we need them in
Appendix B.) Then we use it to define matrices of Hilbert modules which provide the
basic technique to deal with completely positive definite kernels. In Section 2.3 we
recall the definition of the time ordered Fock module and repeat its basic properties
from [BS00,LSO01].

In Section 3 we define completely positive definite kernels and semigroups of such
and study their basic properties. We state what we can say about the generator
without using product systems. In order to give an impression what we have to
expect later on, we discuss in Section 3.5 the CPD-semigroup associated with the
time ordered Fock modules and conjecture from its generator a theorem about the
form of the generators paralleling the Christensen—Evans form of the generator of a
CP-semigroup.

After these lengthy preparations we come to product systems in Section 4. After
the definition in Section 4.1 we show in Section 4.2 that with each set of units in
product system there is associated a natural CPD-semigroup. We explain that a set
of units generates a subsystem and use this to define type I product systems (splitting
into several cases depending on several topologies). In Section 4.3 we reverse the
direction and starting from a CPD-semigroup we construct a product system, the
GNS-system of the CPD-semigroup, with a set of units, giving us back the original
CPD-semigroup. In the following sections we are interested only in uniformly
continuous CPD-semigroups. In Section 4.4 we study in how far continuity
properties of the CPD-semigroup are reflected by those of the units in the GNS-
system.

While Section 4 was still at a rather general level, in Section 5 we point directly to
our main goal. In Section 5.1 we show that existence of a central unit among a
continuous set of units assures that the generator of the associated CPD-semigroup
has Christensen—Evans form. In Section 5.2 we study morphisms of time ordered
Fock modules. In Section 5.3 we use the concrete form of the projection morphisms
to provide a criterion which allows to decide, whether a (continuous) set of units
generates a time ordered system of von Neumann modules and, if not, how the
generated subsystem looks like. The idea taken from Bhat [BhaOl] is, roughly
speaking, that if the subsystem generated by a set of units is not all, then there should
exist a non-trivial projection morphism onto the subsystem. In Section 5.4 we put
together our results and those by Christensen—Evans [CE79] and obtain very quickly
our main result.

As a bonus we obtain that the result about derivations is equivalent to
existence of a central unital unit in the GNS-system of a uniformly conti-
nuous normal CPD-semigroup. This raises the question for a direct proof of
existence of a central unit, thus, providing a different proof of [CE79]. In
Section 6 we outline these and other possible directions for future work on product
systems.
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In Appendix A we extend the analysis of morphisms from Section 5.2. We describe
the order structure of positive morphisms and, in particular, of the contractive
morphisms. In Appendix B we follow an idea from [AK99], and encode the
information on the GNS-system of a CPD-semigroup into a single CP-semigroup on
a (much) bigger algebra. In Appendix C we recall the results from [CE79], but
entirely in the language of Hilbert modules which is—and we hope that these notes
demonstrate this—much better adapted to problems concerning general von
Neumann algebras.

Let us close with some general conventions and a definition. In the course of our
investigations it is convenient (and sometimes also necessary) to distinguish pre-
Hilbert modules, Hilbert modules (i.e. complete pre-Hilbert modules) and von
Neumann modules (i.e. strongly closed submodules of some %(G, H)). Conse-
quently, we have to distinguish clearly the several versions of product systems, tensor
products, and so on. Tensor products ®, ©® are understood algebraically. If we
want to complete, then we write ®, ©. Strong closures (in a space of operators) are
indicated by a superscript s. We use the same conventions for direct sums. An
exception of this convention are Fock modules, which usually are assumed norm
complete, because usually it is not reasonable to consider algebraic versions. Where
algebraic Fock modules appear, we indicate them by F, I, and so on. The action of
an algebra on a module is always non-degenerate. A representation by operators on
a module need not be non-degenerate.

By S(R,,B) we denote the space of step functions on R, with values in the
normed space B, whereas L’-spaces of functions with values in a Hilbert module are
defined in Section 2.2.

Usually, we are interested in R, as indexing set for a semigroup, but sometimes we
consider also the discrete case Ny. If we do not distinguish we write T. Throughout
the isomorphic lattices [, and J, are important. Let >0 in T. We define [, as the set
of all tuples {(#y,...,11)eT": neN,;t =1,>--->1,>0}. Clearly, [, is a lattice
partially ordered by “inclusion” with ““‘union” and “intersection” of tuples being the
unique maximum and minimum, respectively. We define J; to be the set of all tuples
t=(ty,...,11)eT" (neN, t;>0) having length

n
=) t=t
i=1

For two tuples s = (s, ...,51)€Js and t = (¢, ...,71)€J, we define the joint tuple
s — ted;y,; by

s—t= ((Sm, ...,S]),(t,,, ...,t1)) = (Sm, ey ST, U ...,l]).

We equip J, with a partial order by saying t=¢s = (s, ...,s1), if for each j (1<j<m)
there are (unique) s; € J;, such that t = s, — --- — s;. We extend the definitions of I,
and J, to t = 0, by setting Iy = Jo = {()}, where () is the empty tuple. For teJ, we
put t — () =t =() — t. The mapping (,, ..., 1)~ (31 ti, ..., S0 2;) is an order
isomorphism J,— [; so that also J; is a lattice.
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2. Preliminaries
2.1. Von Neumann modules, tensor product and GNS-construction

For basics about Hilbert modules over C*-algebras we refer the reader to
[BS00,Lan95,Pas73,Ske00a]. A complete treatment adapted precisely to our needs
with full proofs of all statements can be found in [SkeOla]. We recall only that for us
Hilbert B-modules are right B-modules with a (strictly positive) B-valued inner
product, right B-linear in its right variable. Hilbert A-B-modules are Hilbert B-
modules where A acts non-degenerately as a C*-algebra of right module
homomorphisms. In particular, if A is unital, the unit of A acts as unit. The C*-
algebra of adjointable mappings on a Hilbert module E we denote by %"(E). By

@a’bﬂ(E) we denote the bilinear mappings, which we also call two-sided. Using
similar notations also for mappings between Hilbert modules, without mention we
identify E<%*(B, E) (where xe E is the mapping b+ xb) and E* = %*(E, B) (where
x* 1y x,y) is the adjoint of x). Consequently, xy* is the rank-one operator
z—>x<{y,zy. Recall that by definition Hilbert modules are complete with respect to
their norm ||x|| = /|| {x, x> ||. Otherwise, we speak of pre-Hilbert modules. In this
case #°(E) is only a pre-C*-algebra. The strong topology is that of operators on a
normed or Banach space. The x-strong topology on an involutive space of operators
on a normed or Banach space is the topology generated by the strong topology and
by the strong topology for the adjoints. (When restricted to bounded subsets of
2 (E) this is the strict topology; see [Lan95].) Another topology on FE is the B-weak
topology which is generated by the seminorms ||{x,e>|| (xeE).

The following observation provides a method to establish well definedness of
certain operators (defined by giving the values on a generating subset) without
showing boundedness. (In fact, it works also for unbounded operators.) It can
hardly be overestimated.

2.1.1. Observation. If a B-valued inner product on an A-B-module E fails to be
strictly positive (i.e. {x,x) =0 does not necessarily imply x = 0), then by the
Cauchy-Schwarz inequality

6y Ly x ) <[y o |IKx, x) (2.1.1)

we may divide out the submodule /' ={xeE:{x,x) = 0} of length-zero elements
and obtain a pre-Hilbert A-B-module. It is important to notice that any adjointable
operator (bounded or not) on E respects A'r and, therefore, gives rise to an
adjointable operator on E/ A k. As a simple consequence we find that a mapping
defined on a subset of E which generates E as right module extends to a well-defined
mapping on E, if it is formally adjointable on the generating subset.

2.1.2. Definition. The (interior) tensor product (over B) of the pre-Hilbert A-5-
module £ and the pre-Hilbert B—C-module F is the pre-Hilbert A-C-module EQ F =
E®QF/NEgr where EQF is equipped with inner product defined by setting
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x®@y, X ®y > = {y,{x,x' >y >. If B is unital, then we identify always E® B and
E (via x©b = xb), and we identify always BO F and F (via bOy = by). If B is non-
unital, then we may identify at least the completions.

Particularly interesting is the tensor product H = EQ G of a pre-Hilbert A-B-
module E and a pre-Hilbert space G on which B is represented non-degenerately (so
that G is a pre-Hilbert B—C-module). It follows that H is a pre-Hilbert . A-C-module,
i.e. a pre-Hilbert space with a representation p of .4 by (adjointable) operators on H.
We refer to p as the Stinespring representation of A (associated with £ and G);
cf. Remark 2.1.5.

To each xe E we associate an operator L,:G—H,g—xQ®g in 4*(G,H). We
refer to the mapping # : x+— L, as the Stinespring representation of E (associated with
G). If the representation of B on G is faithful (hence, isometric), then so is . More
precisely, we find LiL, = {x,y) e Bc#*(G). We also have L, = p(a)L.b so that
we may identify E as a concrete A-B-submodule of #°(G, H).

In particular, if B is a von Neumann algebra on a Hilbert space G, then we
consider E always as a concrete subset of (G, EQ G). We say E is a von Neumann
B-module, if it is strongly closed in #(G,EQG). If also A is a von Neumann
algebra, then a von Neumann A-B-module E is a pre-Hilbert 4-5-module and a von
Neumann B-module such that the Stinespring representation p of A on EQ G is
normal.

2.1.3. Remark. The (strong closure of the) tensor product of von Neumann modules
is again a von Neumann module. Left multiplication by an element of A is a strongly
continuous operation on E. The x-algebra %*(E) is a von Neumann subalgebra of
B(EOQG).

One may easily show that if B =% (G) then E =% (G,H) and #*(E) =% (H).
If £ is a von Neumann %(G)-#%(G)-module, then H=G®$ and E =
B(G,GRH) =% (G)R®H where H is a Hilbert space, Arveson’s Hilbert space of
intertwiners of the left and right multiplication. In other words, $ = Cy)(E), where
generally Cp(E) = {xeE: bx = xb(beB)} is the B-center of a B-B-module.

2.1.4. Remark. Von Neumann modules are self-dual. Consequently, each bounded
right linear mapping on (or between) von Neumann modules is adjointable and von
Neumann modules are complementary (i.e. for any von Neumann submodule F of
a pre-Hilbert module E there exists a projection pe%*(E) onto F). We refer to
[Ske00a,Ske01a] for details.

For any element ¢ in a pre-Hilbert A-B-module E, the mapping ar—> (&, a) is
completely positive. (The axioms of Hilbert modules are quasi modelled to have this
property.) Conversely, if T: . 4A— B is a completely positive mapping between unital
C*-algebras, then by setting (a®b,d ®b') =b*T(a*a’)b’ we define an inner
product on the A-B-module AQB. Set E = AQB/ N agp and E = 1@ 1 +N 45 -
Then T(a) = (&,af) and E =spanAéB. We refer to the pair (E,¢) as the
GNS-construction for T and to E as the GNS-module with cyclic vector &. The
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GNS-construction is determined by the stated properties up to two-sided
isomorphism. If T is a normal mapping between von Neumann algebras, then E°
is a von Neumann A-B-module.

2.1.5. Remark. Assume that B is represented faithfully on a (pre-)Hilbert
space G and let us construct the Stinespring representation p of A as
described above. Then T'(a) = {¢,al) = LiL, = Lip(a)Ls so that p with the
cyclic mapping L;e#*(G,H), indeed, coincides with the usual Stinespring
construction.

The most important advantage of considering GNS-constructions of completely
positive mappings instead of Stinespring constructions appears, if we consider
compositions.

2.1.6. Example. Let T: 4A—-B and S:B5—-C be completely positive mappings
with GNS-modules £ and F and with cyclic vectors ¢ and {, respectively. Then
we have SoT(a) = (O, alO{> (so that SoT is completely positive). Let G
be the GNS-module of the composition So7" with cyclic vector y. Then the

mapping
1= <Ol

extends (uniquely) as a two-sided isometric homomorphism G—EQ® F. Observe
that EQ F = span(AEBQO B{C) = span(AEO B(C) = span(AEBO(C). By the above
isometry we may identify G as the submodule span(AEQO{C) of EQF. In other
words, inserting a unit 1 in y = O in between ¢ and { amounts to an isometry.
Varying, instead, beB in ¢bO{ = O, we obtain a set which generates all
of EQF.

This operation is crucial in the construction of tensor product systems. We explain
immediately, why the Stinespring construction cannot do the same job. Suppose that
Band C are algebras of operators on some pre-Hilbert spaces. Then, unlike the GNS-
construction, the knowledge of the Stinespring construction for the mapping 7" does
not help in finding the Stinespring construction for So7. What we need is the
Stinespring construction for 7" based on the representation of B arising from the
Stinespring construction for S. The GNS-construction, on the other hand, is
representation free. It is sufficient to do it once for each completely positive mapping.
Yet in other words, we can formulate as follows.

2.1.7. Functoriality. A pre-Hilbert A-B-module E is a functor sending (non-
degenerate) representations of 5 on F to (non-degenerate) representations of A on
EQOF, and the composition of two such functors is the tensor product. The
Stinespring construction is a dead end for this functoriality.

We close quoting some results about positivity of operators on a pre-Hilbert
module.



S.D. Barreto et al. | Journal of Functional Analysis 212 (2004) 121-181 129

2.1.8. Definition. We say a linear operator a on a pre-Hilbert B-module FE is positive,
if {(x,ax)>0 for all xeE. In this case (by linearity and polarization) a is
adjointable.

Of course, a*a is positive, if a* exists. The following lemma due to Paschke [Pas73]
shows that for ae#*(E) this definition of positivity is compatible with the C*-
algebraic definition. An elegant proof can be found in [Lan95].

2.1.9. Lemma. Let E be a pre-Hilbert B-module and let a be a bounded B-linear
mapping on E. Then the following conditions are equivalent:

1. a is positive in the C*-algebra %*(E).
2. a is positive according to Definition 2.1.8.

Notice that if £ is complete, then it is sufficient to require just that a is B-linear,
because « is closed and, therefore, bounded. A similar argument allows to generalize
a well-known criterion for contractivity to pre-Hilbert modules.

2.1.10. Lemma. A positive operator a on E is a contraction, if and only if
{x,axy<{x,x) (2.1.2)
for all xe E.

Proof. Of course, a positive contraction fulfills (2.1.2). Conversely, let us assume
that a>0 fulfills (2.1.2). By positivity, (x,y), = {x,ay) is a (semi-)inner product.
In  particular, by  Cauchy-Schwartz inequality (2.1.1) we  have
1 %) (6, 1)l <G, )T, 9)al |, hence,

1<x,ay > (P <1<, ax || 1 <y ap D11 <[ <D <) s

Le. ||lal|<l. O

2.2. Exterior tensor product and matrices of Hilbert modules

Matrices with entries in a Hilbert module are a crucial tool in these notes. Like L*-
spaces of functions with values in a Hilbert module they can be understood most
easily as very particular examples of exterior tensor products. In Appendix B we
need the properties of exterior tensor products in full generality.

The exterior tensor product is based on the observation that the (vector space)
tensor product E; ® E, of a pre-Hilbert B;-modules E; (i = 1,2) is a B} ® B;-module
in an obvious way. It is not difficult to show that the sesquilinear mapping on
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E\ ® E,, defined by setting
(x®@p, X' @) = {x, x> @<,y (2.2.1)

is positive, i.e. an inner product. It is even more easy (see [Ske98]) to see that it is
strictly positive, so that the E} ® E, is a pre-Hilbert B; ® B,-module over the pre-C*-
algebra B; ® B, equipped with whatever cross C*-norm. In practice, we consider
only the spatial C*-norm on the tensor product. Observe that, if we want to complete
B1 ® B, then we must, in general, complete also £} ® E>.

If E; are pre-Hilbert A,—B;-modules, then E;® E, is a pre-Hilbert A; ® A,—
B ® B,-module and the representation of A; ® A, on E; ® E; is a contraction for
the spatial norm (hence, for all norms) on A; ® A,. Moreover, if the representations
of A; on E; are faithful, then the representation of A; ® A; is an isometry for the
spatial norm. One easily checks the property

(E1QE)O(FI®F)=(EIOF)®(E0O k). (22.2)

If E; are von Neumann A;—B;-submodules of %(G;, E;O G;), then the strong
closure of El ®E2 in QB’(GME] ® Gl) ®S@(G2, E2 @ G2) =% (G] ® Gz, (El @ Gl)
®(E2OG,)) is a von Neumann A; ®3A-B; ®°Br-module and the Stinespring
representation p of A ®3A; on (E;OG))®(E,O Gy) is, indeed, just the tensor
product of the Stinespring representations p; of A;. In particular, we have
B (E1 ®°Ey) =#* (E1)®°#*(E,) (as von Neumann algebras). See [SkeOla] for
details.

For a Hilbert module E and a measure space M we define L*(M,E) =
E®IL*(M). For a von Neumann A-B-module E we define the von Neumann
AQSB(L*(M))-B-module L*>5(M,E) = EQSL*(M).

For some Hilbert spaces G, H the space #(G, H) is a von Neumann %#(H )-%(G)-
module with inner product { L, M > = L*M and the obvious module operations. In
particular, the »n x m-matrices M,,, =% (C",C") are von Neumann M,—M,-
modules. One easily checks that M,, © My,, = M,,,, where X© Y = XY gives the
canonical identification.

By M, (E) = E® M,,, we denote the spaces of n x m-matrices with entries in a
pre-Hilbert .A-B-module. By construction M,,,(E) is a pre-Hilbert M,,(A)-M,,(B)-
module. It is complete and strongly closed, if and only if E is complete and strongly
closed, respectively.

M,,,(E) consists of matrices X = (x;;) whose inner product is

n

<X7 Y>i/‘ = Z <x/ci7ykj>'

k=1

An element of M,,(B) acts from the right on the right index and an element of M,,(.A)
acts from the left on the left index of X in the usual way. Considering E as pre-
Hilbert %#*(E)-B-module and making use of matrix units for M, (%*(E)), one easily
shows that %*(M,,(E)) = M,(#*(E)). From (2.2.2) we conclude that
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M, (E)O M(F) = My (EQF) where (X O Y)I.J = > X Oy gives the canoni-
cal identification. In particular, for square matrices we find M, (E)O M,(F) =
M,(EQF).

Conversely, let E,, be a pre-Hilbert M,(A)-M,,(B)-module. For simplicity,
assume that A4, B are unital (otherwise use approximate units) and define Q; as the
matrix in M,(A) with 1 in the ith place in the diagonal. P;e M,,(B) is defined
analogously. Then all submodules Q;E,,,P; are isomorphic to the same pre-Hilbert
A-B-module E and E,,, = M,,(E). (Each of these entries Q;E,,,P; takes its A-5-
module structure by embedding .4 and B into that unique place in the diagonal of
M,(A) and M,,(B), respectively, where it acts non-trivially. The isomorphism
between two entries can be constructed with the help of matrix units in M,, M,,.)

Special forms are E" = M, (E) and E, = M,(E). Both consist of elements X =
(x1, ..., x) (x;€E). However, the former is an M,,(.A)-B-module with inner product
(X,Y) =>,{x;,yi) and #*(E") = M,(#*(E)) (it is just the n-fold direct sum
over E), whereas, the latter is an A-M,(B)-module with inner product (X, Y}, =
{x;,yiy and #*(E,) =%#" (E). Observe that E, O F" = EQF, whereas, E"OQOF,, =
Mum(EQOF).

Let us set X = (6;x;) e M,,(E) for some x;eE (i=1,...,n), and Y correspond-
ingly. Then the mapping T : M,,(A) - M, (B), defined by setting T(4) = (X, AY )
acts matrix-eclement-wise on A4, i.e.

(T(A4)); = {xi,a5y; )

In particular, if ¥ = X, then T is completely positive. T(4) may be considered as the
Schur product of the matrix T of mappings {x;,ey;) : A— B and the matrix 4 of
elements a;; € A.

If S is another mapping coming in a similar manner from diagonal matrices X', Y’
with entries in a pre-Hilbert 5-C-module F, then we find as in Example 2.1.6 that the
Schur composition of SoT of the mappings 7 and S (i.e. the pointwise composition) is
given by

SoT(A) =< XOX , AYOY').
This observation is crucial for the analysis of CPD-semigroups in Section 3.

2.3. The time ordered Fock module

2.3.1. Definition. Let B be a unital C*-algebra and let £ be a (pre-)Hilbert 5-5-
module. Then the full Fock module F(E) over E is the completion of the pre-Hilbert
B-B-module

F(E) = @ E°,
n=0
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where E©° = Band w = 1e B = E®? is the vacuum. If B is a von Neumann algebra,
then by F°(E) we denote the von Neumann 5-B-module obtained by strong closure
of F(E).

2.3.2. Definition. For any contraction T € #**!(E) we define its second quantization

F(T)= @ TO"es*(F(E)) (T =id).

nENo

2.3.3. Example. Let F be a two-sided Hilbert module. One of the most important full
Fock modules is F(L*(R, F)). The time shift # in #**!(L?(R, F)) for some Hilbert
B-B-module F is defined by setting [#:f](s) = f(s — ). The corresponding second
quantized time shift F(#) gives rise to the time shift automorphism group & on
B (F(L*(R,E))), defined by setting

L (a) = F(#)aF ().

F(#) is B-B-linear so that & leaves invariant B< %#*(F(L*(R, E))) and it is strongly
continuous.

As the name tells us, the construction of the time ordered Fock module is connected
with the time structure of its one-particle sector L*(R, F). We take this into account
by speaking of the time ordered Fock module over F rather than over L*(R,F).
Additionally, we are interested mainly in the real half-line R, and include also this in
the definition.

2.3.4. Definition. By 4, we denote the indicator function of the subset
{(ty, ..., 11) 1 t,>--->11} of R". Let B be a unital C*-algebra, let F be a Hilbert B—
B-module and set E = L*(R, F) and Ex = L*(K, F) for any measurable subset K of
R. Then 4, acts as a projection on E©" = Lz([R{”7F®”). We call the range of 4,
applied to EOn (or some submodule) the time ordered part of EOn (or of this
submodule).

The time ordered Fock module over F is

o0 -
IL(F) = P 4,Eg" = AF(Er,) = F(Eg,)
n=0

where 4 = @, 4, is the projection onto the time ordered part of F(E). The
extended time ordered Fock module is T (F) = AF(E). We use the notations IL[:(F) =
AF (Epy) (1=0) and Tk (F) = 4F (Ek) (K a measurable subset of R). If Bis a von
Neumann algebra on a Hilbert space G, then we indicate the strong closure by
I'*(F), and so on.

The algebraic time ordered Fock module is II'(F) = AF(S(R,,F)) (where &
denotes the step functions and F maybe only a pre-Hilbert module). Observe that
IL(F) is not a subset of F(S(Ry, F)) (unless FOF is trivial).
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Definition 2.3.4 and the factorization in Theorem 2.3.6 are due to [BS00]. The time
ordered Fock module is a straightforward generalization to Hilbert modules of the
Guichardet picture of the symmetric Fock space [Gui72] and the generalization to
the higher-dimensional case discussed by Schiirmann [Sch93] and Bhat [Bha98].

2.3.5. Observation. The time shift & leaves invariant the projection 4 %4*(F(E)). It
follows that & restricts to an automorphism group on #*(IL(F)) and further to an
Ey-semigroup #*(IL(F)) (of course, both strongly continuous and normal in the case
of von Neumann modules).

The following theorem is the analogue of the well-known factorization
L(L2([0,s+ 1)) = T(L*([t,s + 1)) @T(L?([0,1])) of the symmetric Fock space.
However, in the theory of product systems, be it of Hilbert spaces in the sense of
Arveson [Arv89] or of Hilbert modules in the sense of Section 4 (of which the time
ordered Fock modules are to be the most fundamental examples), we put emphasis
on the length of intervals rather than on their absolute position on the half line. (We
comment on this crucial difference in [BS00, Observation 4.2].) Therefore, we are
more interested to write the above factorization in the form I'(L*([0,s+ {])) =
T(L*([0,5])) ® I'(L*([0,1])), where the first factor has first to be time shifted by .
Adopting this way of thinking (where the time shift is encoded in the tensor product)
has enormous advantages in many formulac. We will use it consequently
throughout. Observe that, contrary to all good manners, we write the future in the
first place and the past in the second. This order is forced upon us and, in fact, we
will see in Remark 2.3.10 that the order is no longer arbitrary for Hilbert modules.

2.3.6. Theorem (Bhat and Skeide [BS00]). The mapping uy, defined by setting
[t (X5 O Y] (St 3815 Ly -evs 1) = [F (L) XS] Sty +-o381) © Yituy -y 1)
=X(sm—t,...,51 =) O Yi(ty, ..., 11), (2.3.1)
($+t>sp=-=n=t>t,2-2420,X,€A, E[gs']”, Y,eA,,E[gl']’ extends as a two-

sided isomorphism IF( VOIL(F)»Lsi(F). It extends further to two-sided

isomorphisms Ts(F) O (F) = Weti(F) and 3(F) O (F) =105, (F), respectively.
Moreover,

Up(s+1) (idQuy) = u(r+s)t(urs ©id).

2.3.7. Observation. Letting in the preceding computation formally s— oo, we see
that (2.3.1) defines a two-sided isomorphism u, : [(F)OIL/(F)—IL(F). We have
s (id O uy) = u(u; ©id). In the sequel, we no longer write uy, nor u, and just use the

identifications IL,(F) O IL/(F) = Lw«(F) and IL(F) O IL,(F) = IL (F). Notice that in
the second identification #,(a) = a®1dr(r)e#*(IL(F) O LL/(F)) = #*(IL(F)). We
explain this more detailed in a more general context in Section 4.4.
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In the symmetric Fock space we may define an exponential vector to any element in
the one-particle sector. In the time ordered Fock module we must be more careful.

2.3.8. Definition. For a step function xe (R, , F) we define the exponential vector
Y (x)ell(F) as

8

‘//(x) = Anxon
n=0

with x©% = @. (Observe that if x has support [0,7] and ||x(s)||<ceR,, then
|| 4,x9"|]? <" where £ is the volume of the set {(fy, ..., 1) t=1,=> - =1, >0} s0
that [[y(x)|]*<e’ < 0.)

Let t = (t,,...,11)€l;, put 1 = 0, and let x = > {;l;,, ). Then we easily check

lp(X) = lﬂ(CnU[o‘z,,_z”,l)) ORE @w(glﬂ[o,tl—to))' (2'3'2)

2.3.9. Theorem. For all t€0, o] the exponential vectors to elements xe S([0, 1], F)
form a total subset of I';(F).

The proof goes very much along the lines for the symmetric Fock space. A detailed
version can be found in [SkeOla].

2.3.10. Remark. Obviously, the definition of the exponential vectors extends to
elements xe L* (R, , F)nL*(R, F). It is also not difficult to see that it makes sense
for Bochner square integrable functions xe L3(Ry, F)<=L*(R,,F). (Y(x) depends
continuously on x in L%-norm.) It is, however, unclear, whether it is possible to
define (x) for arbitrary xe L*(R,, F). We can only say that if xe Eyy ), y€ Ejp, are
such that y(x), ¥(») exist, then Y (#ix @ y) = (x) Oy (p) exists, too. Observe that, in
general, ¥(x) O y(y) and ¥(y) Oy (x) are very much different elements of e (F).

The exponential vectors &, = (Ll ) ({€F) play a distinguished role. They fulfill
the factorization

és@ér = i.H—I (233)

and &, = . In accordance with Definition 4.2.1 we call such a family ¢© = (&) e,
a unit. Notice that T,(b) = (¢&,,b¢,) defines a CP-semigroup on B (see Proposition
4.2.5). Additionally, ¥({lj,)) depends continuously on ¢ so that the corresponding
semigroup is uniformly continuous (cf. Theorem 4.4.12). We ask, whether there are
other continuous units ¢© than these exponential units. The answer is given by the
following theorem from [LSO1].
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2.3.11. Theorem. Let feBB, (e F, and let & = (é%re[Rh with &) = e be the uniformly
continuous semigroup in B with generator B. Then € (B,() = (C(B.0))icr, with the
component £} of &,(B,() eIl in the n-particle sector defined as

é;l(tnv --~7t1) = f?fl,,€®é?,,frn,1€® Oé?g*[] ci?l (234)

(and, of course, g“(; Sfor n=0), is a unit. Moreover, both functions t— &, e€IU(F) and the

CP-semigroup TP with Tt(ﬁ"é) = &P, &), 0E,(B,E) > are uniformly continuous and
the generator of T'HS) is

b— LBy + b+ 7D, (2.3.5)
Conversely, let £© be a unit such that t—&¢,ell(F) is a continuous func-

tion. Then there exist unique felBB and (eF such that & =&, (B,() as defined
by (2.3.4).

2.3.12. Remark. We see that 7/ has a generator of Christensen—Evans type; see
Appendix C.

2.3.13. Remark. The exponential units ¥({l},) correspond to &,(0,{). We may
consider (B, () as &(0,{) renormalized by the semigroup e’?. This is motivated by the
observation that for B = C all factors el ~1)F in (2.3.4) come together and give e’/
The other way round, in the noncommutative context we have to distribute the
normalizing factor e over the time intervals [t;_1,1,).

2.3.14. Observation. In the case of a von Neumann module F, the characterization
of continuous units in Theorem 2.3.11 remains true also, if we allow &, to be in the
bigger space I[;(F). This follows, because the proof in [LS01] that continuous units
must have the form &,(f3, {) works as before.

2.3.15. Remark. Fixing a semigroup &° and an element { in F, Eq. (2.3.4) gives more
general units. For that it is sufficient to observe that &° is bounded by Ce for
suitable constants C,c¢ (so that &' are summable). An example from [LSOI]
shows that we may not hope to generalize Theorem 2.3.11 to units which are
continuous in a weaker topology only. On the other hand, this example also shows
that there are interesting non-continuous units (giving rise to strongly continuous
CP-semigroups), although the time ordered Fock module is spanned by its
continuous units.

3. Kernels

Positive definite kernels on some set S with values in C (i.e. functions k: S x S—>C
such that Zi’/@k“"’“f ¢;=0 for all choices of finitely many ¢;eC,0;€S) are well-

established objects. There are basically two important results on such kernels.
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One is the Kolmogorov decomposition which provides us with a Hilbert space H
and an embedding i:S— H (unique, if the set i(S) is total) such that k%% =
i(o),i(a’) ).

The other main result is that the Schur product of two positive definite kernels
(i.e. the pointwise product) is again positive definite. Semigroups of such kernels
were studied, for instance, in [Gui72] or [PS72]. The kernel obtained by (point-
wise) derivative at t =0 of such a semigroup is conditionally positive definite,
and any such kernel defines a positive definite semigroup via (pointwise)
exponential.

The goal of this section is to find suitable generalizations of the preceding notions
to the B-valued case. Suitable means, of course, that we will have plenty of occasion
to see these notions at work. Positive definite B-valued kernels together with the
Kolmogorov decomposition generalize easily (Section 3.1). They are, however, not
sufficient, mainly, because for noncommutative B the pointwise product of two
kernels does not preserve positive definiteness. For this reason we have to pass to
completely positive definite kernels (Section 3.2). These kernels take values in the
bounded mappings on the C*-algebra B, fulfilling a condition closely related to
complete positivity. Instead of the pointwise product of elements in B we consider
the composition (pointwise on S x S) of mappings on B. Also here we have a
Kolmogorov decomposition for a completely positive definite kernel, we may
consider Schur semigroups of such (CPD-semigroups) and their generators
(Section 3.4).

Both completely positive mappings and completely positive definite kernels
have realizations as matrix elements with vectors of a suitably constructed
two-sided Hilbert module. In both cases we can understand the composition of
two such objects in terms of the tensor product of the underlying Hilbert modules
(GNS-modules or Kolmogorov modules). In fact, we find the results for completely
positive definite kernels by reducing the problems to completely positive mappings
(between n x n-matrix algebras) with the help of Lemmata 3.2.1 and 3.4.6, and then
applying the crucial constructions in Section 2.2. In both cases the tensor product
plays a distinguished role. An attempt to realize a whole semigroup, be it of
mappings or of kernels, on the same Hilbert module, leads us directly to the
notion of tensor product systems of Hilbert modules, namely, the GNS-system in
Section 4.3.

It is a feature of CPD-semigroups on S that they restrict to CPD-kernels, when
S = {s} consists of a single element. Sometimes, the proofs of statements on CPD-
semigroups are straightforward analogues of those for CPD-semigroups. However,
often they are not. In this chapter we put emphasis on the first type of statements
which, therefore, will help us in the remaining chapters to analyze product systems.
To prove the other type of statements like Theorem 3.5.2 we have to wait for
Section 5.4.

Although slightly different, our notion of completely positive definite kernels is
inspired very much by the corresponding notion in [AK99]. The idea to consider CP-
semigroups on M, (B) (of which the CPD-semigroups are a direct generalization) is
entirely due to [AK99].



S.D. Barreto et al. | Journal of Functional Analysis 212 (2004) 121-181 137
3.1. Positive definite kernels

3.1.1. Definition. Let S be a set and let B be a pre-C*-algebra. A B-valued kernel or
short kernel on S is a mapping f: S x S— B. We say a kernel { is positive definite, if

> b by =0 (3.1.1)

g,0' €S
for all choices of b,eB (o€S) where only finitely many b, are different from 0.
3.1.2. Observation. Condition (3.1.1) is equivalent to

> bt =0 (3.1.2)

if

for all choices of finitely many ;€ S, b; € B. To see this, define b, (o€ S) to be the sum
over all b; for which 6; = 6. Then (3.1.2) transforms into (3.1.1). The converse
direction is trivial.

3.1.3. Propesition. Let B be a unital pre-C*-algebra and let T be a positive definite B-
valued kernel on S. Then there exists a pre-Hilbert B-module E and a mapping i: S — E
such that

fo,a'

= <Z(J)7 i(O'/) >
and E = span(i(S)B). Moreover, if (E',i') is another pair with these properties, then
i(o)— 1 (o) establishes an isomorphism E—E'.

Proof. Let Sz denote the free right B-module generated by S (i.e. @, 5B =
{(bs)yes:boeB, #{ceS:b,#0} <0} or, in other words, Sc ® B where S¢ is a
vector space with basis S). Then by (3.1.1)

b (b)) = > biEd,

g,0'eS

defines a semiinner product on Sp. We set E = Sg/A's; and i(0) = (0501), o5 +
Ass- Then the pair (E, i) has all desired properties. Uniqueness is clear. [

3.1.4. Remark. If B is non-unital, then we still may construct £ as before as a
quotient of S¢ ® BB, but we do not have the mapping i. We have, however, a map-
ping i:Sx B—E, sending (0,b) to (3,0b), g+ANss» such that b =
(i(,b),i(d’,b')> with similar cyclicity and uniqueness properties.

The easiest way to have a mapping like i also in the non-unital case, is by
observing that f is positive definite also as kernel with values in B. (To see this

approximate 1€B strictly by an approximate unit for B.) If (E,i) is the
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corresponding pair, then E contains E as a dense submodule. After completion the
difference disappears.

3.1.5. Definition. We refer to the pair (E,i) as the Kolmogorov decomposition for t
and to E as its Kolmogorov module.

3.1.6. Example. For C-valued positive definite kernels we recover the usual
Kolmogorov decomposition. For instance, usual proofs of the Stinespring
construction for a completely positive mapping 7:A—%*(G) start with a
Kolmogorov decomposition for the kernel ((a,g), (¢, ¢'))— <g, T(a*d')g’> on A x
G and obtain in this way the pre-Hilbert space H = E® G where E is the GNS-
module of 7'; cf. Remark 2.1.5.

For B= #*(F) for some pre-Hilbert C-module F we recover the Kolmogorov
decomposition in the sense of Murphy [Mur97]. He recovers the module £ ® F of the
KSGNS-construction for a completely positive mapping 7 : A— %*(F) (cf. [Lan95])
as Kolmogorov decomposition for the kernel ((a,y),(d,)"))— <y, T(a*a’)y’) on
AXxF.

3.2. Completely positive definite kernels

For C-valued kernels there is a positivity preserving product, namely, the Schur
product which consists in multiplying two kernels pointwise. For non-commutative 5
this operation is also possible, but will, in general, not preserve positive definiteness.
It turns out that we have to consider kernels which take as values mappings between
algebras rather than kernels with values in algebras. Then the pointwise multi-
plication in the Schur product is replaced by pointwise composition of mappings. Of
course, this includes the usual Schur product of C-valued kernels, if we interpret ze C
as mapping w+zw on C.

3.2.1. Lemma. Let S be a set and let K : S x S— B(A, B) be a kernel with values in the
bounded mappings between pre-C*-algebras A and B. Then the following conditions are
equivalent:

1. We have
> bR (@i a)b =0
[1/

for all choices of finitely many o,€S, aje A, b;eB.

2. The kernel t:(AxS)x (AxS)>B with 1) = Q7 (g*d) is positive
definite.

3. The mapping

ar Z bR (a}aa;)b;
i

is completely positive for all choices of finitely many ;€ S, a;e A, b;eB.
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4. For all choices o1, ...,0,€S (neN) the mapping
8 (ay) - (87 ()

from M,(A) to M,(B) is completely positive.
5. For all choices oy, ...,6,€S (neN) the mapping K" is positive.

Moreover, each of these conditions implies the following conditions.

6. The mapping

ar— Z b;R‘T’”/ (a)by

g0 €S

is completely positive for all choices of b, € B (o€ S) where only finitely many b,
are different from 0.

7. The mapping

ar D K (g aaq)

g,0'eS

is completely positive for all choices of a, € A (6 €S) where only finitely many a,
are different from 0.

Proof. Conditions 1 and 2 are equivalent by Observation 3.1.2.
Condition 3 means

S > Bibi N (o) b, >0 (3.2.1)

k/eK ijel

for all finite sets /,K and a;,0p€A and b;, 5, €B. To see 3 =1 we choose K
consisting of only one element and we replace o and 8, by an approximate unit for
A and an approximate unit for B, respectively. By a similar procedure we see 3 = 6
and 3= 7.

To see 1 = 3, we choose P=1XK, 0x) = 0i, aip) = i, and by = bify.
Then (3.2.1) transforms into

> bR (arag)by >0,

pgeP

which is true by 1.
To see 2 = 4, we do the Kolmogorov decomposition (E, iA) for the kernel ¥ in the

sense of Remark 3.1.4. If A and B are unital, then we set x; = i(1,0;,1)eE (j =
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1,...,n). Then the mapping in 4 is completely positive as explained in Section 2.2.
If A and B are not necessarily unital, then we set x; = i(u;,0;,v,) for some
approximate units (#;) and (v,) for A and B, respectively, and we obtain the
mapping in 4 as limit (pointwise in norm of M, (B)) of completely positive mappings.

Conditions 4 and 5 are equivalent by simple index manipulations.

To see 5= 1 we apply 5 to the positive element 4 = (aja;) e M,(A) which
means that (B, R(”)(A)B> is positive for all B= (by,...,b,)eB" and, therefore,
implies 1. O

3.2.2. Definition. We call a kernel 8: S x S— %B(A, B) completely positive definite, if
it fulfills one of conditions 1-5 in Lemma 3.2.1. By Ks(A, B) we denote the set of
completely positive definite kernel on S from A to B. A kernel fulfilling conditions 6
and 7 in Lemma 3.2.1 is called completely positive definite for B and completely
positive definite for A, respectively.

3.2.3. Theorem. Let A and B be unital, and let K be in Ks(A, B). Then there exists
a contractive pre-Hilbert A-B-module E (i.e. the canonical representation of A is a
contraction) and a mapping i: S — E such that

K7 (a) = <i(o),ai(0’) ),

and E = span(Ai(S)B). Moreover, if (E', ') is another pair with these properties, then
i(o)— 1 (o) establishes an isomorphism E—E'.

Conversely, if E is a contractive pre-Hilbert A-BB-module and S a collection of
elements of E, then S defined by setting 87 (a) = {a,ad’ ) is completely positive
definite.

3.2.4. Corollary. A kernel ReKs(A,B) is hermitian, i.e. K77 (a*) = 87 (a)*. (This
remains true, also if A and B are not necessarily unital.)

Proof of Theorem 3.2.3. By Proposition 3.2.3 we may do the Kolmogorov
decomposition for the kernel f and obtain a pre-Hilbert B-module E with an
embedding i;. We have

7 (@ ad") = Cid o), iad" 0") ) = Cinla'd o), i(d",0")).

Therefore, by Observation 2.1.1 setting ait(d', ') = it(ad’, ') we define a left action
of A on E. This action is non-degenerate, because A is unital, and the unit acts as

unit on E. It is contractive, because all mappings K77 are bounded, so that in the
whole construction we may assume that A4 is complete. Setting i(a) = i(1,0), the
pair (E, i) has the desired properties.

The converse direction is clear from Section 2.2. [
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3.2.5. Definition. We refer to the pair (E, i) as the Kolmogorov decomposition for &
and to E as its Kolmogorov module.

3.2.6. Observation. If B is a von Neumann algebra, then we may pass to the strong
closure E°. It is not necessary that also A is a von Neumann algebra, and also if A is
a von Neumann algebra, then E® need not be a two-sided von Neumann module.

However, for normal kernels (i.e. all mappings K77 are o-weak) E is a von
Neumann A-B-module.

Our notion of completely positive definite kernels differs from that given by
Accardi and Kozyrev [AK99]. Their completely positive definite kernels fulfill only
our requirement for kernels completely positive definite for B. The weaker
requirement in [AK99] is compensated by an additional property of their concrete
kernel (essentially coming due to the simpler structure in the case B = %(G)); see
[SkeOla] for details.

3.3. Partial order of kernels

We say, a completely positive mapping T dominates another S, if the difference
T — Sis also completely positive. In this case, we write 7 > S. Obviously, > defines a
partial order. As shown by Arveson [Arv69] in the case of #(G) and extended by
Paschke [Pas73] to arbitrary von Neumann algebras, there is an order isomorphism
from the set of all completely positive mappings dominated by a fixed completely
positive mapping 7 and certain mappings on the GNS-module of T (or the
representation space of the Stinespring representation in the case of %(G)).

In this section we extend these notions and the result to kernels and their
Kolmogorov decomposition. Theorem 3.3.3 is the basis for Theorem A.7 which
provides us with a powerful tool to establish whether a dilation of a completely
positive semigroup is its GNS-dilation. In Lemma 3.3.2 we need self-duality. So we
stay with von Neumann modules.

3.3.1. Definition. We say, a kernel & on S from A to B dominates another kernel £,
if the difference & — & is in Kg(A,B). For Kes(A,B) we denote by Dg =
{Lels(A,B): K= 2} the set of all completely positive definite kernels dominated
by K.

3.3.2. Lemma. Let A be a unital C*-algebra, let B be a von Neumann algebra on a
Hilbert space G, and let R=2 be kernels in Ks(A,B). Let (E,i) denote the
Kolmogorov decomposition for K. Then there exists a unique positive contraction

we Y (E) such that €77 (a) = (i(a), wai(d') ).

Proof. Let (F,j) denote the Kolmogorov decomposition for £. As K — & is
completely positive, the mapping v : i(c) — /(o) extends to an .A-B-linear contraction
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E—F. Indeed, for x =), ari(ok )by we find

{x, x> — {ox,vx) = Z by (K77 — Q7% (azas)b, =0,
K/

such that ||x||>||vx||. Of course, v extends further to a contraction E*— F®.
Since von Neumann modules are self-dual, v has an adjoint v*e%*(F, E®).
Since adjoints of bilinear mappings and compositions among them are
bilinear, too, it follows that also w=v*v 1is bilinear. Of course,

Ci(o),wai(a’)y = {i(o),v*vai(c’)y = {j(0),aj(c’)y = 277 (a). O

3.3.3. Theorem. Let S be a set, let A be a unital C*-algebra, let B be a von Neumann
algebra on a Hilbert space G, and let | be a kernel in Ks(A,B). Denote by (E,i) the
Kolmogorov decomposition of K. Then the mapping O : wi— L,, with

27 (a) = <i(0), wai(c') )

establishes an order isomorphism from the positive part of the unit ball in B*°'(E)
onto Dg.

Moreover, if (F,j ) is another pair such that 87 (a) = {j(c),aj(d")>, then O is still
a surjective order homomorphism. It is injective, if and only if (F,j) is (unitarily
equivalent to) the Kolmogorov decomposition of K.

Proof. Let us start with the more general (F,j ). Clearly, O is order preserving. As
EcF and #*(E°) = p#*(F*)p<=%*(F°) where p is the projection onto E°, Lemma
3.3.2 tells us that O is surjective. If p is non-trivial, then O is certainly not injective,
because £, = £;. Otherwise, it is injective, because the elements j(o) are strongly
total, hence, separate the elements of %*(F*). It remains to show that in the latter
case also the inverse O

2.19. O

is order preserving. But this follows from Lemma

3.3.4. Remark. By restriction to completely positive mappings (i.e. #S =1) we
obtain Paschke’s result [Pas73]. Passing to B= %(G) and doing the Stinespring
construction, we find Arveson’s result [Arv69].

3.4. Schur product and semigroups of kernels

Now we come to products, or better, compositions of kernels. The following
definition generalizes the Schur product of a matrix of mappings and a matrix as
discussed in Section 2.2.

3.4.1. Definition. Let R€/s(A, B) and let LeKg(B,C). Then the Schur product of
and K is the kernel L-Re/Cs(A,C), defined by setting (2:8)%7 (a) = 277 R (a).
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3.4.2. Theorem. L-K is completely positive definite, too.

Proof. If all algebras are unital, then this follows directly from Theorem 3.2.3.
Indeed, by the forward direction of Theorem 3.2.3 we have the Kolmogorov
decompositions (E,7) and (F,j ) for & and £, respectively. Like in Section 2.2 we find
7R (a) = <i(0) ©j(0),ai(c’) ©j(c’)> from which (2:8)*° is completely
positive definite by the backward direction of Theorem 3.2.3. If the algebras are
not necessarily unital, then (as in the proof of 2 = 4 in Lemma 3.2.1) we may apply
the same argument, replacing i(c) by i(u;,0, v,) (and similarly for j) and
approximating in this way LoK by completely positive definite kernels. [J

3.4.3. Observation. The proof shows that, like the GNS-construction of completely
positive mappings, the Kolmogorov decomposition of the composition 2K can be
obtained from those for & and L. More precisely, we obtain it as the two-sided
submodule of EQ@F generated by {i(6)®j(c):0eS} and the embedding
iQ): a—i(a)Qj(a).

3.4.4. Definition. A family (T,),.p, of kernels on S from B to Bis called a (uniformly

continuous) Schur semigroup of kernels, if for all ¢, ¢’ €S the mappings Z‘,’V"/ form a
(uniformly continuous) semigroup on B; see Definition C.1. A (uniformly continuous)
CPD-semigroup of kernels, is a (uniformly continuous) Schur semigroup of
completely positive definite kernels.

Like for CP-semigroups, the generators of (uniformly continuous) CPD-
semigroups can be characterized by a conditional positivity condition.

3.4.5. Definition. A kernel £ on S from B to B is called conditionally completely
positive definite, if

> b; 7 (aja;)b; =0 (3.4.1)
ij

for all choices of finitely many o,€ S, a;, b;€ B such that ) _,a;b; = 0.

3.4.6. Lemma. For a kernel £ on S from B to B the following conditions are
equivalent:

1. & is conditionally completely positive definite.
2. For all choices oy, ...,0,€S (neN) the mapping

20 (ay) = (277 (ay)

on M,(B) is conditionally completely positive, i.e. for all A%, B*e M, (B) such that
S, AXBF = 0 we have Zkﬁ/Bk*B(”) (4 A"YB' >0.
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Proof. By Lemma 2.1.9 an element (b;)eM,(B) is positive, if and only if
>_i;bibiib; =0 for all by, ..., b, € B. Therefore, Condition 2 is equivalent to

* L k* 00,0 ’
Z bibpiL ’ q( rp rq)b b/>o
ij.pq k.t

for all oy,...,0,€S, bi,...,b,eB (neN), and finitely many (af)eM,(A),
(b")eM (B) such that Zpkalp =0 for all i/ Assume that 1 is true,
choose b;eB, and choose a),,by;€B such that Y ,ak b5 =0 for all r,i. Then
>k, (32 bkbi) = 0 for all r and 1 implies that Y-, bibk: Q7% (al>al, )blb; =0
for each r separately. (Formally, we pass to indices (p, k) and set (, ) = g, as in the
proof of Lemma 3.2.1.) Summing over r we find 2.

Conversely, assume that 2 is true and choose a;,b;€ B such that )" .a;b; = 0. Set
ay, = 01,a, and by, = b,. Then Z arpbp;i = 51,2 apb, =0 for all r,i and 2 implies
that the matrix (3_, , 05,87 (a;,arg)by);; = (32, b, L7 7 (ayaq)by); ; is positive. As
any of the (equal) diagonal entries Zp’qb;x"" ‘T"(apaq)b must be positive in 5, we
find 1. O

3.4.7. Theorem. Let B be a unital C*-algebra and let S be a set. Then the formula
I, = (3.4.2)

(where the exponential is that for the Schur product of kernels) establishes a one-to-one
correspondence between uniformly continuous CPD-semigroups (Z,),E[R+ of positive
definite kernels & on S from B to B and hermitian (see Corollary 3.2.4) conditionally
completely positive definite kernels on S from B to B.

Proof. First of all, let us remark that (3.4.2) establishes a one-to-one correspondence
between uniformly continuous Schur semigroups and kernels £: S x S— %(B). This
follows simply by the same statement for the uniformly continuous semigroups If’”,
and their generators 277 So the only problem we have to deal with is positivity.

Let T by a CPD-semigroup. By Lemma 3.2.1(4) this is equivalent to complete
positivity of the semigroup KS’” on M, (B) for each choice of g1, ...,0,€S (neN). So
let us choose A*, B*e M, (B) such that >, 4*B* = 0. Then

e @(n) ( gkx 40\ B! — oo o ks gAOVB >
;BL(AA) }%IZB:{(AA)B 0.

In other words, 2% is conditionally completely positive and by Lemma 3.4.6(2) € is
conditionally completely positive definite. As limit of hermitian kernels, also £ must
be hermitian.
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Conversely, let £ be hermitian and conditionally completely positive definite, so

that €™ is hermitian conditionally completely positive for each choice of
a1, ...,0,€8 (neN). We follow Evans and Lewis [EL77, Theorem 14.2 (3 = 1)]

to show that i‘tﬁ") is positive, which by Lemma 3.2.1(5) implies that I, is completely
positive definite.

Let A>0 and B in M,(B) such that AB=0. Then also VAB =0, hence
B 2"(4)B >0, because 2" is conditionally completely positive. Let
0<e<||€"||™", hence id — ¢€" is invertible. Now let 4 = A* be an arbitrary self-
adjoint element in M, (B). We show that 4>0 whenever (id — e2")(4)>0, which

establishes the hermitian mapping (id — 853(”))_1 as positive. We write 4 = A, — 4_
where A.,A_ are unique positive eclements fulfilling 4,4 = 0. Therefore,

A2 (4,)A_>0. Indeed,
0< A_(id—e2M)(A)A_ = A_(id — Q") (A )A_ — A_(id — Q") (4_)A_
= —eA_CM(ANA_ — A 464 W (4)A4_,
hence
A <A 464 2M(4)A <ed L"(4)4 .

If A0, then ||| = |42 ||<|lsd_2" (4_)A_||<el| || || 4_|] <||l4_|, a
contradiction, hence 4_ = 0. We have ng = lim,,-, » (1 —#2(”))7”’ which is
positive as limit of compositions of positive mappings. [

By appropriate applications of Lemmata 3.2.1 and 3.4.6 to a kernel on a one-
element set S, we find the following well-known result.

3.4.8. Corollary. The formula T, = e'* establishes a one-to-one correspondence
between uniformly continuous CP-semigroups on B (i.e. semigroups of completely
positive mappings on B) and hermitian conditionally completely positive mappings
Le%B(B).

3.4.9. Observation. A CP-semigroup on a von Neumann algebra is normal, if and
only if its generator is g-weak. (This follows from the observation that norm limits
of o-weak mappings are g-weak.)

We find a simple consequence, by applying this argument to the CP-semigroups
T,

3.4.10. Corollary. A CPD-semigroup T on a von Neumann algebra is normal (i.e. each
mapping ‘lf’“/ is a-weak), if and only if its generator 2 is o-weak.
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3.4.11. Remark. It is easily possible to show first Corollary 3.4.8 as in [EL77], and

then apply it to EE”) = ¢ to show the statement for CPD-semigroups. Notice,
however, that also in [EL77] in order to show Corollary 3.4.8, it is necessary to know
at least parts of Lemma 3.2.1 in a special case.

We say a CPD-semigroup T dominates another T (denoted by T>T'), if T,>T
for all e T. The following lemma reduces the analysis of the order structure of
uniformly continuous CPD-semigroups to that of the order structure of their
generators.

3.4.12. Lemma. Let T and T’ be uniformly continuous CPD-semigroups on S in Ks(B)
with generators 2 and &', respectively. Then T=%', if and only if 2> ',

Proof. Since Ty = T, we have z,jz; =3t z::%—ﬂl — ¢ for t—0so that T>T'
certainly implies 2> '. Conversely, assume that 2> ¢'. Choose neN and g;eS
(i=1,...,n). From the proof of Theorem 3.4.7 we know that (1 —¢€")"' >0 and

(1 —e2™)~'>0 for all sufficiently small &>0. Moreover, by Theorem 3.4.2

(1— @)™ — (1 — @)™ = g(1 — @) (W — @) (1 — £ @)~ >0,

because all three factors are >0. This implies (1 — L)~ — (1 — éﬁ“"))_"’}O for

m
m sufficiently big. Letting m— oo, we find T > and further T>T' by Lemma
32.1(4). O

3.5. The CPD-semigroup of the time ordered Fock module and its generator

Let B be a unital C*-algebra, let { be an element in a pre-Hilbert 5—B-module F,
and let feB. Then

L(b) = {{bL) +bB+ b (3.5.1)

is obviously conditionally completely positive and hermitian so that 7, = ¢* is a
uniformly continuous CP-semigroup. We say the generator of T has Christensen—
Evans form (or is a CE-generator). Theorem C.4 by Christensen and Evans [CE79]
asserts that generators £ of normal CP-semigroups 7" on a von Neumann algebra B
always have the form (3.5.1) where F is some von Neumann B-5B-module.

In this section we study the CPD-semigroup associated with the time ordered Fock
module. From the form of its generator we conjecture the correct generalization of
the CE-form of a generator from CP-semigroups to CPD-semigroups, and we state
as Theorem 3.5.2 that the generators of normal uniformly continuous CPD-
semigroups always have that form. It is one of the main goals in the remainder of
these notes to proof Theorem 3.5.2, but we will not achieve this before Section 5.4.
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For us it will be extremely important that F' can be chosen in a minimal way, as it
follows from Lemma C.2 (and its Corollary C.3 which asserts that bounded
derivations with values in von Neumann modules are inner). Therefore, we consider
Lemma C.2 rather than Theorem C.4 (which is a corollary of Lemma C.2) as the
main result of [CE79]. The results in [CE79] are stated for (even non-unital) C*-
algebras B. However, the proof runs (more or less) by embedding B into the bidual
von Neumann algebra B**. Hence, the inner product on F takes values in B** and
also feB**. Only the combinations in (3.5.1) remain in B. As this causes unpleasant
complications in formulations of statements, usually, we restrict to the case of von
Neumann algebras.

Now we use the set %.(F) of continuous units for the time ordered Fock module
IL®(F) over a Hilbert B-B-module F to define its associated CPD-semigroup.
Theorem 2.3.11 tells us that %.(F) can be parametrized by the set B x F. (In Section
5.2 we will also sometimes use the natural vector space structure of B x F.)

Let

IF;{IC(F> :Span{bnél,x (ﬁna Cn)@ @blén (ﬂl?Cl)bO‘
ted;bo, ..y bu, Byy -y BB, ... (L EF Y.

Then I'%(F)QI"(F) = I'”,(F) by restriction of u, in Theorem 2.3.6. (Cf. also
Proposition 4.2.6.)

Let ¢©,¢© be two units. Obviously, also the mappings b+ (&,,b¢.> form a
semigroup on B (of course, in general not CP; cf. again Proposition 4.2.5). If &, &
are continuous, then so is the semigroup. Another way to say this is that the kernels

T, U(F) xUe (F) TP — (e(B,0), 08B, 1)

form a uniformly continuous CPD-semigroup T of kernels on #.(F) from B to B.
Similar to the proof of (2.3.5) (see [LS01]) one may show that the generator £ of T is
given by

QUBOB) by = (L bTY + b + Bb. (3.5.2)

By Theorem 3.4.7 2 is a conditionally completely positive definite kernel. Of course,
it is an easy exercise to check this directly.

Now it is clear how to define the analogue of the CE-generator for CPD-
semigroups on some set S. Let B be a unital C*-algebra, let {, (6 €S) be elements in a
pre-Hilbert B-B-module F, and let §,€B (c€S). Then the kernel £ on S defined, by
setting

Q7 (b) = ( Ly, bly > + Py + Bib (3.5.3)

is conditionally completely positive definite and hermitian. (The first summand is
completely positive definite. Each of the remaining summands is conditionally
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completely positive definite, but the sum cannot be arbitrary, because £ should be
hermitian.)

3.5.1. Definition. A generator £ of a uniformly continuous CPD-semigroup has
Christensen—Evans form (or is a CE-generator), if it can be written in the form (3.5.3).

3.5.2. Theorem. Let T be a normal uniformly continuous CPD-semigroup on S on a
von Neumann algebra B with generator L. Then there exist a von Neumann B-B-
module F with elements {,€F (c€S), and elements f,eB (6€S) such that & has the
Christensen—Evans form in (3.5.3). Moreover, the strongly closed submodule of F
generated by the elements b{, — (b (beB;a,d’' €S) is determined by L up to (two-
sided) isomorphism.

We prove this theorem (and semigroup versions of other theorems like Theorem
3.3.3) in Section 5 (after Theorem 5.4.1) with the help of product systems. A direct
generalization of the methods of [CE79] as explained in Appendix C fails, however.
This is mainly due to the following fact.

3.5.3. Observation. Although the von Neumann module F is determined uniquely by
the cyclicity condition in Theorem 3.5.2, the concrete choice neither of {, nor of f,
is unique. This makes it impossible to extend what the results from [CE79] assert

for each T (o1, ...,0,€8S) by an inductive limit over finite subsets of S to T.

We close with some totality results about the units in %(F). Theorem 2.3.9 tells us
that the tensor products

él,,(oaén)Q"'Qén(o,Cl) (354)

(t1 + -+ + 1, = t) form a total subset of II':(F). Therefore, the closed linear span of

such vectors contains also the units ¢ (f,¢). But, we can specify the approximation
much better.

3.5.4. Lemma. Let € (B, &), E9 (B, &) be two continuous units.

1. For all n,%'€]0,1], x + ' = 1 we have
n&%(fﬁ(ﬂ OB )C" =& (xp+ 7B vl + )

in the B-weak topology.
2. For all be B we have

Jim (1, (8,0)°" = lim (&4(8, 0" = & (B +6.0)

n— oo

in norm.
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3. For all v,/ €C, v+ % =1 we have

lim (x:(8,0) + %' &(B,0)°" = & +# 'l + )

n— oo

in norm.

Part 1 is a generalization from an observation in [Arv89]. Part 2 is trivial in the

case B = C. We used it first together with Part 1 in Skeide [Ske01b] for B = C2. Both
may be considered as a direct consequence of the Trotter product formula; see
[SkeOla] for a detailed argument. Part 3 is the straightforward generalization of an
observation by Liebscher [Lie03].

3.5.5. Theorem. Let S be a total subset of F containing 0. Then exponential vectors to
S-valued step functions are total in ' (F).

Proof. It is sufficient to show the statement for II'/(F) for some fixed z. By Lemma
3.5.4(3) the closure of the span of exponentials to S-valued step functions contains
the exponentials to step functions with values in the affine hull of S (i.e. all linear
combinations ) %;{; from S with >~ x; = 1). Since 0 S the affine hull coincides with
the span of S which is dense in F. Now the statement follows, because the units
depend continuously on their parameters and from totality of (3.5.4). O

We find the following result on the exponential vectors of I'(L*(R,)) (= I'(C)).
It was obtained first by Parthasarathy and Sunder [PS98] and later by [BhaO1]. The
proof in [SkeOOb] arises by restricting the methods in this section to the bare
essentials of the special case B = C and fits into half a page.

3.5.6. Corollary. Exponential vectors to indicator functions of finite unions of intervals
are total in IT(C) = I'(L*(R,)).

Proof. The set S = {0, 1} is total in C and contains 0. [

In accordance with Definition 4.2.7 we may say that the set ¢©(0,5) of units is
generating. Recall, however, that generating is a weaker property. Lemma 3.5.4(2)
asserts, for instance, that what a single unit &o (B, ) generates via expressions as in
(4.2.3), contains the units € (f + b, () for all be B, in particular, the unit £© (0, ().

3.5.7. Corollary. Let S be a total subset of F containing 0 and for each (€S choose
B:€B. Then the set {E©(B;,():(eS} is generating for T (F).

4. Tensor product systems of Hilbert modules

4.1. Definition and basic examples

4.1.1. Definition. Let T = R, or T = Ny, and let B be a unital C*-algebra. A tensor
product system of pre-Hilbert modules, or for short a product system, is a family
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E©® = (E,),.y of pre-Hilbert B-B-modules E, with a family of two-sided unitaries
ug: E;QE,—E, (s,teT), fulfilling the associativity condition

ur(s+t)(id®us[) = u(,.+s)[(u,‘s®id), (4.1.1)

where Ey = B and uy, up, are the identifications as in Definition 2.1.2. Once, the
choice of uy, is fixed, we always use the identification

ESQE[ == ES+[' (412)

We speak of tensor product systems of Hilbert modules E © and of von Neumann
modules EC° | if E;OE, = Ey,, and E;O°E, = E,,,, respectively.

A morphism of product systems E© and F© is a family w® = (w,),.; of mappings
w, € *Y(E,, F,), fulfilling

Wepr = Wy Owy (4.1.3)

and wy = idg. A morphism is unitary, contractive, etc., if w, is for every teT. An
isomorphism of product systems is a unitary morphism.

A product subsystem is a family E'® = (E}),.; of B-B-submodules E, of E; such
that E{O E, = E|_, by restriction of identification (4.1.2).

By the trivial product system we mean (B),.; where B is equipped with its trivial
B-B-module structure.

4.1.2. Observation. Notice that, in general, there need not exist a projection
endomorphism of E© onto a subsystem E'© of E®. If, however, each projection
p e B (E,) onto E; exists (hence, the p, are two-sided), then the p, form an
endomorphism. Conversely, any projection endomorphism p© determines a product
subsystem E| = p,E,. Therefore, in product systems of von Neumann modules there
is a one-to-one correspondence between subsystems and projection endomorphisms.

4.1.3. Example. Let F be a (pre-)Hilbert B—B-module. By Theorem 2.3.6 the time
ordered Fock modules IL'+(F) form a product system of pre-Hilbert modules. We call
ILO(F) = (IL(F)),ct the product system (of pre-Hilbert modules) associated with
the time ordered Fock module IL(F). We use similar notations for I'(F) and II*(F).
More generally, we speak of a time ordered product system E© (of Hilbert modules

E©, of von Neumann modules E©"), if E©, (E®, E®") is isomorphic to IL® (F) (to
M€ (F), to T°© (F)).

Let 2>0. Then [T%f](s) = Vf (is) (se[0,4]) defines a two-sided isomorphism
L2([0,1)) - L2([0,4)). Clearly, the family of second quantizations F(77)IIL/(F)
defines an isomorphism from IL®(F) to the time rescaled product system

Ty
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4.1.4. Example. Usually, our semigroup is T = R,. However, also the case T = N
has interesting applications in the theory of quantum Markov chains. We describe
this briefly. With each pre-Hilbert B-B-module E we can associate a discrete product
system (E O”)nGNO. Conversely, any discrete product system (E},) can be obtained
in that way from Ej.

neNj

4.2. Units and CPD-semigroups

4.2.1. Definition. A unit for a product system E© = (E,),_; is a family ¢© = (&), ¢
of elements &, € E, such that

é\‘@ét = é\dﬁt (421)

in identification (4.1.2) and &, = 1€ B = Ey. By %(E®) we denote the set of all units
for E©. A unit ¢© is wunital and contractive, if (&, &> =1 and (¢, &) <1,
respectively. A unit is central, if £,€ Cg(E,) for all teT.

4.2.2. Remark. A unit can be trivial, i.e. £, =0 for t>0. Of course, this will not
occur, as soon as we pose continuity conditions on the unit.

4.2.3. Observation. Obviously, a morphism w® sends units to units. For this the
requirement wy = idg is necessary. For a subset Sc#(E®) of units for E© we
denote by w© Sc#(F®) the subset of units for F©, consisting of the units wé® =

(wil)er (E7€S).

4.2.4. Example. Time ordered product systems have a central unital unit, namely,
the vacuum unit. However, there are even simple product systems without any
central unital unit.

Let B= #'(G) + C1<%(G) be the unitization of the compact operators on some
infinite-dimensional Hilbert space. Let i€ #(G) be a self-adjoint operator and define
the uniformly continuous unital automorphism group «; = ¢"ee~ on B. It is easy
to see that the Hilbert B—B-modules B, defined to coincide with B as right Hilbert
modules and with left multiplication b.x; = ,(h)x, form a product system B® via
the identification x; ®y; = a,(x;)y;. A central element &, € %, should fulfill

b-ét _ eithbefithét _ ‘ftb or be*t‘thét _ efithétb

for all he B. In other words, since the center of B is trivial, e ¢, is a multiple of the
identity so that & is a multiple of ™. If the &, are different from 0, then we may

normalize such that & = e™. It follows that h = —i %Lzo is an element of 5.

Conversely, if ¢ B, then B® does not admit a central unital unit. Of course, B® has
a unital unit, namely, &, = 1.
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4.2.5. Proposition. The family W= (,),_; of kernels W, on U(E®) from B to B,
defined by setting

U (b) = (&, b)Y

is a CPD-semigroup. More generally, the restriction WS to any subset S<U(E®) is
a CPD-semigroup.

Proof. Completely positive definiteness follows from the second half of Theorem
3.2.3. The semigroup property follows from

WSS (b) = (&, b > = (E,QELBEOEY = (&, (&, bE Y EY = W A5 ()
and (&,bé> =b. O

Observe that here and on similar occasions, where it is clear that the superscripts

refer to units, we prefer to write the shorter w4 instead of the more correct A<

In Section 4.3 we will see that any CPD-semigroup, i.e. in particular, any CP-
semigroup, can be recovered in this way from its GNS-system. In other words, any
CPD-semigroup is obtained from units of a product system. However, the converse
need not be true as there are even Arveson systems which are not generated by their
units (see [Tsi00]). Nevertheless, the units of a product system generate a product
subsystem, determined uniquely by . In the following proposition we explain this
even for subsets S (E®). Although both statements are fairly obvious, we give a
detailed proof of the first one, because it gives us immediately the idea of how to
construct the product system of a CPD-semigroup.

4.2.6. Proposition. Let E© be a product system and let ScU(E®). Then the spaces
ES =span{b,& O Obi&) by |neN, bieB,EOES, (ty,...,11)ed}  (42.2)

form a product subsystem ES© of E©, the (unique) subsystem generated by S.

Moreover, if E'C is another product system with a subset of units set-isomorphic to S
(and, therefore, identified with S) such that W' S = WS, then E'S© is isomorphic to
ES© (where the identification of the subset ScU(E®) and S (E'®) and extension
via (4.2.2) gives the isomorphism).

Proof. The restriction of uy to ES® ES in the identification (4.1.2) gives

Buim&r™" @ -+ O byt &0, O (ball © -+ O by &} by)

Tntm

- bn+m5”+m @ @bn+1€”+l @b;bné:’” @ @bléil bo,

Tntm Tntl

where (Fuim, ..., Fus1) €Jg and (ry, ..., r1) €J,. Therefore, uy(ES Q@ EScES . To see

surjectivity let v = (ry, ...,r1) €y, and b;eB (i =0, ..., k), fes (i=1,...,k). Ifx



S.D. Barreto et al. | Journal of Functional Analysis 212 (2004) 121-181 153

hits t, i.e. v = s — t for some seJ,, teJ,, then clearly
bl O Obi&) by (4.2.3)

is in uy, (ES © ES). If v does not hit ¢, then we may easily achieve this by splitting that

éf/ with Zf:llri<t<2f;lri into a tensor product of two; cf. Example 2.1.6. More

precisely, we write éf/ as (fff,z @é'r/,l such that ¥} +r5 =r, and 7| + Zlf;";ll r; =t. Also

here we find that (4.2.3) is in uy(ESQES). O

Like for Arveson systems, the question, whether a product system is generated by
its units or even some subset of units in the stated way, is crucial for the classification
of product systems. However, for Hilbert spaces the property of certain subset to be
total, does not depend on the topology, whereas for Hilbert modules we must
distinguish clearly between the several possibilities. Furthermore, we can opt to
consider only subsets of units distinguished by additional properties like continuity
(which, unlike for Arveson systems, again must be split into different topologies).

In our frame work it turns out that it is most convenient—convenient in the sense
that the obtained classification results parallel best those for Arveson systems—to
look at continuous sets of units. Here we call a single unit E9 continuous, if the CP-
semigroup Tf = (&, 8¢, is uniformly continuous. More generally, a set .S of units
is continuous, if the CPD-semigroup [ S is uniformly continuous.

4.2.7. Definition. A product system E®© = (E,),_y of pre-Hilbert modules is of zype I,
if it is generated by some continuous set Sc#(E®) of units, i.e. if E© = ESO . Itis
of type I and of type I¥, if E© is the closure of ES© in norm and in strong topology,
respectively. We say the set S is generating (in the respective topology).

We add subscripts s and #n, if S can be chosen such that [ S is strongly continuous
and normal, respectively. If we can find an arbitrary generating sets of units (without
continuity conditions), then we add the subscript a (for algebraic).

Obviously, type I implies type I; and each of them implies I, (and similarly for
types I and I®), whereas n is a local property of the CPD-semigroup which may or
may not hold independently (and which is automatic for von Neumann modules).
For each subscript type I implies type I implies type I°.

The GNS-system of a CP-semigroup constructed in [BS00] is generated by a single
unit. Whereas a product system of pre-Hilbert spaces generated by a single unit is the
trivial one. In Example 4.2.4 we have seen that the supply of central units depends on
the closure. The product system B considered there is clearly type I, but it does not
contain a central unit. Therefore, it is not a time ordered system. Passing to strong

. i . . . ok
closure, the central unit (e") rer, 18 NOW contained in B,

Similarly, the following example shows that the required continuity properties for
the generating set of units may affect the type.
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4.2.8. Example. We look again at a product system constructed like B° in Example
4.2.4 from an automorphism group on a C*-algebra B. Now for B we choose L* (R)
with the time shift endomorphism #. Clearly, the members B, (1>0) of that product
system do not contain non-zero centered elements. But, even worse, the time shift is
only strongly continuous. Therefore, a non-zero CP-semigroup composed of
mappings f— (&, fE > = (&, & > f cannot be continuous either. Consequently,
there is not a single continuous unit in B®. Nevertheless, the product system is
generated by the single strongly continuous unit (1),., and, therefore it is type L.

Restriction to L™ (R_) gives us a similar example starting from an Ey-semigroup.
We find our experience from [Ske01b] reconfirmed that, in particular, commutative
C*-algebras provide us with simple counter examples for what we know from the
extreme non-commutative case %4(G).

4.2.9. Example. Let F be a Hilbert B—B-module and consider the time ordered
product system I@(F) of Hilbert modules with the set % (F)=
{EO(B,0): BeB,{eF} of units. As argued in Section 3.5 U %.(F) is a uniformly
continuous CPD-semigroup. By Theorem 2.3.9 the exponential units ¢© (0,¢) ({ e F)
alone generate II' © (F). Therefore, I'® (F) is type I. Similarly, if B is a von Neumann
algebra and F is also a von Neumann B-module, then the product system I'*© (F) is
type I*. So far, it need not be type I;. Only if F is a two-sided von Neumann module,
then T°®(F) is a time ordered product system of von Neumann modules and,
therefore, type I;. We will use these notions interchangeably. If F is centered (i.e., F
is generated by its center in some topology) then the exponential units to elements
in the center of F are already generating for that topology. Theorem 2.3.11 and
Observation 2.3.14 tell us that for both T© (F) and T (F) the set S = #.(F) =
{£9(B,¢): peB} has no proper extension such that the CPD-semigroup associated
with this extension is still uniformly continuous. (U} %.(F) is maximal continuous.)

4.3. CPD-semigroups and product systems

In this section we construct for each CPD-semigroup ¥ on S a product system E©
with a generating set of units such that T is recovered as in Proposition 4.2.5 by
matrix elements with these units. The construction is a direct generalization from
CP-semigroups to CPD-semigroups of the construction in [BS00], and it contains the
case of CP-semigroups as the special case where S consists of one element.

The idea can be looked up from the proof of Proposition 4.2.6 together with
Example 2.1.6 and its generalization to completely positive definite kernels by the
methods in Section 2.2 and Observation 3.4.3. Indeed, the two-sided submodule of
E? in Proposition 4.2.6 generated by {&,(¢© €)1 is just the Kolmogorov module E,
of the kernel 2| SeKs(B). Splitting &, into &,_, O &, (for all ¢© €S), as done in that

proof, means to embed E, into the bigger space E,_,OE,. By definition we obtain all
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of ES | if we continue this procedure by splitting the interval [0, 7) into more and more
disjoint subintervals. In other words, E? is the inductive limit over tensor products
of an increasing number of Kolmogorov modules E,,. (¢; summing up to ¢)
of 2, [S.

For a general CPD-semigroup ¥ on some set S we proceed precisely in the same
way, with the only exception that now the spaces E¥ do not yet exist. We must
construct them. So let (Et, E,) denote the Kolmogorov decomposition for I,, where

5, o> ff is the canonical embedding. (Observe that E, = Band fg =1foralloeS.)
Let t = (¢, ...,t1) ed;. We define

Et :E,n@~~~®E,l and E() :Eo.
In particular, we have E(,) = E,. By obvious generalization of Example 2.1.6
& =8 008

defines an isometric two-sided homomorphism fy, E,—E.
Now suppose that t = (#,, ..., 1) =8, — -+ — 51 =8 = (S, ..., 51) With |s;| = ;.
By

B = ﬁs,,,(s,,,) ORSS Qﬁsl(ﬁ)

we define an isometric two-sided homomorphism f, : E, — E;. Obviously, f.f,. =
Pis for all t=r>s. See the appendix of [BS00] for details about inductive limits.
We obtain the following result.

4.3.1. Proposition. The family (Ei)ted], together with (B, ), < forms an inductive system
of pre-Hilbert B-B-modules. Hence, also the inductive limit E, = lim ind;, J]IEt is a pre-

Hilbert B—B-module and the canonical mappings iy : Ey— E; are isometric two-sided
homomorphisms.

In order to distinguish this inductive limit, where the involved isometries preserve
left multiplication, from a different one in Section 4.4, where this is not the case, we
refer to it as the two-sided inductive limit. This is a change of nomenclature compared
with [BSO0], where this limit was referred to as the first inductive limit.

Before we show that the E; form a product system, we observe that the elements

&7 survive the inductive limit.

4.3.2. Proposition. Let & = i, ff forall6eS. Then itf‘t’ = &7 for all ted,. Moreover,
(ELbE Y =377 (b). (4.3.1)

Proof. Let s,ted, and choose r, such that r>s and r>t. Then isfg = irﬁrsfg =

iy = il = ilY.
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Moreover,
CETBET S = i &9, biE Y = (i &9, iyhee > = (&9,bE7 Y =77 (b). O

4.3.3. Corollary. (&7)%i; = vf* for all ted,. Therefore, Ef*ﬁts = ég* for all s<t.

4.3.4. Remark. Clearly, Ey = Ey =B and &= fg =1 such that E, = EfQE, =
o © E; in the identification according to Definition 2.1.2.

4.3.5. Theorem. The family EC = (E,),.; (with E, as in Proposition 4.3.1) forms a
product system. Each of the families &°© = (£9),.¢ (with & as in Proposition 4.3.2)
forms a unit and the set U(S) = {E°© (ceS)} of units is generating for E©.

Proof. Let s,7e T and choose seJ; and teJ,. Then the proof that the E, form a
product system is almost done by observing that

E.QF =E._ (4.3.2)

From this, intuitively, the mapping uy : isxs @ iyt is—t(xs O p;) should define a
surjective isometry. Surjectivity is clear, because (as in the proof of Proposition 4.2.6)
elements of the form i,_{(x; ® y;) are total in E;,,. To see isometry we observe that
isxs = isfexs and iy = iy e for >t and $>s. Similarly, is_t(xsOyt) =
Iy _1(BssXs © Pyyt). Therefore, for checking the equation

Clsxs Oy, is’x;/ © it’y;’ > = set(Xs OWt), gy (xé/ QJ’L') h

we may assume that t' =t and ¢’ =s. Now isometry is clear, because both
Qi E;QFE—~E,QFE, and is_y: Es_ = E;® E{— E,,, are (two-sided) isometries.
The associativity condition follows directly from associativity of (4.3.2).

The fact that the ¢7 form a unit is obvious from Proposition 4.3.2 and Observation
3.4.3. The set %(S) of units is generating, because E, is generated by vectors of the

form i(b,&! © - Ob1E) bo) (bieB, & O eu(S)). O

4.3.6. Remark. We, actually, have shown, using identifications (4.1.2) and (4.3.2),
that i, O = is_+.

4.3.7. Definition. We refer to E© as the GNS-system of T. Proposition 4.2.6 tells us
that the pair (E©, %(S)) is determined up to isomorphism by the requirement that
(S) be a generating set of units fulfilling (4.3.1). We refer to E © as the GNS-system
of Hilbert modules. If B is a von Neumann algebra and T a normal CPD-semigroup,
then all £} are von Neumann modules. We refer to E©* as the GNS-system of
von Neumann modules.
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4.4. Unital units, Ey-semigroups and local cocycles

In this section we provide the necessary results to replace the continuity
of the units in Theorem 2.3.11 (which is a property relative to I['(F)) by an
intrinsic property of II'®(F). Without these results we cannot show
Lemma 5.3.1.

A unit vector ¢e€eFE gives rise to an isometric embedding
(Qid : F>EQF,y— @y with adjoint £* Oid : xOy+— (&, x>y. Hence, we may
utilize a unital unit ¢© for a product system E© to embed E into E, for t>s and,
finally, end up with a second inductive limit (in the nomenclature of [BS00]).
However, since the embeddings no longer preserve left multiplication, we do not
have a unique left multiplication on the inductive limit £ = limind,_, , E,. We,
therefore, refer to it as the one-sided inductive limit. The identification by (4.1.2) has
a counter part obtained by sending, formally, s to oo. The embedding of %°(E;)
into #*(Ej4,), formally, becomes an embedding #*(E«_ ») into #*(E«_ »), i.e. an
endomorphism of %*(E). This endomorphism depends, however, on ¢. The family
formed by all these endomorphisms turns out to be an Ep-semigroup.

Let t,seT with t>=s5. We define the isometry

Yis = $sOQd 1 E,—»E_(OE; = E;.
Let t>=r>s. Since ¢© is a unit, we have
Vs = ét—seid = ét—rQér—.YOid = YuVrs-

That leads to the following result.
4.4.1. Proposition. The family (E;), . together with (y,),, forms an inductive system
of right pre-Hilbert B-modules. Hence, also the inductive limit E = limind,_,  E; is a
right pre-Hilbert B-module. Moreover, the canonical mappings k,: E,—E are
isometries.

E contains a distinguished unit vector.
4.4.2. Proposition. Let & = ko&y. Then k&, = & for all te T. Moreover, (&, &Y = 1.

Proof. Precisely, as in Proposition 4.3.2. [

4.4.3. Theorem. For all teT we have
EQE;, =E, (4.4.1)

extending (4.1.2) in the natural way. Moreover,

EQ(E,QE) = (EQE,)OE, (4.4.2)
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Proof. The mapping u, : kyx; O y;+— ke (x;©y;) defines a surjective isometry. We
see that this is an isometry precisely as in the proof of Theorem 4.3.5. To see
surjectivity recall that any element in £ can be written as k,x, for suitable re T and
x, € E,. If r=1t then consider x, as an element of E,_, ® E, and apply the prescription
to see that k,x, is in the range of u,. If r<t¢, then apply the prescription to
o Oy,xre Eg O E;. Of course,

Uy (Id Qugr) = us(us ©id) (4.4.3)
which, after identifications (4.4.1) and (4.1.2), implies (4.4.2). [

4.44. Corollary. The family 9= (9;),.y of endomorphisms 9 :%*(E)—
B(EQE,) =#* (E) defined by setting

9(a) = aOidg, (4.4.4)
is a strict Ey-semigroup.

Proof. The semigroup property follows directly from EQE;, = EQ(E;QE,) =
(EQ®E;)®E,. Strictness of each 9, trivially follows from the observation that vectors
of the form xOx, (xeE,x,€E,) span E. O

4.4.5. Remark. Making use of identification (4.4.1), the proof of Theorem 4.4.3,
actually, shows that, k,®id = k. ,. Putting s = 0 and making use of Remark 4.3.4,
we find

k, = (ko ©id) (&, Oid) = EOid.

In particular, £ = EOE,.

4.4.6. Corollary. k; is an element of #*(E,, E). The adjoint mapping is
ki =& 0id :E=EQE—E,.

Therefore, kik, = idg, and ki is a projection onto the range of k.

4.4.7. Example. The one-sided inductive limit over the product system II'® (F) of
time ordered Fock modules for the vacuum unit @© is just I[(F) and 9 is the

restriction of the time shift group & on %#*(Il'(F)) to an Ej-semigroup on %*(IL(F)).

Let w© = (ws),o7 be an endomorphism of E©. Then, clearly, setting m, = id®Qw,
we define a local cocycle w = (w,), .y for 3 (local means that w, commutes with
9,(#*(E)), what is clear because 9,(#*(E)) commutes with %*°I(E,)=
idEQQa’bil(E,)CQa(E) and cocycle means that w,., = 3,(w;)w, = w,¥(w,) and
wy = 1). By Bhat and Skeide [BS00, Lemma 7.5] also the converse is true.
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4.4.8. Theorem. The formula w, =idQOw, establishes a one-to-one correspondence
between local cocycles w for & and endomorphisms w® of E©.

4.4.9. Observation. The Ej-semigroup 9, or better the space %4*(E) where it acts,
depends highly on the choice of a (unital) unit. (However, if two inductive limits
coincide for two unital units ¢©, & then the corresponding Ey-semigroups are
outer conjugate; see [Ske02].) On the contrary, the set of endomorphisms is an
intrinsic property of E© not depending on the choice of a unit. Therefore, we prefer
very much to study product systems by properties of their endomorphisms, instead

of cocycles with respect to a fixed Ej-semigroup.

4.4.10. Remark. We mention a small error in [BS00] where we did not specify the
value of a cocycle at t = 0, which is, of course, indispensable, if we want that cocycles
map units to units (cf. Observation 4.2.3).

Cocycles may be continuous or not. In Theorem 2.3.11 we have computed all units
for I'® (F) which are continuous in I'(F). In Example 4.4.7 we explained that I'(F)
is the one-sided inductive limit over II'® (F) for the vacuum unit. Now we investigate
how such continuity properties can be expressed intrinsically, without reference to
the inductive limit.

We say a unit € is continuous, if the associated CP-semigroup Tf(b) = {(&,bED
is uniformly continuous. More generally, a set S of units is continuous, if US is
uniformly continuous.

4.4.11. Lemma. Let £© be a unital continuous unit for EC | and denote by E the one-

sided inductive limit for £© . Let {© be another unit. Then the following conditions are
equivalent.

1. The function t+—EQO{, € E is continuous.

2. The semigroups W° and T¢ are uniformly continuous.
3. The functions t+— {{;, &> and t+— {{,,{,> are continuous.

Moreover, if (©,'© are two units both fulfilling one of the three conditions above, then

also the function t+— {{;,{} > is continuous, hence, also the semigroup U s uniformly
continuous.

Proof. The crucial step in the proof is the observation that the norm of mappings on
B of the form b+ {(x,by) (for x,y in some pre-Hilbert B-B-module) can be
estimated by ||x|| ||y||.

1 = 2: We have

§®Cl+8 - f@gr = é@@:@ét - f@éz:@Ct = é@(Cl - gz:)@@h (445)
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so that 1~ (O, is continuous, if and only if ||{, — &|| =0 for #—0. Thus, 1 implies
UG —id][ <[ = 7|l + |77 — id]| >0,

because the norm of 2 — T : b (¢, — &, bE, > is smaller than ||, — &[] ||| =0,
and

177 —idl|<[|77 = W[ + [ —id][ -0,

because the norm of 77 — U : b (&, b(¢, — &) is smaller than ||{,]] |, — & =0
and by the preceding estimate.
2 = 3 is trivial, so let us come to 3 = 1. We have

16 =GP <K &> = U+ 11K &> = U+ 1IKEGD> = LI+ 11 &> = 1]

which tends to 0 for —0, if 3 holds. Then (4.4.5) implies continuity of £(O{,.
Now let {©,’© be two units fulfilling 3. Then

1< G = HISIKG G = ED T+ IIKG = En &N+ 11KEL 60 — 1] -0

for -0 so that 1+ <{{,,{}> is continuous. As before, this implies that ue s
uniformly continuous. [

The following theorem is simple corollary of Theorem 4.3.5 and Lemma 4.4.11.
Taking into account also the extensions following Corollary 5.4.3 which assert that a
continuous unit is contained in a time ordered product systems of von Neumann
B*-B*-modules, and the fact that by Lemma 3.5.4(2) units in such product systems
may be normalized within that system, one may show that we can drop the
assumption in brackets.

4.4.12. Theorem. For a CPD-semigroup X on a set S containing an element o such that
I77 is uniformly continuous (and that IT7°(1) =1 for all teRy) the following
statements are equivalent:

1. T is uniformly continuous.
2. The functions tHfIf/””/(l) are continuous for all ¢”,6'€S.

3. The functions IHZ?’U/(I) and tHZf/’al(l) are continuous for all '€ S.

The main idea in the proof of Lemma 4.4.11 is that a certain (completely bounded)
mapping can be written as b+ {x,by) for some vectors in some GNS-space.
Theorem 4.4.12 is an intrinsic result about CPD-semigroups obtained, roughly
speaking, by rephrasing all statements from Lemma 4.4.11 involving units in terms
of the associated CPD-semigroup. It seems difficult to show Theorem 4.4.12 directly
without reference to the GNS-system of the CPD-semigroup.
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Another consequence of Lemma 4.4.11 concerns continuity properties of local
cocycles.

4.4.13. Corollary. Let E© be generated by a subset S=WU(E®) of units such that | S
is a uniformly continuous CPD-semigroup. Let E© €S be a unital unit, and denote by E
the one-sided inductive limit for £© . Then for a morphism w® and the associated local
cocycle w = (iIdOw,), .1 the following equivalent conditions

1. The CPD-semigroup U} (SUw®S) (see Observation 4.2.3) is uniformly continuous.
(In particular, if S is maximal continuous, then w© leaves S invariant.)

2. For some &©eS all functions t— (&0, t—<{,(> (Cew®S) are
continuous.

both imply that w is strongly continuous.

Proof. By simple applications of Lemma 4.4.11(1) and (2) are equivalent, and for the
remaining implication it is sufficient to choose ¢© = ¢©. So assume that all
functions ¢ {{,, (>, t— (&, 0> ((PeSuw®S) are continuous. Then

wile = Lll = [IEOwils = EOLISIICOWL, = Cl[ + IO = &| =0 (4.4.6)

for 1—0. Applying wy,, — w; =id® (w, — idg,) O w, to a vector of the form £QOx;
where x,e E; is as in (4.2.3), we conclude from (4.4.6) (choosing ¢>0 so small that
w, —idg, comes to act on a single unit only) that the function s—w (¢Qx;) is
continuous. Since the vectors O x; span E, w is strongly continuous. [

4.4.14. Observation. If w is bounded locally uniformly (for instance, if w©® is
contractive) or, equivalently, if the extension of w to E is also strongly continuous,
then also the reverse implication holds. (We see by the same routine arguments that

the inner product (&, w ;> = (EOELEOWL> = (& w((OL)) depends con-

tinuously on ¢ and, similarly, also <{w,{,, w;{,;>.)

4.4.15. Definition. A morphism w© is continuous, if SUw® S is continuous for some
generating continuous subset .S of units.

5. Type I product systems

In this chapter we show that type I® product systems of von Neumann modules are
time ordered Fock modules. This is the analogue of Arveson’s result that type I
Arveson systems are symmetric Fock spaces [Arv89].

In Section 5.1 we show that a product system is contained in a time ordered
product system, if it contains at least one (continuous) central unit. In Section 5.2 we
study the continuous endomorphisms of the time ordered Fock module. We find its
projection morphisms. In Section 5.3 and provide a necessary and sufficient criterion
for that a given set of (continuous) units is (strongly) generating. The basic idea (used
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by Bhat [BhaOl] for a comparable purpose) is that a product system of von
Neumann modules is generated by a set of units, if and only if there is precisely one
projection endomorphism (namely, the identity morphism), leaving the units of this
set invariant. In Section 5.4 we utilize the Christensen—Evans Lemma C.2 to show
that the GNS-system of a uniformly continuous CPD-semigroup has a central unit
and, therefore, is contained in a time ordered Fock module by Section 5.1. By
Section 5.3 these units generate a whole time ordered subsystem. We point out that
the result by Christensen and Evans is equivalent to show existence of a central unit
in any type I® system.

5.1. Central units in type 1 product systems

In this section we show that type I product systems are contained in time ordered
Fock modules, if at least one of the continuous units is central. So let ®© be a central
unit in an arbitrary product system and let ¢© be any other unit. Then

W(b) = (Enboyy = (&b =" (1)) (5-1.1)
and

WL (1) = W QE(1) = W (U5 (1),

s+t

In other words, U*“(1) is a semigroup in B and determines A” by (5.1.1). In
particular, U (1) is a semigroup in Cz(B). If »© is continuous, then all (1) are
invertible. Henceforth, we may assume without loss of generality that w© is unital,
i.e. T” =id is the trivial semigroup.

5.1.1. Lemma. Let »® be a central unital unit and let ¢© be another unit for a product
system E© such that the CPD-semigroup 0| {w®,E°Y} is uniformly continuous. Let
BeB denote the generator of the semigroup U><(1) in B, i.e. U<(1) = &', and let L*
denote the generator of the CP-semigroup T¢ on B. Then the mapping

b L5(b) —bp — f*b (5.1.2)
is completely positive, i.e. L is a CE-generator.

Proof. We consider the CP-semigroup U = (II£2>)I€R+ on M,(B) with u? =

(u;f).m 1[‘[“'5
1A | b

Q(2><b11 b12> _d
by by dt

) whose generator is

PO (byy)  UPS(bra) :( 0 blzﬁ)
o \ W (b)) U< (bo) Bba Lo(bn) )
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By Theorem 3.4.7 and Lemma 3.4.6 2@ g conditionally completely positive. Let
A; = (a ”) and B; = (0 ’b) Then 4;B; =0, i.e. ) ,A;B; =0, so that

aia;f
0< B2 (4r4)B = B ) B
Z EJ: ( B a; Eg(a?a_/)> ’

i 4
B Z (0 0 )
7 \0 bi(L(ata)) — araip — Bratay)b; )

This means that (5.1.2) is completely positive. [

Now we show how the generator of CPD-semigroups (i.e. many units) in product

systems with a central unit boils down to the generator £° of a CP-semigroup (i.e. a
single unit) as in Lemma 5.1.1. Once again in these notes, we exploit the ideas of
Section 2.2.

5.1.2. Theorem. Let E© be a product system with a subset S<U(E®) of units and a
central (unital) unit ®© such that W} SU{w®} is a uniformly continuous CPD-
semigroup. Then the generator L of the (uniformly continuous) CPD-semigroup T =
UT S is a CE-generator.

Proof. For ¢é© €S denote by B: € B the generator of the semigroup UY4(1) in B. We
claim as in Lemma 5.1.1 that the kernel £y on S defined by setting

85 (b) = €€ (b) — by — Bib

(for (£9,&©)eS x 8) is completely positive definite, what shows the theorem. By

Lemma 3.2.1(4) it is equivalent to show that the mapping Qf)m on M,(B) defined by
setting

(25" (B)); = €< (by) — byB.s — Buby

is completely positive for all choices of neN and &' ® eS (i=1,...,n).

First, observe that by Section 2.2 M,(E®) = (M,(E,)),.y is a product system of
M, (B)~M,(B)-modules. Clearly, the diagonal matrices =, € M, (E,) with entries &9,
form a unit £ for M,(E®). Moreover, the unit 2 with entries §;0® is central
and unital. For the units Q© and Z© the assumptions of Lemma 5.1.1 are fulfilled.
The generator ﬁ of the semigroup HQ’E(I) is the matrix with entries 6;f.. Now

(5.1.2) gives us back Q(()") which, therefore, is completely positive. [

5.1.3. Corollary. The GNS-system E© of T is embedable into a time ordered product
system. More precisely, let (F,() be the (completed) Kolmogorov decomposition for the
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kernel Ry with the canonical mapping { : £© L. Then
éO HéO(ﬁéa(q”)

extends as an isometric morphism E© -1 ® (F).

Notice that (in the notations of Theorem 5.1.2) the preceding morphism may be
extended to ES°© where S, = SU{w®}, by sending w® e#(E®) to w® e (F).

5.2. Morphisms of the time ordered Fock module

In the preceding section we found that, roughly speaking, type I product systems
with a central unit may be embedded into a time ordered Fock module. In the
following section we want to find criteria to decide, whether this Fock module is
generated by such a subsystem. To that goal, in this section we study the
endomorphisms of I'® (F).

After establishing the general form of (possibly unbounded, but adjointable)
continuous morphisms, we find very easily characterizations of isometric,
coisometric, unitary, positive, and projection morphisms. The generalizations of
ideas from Bhat’s “cocycle computations” in [BhaOl] are straightforward.
Contractivity requires slightly more work and, because we do not need it for our
main goal, we postpone it to Appendix A.

Besides (4.1.3), the crucial property of a morphism is to consist of adjointable
mappings. Adjointability, checked on some total subset of vectors, assures well-
definedness by Observation 2.1.1. If w® is a morphism (on an algebraic product
system) except that the w, are allowed to be unbounded, then we speak of a possibly
unbounded morphism. As product systems we consider the algebraic subsystems
%9 (F) = (T{“(F)), .. of the time ordered systems I'® (F) which are generated by

the sets %.(F) of continuous units.
Recall that a continuous morphism w® of time ordered Fock modules
corresponds to a transformation

éO(B’ C)H£®(’Y\V(ﬁ7 C)’nw(ﬂ7 C)) (5'2'1)

among sets of continuous units. We want to know which transformations of the
parameter space B x F of the continuous units define operators w, by extending
(5.2.1) to vectors of the form (4.2.3).

5.2.1. Theorem. Let F and F' be Hilbert B-B-modules. Then setting

Wtét(ﬁ7é):§t(y+ﬁ+<17aC>a17,+aC)7 (522)
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we establish a one-to-one correspondence between possibly unbounded continuous
morphisms w® = (w;), . from T%®(F) to T%®(F') and matrices

) Gl

y .
r= abil(BOF, BOF') = ,
( ) a)e.@ (BOF,B@F) <CB(F’) FO(F, F)

n

Moreover, the adjoint of w© is given by the adjoint matrix I'* = ( ’7’*>

noa )°
Proof. From bilinearity and adjointability of w; we have

<ét(ﬁ, C)v bét(yw* (ﬁlv C/)a Ny (ﬂ/v é’/)) > = < ét(’yw(ﬁ, C)v ’M(ﬁ» é/))v bét(ﬁ’a C/) > (523)

for all teRy, B, p eB, (eF, {'eF or, equivalently, by differentiating at t = 0 and
(3.5.2)

<Gy (B, L) > + by (B, 0) + b = (B, 0), 00> + BB +7,(B, )b (5.2.4)

It is easy to check that validity of (5.2.2) implies (5.2.4) and, henceforth, (5.2.3).
Therefore, (5.2.2) defines a unique adjointable bilinear operator w, from the
bimodule generated by all &,(f,() (feB,{eF) (i.e. the Kolmogorov decomposition
of W, [ %.(F)) into I'/“(F"). It is clear that (as in the proof of Proposition A.6) the 1
define an operator on I'(F), that this operator is the extension of (5.2.1) to vectors
of the form (4.2.3), and that the operators fulfill (4.1.3). We put wy = idg, and the
w, form a morphism.

It remains to show that (5.2.2) is also a necessary condition on the form of the

functions y,,: B x F—>Band n,,: B x F— F'. Putting { = 0,{ = 0 in (3.5.2), we find
by, (B,0) + Bb = b +7,,(8,0)"b. (5.2.5)

Putting also f =8 =0 and b =1, we find 7,.(0,0)" =7,,(0,0). We denote this
element of B by y. Reinserting arbitrary be 3, we find that ye Cz(B). Reinserting
arbitrary feB, we find y,,(8,0) = y + f and, similarly, y,.(f',0) = 7* + f’.

Putting in 5.2.4 { = 0, inserting y,,(8,0)" and subtracting 8*b, we obtain

bV\v*(ﬁ/aC/) = <nw(ﬁa0)7b£/> +bﬁ/ + '))*b = <11\1'(B70)7b€,> + byw* (ﬁlao)

(recall that y commutes with b), or
b?w* (ﬁ,a C/) - byw* (ﬁ,7 0) = <17w(ﬂ5 0); bc/ > . (526)

We obtain a lot of information. Firstly, the left-hand side and the right-hand side
cannot depend on ' and f, respectively. Therefore, 1,.(8,0) = 5,,(0,0) which we
denote by 1’ e F’. Secondly, we put b = 1 and multiply again with an arbitrary be B
from the left. Together with the original version of (5.2.6) we obtain that i’ € Cz(F").
Finally, with b = 1 we obtain y,,.(8,{') =y* + '+ (i, '>. A similar computation
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starting from (' =0, yields 5,.(8,0) =1,.(0,0) =5 for some neCs(F) and
B, O =y + B+ <0,

Inserting the concrete form of y,,.) into (5.2.4) and subtracting y*b + bf' + f*b =
by* + bp + B*b, we obtain

by (B, 0) + b, 0> = (B0, 60> + <Lonyb. (52.7)

Again, we conclude that n,,. (8, (') = 1,,(0,{') and n,,(8,{) = n,,(0, ) cannot depend
on ' and B, respectively. Putting b = 1, we find <{, 1,.(0,{') —n> = <{n,(0,{) —
n',{'>. It follows that the mapping a:{~n,(0,{) — ' has an adjoint, namely,
a :{'v+—n,.(0,{') —n. Since F and F’ are complete, a is an element of %*(F, F').
Inserting @ and &* in (5.2.7), and taking into account that # and #’ are central, we find
that ac #*°(F, F'), and n,,(,¢) = +al and n,. (8, ') = n + a*{ as desired. [

5.2.2. Corollary. A (possibly unbounded) continuous endomorphism w® of T%®(F) is
self-adjoint, if and only if I is self-adjoint.

Of course, the correspondence is not functorial in the sense that ww'© =
(WW}),cg, is not given by I'I". However, we easily check the following.

5.2.3. Corollary. Let w® be a morphism with matrix T'. Then

1 0 0 1 1 1 0 0
y Lo || B = (B | and the mapping w©—T=1| 7 1 n*
n" 0 a ¢ Lu(B,0) n" 0 a

is functorial in the sense that I = I'T" for w'© = ww'©.

5.2.4. Corollary. The continuous morphism w©® with the matrix I = (é, 'L) is

isometric, if and only if a is isometric, W' € Cg(F') arbitrary, n = —a*n', and y =
ih — % for some h = h*e Cg(B). It is coisometric, if and only if a is coisometric,
ne Cg(F) arbitrary,w = —an, andy = ih — <'7é'7>f0r some h = h* e Cg(B). It is unitary
(i.e. an isomorphism), if and only if a is unitary, ye Cg(F) arbitrary, n' = —an, and

y =ih— <'7é”> for some h=h*eCg(B) or, equivalently, if a is unitary, n' € Cg(F")

arbitrary, n = —a*n', and y = ih — %for some h = h*e Cp(B).

The form of these conditions reminds us very much of the form of the
corresponding conditions for solutions of quantum stochastic differential equations;
see e.g. [Ske00c].

After the characterizations of isomorphisms we come to projections. Of course, a
projection endomorphism must be self-adjoint and so must be its matrix.
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5.2.5. Corollary. A continuous endomorphism w® of T%®(F) is a projection
morphism, if and only if its matrix I’ has the form

r— (—<17,17> n*>’
n P

where p is a projection in *P\(F), and ne (1 — p)Cg(F).

Since a continuous morphism of a product system I'® (F) or T*® (F) (or between
such) sends continuous units to continuous units, it restricts to a morphism of
IT%®(F) (or between such). Therefore, all characterizations extend to the case of
Hilbert modules and the case of von Neumann modules.

5.3. Strongly generating sets of units

Now we characterize strongly generating sets of continuous units for time ordered
product systems of von Neumann modules. The idea is that, if a set of units is not
strongly generating, then by Observation 4.1.2 there exists a non-trivial projection
morphism onto the subsystem generated by these units. In order to apply our
methods we need to know that this morphism is continuous.

5.3.1. Lemma. Let p© be a projection morphism leaving invariant (i.e. pE© = E© for
all £© €8) a non-empty subset S<Uc(F) of continuous units for T© (F). Then p® is
continuous.

Proof. By Lemma 3.5.4(2), the completion (therefore, a fortiori the strong closure) of
what a single continuous unit ¢©(B,{)eS generates in a time ordered system
contains the unital unit ¢© (- <§2—‘>, {). Therefore, we may assume that S contains a
unital unit €. Now let &© be an arbitrary continuous unit. Then the function
1> &Ly = pi, &y = (&, &> is continuous. Moreover, we have

<Pt§ylmpt§;> —<&LED) = <§/, - 517Ptf;> + <ézapt(€tlt - fr>>_’0

for t—0. From this it follows as, for instance, in (4.4.5) that also the function
te {p&, p,E) Y is continuous. By Lemma 4.4.11 also the unit p&’© is continuous. As
&'© was arbitrary, p© is continuous. [

5.3.2. Theorem. Let F be a von Neumann B-B-module and let ScU.(F) be a

continuous subset of units for I (F). Then S is strongly generating, if and only if the
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B-B-submodule
n n
F(): Za,[,»bi|neN;C,-eSF;a,~,b,~eB: Zaib[:O (531)
i=1 i=1

of F is strongly dense in F, where Sp = {(eF |3feB: EO(B, 0)eS}.

Proof. Denote by II°© the strong closure of the product subsystem of I*© (F)
generated by the units in S. We define another B-B-submodule

i=1

FO = {Z a;(;bi | ne N;CiGSF;aiabieB}

of F. We have F5F0 5F,’. Denote by po and p° in #*®1(F) the projections onto
Fy' and ﬁs, respectively. (Since F, and F% are von Neumann modules, the
projections exist, and since F, and FO are B-B-submodules, the projections are
bilinear.) We have to distinguish three cases.

(1) F#F% . In this case p°#1 and the matrix (8 12)) defines a non-trivial projection

morphism leaving % invariant.
(i) F = ﬁs;é?os. Set ¢ = 1 — py. We may rewrite an arbitrary element of F° as

Z a;(;b; = Z (ail; — Ciai)bi + Z (Ciai — Cai)b; + ¢ Z aib;,
i1 p

i=1 i=1

where (e SF is arbitrary. We find ¢>_\_ a;(;b; = (" a;b;. Putting a; = b; = 15,
we see that the element 1 = ¢{ cannot depend on (. Varying a; = b for {; = {, we see

that by = nb, i.e. ne Cg(F). Finally, pg#1 and 0. Hence, the matrix (*<Z=’7> ZO)

defines a non-trivial projection morphism leaving ' invariant.

(i) F = FO = Fy'. Consider the projection morphism with matrix (_<Z"’7> ’L)

and suppose that it leaves I'°® invariant. Then { = n + p{ for all {eSp. Since 5 is in
the center, an element in F written as in (5.3.1) does not change, if we replace {; with

pC:. Tt follows pF = pFy," = F,” = F, whence p = 1 and # = (1 — p )y = 0. Therefore,
the only (continuous) projection morphism leaving I°® invariant is the identity
morphism. [

5.3.3. Corollary. A single unit £©(B,() is generating for L€ (F), if and only if

F = span*{(b{ — (b)b' : b, b € B}.

5.3.4. Remark. In the case where B = #(G) for some separable Hilbert space G
we have F =% (G,G®H) where H=id®H = Cp(F) is the center of F and
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(=>,b.®e, for some ONB (e,),., (N a subset of N) and b;eB such that
>,bib, < 0. The condition stated in [Bha01], which, therefore, should be equivalent
to our cyclicity condition in Corollary 5.3.3, asserts that the set {1, b1, b,, ...} should
be linearly independent in a certain sense (stronger than usual linear independence).

5.3.5. Observation. We see explicitly that the property of the set S to be generating
or not is totally independent of the parameters f3; of the units ¢©(B,,(;) in S. Of
course, we new this before from the proof of Lemma 5.3.1.

5.3.6. Remark. We may rephrase Step (ii) as FO = Foy @¢B for some central
projection in ¢ € B such that g/ is the strongly closed ideal in 15 generated by <{#,1).
By the same argument as in Step (iii) we obtain the most important consequence.

5.3.7. Corollary. The mapping

I ()

(which is isometric by (2.3.5)) extends as an isomorphism from the subsystem of
IT5© (F) generated by S onto °© (Fy)). In other words, each strongly closed product
subsystem of the time ordered product system 1°C(F) of von Neumann modules

generated by a subset S<U(F) of continuous units, is isomorphic to a time ordered
product system of von Neumann modules over a von Neumann submodule of F.

5.3.8. Remark. If 7y’ #F0 , then, clearly, the subsystem isomorphic to T (Fy)
does not coincide with the subsystem ™© (Fos) It does not even contain the vacuum
unit of I*C (F).

5.3.9. Remark. If S contains a unit £© (f,, (o) with {, = 0 (in other words, as for the
condition in Theorem 5.3.2 we may forget about f,, if S contains the vacuum unit
0® = £9(0,0)), then Fy = F°. (Any value of >-i,aib; may be compensated in
> oaib; by a suitable choice of ag, by, because aylyby does not contribute to the sum
Z';:Oai(ibi.) We obtain a strong version of Theorem 3.5.5.

5.4. Type I, product systems

5.4.1. Theorem. Let T = (1), ., be a normal uniformly continuous CP-semigroup on

a von Neumann algebra B. Let F, (e F, and € B be as in Theorem C.4 (by [CET79)), i.e.
F is a von Neumann B-B-module such that F =span*{(b{ — (b)b':b,b'eB} and

TP = T. Then the strong closure of the GNS-system of T is (up to isomorphism)

IT*C (F) and the generating unit is ¢© (B,{). Here F and € (B, () are determined up to
unitary isomorphism.
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Proof. This is a direct consequence of Theorem C.4 and Corollary 5.3.3 of
Theorem 5.3.2. [

Proof of Theorem 3.5.2. By Theorem 5.4.1 the subsystem of the GNS-system
generated by a single unit in S has a central (continuous) unit. By Theorem 5.1.2 the
generator of T is a CE-generator. The uniqueness statement follows as in Corollary

5.3.7 from the construction of the module ,". O

5.4.2. Theorem. Type I} product systems are time ordered product systems of von
Neumann modules.

Proof. By Theorem 3.5.2 (and Corollary 5.1.3) a type I}, product system is contained
in a time ordered product system. By Corollary 5.3.7 it is all of a time ordered
product system. [

5.4.3. Corollary. The (strong closure of the) GNS-system of a uniformly continuous
normal CPD-semigroup is a time ordered product system of von Neumann modules.

Extensions. Section 5.1 works for Hilbert modules F (even for pre-Hilbert
modules, but honestly speaking, it is not reasonable to do so, because the
construction of sufficiently many units in a time ordered Fock modules involves
norm limits). Also the analysis of continuous morphisms in Section 5.2 works for
Hilbert modules. In the proof of Theorem 5.3.2 we need projections onto
submodules in two different places. Firstly, we need the projections onto the

submodules F,” and F9 of F. Secondly, if S is not strongly generating, then
there should exists projections onto the members of the subsystem strongly
generated by S.

For both it is sufficient that F is a right von Neumann module (the left action of 5

need not be normal). Then the projections onto fos and ﬁs, clearly, exist. But, also
for the second condition we simply may pass to the strong closure of the members of
the product systems. (For this it is sufficient that 55 is a von Neumann algebra. Left
multiplication by b€ 5 is strongly continuous as operation on the module. It just may
happen that left multiplication is not strongly continuous as mapping b+ bx.) This
even shows that IT®(F) and II’©(F) have the same continuous morphisms (in
particular, projection morphisms), as soon as F is a right von Neumann module (of
course, still a Hilbert B—B-module), because any continuous morphism leaves
invariant the continuous units and whatever is generated by them in whatever
topology.

As Lemma C.2 does not need normality, Theorem 5.4.1 remains true for
uniformly continuous CP-semigroups (still on a von Neumann algebra). We find
Theorem 3.5.2 for uniformly continuous CPD-semigroups. Consequently, Theorem
5.4.2 remains true for type I* product systems of (right) von Neumann modules and
Corollary 5.4.3 remains true for uniformly continuous CPD-semigroups on von
Neumann algebras.
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Finally, all results can be extended in the usual way to the case when 5 is a (unital)
C*-algebra, by passing to the bidual B**. We obtain then the weaker statements that
the type I product systems and GNS-systems of uniformly continuous CPD-
semigroups are strongly dense subsystems of product systems of von Neumann
modules associated with time ordered Fock modules. Like in the case of the CE-
generator, we can no longer guarantee that the inner products of the canonical units
¢9 and the B: are in B. Example 4.2.4 shows clearly (maybe, more clearly than
existing examples) that we cannot discuss this away: There are product systems of
uniformly continuous CP-semigroups (even automorphism groups) on a unital C*-
algebra whose generator cannot be written in CE-form.

Resumé. Notice that Theorem 5.4.1 is the first and the only time where we use the
results by Christensen and Evans [CE79] quoted in Appendix C (in particular,
Lemma C.2). In Sections 5.1 and 5.2 we reduced the proof of Theorem 5.4.2 to the
problem to show existence of a central unit among the (continuous) units of a type I,
product system. In fact, Lemma 5.1.1 together with Corollary 5.3.7 shows that
existence of a central unit is equivalent to Lemma C.2. With our methods we are also
able to conclude back from the form (3.5.1) of a generator to Lemma C.2, a result
which seems not to be accessible by the methods in [CE79]. We summarize:

5.4.4. Theorem. The following statements are equivalent:

1. Bounded derivations with values in a von Neumann module are inner.

2. The generator of a normal uniformly continuous CP-semigroup on a von Neumann
algebra has CE-form.

3. The GNS-system of a normal uniformly continuous CP-semigroup on a von
Neumann algebra has a central unital unit.

If we are able to show existence of a central unit directly, then we will provide a
new proof of the results by Christensen and Evans [CE79]. We do not yet have
concrete results into that direction. But, we expect that a proof, if possible, should
reduce the problem to the application of one deep theorem (like the Krein—Milman
theorem or an existence theorem for solutions of quantum stochastic differential
equations) and rather algebraic computations in product systems. Also the order
structure of CPD-semigroups, which we discuss in Appendix A, could play an
essential role.

We remark that the methods from Section 5.1 should work to some extent also for
unbounded generators. More precisely, if E© is a product system with a central
unital unit @ such that the semigroups U<“ in B have a reasonable generator (not
in B, but for instance, a closed operator on G, when B< %(G)), then this should be
sufficient to split of a (possibly unbounded) completely positive part from the
generator. It is far from being clear what a ““GNS-construction” for such unbounded
completely positive mappings could look like (see, for instance, the example from
[LSO1] mentioned in Remark 2.3.15). Nevertheless, the splitting of the generator
alone, so far a postulated property in literature, would constitute a considerable
improvement.
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6. Outlook

In these notes we defined type I product systems and we clarified the structure of
type I systems of von Neumann modules as being (up to isomorphism) time ordered
systems. For type I systems of Hilbert modules we know at least that they are
(strongly dense) subsystems of time ordered systems of von Neumann modules.
Example 4.2.4 tells us that this may not be improved without additional
assumptions.

In [SkeOlc] the category of spatial product systems of Hilbert modules is defined as
those which admit a central unital unit. It is shown that a spatial type I system of
Hilbert modules (a so-called completely spatial system) is isomorphic to a time
ordered system II'®(F) for a two-sided Hilbert module F (unique up to
isomorphism). Moreover, a spatial product system contains a unique maximal
completely spatial subsystem. The index of a spatial system is defined as the two-
sided module F of its maximal completely spatial subsystem and a product of spatial
product systems is provided, under which the index is additive (direct sum).

So far, we have a theory of type I, systems and of spatial type I systems which
parallels completely that of Arveson. A uniform definition of type I was possible,
because the properties of a type I system do not depend on our choice of the
generating set of continuous units. (A simple multiplication by a non-measurable
phase function shows that incompatible choices are possible.) For more general
product systems, those not of type I, it is no longer possible to express continuity
requirements just in terms of units. Presently, we are working on a definition of
continuous types IT and III systems; see [Ske03]. For type II systems, where we fix a
unital reference unit, our definition will be compatible with that notion of a
continuous section which comes from the embedding of all E, into the same
inductive limit £; see Section 4.4. Example 4.2.8 provides us with a type III system.

We see in the case of spatial systems that we have to distinguish between two
different types of units, such which are just continuous and central ones. Only in the
case of von Neumann modules the difference between spatial and non-type III
disappears. We mention also a construction from Liebscher [Lie03] who constructs
from every Arveson system a type II Arveson system (with index {0}). This
construction promises to work also for Hilbert modules and von Neumann modules.
Presently, we apply it starting from both time ordered systems and our type III
example.

With any Arveson system there is an associated spectral C*-algebra. Zacharias
[Zac00a,Zac00b] computed their K-theory and showed their pure infiniteness in the
non-type III case. Also here it is likely that the same methods work for spatial
product systems of Hilbert modules.

Appendix A. Morphisms and order

The goal of this appendix is to establish the analogue of Theorem 3.3.3 for the
(strong closure of the) GNS-system of a (normal) CPD-semigroup T in Kg(B) for
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some von Neumann algebra B. It is a straightforward generalization of the result for
CP-semigroups obtained in [BS00] and asserts that the set of CPD-semigroups
dominated by T is order isomorphic to the set of positive contractive morphisms of
its GNS-system. Then we investigate this order structure for the time ordered Fock
module with the methods from Section 5.2.

A.1. Definition. Let T be a CPD-semigroup in Kg(B). By Dz we denote the set of
CPD-semigroups S in Kg(B) dominated by T, i.e. S,€Dg, for all te T, which we
indicate by T>&. If we restrict to normal CPD-semigroups, then we write KC(B)
and D7, respectively.

Obviously, > defines partial order among the CPD-semigroups.

A.2. Proposition. Let T>S be two CPD-semigroups in Ks(B). Then there exists a
unique contractive morphism v© = (v;),.y from the GNS-system E© of T to the GNS-
system F© of &, fulfilling v, = (7 for all g€ S.

Moreover, if all v, have an adjoint, then w® = (0fv;),c7 is the unique positive,
contractive endomorphism of E© fulfilling @f’”/(b) = <C;’,w,b§fl> for all 6,6’ €S,
teT and beB.

Proof. This is a combination of the construction in the proof of Lemma 3.3.2 (which
asserts that there is a family of contractions o, from the Kolmogorov decomposition
E, of T, to the Kolmogorov decomposition F, of &,) and arguments like in Section
4.3. More precisely, denoting by ﬂi, if and [fg ,iZ the mediating mappings and the
canonical embeddings for the two-sided inductive limits for the CPD-semigroups ¥
and S, respectively, we have to show that the mappings itsﬁtEvtaF,, where v =
U, O OQv, (ted,), define a mapping v,: E,—F, (obviously, contractive and
bilinear). From

GO = sy (A.1)

we conclude ﬁiv’s = v’tﬁi. Applying its to both sides the statement follows. Again
from (A.1) (and Remark 4.3.6) we find that v;Ov; = vy,. Clearly, v© is unique,
because we know the values on a generating set of units. The statements about w®
are now obvious. [

A.3. Theorem. Let EQ" = (Ep),c1 be a product system of von Neumann B—B-modules
E,, and let Sc%(Eés) be a subset of units for EC". Then the mapping O : w® — S,
defined by setting

(&59),(b) = <& wibE)>

for all teT, £,&' €S, beB, establishes an order morphism from the set of contractive,
positive morphisms of E©" (equipped with pointwise order) onto the set D% of normal
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CPD-semigroups S dominated by T = W[ S. It is an order isomorphism, if and only if
ESO" = EO.

Proof. If ESO£E®’ then O is not one-to-one, because the identity morphism
w, = idg, and the morphism p© = (p,),.; of projections p, onto E_fs are different
morphisms giving the same CPD-semigroup &,, = &,. On the other hand, any
morphism w® for ES©" extends to a morphism composed of mappings w,p, of E©*
giving the same Schur semigroup &,. Therefore, we are done, if we show the

statement for ES©" = EO°,
So let us assume that S is generating. Then O is one-to-one. It is also order
preserving, because w© >w'© implies

(S5),(b) = (S5°),(b) = (&, (wi — W))BE)Y

= {\we = wE by we — wiEy (A.2)

so that (&,,),=(S,), in Ks(B). By obvious extension of Proposition A.6 to von
Neumann modules, which guarantees existence of vy, we see that O is onto. Now let
I>ES>¢E with morphisms w® = O (&) and w® = O (&) and construct
v e BPYELE), v,e BPNE,F), and u,e B*°(F,F"), for the pairs T>C,
I>C', and S> &, respectively, as in Proposition A.6 and extension to the strong
closures. Then by uniqueness we have v, =uwv,. It follows w, —w, =v;(1—
ufu;)v, =0. This shows that also o respects the order and, therefore, is an order
isomorphism. (Observe that for the last conclusion (A.2) is not sufficient, because the
vectors hé,b' (€ eS;b,b' eB) do not span E;.) [

Observe that this result remains true, if we require that the morphisms respect
some subset of units like, for instance, the continuous units in the time ordered Fock
module. We investigate now the order structure of the set of (possibly unbounded)
positive continuous morphisms on [I'%®(F). We will see that it is mirrored by the
positivity structure of the corresponding matrices I'e g#*P1(B@® F) where F is an
arbitrary Hilbert B—-B-module. Recalling that by Lemma 2.1.9 positive contractions
are dominated by 1, we find a simple criterion for contractive positive morphisms as
those whose matrix I' is dominated (in g*%!(F)) by the matrix I' = ({ {) of the
identity morphism.

A.4. Lemma. A (possibly unbounded) continuous endomorphism w® of TT%®(F)

. . [y . ') . . . . .. .
with the matrix I = (ﬂ a) is positive, if and only if it is self-adjoint and a is

positive.
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Proof. w® is certainly positive, if it is possible to write it as a square of a self-adjoint

1 0 0
morphism with matrix A = | & 1 »* | say (J and ¢ self-adjoint). In other words,
v 0 ¢
we must have
1 0 0 1 0 0 1 0 0 1 0 0
Lot f=10 1 o1 =120+ 0> 1 1+ ()
n 0 a v 0 ¢ x 0 ¢ 1+ 0 c?

This equation can easily be resolved, if a>0. We put ¢=+/a. Since ¢=0
we have 14 ¢>1 so that 14 ¢ is invertible. We put y = (1+¢) 'y. Finally,
we set 0 = # (= 6%). Then A determines a self-adjoint endomorphism whose
square is w©.

On the other hand, if w® is positive, then I is self-adjoint and the generator £,, of
the CPD-semigroup &,, is conditionally completely positive definite. For &,, we find
(rewritten conveniently)

ePIF N ) = < bal’y +b(<n >+ B+ 1)+ (<> + B+ )b,

For each (e F we choose fe B such that {{,#) 4 " +4 = 0. Then it follows as in

Remark 5.3.9 ({ = 0eF) that the kernel b+ {{,bal’» on F is not only conditionally
completely positive definite, but completely positive definite. This implies that
a=0. O

A.5. Remark. By applying the lemma to the endomorphism with matrix 4, we see
that it is positive, too.

A.6. Lemma. For two self-adjoint possibly unbounded morphisms w© and v® with
matrices I’ = (V '7*) and A = (? /(>7 respectively, we have w© =v®, if and only if

n oa

I'>Ain b (BOF).

Proof. By Theorem A.3 and Lemma 3.4.12 we have w© >0v©, if and only if ,,>&,,
if and only if £,,> £,. By Eqgs. (5.2.2) and (5.2.4) we see that in the last infinitesimal
form &, — &,, only the difference I' — A4 enters. Furthermore, evaluating the
difference of these kernels at concrete elements ¢© (8,¢), E€ (f, (), the §, ' do not
contribute. Therefore, it is sufficient to show the statement in the case when 4 = 0,
ie. w© dominates (or not) the morphism v® which just projects onto the
vacuum, and to check completely positive definiteness only against exponential
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units. We find

Y b (2 = 2) %0 @b
W

= Y bi(Klhaiqalyy + Lnaiam) + a;ai{n, ;> + ajap)b;
ij

= Z Cailibi, aai{;b; > + {ai(ibi,n )y aib; + (aibi)" {n,a;{ib; > + (aib;) ya;b;
iy

= Z,I'Z,

where Z = ", (a;ib;, a;{;b;) e B@ F. Elements of the form Z do, in general, not range
over all of B&® F. However, to check positivity of I' with ({,)e B&®F we choose
L=2,6=0,a =a =1, and b, :%, by = B. Then Z— (p,{) for A— oo. This
means that £, — £,>0, if and only if '(=T — 4)>0. O

A.7. Corollary. The set of contractive positive continuous morphisms of I'® (F) is
order isomorphic to the set of those self-adjoint matrices I' e B (B®F) with a=0
and I' < (g (1])

It is possible to characterize these matrices further. We do not need this
characterization.

Appendix B. CPD-semigroups in Kg(B) versus CP-semigroups on Z#(Hs)®°B

In the proof of Theorem 5.1.2 we utilized the possibility to pass from a product
system E© of B-B-modules to a product system M, (E®) of M, (B)-M,(B)-modules.
Given a family &© (i = 1, ..., n) of units for E® we defined the diagonal unit Z© for
M, (E®) with diagonal entries &'©.

We remark that Z© is generating for M,(E®), if and only if the set S =
{E'©, ., &0V is generating for E©. In this case T%(B) = (&, BE,) is a CP-
semigroup on M, (B) whose GNS-system is M, (E®). Moreover, T= is uniformly
continuous, if and only if the CPD-semigroup U(E® )| S is (and the same holds for
normality, if B is a von Neumann algebra). We may apply Theorem 5.4.1 to T and
obtain that the GNS-system of M,(B)-M,(B)-modules is isomorphic to a time
ordered product system. Taking into account that as explained in Section 2.2 a
product system of M, (B)—M,(B)-modules is always of the form M, (E;) where the E;
form a product system, we obtain that the two descriptions are interchangeable.
Specifying that, on the one hand, we look at product systems generated by not more
than » units and, on the other hand, that we look only at CP-semigroups on M, (5)
and units for M,(E®) which are diagonal, we obtain that the analogy is complete.

This way to encode the information of a CPD-semigroup into a single CP-
semigroup is taken from Accardi and Kozyrev [AK99] which was also our
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motivation to study completely positive definite kernels and Schur semigroups of
such. In [AK99] the authors considered only the case of the product system of
symmetric (i.e. time ordered) Fock modules (see [Ske98]) I'©(L*(R.,%(G)))
~T° (%(G)), where two central exponential units, namely, the vacuum plus any
other, are generating. They were lead to look at CP-semigroups on M,(%(G)).
(Notice that in our case we have even interesting results with a single generating
unit.) What we explained so far is the generalization to n generating units (in the case
of B =% (G) already known to the authors of [AK99)).

Now we want to extend the idea to generating sets S containing an arbitrary
number of units. It is good to keep the intuitive idea of matrices, now of infinite, even
possibly uncountable, dimension. Technically, it is better to change the picture from
matrices M, (E) to exterior tensor products M, ® E as explained in Section 2.2. Now
the diagonal unit 5© should have infinitely many entries. For that we must be able
to control the norm of each entry. Some sort of continuity should be sufficient, but
as we want to control also the norm of the generator, we restrict to the uniformly
continuous case.

Let S be a set of continuous units for I’ (F) and denote by Hy the Hilbert space
with ONB (e;):0 .. We have

(R, % (Hs) ®°F) = L(R,) " (%(Hs) &°F)

= #(Hs)®*(L*(Ry)®°F) =% (Hs) ®°L* (R, F),

where %(Hs)®°F and, henceforth, L*(R,,%(Hs)®°F) is a von Neumann
B(Hs) ®°B-%(Hs) ®*B-module see Section 2.2. Consequently, we find

B(H) QTC (F) =I°° (#(Hs)&®°F).

A continuous unit ¢©(B,Z) (Be #(Hs)®°B,Ze B(Hs)R®°F) is diagonal (in the
matrix picture), if and only if B and Z are diagonal. A diagonal unit ¢© (B, Z) is
strongly generating for I°© (%(Hs) ®°F), if and only if the set {¢©(f,()} running
over the diagonal entries of ¢© (B, Z) is strongly generating for I3C (F).

Can we put together the units from S to a single diagonal unit? In order that a
family (ai)ges of elements in B (in F) defines (as strong limit) an element in
B(Hs)®°B (in #(Hs)®°F) with entries a; in the diagonal, is it necessary and
sufficient that it is uniformly bounded. This will, in general, not be the case.
However, as long as we are only interested in whether S is generating or not, we may
modify S without changing this property. By Observation 5.3.5 we may forget
completely about the parameters ;. Moreover, for the condition in Theorem 5.3.2
the length of the {; is irrelevant (as long as it is not 0, of course). We summarize.

B.1. Theorem. Let T be a normal uniformly continuous CPD-semigroup on S in
Ks(B). Then there exists a normal uniformly continuous CP-semigroup T on
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B(Hs)®B such that the GNS-system (of von Neumann modules) of T is
B(Hs)RSE®" where E® is the GNS-system (of von Neumann modules) of X.

So far, we considered diagonal units for the time ordered Fock module
IT°© (#(Hs)®°F). Of course, ¢© (B, Z) is a unit for any choice of Be #(Hs)®°B
and Ze #(Hs) ®°F. The off-diagonal entries of such a unit fulfill a lot of recursive
relations. In the case of Hilbert spaces (B = C) and finite sets S (#(Hs) = M,) we
may hope to compute ¢© (B, Z) explicitly. This should have many applications in the
theory of special functions, particularly those involving iterated integrals of
exponential functions.

Appendix C. Generators of CP-semigroups

C.1. Definition. Let A be a unital Banach algebra and T=R; or T=Nj. A
semigroup in A is a family T = (T;),.y of elements T,€.A such that Tp =1 and
T,T, = Ty, If A=%(B) is the algebra of bounded operators on a Banach space B
(with composition o as product), then we say T is a semigroup on B.

A semigroup T = (T}), g, in A is uniformly continuous, if

lim ||7; — 1]| = 0.
t—0

If B is itself a Banach space of operators on another Banach space (for instance, if B
is a von Neumann algebra), then T is strongly continuous, if t+ T,(b) is strongly
continuous in B for all be B.

The form of generators of uniformly continuous CP-semigroups was found by
Christensen—Evans [CE79] for arbitrary, even non-unital, C*-algebras B. We quote
the basic result [CE79, Theorem 2.1] rephrased in the language of derivations with
values in a pre-Hilbert B—B-module F, i.e. a mapping d : #— F fulfilling

d(bb') = bd(b) + d(b)b.

Then we repeat the cohomological discussion of [CE79] which allows to find the
form of the generator in the case of von Neumann algebras.

C.2. Lemma. Let d be a bounded derivation from a pre-C*-algebra B (c %*(G)) to a
pre-Hilbert B-B-module F (<=#*(G,F®G)). Then there exists {espan‘d(B)B
(cFF<%(G,FOG)) such that

d(b) = bl — (b. (C.1)

Observe that span'd(B)B is a two-sided submodule of F°. Indeed, we have
bd(b') = d(bb’) — d(b)b' so that we have invariance under left multiplication.
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Recall that a derivation of the form as in (C.1) is called inner, if { € F. Specializing
to a von Neumann algebra B we reformulate as follows.

C.3. Corollary. Bounded derivations from a von Neumann algebra I3 to a von Neumann
B-B-module are inner (and, therefore, normal).

Specializing further to the von Neumann module B, we find the older result that
bounded derivations on von Neumann algebras are inner; see e.g. [Sak71].

In the sequel, we restrict to normal CP-semigroups on von Neumann algebras. As
an advantage (which is closely related to self-duality of von Neumann modules) we
end up with simple statements as in Corollary C.3 instead of the involved ones in
Lemma C.2. The more general setting does not give more insight (in fact, the only
insight is that satisfactory results about the generator are only possible in the context
of von Neumann algebras), but just causes unpleasant formulations.

C.4. Theorem (Christensen and Evans [CE79]). Let T be a normal uniformly
continuous CP-semigroup on a von Neumann algebra B with generator L. Then there
exist a von Neumann B-13-module F, an element { € F, and an element 5 € B such that L
has the Christensen—Evans form (3.5.1). Moreover, the strongly closed submodule of F
generated by the derivation d(b) = b{ — (b is determined by L up to (two-sided)
isomorphism.

Proof. We proceed similarly as for the GNS-construction, and try to define an inner
product on the B-B-module B&® B with the help of £. However, since £ is only
conditionally completely positive, we can define this inner product not for all
elements in this module, but only for those elements in the two-sided submodule
generated by elements of the form b®1 — 1 ®b. This is precisely the subspace of all
>-.ai®b; for which ) ,a;h; = 0 with inner product

1

<Z 4 ®bi,y aj®b./> = biL(a;a))b;. (C.2)
7 77

We divide out the length-zero elements and denote by F the strong closure.

By construction, F is a von Neumann 5-B-module and it is generated as a von
Neumann module by the bounded derivation d(b) = (h®1—1®b) +A4F. By
Corollary C.3 there exists (€ F such that d(b) = b{ — {b. Moreover, we have

L(bY) — bLB) — L)Y + LAY

= LBV =LY — KGO + DY

from which it follows that the mapping D:b—L(h)— (b —
b(ﬁ(l)*<C,C>);(ﬁ(1)*<i7l>)b

is a bounded hermitian derivation on B. Therefore, there
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exists 1 =h"eB such that D(b) = ibh—ihb. Setting f==1"CL 1 ip we find
L(b) = <L,bC> + bR+ B°b.

Let F’ be another von Neumann module with an element {’ such that the
derivation d'(b) = b{' — {'b generates F’ and such that £(b) = {{',b{'> + bB + B*b
for some B €B. Then the mapping d(b)+—d'(b) extends as a two-sided unitary
F — F’, because the inner product (C.2) does not depend on . [
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