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Abstract

Christensen and Evans showed that, in the language of Hilbert modules, a bounded

derivation on a von Neumann algebra with values in a two-sided von Neumann module (i.e. a

sufficiently closed two-sided Hilbert module) are inner. Then they use this result to show that

the generator of a normal uniformly continuous completely positive (CP-) semigroup on a von

Neumann algebra decomposes into a (suitably normalized) CP-part and a derivation like part.

The backwards implication is left open.

In these notes we show that both statements are equivalent among themselves and

equivalent to a third one, namely, that any type I tensor product system of von Neumann

modules has a unital central unit. From existence of a central unit we deduce that each such

product system is isomorphic to a product system of time ordered Fock modules. We, thus,

find the analogue of Arveson’s result that type I product systems of Hilbert spaces are

symmetric Fock spaces.

On the way to our results we have to develop a number of tools interesting on their own

right. Inspired by a very similar notion due to Accardi and Kozyrev, we introduce the notion

of semigroups of completely positive definite kernels (CPD-semigroups), being a general-

ization of both CP-semigroups and Schur semigroups of positive definite C-valued kernels.

The structure of a type I system is determined completely by its associated CPD-semigroup
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and the generator of the CPD-semigroup replaces Arveson’s covariance function. As

another tool we give a complete characterization of morphisms among product systems of

time ordered Fock modules. In particular, the concrete form of the projection endomorphisms

allows us to show that subsystems of time ordered systems are again time ordered systems

and to find a necessary and sufficient criterion when a given set of units generates the

whole system. As a byproduct we find a couple of characterizations of other subclasses of

morphisms. We show that the set of contractive positive endomorphisms are order isomor-

phic to the set of CPD-semigroups dominated by the CPD-semigroup associated with type I

system.

r 2003 Elsevier Inc. All rights reserved.

1. Introduction

Arveson’s tensor product systems of Hilbert spaces [Arv89] (Arveson systems, for
short) arise in the theory of E0-semigroups on ðGÞ; where G is some Hilbert space.

They consist of a family H
%# ¼ ðHtÞtARþ

of Hilbert spaces Ht such that Hs
%#Ht ¼

Hsþt in an associative way (plus some measurability conditions). The most important

notion for Arveson systems is that of a unit h# ¼ ðhtÞtARþ
consisting of vectors

htAHt such that hs#ht ¼ hsþt (plus some measurability conditions). The most
prominent example of such an Arveson system is the symmetric Fock space, more

precisely, the family G#ðHÞ of symmetric Fock spaces GðL2ð½0; t�;HÞÞ for some

Hilbert space H: The units of G#ðHÞ are precisely the exponential vectors cðI½0;t�hÞ
possibly times a renormalizing factor etc ðcACÞ: The symmetric Fock space has the
property to be spanned by tensor product of such units. Arveson defines a product
system with this property to be a type I system and he shows that every type I system

is isomorphic to G#ðHÞ for a suitable H:
In these notes we show the analogue result for product systems of Hilbert modules

(more precisely, of von Neumann modules). Throughout these notes let B be a unital
C�-algebra. Product systems of Hilbert B–B-modules were discovered in dilation
theory of a completely positive semigroup (a CP-semigroup for short) in [BS00].
Meanwhile, we also have a construction of product systems starting from E0-
semigroups on some algebra ðEÞ of adjointable operators on a Hilbert module;

see [Ske02]. A product system E} ¼ ðEtÞtARþ
consists of (pre-)Hilbert B–B-modules

Et which compose (associatively) as Es}Et ¼ Esþt under (interior) tensor product of

two-sided Hilbert modules, and a unit is a family x} ¼ ðxtÞtARþ
of elements xtAEt

which composes as xs}xt ¼ xsþt:
The symmetric Fock space is canonically isomorphic to the time ordered

Fock space (i.e. the Guichardet picture). As shown in [BS00] it is this picture
which can be generalized to Hilbert modules. The (continuous) units for the time
ordered Fock module are considerably more complicated, but still can be computed
explicitly (see [LS01]) and generate the time ordered Fock module in a suitable
sense.
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Now it makes sense to ask, whether all product systems generated by their units
are time ordered Fock modules. However, unlike for Hilbert spaces (where strong
and weak totality of some subset are the same, so that we do not need to distin-
guish topologies) in a Hilbert module there are several topologies, and the answer
to our question depends very much on the topology in which what the units
generate algebraically is closed. As one of our main results, we find an affirmative
answer, if we use the strong topology of von Neumann modules (as introduced in
[Ske00a]).

The crucial step is to establish the equivalence of the results by Christensen and
Evans [CE79] on the generator of a normal uniformly continuous CP-semigroup on
a von Neumann algebra and the fact that product systems of von Neumann modules
which have a continuous unit always have also a (continuous) central unit (i.e. the
members xt of the unit commute with the elements of the algebra). Example 4.2.4
describes a product system of Hilbert modules generated by a single continuous unit,
but without any central unit. It cannot be a time ordered Fock module, because these
always have a central unit, namely, the vacuum unit. Therefore, we may not hope
that our result generalizes to all product systems of Hilbert modules. (We know,
however, from [Ske01c] that it generalizes under the assumption of existence of a
central unit.)

On our way we have to establish several interesting tools. The main tool in [Arv89]
was the so-called covariance function, i.e. a conditionally positive definite kernel
defined on the set of units of an Arveson system which we obtain by differentiating

the semigroup /gt; g0
tS (for some units g#; g0#) at t ¼ 0: What is the substitute

for modules? The matrix elements /xt; x
0
tS; in general, will not form a semi-

group. However, if we consider instead the mappings Tx;x0
t : b//xt; bx0tS; then the

definition of units (and the tensor product) is born to make Tx;x0 ¼ ðTx;x0
t ÞtARþ

a

semigroup. The right notion of positivity for such a kernel is completely positive

definiteness. The idea to consider semigroups of completely positive definite kernels
(CPD-semigroups for short) is inspired very much by a new idea from the paper
[AK99] by Accardi and Kozyrev. If a product system is generated by its units, then
its structure is determined completely by the structure of its associated CPD-
semigroup. The substitute for Arveson’s covariance function is just the generator
of the CPD-semigroup.

Whereas for Arveson systems the structure of the covariance function is well
known and easy to derive, in our case we do not know immediately the form of the
generator. Only after passing through the theory it turns out that it has a form which
generalizes that of the Christensen–Evans generator of CP- to CPD-semigroups.
This drops out immediately, when we know existence of a central unit. In order to
derive both existence of a central unit (from [CE79]) and that product systems of von
Neumann modules generated by their units are time ordered Fock modules we have
to master the problem whether a subsystem of a time ordered system is all, and if not
how it looks like. We solve this problem with the help of our second main tool,
namely, a complete characterization of morphisms among time ordered systems, in
particular, of projection morphisms.
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These notes are organized as follows. In Section 2 we start with preliminaries from
earlier papers. In Section 2.1 we collect the most important definitions and
constructions. In particular, we define von Neumann modules from [Ske00a] which is
not a standard definition. In Section 2.2 we recall quickly the exterior tensor product.
(The extensions to von Neumann modules are not standard, and we need them in
Appendix B.) Then we use it to define matrices of Hilbert modules which provide the
basic technique to deal with completely positive definite kernels. In Section 2.3 we
recall the definition of the time ordered Fock module and repeat its basic properties
from [BS00,LS01].
In Section 3 we define completely positive definite kernels and semigroups of such

and study their basic properties. We state what we can say about the generator
without using product systems. In order to give an impression what we have to
expect later on, we discuss in Section 3.5 the CPD-semigroup associated with the
time ordered Fock modules and conjecture from its generator a theorem about the
form of the generators paralleling the Christensen–Evans form of the generator of a
CP-semigroup.
After these lengthy preparations we come to product systems in Section 4. After

the definition in Section 4.1 we show in Section 4.2 that with each set of units in
product system there is associated a natural CPD-semigroup. We explain that a set
of units generates a subsystem and use this to define type I product systems (splitting
into several cases depending on several topologies). In Section 4.3 we reverse the
direction and starting from a CPD-semigroup we construct a product system, the
GNS-system of the CPD-semigroup, with a set of units, giving us back the original
CPD-semigroup. In the following sections we are interested only in uniformly
continuous CPD-semigroups. In Section 4.4 we study in how far continuity
properties of the CPD-semigroup are reflected by those of the units in the GNS-
system.
While Section 4 was still at a rather general level, in Section 5 we point directly to

our main goal. In Section 5.1 we show that existence of a central unit among a
continuous set of units assures that the generator of the associated CPD-semigroup
has Christensen–Evans form. In Section 5.2 we study morphisms of time ordered
Fock modules. In Section 5.3 we use the concrete form of the projection morphisms
to provide a criterion which allows to decide, whether a (continuous) set of units
generates a time ordered system of von Neumann modules and, if not, how the
generated subsystem looks like. The idea taken from Bhat [Bha01] is, roughly
speaking, that if the subsystem generated by a set of units is not all, then there should
exist a non-trivial projection morphism onto the subsystem. In Section 5.4 we put
together our results and those by Christensen–Evans [CE79] and obtain very quickly
our main result.
As a bonus we obtain that the result about derivations is equivalent to

existence of a central unital unit in the GNS-system of a uniformly conti-
nuous normal CPD-semigroup. This raises the question for a direct proof of
existence of a central unit, thus, providing a different proof of [CE79]. In
Section 6 we outline these and other possible directions for future work on product
systems.
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In Appendix A we extend the analysis of morphisms from Section 5.2. We describe
the order structure of positive morphisms and, in particular, of the contractive
morphisms. In Appendix B we follow an idea from [AK99], and encode the
information on the GNS-system of a CPD-semigroup into a single CP-semigroup on
a (much) bigger algebra. In Appendix C we recall the results from [CE79], but
entirely in the language of Hilbert modules which is—and we hope that these notes
demonstrate this—much better adapted to problems concerning general von
Neumann algebras.
Let us close with some general conventions and a definition. In the course of our

investigations it is convenient (and sometimes also necessary) to distinguish pre-
Hilbert modules, Hilbert modules (i.e. complete pre-Hilbert modules) and von
Neumann modules (i.e. strongly closed submodules of some ðG;HÞ). Conse-
quently, we have to distinguish clearly the several versions of product systems, tensor
products, and so on. Tensor products #;} are understood algebraically. If we

want to complete, then we write %#; %}: Strong closures (in a space of operators) are
indicated by a superscript s. We use the same conventions for direct sums. An
exception of this convention are Fock modules, which usually are assumed norm
complete, because usually it is not reasonable to consider algebraic versions. Where

algebraic Fock modules appear, we indicate them by F ; ; and so on. The action of
an algebra on a module is always non-degenerate. A representation by operators on
a module need not be non-degenerate.
By SðRþ;BÞ we denote the space of step functions on Rþ with values in the

normed space B; whereas L2-spaces of functions with values in a Hilbert module are
defined in Section 2.2.
Usually, we are interested in Rþ as indexing set for a semigroup, but sometimes we

consider also the discrete case N0: If we do not distinguish we write T: Throughout
the isomorphic lattices It and Jt are important. Let t40 in T: We define It as the set
of all tuples fðtn;y; t1ÞATn : nAN; t ¼ tn4?4t140g: Clearly, It is a lattice
partially ordered by ‘‘inclusion’’ with ‘‘union’’ and ‘‘intersection’’ of tuples being the
unique maximum and minimum, respectively. We define Jt to be the set of all tuples
t ¼ ðtn;y; t1ÞATn ðnAN; ti40Þ having length

jtj :¼
Xn

i¼1
ti ¼ t:

For two tuples s ¼ ðsm;y; s1ÞAJs and t ¼ ðtn;y; t1ÞAJt we define the joint tuple

s ^ tAJsþt by

s ^ t ¼ ððsm;y; s1Þ; ðtn;y; t1ÞÞ ¼ ðsm;y; s1; tn;y; t1Þ:

We equip Jt with a partial order by saying tXs ¼ ðsm;y; s1Þ; if for each j ð1pjpmÞ
there are (unique) sjAJsj

such that t ¼ sm ^ ? ^ s1:We extend the definitions of It

and Jt to t ¼ 0; by setting I0 ¼ J0 ¼ fðÞg; where ðÞ is the empty tuple. For tAJt we

put t ^ ðÞ ¼ t ¼ ðÞ ^ t: The mapping ðtn;y; t1Þ/ð
Pn

i¼1ti;y;
P1

i¼1tiÞ is an order

isomorphism Jt-It so that also Jt is a lattice.
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2. Preliminaries

2.1. Von Neumann modules, tensor product and GNS-construction

For basics about Hilbert modules over C�-algebras we refer the reader to
[BS00,Lan95,Pas73,Ske00a]. A complete treatment adapted precisely to our needs
with full proofs of all statements can be found in [Ske01a]. We recall only that for us
Hilbert B-modules are right B-modules with a (strictly positive) B-valued inner
product, right B-linear in its right variable. Hilbert A–B-modules are Hilbert B-
modules where A acts non-degenerately as a C�-algebra of right module
homomorphisms. In particular, if A is unital, the unit of A acts as unit. The C�-

algebra of adjointable mappings on a Hilbert module E we denote by aðEÞ: By
ðEÞ we denote the bilinear mappings, which we also call two-sided. Using

similar notations also for mappings between Hilbert modules, without mention we
identify EC ðB;EÞ (where xAE is the mapping b/xb) and E�C ðE;BÞ (where
x� : y//x; yS is the adjoint of x). Consequently, xy� is the rank-one operator
z/x/y; zS: Recall that by definition Hilbert modules are complete with respect to

their norm jjxjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jj/x; xSjj

p
: Otherwise, we speak of pre-Hilbert modules. In this

case ðEÞ is only a pre-C�-algebra. The strong topology is that of operators on a
normed or Banach space. The �-strong topology on an involutive space of operators
on a normed or Banach space is the topology generated by the strong topology and
by the strong topology for the adjoints. (When restricted to bounded subsets of

ðEÞ this is the strict topology; see [Lan95].) Another topology on E is the B-weak
topology which is generated by the seminorms jj/x; �Sjj ðxAEÞ:
The following observation provides a method to establish well definedness of

certain operators (defined by giving the values on a generating subset) without
showing boundedness. (In fact, it works also for unbounded operators.) It can
hardly be overestimated.

2.1.1. Observation. If a B-valued inner product on an A–B-module E fails to be
strictly positive (i.e. /x; xS ¼ 0 does not necessarily imply x ¼ 0), then by the
Cauchy–Schwarz inequality

/x; yS/y; xSpjj/y; ySjj/x; xS ð2:1:1Þ

we may divide out the submodule E=fxAE :/x; xS ¼ 0g of length-zero elements
and obtain a pre-Hilbert A–B-module. It is important to notice that any adjointable
operator (bounded or not) on E respects E and, therefore, gives rise to an
adjointable operator on E= E : As a simple consequence we find that a mapping
defined on a subset of E which generates E as right module extends to a well-defined
mapping on E; if it is formally adjointable on the generating subset.

2.1.2. Definition. The (interior) tensor product (over B) of the pre-Hilbert A–B-
module E and the pre-Hilbert B–C-module F is the pre-Hilbert A–C-module E}F ¼
E#F= E#F where E#F is equipped with inner product defined by setting
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/x#y; x0#y0S ¼ /y;/x; x0Sy0S: If B is unital, then we identify always E}B and
E (via x}b ¼ xb), and we identify always B}F and F (via b}y ¼ by). If B is non-
unital, then we may identify at least the completions.

Particularly interesting is the tensor product H ¼ E}G of a pre-Hilbert A–B-
module E and a pre-Hilbert space G on which B is represented non-degenerately (so
that G is a pre-Hilbert B–C-module). It follows that H is a pre-Hilbert A–C-module,
i.e. a pre-Hilbert space with a representation r of A by (adjointable) operators on H:
We refer to r as the Stinespring representation of A (associated with E and G);
cf. Remark 2.1.5.
To each xAE we associate an operator Lx :G-H; g/x}g in ðG;HÞ: We

refer to the mapping Z : x/Lx as the Stinespring representation of E (associated with
G). If the representation of B on G is faithful (hence, isometric), then so is Z: More
precisely, we find L�

xLy ¼ /x; ySABC ðGÞ: We also have Laxb ¼ rðaÞLxb so that

we may identify E as a concrete A–B-submodule of ðG;HÞ:
In particular, if B is a von Neumann algebra on a Hilbert space G; then we

consider E always as a concrete subset of ðG;E %}GÞ: We say E is a von Neumann

B-module, if it is strongly closed in ðG;E %}GÞ: If also A is a von Neumann
algebra, then a von Neumann A–B-module E is a pre-Hilbert A–B-module and a von

Neumann B-module such that the Stinespring representation r of A on E %}G is
normal.

2.1.3. Remark. The (strong closure of the) tensor product of von Neumann modules
is again a von Neumann module. Left multiplication by an element of A is a strongly
continuous operation on E: The �-algebra ðEÞ is a von Neumann subalgebra of

ðE %}GÞ:
One may easily show that if B ¼ ðGÞ then E ¼ ðG;HÞ and ðEÞ ¼ ðHÞ:

If E is a von Neumann ðGÞ– ðGÞ-module, then H ¼ G %#H and E ¼
ðG;G %#HÞ ¼ ðGÞ %#sH where H is a Hilbert space, Arveson’s Hilbert space of

intertwiners of the left and right multiplication. In other words, H ¼ C ðGÞðEÞ; where
generally CBðEÞ ¼ fxAE : bx ¼ xbðbABÞg is the B-center of a B–B-module.

2.1.4. Remark. Von Neumann modules are self-dual. Consequently, each bounded
right linear mapping on (or between) von Neumann modules is adjointable and von
Neumann modules are complementary (i.e. for any von Neumann submodule F of
a pre-Hilbert module E there exists a projection pA ðEÞ onto F ). We refer to
[Ske00a,Ske01a] for details.
For any element x in a pre-Hilbert A–B-module E; the mapping a//x; axS is

completely positive. (The axioms of Hilbert modules are quasi modelled to have this
property.) Conversely, if T :A-B is a completely positive mapping between unital
C�-algebras, then by setting /a#b; a0#b0S ¼ b�Tða�a0Þb0 we define an inner
product on the A–B-module A#B: Set E ¼ A#B= A#B and x ¼ 1#1þ A#B :

Then TðaÞ ¼ /x; axS and E ¼ spanAxB: We refer to the pair ðE; xÞ as the
GNS-construction for T and to E as the GNS-module with cyclic vector x: The
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GNS-construction is determined by the stated properties up to two-sided

isomorphism. If T is a normal mapping between von Neumann algebras, then %Es

is a von Neumann A–B-module.

2.1.5. Remark. Assume that B is represented faithfully on a (pre-)Hilbert
space G and let us construct the Stinespring representation r of A as
described above. Then TðaÞ ¼ /x; axS ¼ L�

xLax ¼ L�
xrðaÞLx so that r with the

cyclic mapping LxA ðG;HÞ; indeed, coincides with the usual Stinespring
construction.

The most important advantage of considering GNS-constructions of completely
positive mappings instead of Stinespring constructions appears, if we consider
compositions.

2.1.6. Example. Let T :A-B and S : B-C be completely positive mappings
with GNS-modules E and F and with cyclic vectors x and z; respectively. Then
we have S3TðaÞ ¼ /x}z; ax}zS (so that S3T is completely positive). Let G

be the GNS-module of the composition S3T with cyclic vector w: Then the
mapping

w/x}z

extends (uniquely) as a two-sided isometric homomorphism G-E}F : Observe
that E}F ¼ spanðAxB}BzCÞ ¼ spanðAx}BzCÞ ¼ spanðAxB}zCÞ: By the above
isometry we may identify G as the submodule spanðAx}zCÞ of E}F : In other
words, inserting a unit 1 in w ¼ x}z in between x and z amounts to an isometry.
Varying, instead, bAB in xb}z ¼ x}bz; we obtain a set which generates all
of E}F :
This operation is crucial in the construction of tensor product systems. We explain

immediately, why the Stinespring construction cannot do the same job. Suppose that
B and C are algebras of operators on some pre-Hilbert spaces. Then, unlike the GNS-
construction, the knowledge of the Stinespring construction for the mapping T does
not help in finding the Stinespring construction for S3T : What we need is the
Stinespring construction for T based on the representation of B arising from the
Stinespring construction for S: The GNS-construction, on the other hand, is
representation free. It is sufficient to do it once for each completely positive mapping.
Yet in other words, we can formulate as follows.

2.1.7. Functoriality. A pre-Hilbert A–B-module E is a functor sending (non-
degenerate) representations of B on F to (non-degenerate) representations of A on
E}F ; and the composition of two such functors is the tensor product. The
Stinespring construction is a dead end for this functoriality.

We close quoting some results about positivity of operators on a pre-Hilbert
module.
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2.1.8. Definition. We say a linear operator a on a pre-Hilbert B-module E is positive,
if /x; axSX0 for all xAE: In this case (by linearity and polarization) a is
adjointable.

Of course, a�a is positive, if a� exists. The following lemma due to Paschke [Pas73]
shows that for aA ðEÞ this definition of positivity is compatible with the C�-
algebraic definition. An elegant proof can be found in [Lan95].

2.1.9. Lemma. Let E be a pre-Hilbert B-module and let a be a bounded B-linear

mapping on E. Then the following conditions are equivalent:

1. a is positive in the C�-algebra ð %EÞ:
2. a is positive according to Definition 2.1.8.

Notice that if E is complete, then it is sufficient to require just that a is B-linear,
because a is closed and, therefore, bounded. A similar argument allows to generalize
a well-known criterion for contractivity to pre-Hilbert modules.

2.1.10. Lemma. A positive operator a on E is a contraction, if and only if

/x; axSp/x; xS ð2:1:2Þ

for all xAE:

Proof. Of course, a positive contraction fulfills (2.1.2). Conversely, let us assume
that aX0 fulfills (2.1.2). By positivity, ðx; yÞa ¼ /x; ayS is a (semi-)inner product.

In particular, by Cauchy–Schwartz inequality (2.1.1) we have
jjðy; xÞaðx; yÞajjpjjðx; xÞajj jjðy; yÞajj; hence,

jj/x; aySjj2pjj/x; axSjj jj/y; aySjjpjj/x; xSjj jj/y; ySjj;

i.e. jjajjp1: &

2.2. Exterior tensor product and matrices of Hilbert modules

Matrices with entries in a Hilbert module are a crucial tool in these notes. Like L2-
spaces of functions with values in a Hilbert module they can be understood most
easily as very particular examples of exterior tensor products. In Appendix B we
need the properties of exterior tensor products in full generality.
The exterior tensor product is based on the observation that the (vector space)

tensor product E1#E2 of a pre-Hilbert Bi-modules Ei ði ¼ 1; 2Þ is a B1#B2-module
in an obvious way. It is not difficult to show that the sesquilinear mapping on
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E1#E2; defined by setting

/x#y; x0#y0S ¼ /x; x0S#/y; y0S ð2:2:1Þ

is positive, i.e. an inner product. It is even more easy (see [Ske98]) to see that it is
strictly positive, so that the E1#E2 is a pre-Hilbert B1#B2-module over the pre-C

�-
algebra B1#B2 equipped with whatever cross C�-norm. In practice, we consider
only the spatial C�-norm on the tensor product. Observe that, if we want to complete
B1#B2; then we must, in general, complete also E1#E2:
If Ei are pre-Hilbert Ai–Bi-modules, then E1#E2 is a pre-Hilbert A1#A2–

B1#B2-module and the representation of A1#A2 on E1#E2 is a contraction for
the spatial norm (hence, for all norms) on A1#A2: Moreover, if the representations
of Ai on Ei are faithful, then the representation of A1#A2 is an isometry for the
spatial norm. One easily checks the property

ðE1#E2Þ}ðF1#F2Þ ¼ ðE1}F1Þ#ðE2}F2Þ: ð2:2:2Þ

If Ei are von Neumann Ai–Bi-submodules of ðGi;Ei %}GiÞ; then the strong

closure of E1#E2 in ðG1;E1 %}G1Þ %#s ðG2;E2 %}G2Þ ¼ ðG1 %#G2; ðE1 %}G1Þ
%#ðE2 %}G2ÞÞ is a von Neumann A1 %#sA2–B1 %#sB2-module and the Stinespring

representation r of A1 %#sA2 on ðE1 %}G1Þ %#ðE2 %}G2Þ is, indeed, just the tensor
product of the Stinespring representations ri of Ai: In particular, we have

ðE1 %#sE2Þ ¼ ðE1Þ %#s ðE2Þ (as von Neumann algebras). See [Ske01a] for
details.

For a Hilbert module E and a measure space M we define L2ðM;EÞ ¼
E %#L2ðMÞ: For a von Neumann A–B-module E we define the von Neumann

A %#s ðL2ðMÞÞ–B-module L2;sðM;EÞ ¼ E %#sL2ðMÞ:
For some Hilbert spaces G;H the space ðG;HÞ is a von Neumann ðHÞ– ðGÞ-

module with inner product /L;MS ¼ L�M and the obvious module operations. In
particular, the n � m-matrices Mnm ¼ ðCm;CnÞ are von Neumann Mn–Mm-
modules. One easily checks that Mnc}Mcm ¼ Mnm where X}Y ¼ XY gives the
canonical identification.
By MnmðEÞ ¼ E#Mnm we denote the spaces of n � m-matrices with entries in a

pre-Hilbert A–B-module. By construction MnmðEÞ is a pre-Hilbert MnðAÞ–MmðBÞ-
module. It is complete and strongly closed, if and only if E is complete and strongly
closed, respectively.

MnmðEÞ consists of matrices X ¼ ðxkiÞ whose inner product is

/X ;YSij ¼
Xn

k¼1
/xki; ykjS:

An element of MmðBÞ acts from the right on the right index and an element of MnðAÞ
acts from the left on the left index of X in the usual way. Considering E as pre-
Hilbert ðEÞ–B-module and making use of matrix units for Mnð ðEÞÞ; one easily
shows that ðMnmðEÞÞ ¼ Mnð ðEÞÞ: From (2.2.2) we conclude that
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MncðEÞ}McmðFÞ ¼ MnmðE}FÞ where ðX}Y Þi;j ¼
P

kxik}ykj gives the canoni-

cal identification. In particular, for square matrices we find MnðEÞ}MnðFÞ ¼
MnðE}FÞ:
Conversely, let Enm be a pre-Hilbert MnðAÞ–MmðBÞ-module. For simplicity,

assume that A;B are unital (otherwise use approximate units) and define Qi as the
matrix in MnðAÞ with 1 in the ith place in the diagonal. PiAMmðBÞ is defined
analogously. Then all submodules QiEnmPj are isomorphic to the same pre-Hilbert

A–B-module E and Enm ¼ MnmðEÞ: (Each of these entries QiEnmPj takes its A–B-
module structure by embedding A and B into that unique place in the diagonal of
MnðAÞ and MmðBÞ; respectively, where it acts non-trivially. The isomorphism
between two entries can be constructed with the help of matrix units in Mn; Mm:)
Special forms are En ¼ Mn1ðEÞ and En ¼ M1nðEÞ: Both consist of elements X ¼

ðx1;y; xnÞ ðxiAEÞ: However, the former is an MnðAÞ–B-module with inner product
/X ;YS ¼

P
i/xi; yiS and ðEnÞ ¼ Mnð ðEÞÞ (it is just the n-fold direct sum

over E), whereas, the latter is an A–MnðBÞ-module with inner product /X ;YSi;j ¼
/xi; yiS and ðEnÞ ¼ ðEÞ: Observe that En}Fn ¼ E}F ; whereas, En}Fm ¼
MnmðE}FÞ:
Let us set X ¼ ðdijxiÞAMnðEÞ for some xiAE ði ¼ 1;y; nÞ; and Y correspond-

ingly. Then the mapping T : MnðAÞ-MnðBÞ; defined by setting TðAÞ ¼ /X ;AYS
acts matrix-element-wise on A; i.e.

ðTðAÞÞij ¼ /xi; aijyjS:

In particular, if Y ¼ X ; then T is completely positive. TðAÞmay be considered as the
Schur product of the matrix T of mappings /xi; �yjS :A-B and the matrix A of

elements aijAA:

If S is another mapping coming in a similar manner from diagonal matrices X 0;Y 0

with entries in a pre-Hilbert B–C-module F ; then we find as in Example 2.1.6 that the
Schur composition of S3T of the mappings T and S (i.e. the pointwise composition) is
given by

S3TðAÞ ¼ /X}X 0;AY}Y 0S:

This observation is crucial for the analysis of CPD-semigroups in Section 3.

2.3. The time ordered Fock module

2.3.1. Definition. Let B be a unital C�-algebra and let E be a (pre-)Hilbert B–B-
module. Then the full Fock module FðEÞ over E is the completion of the pre-Hilbert
B–B-module

FðEÞ ¼
MN
n¼0

E}n;
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where E}0 ¼ B and o ¼ 1AB ¼ E}0 is the vacuum. If B is a von Neumann algebra,
then by F sðEÞ we denote the von Neumann B–B-module obtained by strong closure
of FðEÞ:

2.3.2. Definition. For any contraction TA ðEÞ we define its second quantization

FðTÞ ¼
M

nAN0

T}nA ðFðEÞÞ ðT}0 ¼ idÞ:

2.3.3. Example. Let F be a two-sided Hilbert module. One of the most important full

Fock modules is FðL2ðR;FÞÞ: The time shift in ðL2ðR;FÞÞ for some Hilbert
B–B-module F is defined by setting ½ f �ðsÞ ¼ f ðs � tÞ: The corresponding second
quantized time shift Fð Þ gives rise to the time shift automorphism group on

ðFðL2ðR;EÞÞÞ; defined by setting

ðaÞ ¼ Fð ÞaFð Þ�:

Fð Þ is B–B-linear so that leaves invariant BC ðFðL2ðR;EÞÞÞ and it is strongly
continuous.

As the name tells us, the construction of the time ordered Fock module is connected

with the time structure of its one-particle sector L2ðR;FÞ: We take this into account

by speaking of the time ordered Fock module over F rather than over L2ðR;FÞ:
Additionally, we are interested mainly in the real half-line Rþ and include also this in
the definition.

2.3.4. Definition. By Dn we denote the indicator function of the subset
fðtn;y; t1Þ : tn4?4t1g of Rn: Let B be a unital C�-algebra, let F be a Hilbert B–
B-module and set E ¼ L2ðR;FÞ and EK ¼ L2ðK ;FÞ for any measurable subset K of

R: Then Dn acts as a projection on E
%}n ¼ L2ðRn;F

%}nÞ: We call the range of Dn

applied to E
%}n (or some submodule) the time ordered part of E

%}n (or of this
submodule).
The time ordered Fock module over F is

ðFÞ ¼
MN
n¼0

DnE
%}n
Rþ

¼ DFðERþÞCFðERþÞ

where D ¼ "N

n¼0 Dn is the projection onto the time ordered part of FðEÞ: The
extended time ordered Fock module is ðFÞ ¼ DFðEÞ: We use the notations tðFÞ ¼
DFðE½0;tÞÞ ðtX0Þ and KðFÞ ¼ DFðEKÞ (K a measurable subset of R). If B is a von

Neumann algebra on a Hilbert space G; then we indicate the strong closure by
sðFÞ; and so on.

The algebraic time ordered Fock module is ðFÞ ¼ DFðSðRþ;FÞÞ (where S

denotes the step functions and F maybe only a pre-Hilbert module). Observe that

ðFÞ is not a subset of FðSðRþ;FÞÞ (unless F}F is trivial).

ARTICLE IN PRESS
S.D. Barreto et al. / Journal of Functional Analysis 212 (2004) 121–181132



Definition 2.3.4 and the factorization in Theorem 2.3.6 are due to [BS00]. The time
ordered Fock module is a straightforward generalization to Hilbert modules of the
Guichardet picture of the symmetric Fock space [Gui72] and the generalization to
the higher-dimensional case discussed by Schürmann [Sch93] and Bhat [Bha98].

2.3.5. Observation. The time shift leaves invariant the projection DA ðFðEÞÞ: It
follows that restricts to an automorphism group on að ðFÞÞ and further to an
E0-semigroup ð ðFÞÞ (of course, both strongly continuous and normal in the case
of von Neumann modules).

The following theorem is the analogue of the well-known factorization

GðL2ð½0; s þ t�ÞÞ ¼ GðL2ð½t; s þ t�ÞÞ#GðL2ð½0; t�ÞÞ of the symmetric Fock space.
However, in the theory of product systems, be it of Hilbert spaces in the sense of
Arveson [Arv89] or of Hilbert modules in the sense of Section 4 (of which the time
ordered Fock modules are to be the most fundamental examples), we put emphasis
on the length of intervals rather than on their absolute position on the half line. (We
comment on this crucial difference in [BS00, Observation 4.2].) Therefore, we are

more interested to write the above factorization in the form GðL2ð½0; s þ t�ÞÞ ¼
GðL2ð½0; s�ÞÞ#GðL2ð½0; t�ÞÞ; where the first factor has first to be time shifted by t:
Adopting this way of thinking (where the time shift is encoded in the tensor product)
has enormous advantages in many formulae. We will use it consequently
throughout. Observe that, contrary to all good manners, we write the future in the
first place and the past in the second. This order is forced upon us and, in fact, we
will see in Remark 2.3.10 that the order is no longer arbitrary for Hilbert modules.

2.3.6. Theorem (Bhat and Skeide [BS00]). The mapping ust; defined by setting

½ustðXs}YtÞ�ðsm;y; s1; tn;y; t1Þ ¼ ½Fð ÞXs�ðsm;y; s1Þ}Ytðtn;y; t1Þ

¼Xsðsm � t;y; s1 � tÞ}Ytðtn;y; t1Þ; ð2:3:1Þ

ðs þ t4smX?Xs1Xt4tnX?Xt1X0;XsADmE}m
½0;s� ;YtADnE}n

½0;t� extends as a two-

sided isomorphism sðFÞ} tðFÞ- sþtðFÞ: It extends further to two-sided

isomorphisms sðFÞ %} tðFÞ- sþtðFÞ and s
sðFÞ %}s s

tðFÞ- s
sþtðFÞ; respectively.

Moreover,

urðsþtÞðid}ustÞ ¼ uðrþsÞtðurs}idÞ:

2.3.7. Observation. Letting in the preceding computation formally s-N; we see

that (2.3.1) defines a two-sided isomorphism ut : ðFÞ} tðFÞ- ðFÞ: We have
usþtðid}ustÞ ¼ utðus}idÞ: In the sequel, we no longer write ust nor ut and just use the

identifications sðFÞ} tðFÞ ¼ sþtðFÞ and ðFÞ} tðFÞ ¼ ðFÞ: Notice that in
the second identification ðaÞ ¼ a} A ð ðFÞ} tðFÞÞ ¼ ð ðFÞÞ: We

explain this more detailed in a more general context in Section 4.4.
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In the symmetric Fock space we may define an exponential vector to any element in
the one-particle sector. In the time ordered Fock module we must be more careful.

2.3.8. Definition. For a step function xASðRþ;FÞ we define the exponential vector

cðxÞA ðFÞ as

cðxÞ ¼
XN
n¼0

Dnx}n

with x}0 ¼ o: (Observe that if x has support ½0; t� and jjxðsÞjjpcARþ; then

jjDnx}njj2ptnc2n

n! where tn

n! is the volume of the set fðtn;y; t1Þ : tXtnX?Xt1X0g so

that jjcðxÞjj2petc2oN:)

Let t ¼ ðtn;y; t1ÞAIt; put t0 ¼ 0; and let x ¼
Pn

i¼1ziI½ti�1;tiÞ: Then we easily check

cðxÞ ¼ cðznI½0;tn�tn�1ÞÞ}?}cðz1I½0;t1�t0ÞÞ: ð2:3:2Þ

2.3.9. Theorem. For all tA½0;N� the exponential vectors to elements xASð½0; t�;FÞ
form a total subset of tðFÞ:

The proof goes very much along the lines for the symmetric Fock space. A detailed
version can be found in [Ske01a].

2.3.10. Remark. Obviously, the definition of the exponential vectors extends to

elements xALNðRþ;FÞ-L2ðRþ;FÞ: It is also not difficult to see that it makes sense

for Bochner square integrable functions xAL2
BðRþ;FÞCL2ðRþ;FÞ: (cðxÞ depends

continuously on x in L2
B-norm.) It is, however, unclear, whether it is possible to

define cðxÞ for arbitrary xAL2ðRþ;FÞ: We can only say that if xAE½0;s�; yAE½0;t� are

such that cðxÞ; cðyÞ exist, then cð x"yÞ ¼ cðxÞ}cðyÞ exists, too. Observe that, in
general, cðxÞ}cðyÞ and cðyÞ}cðxÞ are very much different elements of sþtðFÞ:

The exponential vectors xt ¼ cðzI½0;tÞÞ ðzAFÞ play a distinguished role. They fulfill
the factorization

xs}xt ¼ xsþt ð2:3:3Þ

and x0 ¼ o: In accordance with Definition 4.2.1 we call such a family x} ¼ ðxtÞtARþ

a unit. Notice that TtðbÞ ¼ /xt; bxtS defines a CP-semigroup on B (see Proposition
4.2.5). Additionally, cðzI½0;tÞÞ depends continuously on t so that the corresponding

semigroup is uniformly continuous (cf. Theorem 4.4.12). We ask, whether there are

other continuous units x} than these exponential units. The answer is given by the
following theorem from [LS01].
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2.3.11. Theorem. Let bAB; zAF ; and let x0 ¼ ðx0t ÞtARþ
with x0t ¼ etb be the uniformly

continuous semigroup in B with generator b: Then x}ðb; zÞ ¼ ðxtðb; zÞÞtARþ
with the

component xn
t of xtðb; zÞA t in the n-particle sector defined as

xn
t ðtn;y; t1Þ ¼ x0t�tn

z}x0tn�tn�1
z}?}x0t2�t1

zx0t1 ð2:3:4Þ

(and, of course, x0t for n ¼ 0), is a unit. Moreover, both functions t/xtA ðFÞ and the

CP-semigroup T ðb;xÞ with T
ðb;xÞ
t ¼ /xtðb; xÞ; �xtðb; xÞS are uniformly continuous and

the generator of T ðb;xÞ is

b//z; bzSþ bbþ b�b: ð2:3:5Þ
Conversely, let x} be a unit such that t/xtA ðFÞ is a continuous func-

tion. Then there exist unique bAB and zAF such that xt ¼ xtðb; zÞ as defined

by (2.3.4).

2.3.12. Remark. We see that T ðb;zÞ has a generator of Christensen–Evans type; see
Appendix C.

2.3.13. Remark. The exponential units cðzI½0;tÞÞ correspond to xtð0; zÞ: We may

consider xtðb; zÞ as xð0; zÞ renormalized by the semigroup etb: This is motivated by the

observation that for B ¼ C all factors eðti�ti�1Þb in (2.3.4) come together and give etb:
The other way round, in the noncommutative context we have to distribute the

normalizing factor etb over the time intervals ½ti�1; tiÞ:

2.3.14. Observation. In the case of a von Neumann module F ; the characterization
of continuous units in Theorem 2.3.11 remains true also, if we allow xt to be in the

bigger space s
tðFÞ: This follows, because the proof in [LS01] that continuous units

must have the form xtðb; zÞ works as before.

2.3.15. Remark. Fixing a semigroup x0 and an element z in F ; Eq. (2.3.4) gives more

general units. For that it is sufficient to observe that x0 is bounded by Cect for
suitable constants C; c (so that xn

t are summable). An example from [LS01]

shows that we may not hope to generalize Theorem 2.3.11 to units which are
continuous in a weaker topology only. On the other hand, this example also shows
that there are interesting non-continuous units (giving rise to strongly continuous
CP-semigroups), although the time ordered Fock module is spanned by its
continuous units.

3. Kernels

Positive definite kernels on some set S with values in C (i.e. functions k : S � S-C

such that
P

i;j %cik
si ;sj cjX0 for all choices of finitely many ciAC; siAS) are well-

established objects. There are basically two important results on such kernels.
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One is the Kolmogorov decomposition which provides us with a Hilbert space H

and an embedding i : S-H (unique, if the set iðSÞ is total) such that ks;s0 ¼
/iðsÞ; iðs0ÞS:
The other main result is that the Schur product of two positive definite kernels

(i.e. the pointwise product) is again positive definite. Semigroups of such kernels
were studied, for instance, in [Gui72] or [PS72]. The kernel obtained by (point-
wise) derivative at t ¼ 0 of such a semigroup is conditionally positive definite,
and any such kernel defines a positive definite semigroup via (pointwise)
exponential.
The goal of this section is to find suitable generalizations of the preceding notions

to the B-valued case. Suitable means, of course, that we will have plenty of occasion
to see these notions at work. Positive definite B-valued kernels together with the
Kolmogorov decomposition generalize easily (Section 3.1). They are, however, not
sufficient, mainly, because for noncommutative B the pointwise product of two
kernels does not preserve positive definiteness. For this reason we have to pass to
completely positive definite kernels (Section 3.2). These kernels take values in the
bounded mappings on the C�-algebra B; fulfilling a condition closely related to
complete positivity. Instead of the pointwise product of elements in B we consider
the composition (pointwise on S � S) of mappings on B: Also here we have a
Kolmogorov decomposition for a completely positive definite kernel, we may
consider Schur semigroups of such (CPD-semigroups) and their generators
(Section 3.4).
Both completely positive mappings and completely positive definite kernels

have realizations as matrix elements with vectors of a suitably constructed
two-sided Hilbert module. In both cases we can understand the composition of
two such objects in terms of the tensor product of the underlying Hilbert modules
(GNS-modules or Kolmogorov modules). In fact, we find the results for completely
positive definite kernels by reducing the problems to completely positive mappings
(between n � n-matrix algebras) with the help of Lemmata 3.2.1 and 3.4.6, and then
applying the crucial constructions in Section 2.2. In both cases the tensor product
plays a distinguished role. An attempt to realize a whole semigroup, be it of
mappings or of kernels, on the same Hilbert module, leads us directly to the
notion of tensor product systems of Hilbert modules, namely, the GNS-system in
Section 4.3.
It is a feature of CPD-semigroups on S that they restrict to CPD-kernels, when

S ¼ fsg consists of a single element. Sometimes, the proofs of statements on CPD-
semigroups are straightforward analogues of those for CPD-semigroups. However,
often they are not. In this chapter we put emphasis on the first type of statements
which, therefore, will help us in the remaining chapters to analyze product systems.
To prove the other type of statements like Theorem 3.5.2 we have to wait for
Section 5.4.
Although slightly different, our notion of completely positive definite kernels is

inspired very much by the corresponding notion in [AK99]. The idea to consider CP-
semigroups on MnðBÞ (of which the CPD-semigroups are a direct generalization) is
entirely due to [AK99].
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3.1. Positive definite kernels

3.1.1. Definition. Let S be a set and let B be a pre-C�-algebra. A B-valued kernel or
short kernel on S is a mapping k : S � S-B: We say a kernel k is positive definite, ifX

s;s0AS

b�
sk

s;s0bs0X0 ð3:1:1Þ

for all choices of bsAB ðsASÞ where only finitely many bs are different from 0:

3.1.2. Observation. Condition (3.1.1) is equivalent toX
i;j

b�
i k

si ;sj bjX0 ð3:1:2Þ

for all choices of finitely many siAS; biAB: To see this, define bs ðsASÞ to be the sum
over all bi for which si ¼ s: Then (3.1.2) transforms into (3.1.1). The converse
direction is trivial.

3.1.3. Proposition. Let B be a unital pre-C�-algebra and let k be a positive definite B-
valued kernel on S. Then there exists a pre-Hilbert B-module E and a mapping i : S-E

such that

ks;s
0 ¼ /iðsÞ; iðs0ÞS

and E ¼ spanðiðSÞBÞ: Moreover, if ðE0; i0Þ is another pair with these properties, then

iðsÞ/i0ðsÞ establishes an isomorphism E-E0:

Proof. Let SB denote the free right B-module generated by S (i.e. "sASB ¼
fðbsÞsAS : bsAB;#fsAS : bsa0goNg or, in other words, SC#B where SC is a

vector space with basis S). Then by (3.1.1)

/ðbsÞ; ðb0
sÞS ¼

X
s;s0AS

b�
sk

ss0b0
s0

defines a semiinner product on SB: We set E ¼ SB= SB and iðsÞ ¼ ðdss01Þs0AS þ
SB : Then the pair ðE; iÞ has all desired properties. Uniqueness is clear. &

3.1.4. Remark. If B is non-unital, then we still may construct E as before as a
quotient of SC#B; but we do not have the mapping i: We have, however, a map-

ping î : S � B-E; sending ðs; bÞ to ðdss0bÞs0ASþ SB ; such that b�ks;s
0
b0 ¼

/îðs; bÞ; îðs0; b0ÞS with similar cyclicity and uniqueness properties.
The easiest way to have a mapping like i also in the non-unital case, is by

observing that k is positive definite also as kernel with values in *B: (To see this

approximate *1A *B strictly by an approximate unit for B:) If ðẼ; ĩ Þ is the
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corresponding pair, then Ẽ contains E as a dense submodule. After completion the
difference disappears.

3.1.5. Definition. We refer to the pair ðE; iÞ as the Kolmogorov decomposition for k

and to E as its Kolmogorov module.

3.1.6. Example. For C-valued positive definite kernels we recover the usual
Kolmogorov decomposition. For instance, usual proofs of the Stinespring
construction for a completely positive mapping T :A- ðGÞ start with a
Kolmogorov decomposition for the kernel ðða; gÞ; ða0; g0ÞÞ//g;Tða�a0Þg0S on A�
G and obtain in this way the pre-Hilbert space H ¼ E}G where E is the GNS-
module of T ; cf. Remark 2.1.5.
For B ¼ ðFÞ for some pre-Hilbert C-module F we recover the Kolmogorov

decomposition in the sense of Murphy [Mur97]. He recovers the module E}F of the
KSGNS-construction for a completely positive mapping T :A- ðFÞ (cf. [Lan95])
as Kolmogorov decomposition for the kernel ðða; yÞ; ða0; y0ÞÞ//y;Tða�a0Þy0S on
A� F :

3.2. Completely positive definite kernels

For C-valued kernels there is a positivity preserving product, namely, the Schur

product which consists in multiplying two kernels pointwise. For non-commutative B
this operation is also possible, but will, in general, not preserve positive definiteness.
It turns out that we have to consider kernels which take as values mappings between
algebras rather than kernels with values in algebras. Then the pointwise multi-
plication in the Schur product is replaced by pointwise composition of mappings. Of
course, this includes the usual Schur product of C-valued kernels, if we interpret zAC

as mapping w/zw on C:

3.2.1. Lemma. Let S be a set and let K : S � S- ðA;BÞ be a kernel with values in the

bounded mappings between pre-C�-algebras A and B: Then the following conditions are

equivalent:

1. We have X
i;j

b�
i K

si ;sj ða�
i ajÞbjX0

for all choices of finitely many siAS; aiAA; biAB:
2. The kernel k : ðA � SÞ � ðA � SÞ-B with kða;sÞ;ða

0;s0Þ ¼ Ks;s0 ða�a0Þ is positive

definite.

3. The mapping

a/
X

i;j

b�
i K

si ;sj ða�
i aajÞbj

is completely positive for all choices of finitely many siAS; aiAA; biAB:
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4. For all choices s1;y; snAS ðnANÞ the mapping

KðnÞ : ðaijÞ/ðKsi ;sj ðaijÞÞ

from MnðAÞ to MnðBÞ is completely positive.

5. For all choices s1;y; snAS ðnANÞ the mapping KðnÞ is positive.

Moreover, each of these conditions implies the following conditions.

6. The mapping

a/
X

s;s0AS

b�
sK

s;s0 ðaÞbs0

is completely positive for all choices of bsAB ðsASÞ where only finitely many bs

are different from 0.
7. The mapping

a/
X

s;s0AS

Ks;s0 ða�
saas0 Þ

is completely positive for all choices of asAA ðsASÞ where only finitely many as

are different from 0.

Proof. Conditions 1 and 2 are equivalent by Observation 3.1.2.
Condition 3 means

X
k;cAK

X
i;jAI

b�kb�
i K

si ;sj ða�
i a

�
kacajÞbjbcX0 ð3:2:1Þ

for all finite sets I ;K and ai; akAA and bi; bkAB: To see 3 ) 1 we choose K

consisting of only one element and we replace ak and bk by an approximate unit for
A and an approximate unit for B; respectively. By a similar procedure we see 3 ) 6
and 3 ) 7:
To see 1 ) 3; we choose P ¼ I � K ; sði;kÞ ¼ si; aði;kÞ ¼ akai; and bði;kÞ ¼ bibk:

Then (3.2.1) transforms into X
p;qAP

b�
pK

sp;sqða�
paqÞbqX0;

which is true by 1.

To see 2 ) 4; we do the Kolmogorov decomposition ðE; î Þ for the kernel k in the

sense of Remark 3.1.4. If A and B are unital, then we set xj ¼ îð1; sj ; 1ÞAE ð j ¼
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1;y; nÞ: Then the mapping in 4 is completely positive as explained in Section 2.2.

If A and B are not necessarily unital, then we set xj ¼ îðul; sj; vmÞ for some

approximate units ðulÞ and ðvmÞ for A and B; respectively, and we obtain the

mapping in 4 as limit (pointwise in norm of MnðBÞ) of completely positive mappings.
Conditions 4 and 5 are equivalent by simple index manipulations.
To see 5 ) 1 we apply 5 to the positive element A ¼ ða�

i ajÞAMnðAÞ which

means that /B;KðnÞðAÞBS is positive for all B ¼ ðb1;y; bnÞABn and, therefore,
implies 1. &

3.2.2. Definition. We call a kernel K : S � S- ðA;BÞ completely positive definite, if
it fulfills one of conditions 1–5 in Lemma 3.2.1. By KSðA;BÞ we denote the set of
completely positive definite kernel on S from A to B: A kernel fulfilling conditions 6
and 7 in Lemma 3.2.1 is called completely positive definite for B and completely

positive definite for A; respectively.

3.2.3. Theorem. Let A and B be unital, and let K be in KSðA;BÞ: Then there exists

a contractive pre-Hilbert A–B-module E (i.e. the canonical representation of A is a

contraction) and a mapping i : S-E such that

Ks;s0 ðaÞ ¼ /iðsÞ; aiðs0ÞS;

and E ¼ spanðAiðSÞBÞ: Moreover, if ðE 0; i0Þ is another pair with these properties, then

iðsÞ/i0ðsÞ establishes an isomorphism E-E0:
Conversely, if E is a contractive pre-Hilbert A–B-module and S a collection of

elements of E, then K defined by setting Ks;s0 ðaÞ ¼ /s; as0S is completely positive

definite.

3.2.4. Corollary. A kernel KAKSðA;BÞ is hermitian, i.e. Ks;s0 ða�Þ ¼ Ks0;sðaÞ�: (This

remains true, also if A and B are not necessarily unital.)

Proof of Theorem 3.2.3. By Proposition 3.2.3 we may do the Kolmogorov
decomposition for the kernel k and obtain a pre-Hilbert B-module E with an
embedding ik: We have

ks
0;s00 ða0�aa00Þ ¼ /ikða0; s0Þ; ikðaa00; s00ÞS ¼ /ikða�a0; s0Þ; ikða00; s00ÞS:

Therefore, by Observation 2.1.1 setting aikða0; s0Þ ¼ ikðaa0; s0Þ we define a left action
of A on E: This action is non-degenerate, because A is unital, and the unit acts as

unit on E: It is contractive, because all mappings Ks;s0 are bounded, so that in the
whole construction we may assume that A is complete. Setting iðsÞ ¼ ikð1; sÞ; the
pair ðE; iÞ has the desired properties.
The converse direction is clear from Section 2.2. &
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3.2.5. Definition. We refer to the pair ðE; iÞ as the Kolmogorov decomposition for K

and to E as its Kolmogorov module.

3.2.6. Observation. If B is a von Neumann algebra, then we may pass to the strong

closure %Es: It is not necessary that also A is a von Neumann algebra, and also if A is

a von Neumann algebra, then %Es need not be a two-sided von Neumann module.

However, for normal kernels (i.e. all mappings Ks;s0 are s-weak) %Es is a von
Neumann A–B-module.

Our notion of completely positive definite kernels differs from that given by
Accardi and Kozyrev [AK99]. Their completely positive definite kernels fulfill only
our requirement for kernels completely positive definite for B: The weaker
requirement in [AK99] is compensated by an additional property of their concrete
kernel (essentially coming due to the simpler structure in the case B ¼ ðGÞ); see
[Ske01a] for details.

3.3. Partial order of kernels

We say, a completely positive mapping T dominates another S; if the difference
T � S is also completely positive. In this case, we write TXS: Obviously,X defines a
partial order. As shown by Arveson [Arv69] in the case of ðGÞ and extended by
Paschke [Pas73] to arbitrary von Neumann algebras, there is an order isomorphism
from the set of all completely positive mappings dominated by a fixed completely
positive mapping T and certain mappings on the GNS-module of T (or the
representation space of the Stinespring representation in the case of ðGÞ).
In this section we extend these notions and the result to kernels and their

Kolmogorov decomposition. Theorem 3.3.3 is the basis for Theorem A.7 which
provides us with a powerful tool to establish whether a dilation of a completely
positive semigroup is its GNS-dilation. In Lemma 3.3.2 we need self-duality. So we
stay with von Neumann modules.

3.3.1. Definition. We say, a kernel K on S from A to B dominates another kernel L;
if the difference K � L is in KSðA;BÞ: For KAKSðA;BÞ we denote by DK ¼
fLAKSðA;BÞ :KXLg the set of all completely positive definite kernels dominated

by K:

3.3.2. Lemma. Let A be a unital C�-algebra, let B be a von Neumann algebra on a

Hilbert space G, and let KXL be kernels in KSðA;BÞ: Let ðE; iÞ denote the

Kolmogorov decomposition for K: Then there exists a unique positive contraction

wA ð %EsÞ such that Ls;s0 ðaÞ ¼ /iðsÞ;waiðs0ÞS:

Proof. Let ðF ; j Þ denote the Kolmogorov decomposition for L: As K � L is
completely positive, the mapping v : iðsÞ/jðsÞ extends to an A–B-linear contraction
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E-F : Indeed, for x ¼
P

kakiðskÞbk we find

/x; xS�/vx; vxS ¼
X
k;c

b�
kðKsk ;sc � Lsk ;scÞða�

kacÞbcX0;

such that jjxjjXjjvxjj: Of course, v extends further to a contraction %Es- %Fs:

Since von Neumann modules are self-dual, v has an adjoint v�A ð %Fs; %EsÞ:
Since adjoints of bilinear mappings and compositions among them are
bilinear, too, it follows that also w ¼ v�v is bilinear. Of course,

/iðsÞ;waiðs0ÞS ¼ /iðsÞ; v�vaiðs0ÞS ¼ /jðsÞ; ajðs0ÞS ¼ Ls;s0 ðaÞ: &

3.3.3. Theorem. Let S be a set, let A be a unital C�-algebra, let B be a von Neumann

algebra on a Hilbert space G, and let K be a kernel in KSðA;BÞ: Denote by ðE; iÞ the

Kolmogorov decomposition of K: Then the mapping O : w/Lw with

Ls;s0
w ðaÞ ¼ /iðsÞ;waiðs0ÞS

establishes an order isomorphism from the positive part of the unit ball in ð %EsÞ
onto DK:

Moreover, if ðF ; j Þ is another pair such that Ks;s0 ðaÞ ¼ /jðsÞ; ajðs0ÞS; then O is still

a surjective order homomorphism. It is injective, if and only if ðF ; j Þ is (unitarily

equivalent to) the Kolmogorov decomposition of K:

Proof. Let us start with the more general ðF ; j Þ: Clearly, O is order preserving. As

ECF and ð %EsÞ ¼ p ð %FsÞpC ð %FsÞ where p is the projection onto %Es; Lemma
3.3.2 tells us that O is surjective. If p is non-trivial, then O is certainly not injective,
because Lp ¼ L1: Otherwise, it is injective, because the elements jðsÞ are strongly

total, hence, separate the elements of ð %FsÞ: It remains to show that in the latter

case also the inverse O�1 is order preserving. But this follows from Lemma
2.1.9. &

3.3.4. Remark. By restriction to completely positive mappings (i.e. #S ¼ 1) we
obtain Paschke’s result [Pas73]. Passing to B ¼ ðGÞ and doing the Stinespring
construction, we find Arveson’s result [Arv69].

3.4. Schur product and semigroups of kernels

Now we come to products, or better, compositions of kernels. The following
definition generalizes the Schur product of a matrix of mappings and a matrix as
discussed in Section 2.2.

3.4.1. Definition. Let KAKSðA;BÞ and let LAKSðB; CÞ: Then the Schur product of L

and K is the kernel L3KAKSðA; CÞ; defined by setting ðL3KÞs;s
0
ðaÞ ¼ Ls;s0

3Ks;s0 ðaÞ:
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3.4.2. Theorem. L3K is completely positive definite, too.

Proof. If all algebras are unital, then this follows directly from Theorem 3.2.3.
Indeed, by the forward direction of Theorem 3.2.3 we have the Kolmogorov
decompositions ðE; iÞ and ðF ; j Þ for K and L; respectively. Like in Section 2.2 we find

Ls;s0
3Ks;s0 ðaÞ ¼ /iðsÞ}jðsÞ; aiðs0Þ}jðs0ÞS from which ðL3KÞs;s

0
is completely

positive definite by the backward direction of Theorem 3.2.3. If the algebras are
not necessarily unital, then (as in the proof of 2 ) 4 in Lemma 3.2.1) we may apply

the same argument, replacing iðsÞ by îðul; s; vmÞ (and similarly for j) and

approximating in this way L3K by completely positive definite kernels. &

3.4.3. Observation. The proof shows that, like the GNS-construction of completely
positive mappings, the Kolmogorov decomposition of the composition L3K can be
obtained from those for K and L: More precisely, we obtain it as the two-sided
submodule of E}F generated by fiðsÞ}jðsÞ : sASg and the embedding
i}j: s/iðsÞ}jðsÞ:

3.4.4. Definition. A family ðTtÞtARþ
of kernels on S from B to B is called a (uniformly

continuous) Schur semigroup of kernels, if for all s; s0AS the mappings Ts;s0
t form a

(uniformly continuous) semigroup on B; see Definition C.1. A (uniformly continuous)
CPD-semigroup of kernels, is a (uniformly continuous) Schur semigroup of
completely positive definite kernels.

Like for CP-semigroups, the generators of (uniformly continuous) CPD-
semigroups can be characterized by a conditional positivity condition.

3.4.5. Definition. A kernel L on S from B to B is called conditionally completely

positive definite, if

X
i;j

b�
i L

si ;sj ða�
i ajÞbjX0 ð3:4:1Þ

for all choices of finitely many siAS; ai; biAB such that
P

iaibi ¼ 0:

3.4.6. Lemma. For a kernel L on S from B to B the following conditions are

equivalent:

1. L is conditionally completely positive definite.

2. For all choices s1;y; snAS ðnANÞ the mapping

LðnÞ : ðaijÞ/ðLsi ;sj ðaijÞÞ

on MnðBÞ is conditionally completely positive, i.e. for all Ak;BkAMnðBÞ such thatP
kAkBk ¼ 0 we have

P
k;cBk�LðnÞðAk�AcÞBc

X0:
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Proof. By Lemma 2.1.9 an element ðbijÞAMnðBÞ is positive, if and only ifP
i;jb

�
i bijbjX0 for all b1;y; bnAB: Therefore, Condition 2 is equivalent to

X
i;j;p;q;k;c;r

b�
i bk�

pi L
sp;sqðak�

rp ac
rqÞbc

qjbjX0

for all s1;y; snAS; b1;y; bnAB ðnANÞ; and finitely many ðak
ijÞAMnðAÞ;

ðbk
ijÞAMnðBÞ such that

P
p;kak

ipbk
pj ¼ 0 for all i; j: Assume that 1 is true,

choose biAB; and choose ak
rp; bk

piAB such that
P

p;kak
rpbk

pi ¼ 0 for all r; i: ThenP
p;kak

rpð
P

ib
k
pibiÞ ¼ 0 for all r and 1 implies that

P
i;j;p;q;k;cb�

i bk�
pi L

sp;sqðak�
rp ac

rqÞbc
qjbjX0

for each r separately. (Formally, we pass to indices ðp; kÞ and set sðp;kÞ ¼ sp as in the

proof of Lemma 3.2.1.) Summing over r we find 2.
Conversely, assume that 2 is true and choose ai; biAB such that

P
iaibi ¼ 0: Set

arp ¼ d1rap and bpi ¼ bp: Then
P

parpbpi ¼ d1r

P
papbp ¼ 0 for all r; i and 2 implies

that the matrix ð
P

p;q;rb
�
piL

sp;sqða�
rparqÞbqjÞi;j ¼ ð

P
p;qb�

pL
sp;sqða�

paqÞbqÞi;j is positive. As

any of the (equal) diagonal entries
P

p;qb�
pL

sp;sqða�
paqÞbq must be positive in B; we

find 1. &

3.4.7. Theorem. Let B be a unital C�-algebra and let S be a set. Then the formula

Tt ¼ etL ð3:4:2Þ

(where the exponential is that for the Schur product of kernels) establishes a one-to-one

correspondence between uniformly continuous CPD-semigroups ðTtÞtARþ
of positive

definite kernels L on S from B to B and hermitian (see Corollary 3.2.4) conditionally

completely positive definite kernels on S from B to B:

Proof. First of all, let us remark that (3.4.2) establishes a one-to-one correspondence
between uniformly continuous Schur semigroups and kernels L : S � S- ðBÞ: This
follows simply by the same statement for the uniformly continuous semigroups Ts;s0

t

and their generators Ls;s0 : So the only problem we have to deal with is positivity.
Let T by a CPD-semigroup. By Lemma 3.2.1(4) this is equivalent to complete

positivity of the semigroup T
ðnÞ
t on MnðBÞ for each choice of s1;y; snAS ðnANÞ: So

let us choose Ak;BkAMnðBÞ such that
P

kAkBk ¼ 0: Then

X
k;c

Bk�LðnÞðAk�AcÞBc ¼ lim
t-0

1

t

X
k;c

Bk�T
ðnÞ
t ðAk�AcÞBc

X0:

In other words, LðnÞ is conditionally completely positive and by Lemma 3.4.6(2) L is
conditionally completely positive definite. As limit of hermitian kernels, also L must
be hermitian.
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Conversely, let L be hermitian and conditionally completely positive definite, so

that LðnÞ is hermitian conditionally completely positive for each choice of
s1;y; snAS ðnANÞ: We follow Evans and Lewis [EL77, Theorem 14.2 ð3 ) 1Þ]
to show that T

ðnÞ
t is positive, which by Lemma 3.2.1(5) implies that Tt is completely

positive definite.

Let AX0 and B in MnðBÞ such that AB ¼ 0: Then also
ffiffiffiffi
A

p
B ¼ 0; hence

B�LðnÞðAÞB X0; because LðnÞ is conditionally completely positive. Let

0peojjLðnÞjj�1; hence id� eLðnÞ is invertible. Now let A ¼ A� be an arbitrary self-

adjoint element in MnðBÞ: We show that AX0 whenever ðid� eLðnÞÞðAÞX0; which

establishes the hermitian mapping ðid� eLðnÞÞ�1 as positive. We write A ¼ Aþ � A�
where Aþ;A� are unique positive elements fulfilling AþA� ¼ 0: Therefore,

A�LðnÞðAþÞA�X0: Indeed,

0pA�ðid� eLðnÞÞðAÞA� ¼ A�ðid� eLðnÞÞðAþÞA� � A�ðid� eLðnÞÞðA�ÞA�

¼ � eA�LðnÞðAþÞA� � A3
� þ eA�LðnÞðA�ÞA�;

hence

A3
�pA3

� þ eA�LðnÞðAþÞA�peA�LðnÞðA�ÞA�:

If A�a0; then jjA�jj3 ¼ jjA3
�jjpjjeA�LðnÞðA�ÞA�jjpejjLðnÞjj jjA�jj3ojjA�jj3; a

contradiction, hence A� ¼ 0: We have T
ðnÞ
t ¼ limm-Nð1� t

m
LðnÞÞ�m which is

positive as limit of compositions of positive mappings. &

By appropriate applications of Lemmata 3.2.1 and 3.4.6 to a kernel on a one-
element set S; we find the following well-known result.

3.4.8. Corollary. The formula Tt ¼ etL establishes a one-to-one correspondence

between uniformly continuous CP-semigroups on B (i.e. semigroups of completely

positive mappings on B) and hermitian conditionally completely positive mappings

LA ðBÞ:

3.4.9. Observation. A CP-semigroup on a von Neumann algebra is normal, if and
only if its generator is s-weak. (This follows from the observation that norm limits
of s-weak mappings are s-weak.)

We find a simple consequence, by applying this argument to the CP-semigroups

T
ðnÞ
t :

3.4.10. Corollary. A CPD-semigroup T on a von Neumann algebra is normal (i.e. each

mapping Ts;s0
t is s-weak), if and only if its generator L is s-weak.
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3.4.11. Remark. It is easily possible to show first Corollary 3.4.8 as in [EL77], and

then apply it to T
ðnÞ
t ¼ etLðnÞ

to show the statement for CPD-semigroups. Notice,
however, that also in [EL77] in order to show Corollary 3.4.8, it is necessary to know
at least parts of Lemma 3.2.1 in a special case.

We say a CPD-semigroup T dominates another T0 (denoted by TXT0), if TtXT0
t

for all tAT: The following lemma reduces the analysis of the order structure of
uniformly continuous CPD-semigroups to that of the order structure of their
generators.

3.4.12. Lemma. Let T and T0 be uniformly continuous CPD-semigroups on S in KSðBÞ
with generators L and L0; respectively. Then TXT0; if and only if LXL0:

Proof. Since T0 ¼ T0
0; we have

Tt�T0
t

t
¼ Tt�T0

t
� T0

t�T0
0

t
-L � L0 for t-0 so that TXT0

certainly implies LXL0: Conversely, assume that LXL0: Choose nAN and siAS

ði ¼ 1;y; nÞ: From the proof of Theorem 3.4.7 we know that ð1� eLðnÞÞ�1X0 and

ð1� eL0ðnÞÞ�1X0 for all sufficiently small e40: Moreover, by Theorem 3.4.2

ð1� eLðnÞÞ�1 � ð1� eL0ðnÞÞ�1 ¼ eð1� eLðnÞÞ�1ðLðnÞ � L0ðnÞÞð1� eL0ðnÞÞ�1X0;

because all three factors are X0: This implies ð1� t
m
LðnÞÞ�m � ð1� t

m
L0ðnÞÞ�m

X0 for

m sufficiently big. Letting m-N; we find T
ðnÞ
t XT

0ðnÞ
t and further TXT0 by Lemma

3.2.1(4). &

3.5. The CPD-semigroup of the time ordered Fock module and its generator

Let B be a unital C�-algebra, let z be an element in a pre-Hilbert B–B-module F ;
and let bAB: Then

LðbÞ ¼ /z; bzSþ bbþ b�b ð3:5:1Þ

is obviously conditionally completely positive and hermitian so that Tt ¼ etL is a
uniformly continuous CP-semigroup. We say the generator of T has Christensen–

Evans form (or is a CE-generator). Theorem C.4 by Christensen and Evans [CE79]
asserts that generators L of normal CP-semigroups T on a von Neumann algebra B
always have the form (3.5.1) where F is some von Neumann B–B-module.
In this section we study the CPD-semigroup associated with the time ordered Fock

module. From the form of its generator we conjecture the correct generalization of
the CE-form of a generator from CP-semigroups to CPD-semigroups, and we state
as Theorem 3.5.2 that the generators of normal uniformly continuous CPD-
semigroups always have that form. It is one of the main goals in the remainder of
these notes to proof Theorem 3.5.2, but we will not achieve this before Section 5.4.
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For us it will be extremely important that F can be chosen in a minimal way, as it
follows from Lemma C.2 (and its Corollary C.3 which asserts that bounded
derivations with values in von Neumann modules are inner). Therefore, we consider
Lemma C.2 rather than Theorem C.4 (which is a corollary of Lemma C.2) as the
main result of [CE79]. The results in [CE79] are stated for (even non-unital) C�-
algebras B: However, the proof runs (more or less) by embedding B into the bidual
von Neumann algebra B��: Hence, the inner product on F takes values in B�� and
also bAB��: Only the combinations in (3.5.1) remain in B: As this causes unpleasant
complications in formulations of statements, usually, we restrict to the case of von
Neumann algebras.

Now we use the set cðFÞ of continuous units for the time ordered Fock module
}ðFÞ over a Hilbert B–B-module F to define its associated CPD-semigroup.

Theorem 2.3.11 tells us that cðFÞ can be parametrized by the set B � F : (In Section
5.2 we will also sometimes use the natural vector space structure of B � F :)
Let

ðFÞ ¼ spanfbnxtn
ðbn; znÞ}?}b1xt1ðb1; z1Þb0j

tAJt; b0;y; bn; b1;y; bnAB; z1;y; znAFg:

Then ðFÞ} ðFÞ ¼ ðFÞ by restriction of ust in Theorem 2.3.6. (Cf. also

Proposition 4.2.6.)

Let x}; x0} be two units. Obviously, also the mappings b//xt; bx0tS form a

semigroup on B (of course, in general not CP; cf. again Proposition 4.2.5). If xt; x
0
t

are continuous, then so is the semigroup. Another way to say this is that the kernels

Tt : cðFÞ � c ðFÞ-T
ðb;zÞ;ðb;0z0Þ
t ¼ /xtðb; zÞ; �xtðb0; z0ÞS

form a uniformly continuous CPD-semigroup T of kernels on cðFÞ from B to B:
Similar to the proof of (2.3.5) (see [LS01]) one may show that the generator L of T is
given by

Lðb;zÞ;ðb;0z0ÞðbÞ ¼ /z; bz0Sþ bb0 þ b�b: ð3:5:2Þ

By Theorem 3.4.7 L is a conditionally completely positive definite kernel. Of course,
it is an easy exercise to check this directly.
Now it is clear how to define the analogue of the CE-generator for CPD-

semigroups on some set S: Let B be a unital C�-algebra, let zs ðsASÞ be elements in a
pre-Hilbert B–B-module F ; and let bsAB ðsASÞ: Then the kernel L on S defined, by
setting

Ls;s0 ðbÞ ¼ /zs; bzs0Sþ bbs0 þ b�sb ð3:5:3Þ

is conditionally completely positive definite and hermitian. (The first summand is
completely positive definite. Each of the remaining summands is conditionally
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completely positive definite, but the sum cannot be arbitrary, because L should be
hermitian.)

3.5.1. Definition. A generator L of a uniformly continuous CPD-semigroup has
Christensen–Evans form (or is a CE-generator), if it can be written in the form (3.5.3).

3.5.2. Theorem. Let T be a normal uniformly continuous CPD-semigroup on S on a

von Neumann algebra B with generator L: Then there exist a von Neumann B–B-
module F with elements zsAF ðsASÞ; and elements bsAB ðsASÞ such that L has the

Christensen–Evans form in (3.5.3). Moreover, the strongly closed submodule of F

generated by the elements bzs � zs0b (bAB; s; s0AS) is determined by L up to (two-

sided) isomorphism.

We prove this theorem (and semigroup versions of other theorems like Theorem
3.3.3) in Section 5 (after Theorem 5.4.1) with the help of product systems. A direct
generalization of the methods of [CE79] as explained in Appendix C fails, however.
This is mainly due to the following fact.

3.5.3. Observation. Although the von Neumann module F is determined uniquely by
the cyclicity condition in Theorem 3.5.2, the concrete choice neither of zs nor of bs
is unique. This makes it impossible to extend what the results from [CE79] assert

for each TðnÞ ðs1;y; snASÞ by an inductive limit over finite subsets of S to T:

We close with some totality results about the units in cðFÞ: Theorem 2.3.9 tells us
that the tensor products

xtn
ð0; znÞ}?}xt1ð0; z1Þ ð3:5:4Þ

(t1 þ?þ tn ¼ tÞ form a total subset of tðFÞ: Therefore, the closed linear span of

such vectors contains also the units x}ðb; zÞ: But, we can specify the approximation
much better.

3.5.4. Lemma. Let x}ðb; xÞ; x}ðb0; x0Þ be two continuous units.

1. For all K; K0A½0; 1�; Kþ K0 ¼ 1 we have

lim
n-N

ðxKt
n
ðb; zÞ}xK0t

n

ðb0; z0ÞÞ}n ¼ xtðKbþ K0b0; Kzþ K0z0Þ

in the B-weak topology.

2. For all bAB we have

lim
n-N

ðeb
t
nxt

n
ðb; zÞÞ}n ¼ lim

n-N

ðxt
n
ðb; zÞeb

t
nÞ}n ¼ xtðbþ b; zÞ

in norm.
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3. For all K; K0AC; Kþ K ¼ 1 we have

lim
n-N

ðKxt
n
ðb; zÞ þ K0xt

n
ðb; zÞÞ}n ¼ xtðKbþ K0b0; Kzþ K0z0Þ

in norm.

Part 1 is a generalization from an observation in [Arv89]. Part 2 is trivial in the

case B ¼ C:We used it first together with Part 1 in Skeide [Ske01b] for B ¼ C2: Both
may be considered as a direct consequence of the Trotter product formula; see
[Ske01a] for a detailed argument. Part 3 is the straightforward generalization of an
observation by Liebscher [Lie03].

3.5.5. Theorem. Let S be a total subset of F containing 0. Then exponential vectors to

S-valued step functions are total in ðFÞ:

Proof. It is sufficient to show the statement for tðFÞ for some fixed t: By Lemma
3.5.4(3) the closure of the span of exponentials to S-valued step functions contains
the exponentials to step functions with values in the affine hull of S (i.e. all linear
combinations

P
iKizi from S with

P
iKi ¼ 1). Since 0AS the affine hull coincides with

the span of S which is dense in F : Now the statement follows, because the units
depend continuously on their parameters and from totality of (3.5.4). &

We find the following result on the exponential vectors of GðL2ðRþÞÞ ð¼ ðCÞÞ:
It was obtained first by Parthasarathy and Sunder [PS98] and later by [Bha01]. The
proof in [Ske00b] arises by restricting the methods in this section to the bare
essentials of the special case B ¼ C and fits into half a page.

3.5.6. Corollary. Exponential vectors to indicator functions of finite unions of intervals

are total in ðCÞ ¼ GðL2ðRþÞÞ:

Proof. The set S ¼ f0; 1g is total in C and contains 0. &

In accordance with Definition 4.2.7 we may say that the set x}ð0;SÞ of units is
generating. Recall, however, that generating is a weaker property. Lemma 3.5.4(2)

asserts, for instance, that what a single unit x}ðb; zÞ generates via expressions as in
(4.2.3), contains the units x}ðbþ b; zÞ for all bAB; in particular, the unit x}ð0; zÞ:

3.5.7. Corollary. Let S be a total subset of F containing 0 and for each zAS choose

bzAB: Then the set fx}ðbz; zÞ : zASg is generating for ðFÞ:

4. Tensor product systems of Hilbert modules

4.1. Definition and basic examples

4.1.1. Definition. Let T ¼ Rþ or T ¼ N0; and let B be a unital C�-algebra. A tensor

product system of pre-Hilbert modules, or for short a product system, is a family
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E} ¼ ðEtÞtAT of pre-Hilbert B–B-modules Et with a family of two-sided unitaries

ust : Es}Et-Esþt ðs; tATÞ; fulfilling the associativity condition

urðsþtÞðid}ustÞ ¼ uðrþsÞtðurs}idÞ; ð4:1:1Þ

where E0 ¼ B and us0; u0t are the identifications as in Definition 2.1.2. Once, the
choice of ust is fixed, we always use the identification

Es}Et ¼ Esþt: ð4:1:2Þ

We speak of tensor product systems of Hilbert modules E
%} and of von Neumann

modules E
%}s

; if Es %}Et ¼ Esþt and Es %}sEt ¼ Esþt; respectively.

A morphism of product systems E} and F} is a family w} ¼ ðwtÞtAT of mappings

wtA ðEt;FtÞ; fulfilling

wsþt ¼ ws}wt ð4:1:3Þ

and w0 ¼ idB: A morphism is unitary, contractive, etc., if wt is for every tAT: An
isomorphism of product systems is a unitary morphism.

A product subsystem is a family E0} ¼ ðE0
tÞtAT of B–B-submodules E0

t of Et such

that E0
s}E 0

t ¼ E0
sþt by restriction of identification (4.1.2).

By the trivial product system we mean ðBÞtAT where B is equipped with its trivial

B–B-module structure.

4.1.2. Observation. Notice that, in general, there need not exist a projection

endomorphism of E} onto a subsystem E0} of E}: If, however, each projection

ptA
aðEtÞ onto E0

t exists (hence, the pt are two-sided), then the pt form an

endomorphism. Conversely, any projection endomorphism p} determines a product
subsystem E0

t ¼ ptEt: Therefore, in product systems of von Neumann modules there

is a one-to-one correspondence between subsystems and projection endomorphisms.

4.1.3. Example. Let F be a (pre-)Hilbert B–B-module. By Theorem 2.3.6 the time

ordered Fock modules tðFÞ form a product system of pre-Hilbert modules. We call
}ðFÞ ¼ ð tðFÞÞtAT the product system (of pre-Hilbert modules) associated with

the time ordered Fock module ðFÞ: We use similar notations for ðFÞ and sðFÞ:
More generally, we speak of a time ordered product system E} (of Hilbert modules

E
%}; of von Neumann modules E

%}s

), if E}; (E
%}; E

%}s

) is isomorphic to }ðFÞ (to
}ðFÞ; to s}ðFÞ).
Let l40: Then ½T l

t f �ðsÞ ¼
ffiffiffi
l

p
f ðlsÞ ðsA½0; t

l�Þ defines a two-sided isomorphism

L2ð½0; tÞÞ-L2ð½0; t
lÞÞ: Clearly, the family of second quantizations FðT l

t Þp tðFÞ
defines an isomorphism from }ðFÞ to the time rescaled product system

ð t
l
ðFÞÞtAT:
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4.1.4. Example. Usually, our semigroup is T ¼ Rþ: However, also the case T ¼ N0

has interesting applications in the theory of quantum Markov chains. We describe
this briefly. With each pre-Hilbert B–B-module E we can associate a discrete product

system ðE}nÞnAN0
: Conversely, any discrete product system ðEnÞnAN0

can be obtained

in that way from E1:

4.2. Units and CPD-semigroups

4.2.1. Definition. A unit for a product system E} ¼ ðEtÞtAT is a family x} ¼ ðxtÞtAT

of elements xtAEt such that

xs}xt ¼ xsþt ð4:2:1Þ

in identification (4.1.2) and x0 ¼ 1AB ¼ E0: By ðE}Þ we denote the set of all units
for E}: A unit x} is unital and contractive, if /xt; xtS ¼ 1 and /xt; xtSp1;
respectively. A unit is central, if xtACBðEtÞ for all tAT:

4.2.2. Remark. A unit can be trivial, i.e. xt ¼ 0 for t40: Of course, this will not
occur, as soon as we pose continuity conditions on the unit.

4.2.3. Observation. Obviously, a morphism w} sends units to units. For this the

requirement w0 ¼ idB is necessary. For a subset SC ðE}Þ of units for E} we

denote by w}SC ðF}Þ the subset of units for F}; consisting of the units wx} ¼
ðwtxtÞtAT ðx}ASÞ:

4.2.4. Example. Time ordered product systems have a central unital unit, namely,
the vacuum unit. However, there are even simple product systems without any
central unital unit.
Let B ¼ ðGÞ þ C1C ðGÞ be the unitization of the compact operators on some

infinite-dimensional Hilbert space. Let hA ðGÞ be a self-adjoint operator and define
the uniformly continuous unital automorphism group at ¼ eith�e�ith on B: It is easy
to see that the Hilbert B–B-modules Bt defined to coincide with B as right Hilbert

modules and with left multiplication b:xt ¼ atðbÞxt form a product system B} via
the identification xs}yt ¼ atðxsÞyt: A central element xtA t should fulfill

b:xt ¼ eithbe�ithxt ¼ xtb or be�ithxt ¼ e�ithxtb

for all bAB: In other words, since the center of B is trivial, e�ithxt is a multiple of the

identity so that xt is a multiple of eith: If the xt are different from 0, then we may

normalize such that xt ¼ eith: It follows that h ¼ �i dxt

dt
jt¼0 is an element of B:

Conversely, if heB; then B} does not admit a central unital unit. Of course, B} has
a unital unit, namely, xt ¼ 1:
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4.2.5. Proposition. The family U ¼ ðUtÞtAT of kernels Ut on ðE}Þ from B to B;
defined by setting

Ux;x0
t ðbÞ ¼ /xt; bx0tS

is a CPD-semigroup. More generally, the restriction UpS to any subset SC ðE}Þ is

a CPD-semigroup.

Proof. Completely positive definiteness follows from the second half of Theorem
3.2.3. The semigroup property follows from

Ux;x0
sþtðbÞ ¼ /xsþt; bx0sþtS ¼ /xs}xt; bx0s}x0tS ¼ /xt;/xs; bx0sSx0tS ¼ Ux;x0

t 3Ux;x0
s ðbÞ

and /x0; bx00S ¼ b: &

Observe that here and on similar occasions, where it is clear that the superscripts

refer to units, we prefer to write the shorter Ux;x0 instead of the more correct Ux};x0} :
In Section 4.3 we will see that any CPD-semigroup, i.e. in particular, any CP-

semigroup, can be recovered in this way from its GNS-system. In other words, any
CPD-semigroup is obtained from units of a product system. However, the converse
need not be true as there are even Arveson systems which are not generated by their
units (see [Tsi00]). Nevertheless, the units of a product system generate a product
subsystem, determined uniquely by U: In the following proposition we explain this

even for subsets SC ðE}Þ: Although both statements are fairly obvious, we give a
detailed proof of the first one, because it gives us immediately the idea of how to
construct the product system of a CPD-semigroup.

4.2.6. Proposition. Let E} be a product system and let SC ðE}Þ: Then the spaces

ES
t ¼ spanfbnx

n
tn
}?}b1x

1
t1

b0 j nAN; biAB; xi}AS; ðtn;y; t1ÞAJtg ð4:2:2Þ

form a product subsystem ES} of E}; the (unique) subsystem generated by S.

Moreover, if E0} is another product system with a subset of units set-isomorphic to S

(and, therefore, identified with S) such that UpS ¼ U0pS; then E0S} is isomorphic to

ES} (where the identification of the subset SC ðE}Þ and SC ðE0}Þ and extension

via (4.2.2) gives the isomorphism).

Proof. The restriction of ust to ES
s }ES

t in the identification (4.1.2) gives

ðbnþmx
nþm
rnþm

}?}bnþ1x
nþ1
rnþ1

b0
nÞ}ðbnx

n
rn
}?}b1x

1
r1

b0Þ

¼ bnþmx
nþm
rnþm

}?}bnþ1x
nþ1
rnþ1

}b0
nbnx

n
rn
}?}b1x

1
r1

b0;

where ðrnþm;y; rnþ1ÞAJs and ðrn;y; r1ÞAJt: Therefore, ustðES
s }ES

t CES
sþt: To see

surjectivity let r ¼ ðrk;y; r1ÞAJsþt and biAB ði ¼ 0;y; kÞ; xiAS ði ¼ 1;y; kÞ: If r
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hits t; i.e. r ¼ s ^ t for some sAJs; tAJt; then clearly

bkx
k
rk
}?}b1x

1
r1

b0 ð4:2:3Þ

is in ustðES
s }ES

t Þ: If r does not hit t; then we may easily achieve this by splitting that

xcrc with
Pc�1

i¼1 rioto
Pc

i¼1ri into a tensor product of two; cf. Example 2.1.6. More

precisely, we write xcrc as xcr0
2
}xcr0

1
such that r01 þ r02 ¼ rc and r01 þ

Pc�1
i¼1 ri ¼ t: Also

here we find that (4.2.3) is in ustðES
s }ES

t Þ: &

Like for Arveson systems, the question, whether a product system is generated by
its units or even some subset of units in the stated way, is crucial for the classification
of product systems. However, for Hilbert spaces the property of certain subset to be
total, does not depend on the topology, whereas for Hilbert modules we must
distinguish clearly between the several possibilities. Furthermore, we can opt to
consider only subsets of units distinguished by additional properties like continuity
(which, unlike for Arveson systems, again must be split into different topologies).
In our frame work it turns out that it is most convenient—convenient in the sense

that the obtained classification results parallel best those for Arveson systems—to

look at continuous sets of units. Here we call a single unit x} continuous, if the CP-

semigroup Tx
t ¼ /xt; �xtS is uniformly continuous. More generally, a set S of units

is continuous, if the CPD-semigroup UpS is uniformly continuous.

4.2.7. Definition. A product system E} ¼ ðEtÞtAT of pre-Hilbert modules is of type I;

if it is generated by some continuous set SC ðE}Þ of units, i.e. if E} ¼ ES}: It is

of type I and of type Is; if E} is the closure of ES} in norm and in strong topology,
respectively. We say the set S is generating (in the respective topology).
We add subscripts s and n; if S can be chosen such that UpS is strongly continuous

and normal, respectively. If we can find an arbitrary generating sets of units (without
continuity conditions), then we add the subscript a (for algebraic).

Obviously, type I implies type Is and each of them implies Ia (and similarly for
types I and Is), whereas n is a local property of the CPD-semigroup which may or
may not hold independently (and which is automatic for von Neumann modules).
For each subscript type I implies type I implies type Is:
The GNS-system of a CP-semigroup constructed in [BS00] is generated by a single

unit. Whereas a product system of pre-Hilbert spaces generated by a single unit is the
trivial one. In Example 4.2.4 we have seen that the supply of central units depends on

the closure. The product system B} considered there is clearly type I, but it does not
contain a central unit. Therefore, it is not a time ordered system. Passing to strong

closure, the central unit ðeithÞtARþ
is now contained in B %}s

:

Similarly, the following example shows that the required continuity properties for
the generating set of units may affect the type.
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4.2.8. Example. We look again at a product system constructed like B} in Example
4.2.4 from an automorphism group on a C�-algebra B: Now for B we choose LNðRÞ
with the time shift endomorphism : Clearly, the members Bt ðt40Þ of that product
system do not contain non-zero centered elements. But, even worse, the time shift is
only strongly continuous. Therefore, a non-zero CP-semigroup composed of
mappings f//xt; f xtS ¼ /xt; xtS f cannot be continuous either. Consequently,

there is not a single continuous unit in B}: Nevertheless, the product system is
generated by the single strongly continuous unit ð1ÞtARþ

and, therefore it is type Is:

Restriction to LNðR�Þ gives us a similar example starting from an E0-semigroup.
We find our experience from [Ske01b] reconfirmed that, in particular, commutative
C�-algebras provide us with simple counter examples for what we know from the
extreme non-commutative case ðGÞ:

4.2.9. Example. Let F be a Hilbert B–B-module and consider the time ordered

product system }ðFÞ of Hilbert modules with the set cðFÞ ¼
fx}ðb; zÞ : bAB; zAFg of units. As argued in Section 3.5 Up cðFÞ is a uniformly

continuous CPD-semigroup. By Theorem 2.3.9 the exponential units x}ð0; zÞ ðzAFÞ
alone generate }ðFÞ: Therefore, }ðFÞ is type I: Similarly, if B is a von Neumann

algebra and F is also a von Neumann B-module, then the product system s}ðFÞ is
type Is: So far, it need not be type Isn: Only if F is a two-sided von Neumann module,

then s}ðFÞ is a time ordered product system of von Neumann modules and,
therefore, type Isn: We will use these notions interchangeably. If F is centered (i.e., F

is generated by its center in some topology) then the exponential units to elements
in the center of F are already generating for that topology. Theorem 2.3.11 and

Observation 2.3.14 tell us that for both }ðFÞ and s}ðFÞ the set S ¼ cðFÞ ¼
fx}ðb; zÞ: bABg has no proper extension such that the CPD-semigroup associated

with this extension is still uniformly continuous. (Up cðFÞ is maximal continuous.)

4.3. CPD-semigroups and product systems

In this section we construct for each CPD-semigroup T on S a product system E}

with a generating set of units such that T is recovered as in Proposition 4.2.5 by
matrix elements with these units. The construction is a direct generalization from
CP-semigroups to CPD-semigroups of the construction in [BS00], and it contains the
case of CP-semigroups as the special case where S consists of one element.
The idea can be looked up from the proof of Proposition 4.2.6 together with

Example 2.1.6 and its generalization to completely positive definite kernels by the
methods in Section 2.2 and Observation 3.4.3. Indeed, the two-sided submodule of

ES
t in Proposition 4.2.6 generated by fxtðx}ASÞg is just the Kolmogorov module Ĕt

of the kernel UtpSAKSðBÞ: Splitting xt into xt�s}xs (for all x
}AS), as done in that

proof, means to embed Ĕt into the bigger space Ĕt�s}Ĕs: By definition we obtain all
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of ES
t ; if we continue this procedure by splitting the interval ½0; tÞ into more and more

disjoint subintervals. In other words, ES
t is the inductive limit over tensor products

of an increasing number of Kolmogorov modules Ĕti
(ti summing up to t)

of Uti
pS:

For a general CPD-semigroup T on some set S we proceed precisely in the same

way, with the only exception that now the spaces ES
t do not yet exist. We must

construct them. So let ðĔt; &xtÞ denote the Kolmogorov decomposition for Tt; where
&xt : s/&xst is the canonical embedding. (Observe that Ĕ0 ¼ B and &xs0 ¼ 1 for all sAS:)
Let t ¼ ðtn;y; t1ÞAJt: We define

Ĕt ¼ Ĕtn
}?}Ĕt1 and ĔðÞ ¼ Ĕ0:

In particular, we have ĔðtÞ ¼ Ĕt: By obvious generalization of Example 2.1.6

&xst /&xst :¼ &xstn
}?}&xst1

defines an isometric two-sided homomorphism btðtÞ : Ĕt-Ĕt:

Now suppose that t ¼ ðtn;y; t1Þ ¼ sm ^ ? ^ s1Xs ¼ ðsm;y; s1Þ with jsjj ¼ sj :

By

bts ¼ bsmðsmÞ}?}bs1ðs1Þ

we define an isometric two-sided homomorphism bts : Ĕs-Ĕt: Obviously, btrbrs ¼
bts for all tXrXs: See the appendix of [BS00] for details about inductive limits.
We obtain the following result.

4.3.1. Proposition. The family ðĔtÞtAJt
together with ðbtsÞspt forms an inductive system

of pre-Hilbert B–B-modules. Hence, also the inductive limit Et ¼ lim indtAJt
Ĕt is a pre-

Hilbert B–B-module and the canonical mappings it : Ĕt-Et are isometric two-sided

homomorphisms.

In order to distinguish this inductive limit, where the involved isometries preserve
left multiplication, from a different one in Section 4.4, where this is not the case, we
refer to it as the two-sided inductive limit. This is a change of nomenclature compared
with [BS00], where this limit was referred to as the first inductive limit.
Before we show that the Et form a product system, we observe that the elements

&xst survive the inductive limit.

4.3.2. Proposition. Let xst ¼ iðtÞ &xst for all sAS: Then it &xst ¼ xst for all tAJt: Moreover,

/xst ; bxs
0

t S ¼ Ts;s0
t ðbÞ: ð4:3:1Þ

Proof. Let s; tAJt and choose r; such that rXs and rXt: Then is &xss ¼ irbrs
&xss ¼

ir &xsr ¼ irbrt
&xst ¼ it &xst :
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Moreover,

/xst ; bx
s0
t S ¼ /iðtÞ &xst ; biðtÞ &xs

0
t S ¼ /iðtÞ &xst ; iðtÞb&xs

0
t S ¼ /&xst ; b&xs

0
t S ¼ Ts;s0

t ðbÞ: &

4.3.3. Corollary. ðxst Þ
�
it ¼ &xs�t for all tAJt: Therefore, &xs�t bts ¼ &xs�s for all spt:

4.3.4. Remark. Clearly, E0 ¼ Ĕ0 ¼ B and xs0 ¼ &xs0 ¼ 1 such that Et ¼ E0}Et ¼
x0}Et in the identification according to Definition 2.1.2.

4.3.5. Theorem. The family E} ¼ ðEtÞtAT (with Et as in Proposition 4.3.1) forms a

product system. Each of the families xs} ¼ ðxst ÞtAT (with xst as in Proposition 4.3.2)

forms a unit and the set ðSÞ ¼ fxs}ðsASÞg of units is generating for E}:

Proof. Let s; tAT and choose sAJs and tAJt: Then the proof that the Et form a
product system is almost done by observing that

Ĕs}Ĕt ¼ Ĕs^t: ð4:3:2Þ

From this, intuitively, the mapping ust : isxs}ityt/is^tðxs}ytÞ should define a
surjective isometry. Surjectivity is clear, because (as in the proof of Proposition 4.2.6)

elements of the form is^tðxs}ytÞ are total in Ĕsþt: To see isometry we observe that

isxs ¼ i#sb#ssxs and ityt ¼ i#tb#ttyt for #tXt and #sXs: Similarly, is^tðxs}ytÞ ¼
i#s^#tðb#ssxs}b#ttytÞ: Therefore, for checking the equation

/isxs}ityt; is0x
0
s0}it0y

0
t0S ¼ /is^tðxs}ytÞ; is0^t0 ðx0

s0}y0
t0 ÞS;

we may assume that t0 ¼ t and s0 ¼ s: Now isometry is clear, because both

is}it : Ĕs}Ĕt-Es}Et and is^t : Ĕs^t ¼ Ĕs}Ĕt-Ĕsþt are (two-sided) isometries.
The associativity condition follows directly from associativity of (4.3.2).
The fact that the xst form a unit is obvious from Proposition 4.3.2 and Observation

3.4.3. The set ðSÞ of units is generating, because Et is generated by vectors of the

form itðbn
&xn

tn
}?}b1 &x1t1b0Þ ðbiAB; xi}A ðSÞÞ: &

4.3.6. Remark. We, actually, have shown, using identifications (4.1.2) and (4.3.2),
that is}it ¼ is^t:

4.3.7. Definition. We refer to E} as the GNS-system of T: Proposition 4.2.6 tells us

that the pair ðE}; ðSÞÞ is determined up to isomorphism by the requirement that

ðSÞ be a generating set of units fulfilling (4.3.1). We refer to E
%} as the GNS-system

of Hilbert modules. If B is a von Neumann algebra and T a normal CPD-semigroup,

then all %Es
t are von Neumann modules. We refer to E

%}s

as the GNS-system of

von Neumann modules.
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4.4. Unital units, E0-semigroups and local cocycles

In this section we provide the necessary results to replace the continuity
of the units in Theorem 2.3.11 (which is a property relative to ðFÞ) by an

intrinsic property of }ðFÞ: Without these results we cannot show
Lemma 5.3.1.
A unit vector xAE gives rise to an isometric embedding

x}id : F-E}F ; y/x}y with adjoint x�}id : x}y//x; xSy: Hence, we may

utilize a unital unit x} for a product system E} to embed Es into Et for tXs and,
finally, end up with a second inductive limit (in the nomenclature of [BS00]).
However, since the embeddings no longer preserve left multiplication, we do not
have a unique left multiplication on the inductive limit E ¼ lim indt-NEt: We,
therefore, refer to it as the one-sided inductive limit. The identification by (4.1.2) has
a counter part obtained by sending, formally, s to N: The embedding of ðEsÞ
into ðEsþtÞ; formally, becomes an embedding ðE‘‘N’’Þ into ðE‘‘Nþt’’Þ; i.e. an
endomorphism of ðEÞ: This endomorphism depends, however, on t: The family
formed by all these endomorphisms turns out to be an E0-semigroup.
Let t; sAT with tXs: We define the isometry

gts ¼ xt�s}id : Es-Et�s}Es ¼ Et:

Let tXrXs: Since x} is a unit, we have

gts ¼ xt�s}id ¼ xt�r}xr�s}id ¼ gtrgrs:

That leads to the following result.

4.4.1. Proposition. The family ðEtÞtAT together with ðgtsÞspt forms an inductive system

of right pre-Hilbert B-modules. Hence, also the inductive limit E ¼ lim indt-NEt is a

right pre-Hilbert B-module. Moreover, the canonical mappings kt : Et-E are

isometries.

E contains a distinguished unit vector.

4.4.2. Proposition. Let x ¼ k0x0: Then ktxt ¼ x for all tAT: Moreover, /x; xS ¼ 1:

Proof. Precisely, as in Proposition 4.3.2. &

4.4.3. Theorem. For all tAT we have

E}Et ¼ E; ð4:4:1Þ

extending (4.1.2) in the natural way. Moreover,

E}ðEs}EtÞ ¼ ðE}EsÞ}Et: ð4:4:2Þ
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Proof. The mapping ut : ksxs}yt/ksþtðxs}ytÞ defines a surjective isometry. We
see that this is an isometry precisely as in the proof of Theorem 4.3.5. To see
surjectivity recall that any element in E can be written as krxr for suitable rAT and
xrAEr: If rXt then consider xr as an element of Er�t}Et and apply the prescription
to see that krxr is in the range of ut: If rot; then apply the prescription to
x0}gtrxrAE0}Et: Of course,

usþtðid}ustÞ ¼ utðus}idÞ ð4:4:3Þ

which, after identifications (4.4.1) and (4.1.2), implies (4.4.2). &

4.4.4. Corollary. The family W ¼ ðWtÞtAT of endomorphisms Wt : ðEÞ-
ðE}EtÞ ¼ ðEÞ defined by setting

WtðaÞ ¼ a}idEt
ð4:4:4Þ

is a strict E0-semigroup.

Proof. The semigroup property follows directly from E}Esþt ¼ E}ðEs}EtÞ ¼
ðE}EsÞ}Et: Strictness of each Wt trivially follows from the observation that vectors
of the form x}xt ðxAE; xtAEtÞ span E: &

4.4.5. Remark. Making use of identification (4.4.1), the proof of Theorem 4.4.3,
actually, shows that, ks}id ¼ ksþt: Putting s ¼ 0 and making use of Remark 4.3.4,
we find

kt ¼ ðk0}idÞðx0}idÞ ¼ x}id:

In particular, x ¼ x}xt:

4.4.6. Corollary. kt is an element of ðEt;EÞ: The adjoint mapping is

k�
t ¼ x�}id : E ¼ E}Et-Et:

Therefore, k�
t kt ¼ idEt

and ktk
�
t is a projection onto the range of kt:

4.4.7. Example. The one-sided inductive limit over the product system }ðFÞ of
time ordered Fock modules for the vacuum unit o} is just ðFÞ and W is the

restriction of the time shift group on ð ðFÞÞ to an E0-semigroup on ð ðFÞÞ:

Let w} ¼ ðwtÞtAT be an endomorphism of E}: Then, clearly, setting wt ¼ id}wt

we define a local cocycle w ¼ ðwtÞtAT for W (local means that wt commutes with

Wtð ðEÞÞ; what is clear because Wtð ðEÞÞ commutes with ðEtÞ ¼
idE} ðEtÞC ðEÞ and cocycle means that wsþt ¼ WtðwsÞwt ¼ wtWtðwsÞ and
w0 ¼ 1). By Bhat and Skeide [BS00, Lemma 7.5] also the converse is true.
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4.4.8. Theorem. The formula wt ¼ id}wt establishes a one-to-one correspondence

between local cocycles w for W and endomorphisms w} of E}:

4.4.9. Observation. The E0-semigroup W; or better the space ðEÞ where it acts,
depends highly on the choice of a (unital) unit. (However, if two inductive limits

coincide for two unital units x}; x0}; then the corresponding E0-semigroups are
outer conjugate; see [Ske02].) On the contrary, the set of endomorphisms is an

intrinsic property of E} not depending on the choice of a unit. Therefore, we prefer
very much to study product systems by properties of their endomorphisms, instead
of cocycles with respect to a fixed E0-semigroup.

4.4.10. Remark. We mention a small error in [BS00] where we did not specify the
value of a cocycle at t ¼ 0; which is, of course, indispensable, if we want that cocycles
map units to units (cf. Observation 4.2.3).

Cocycles may be continuous or not. In Theorem 2.3.11 we have computed all units

for }ðFÞ which are continuous in ðFÞ: In Example 4.4.7 we explained that ðFÞ
is the one-sided inductive limit over }ðFÞ for the vacuum unit. Now we investigate
how such continuity properties can be expressed intrinsically, without reference to
the inductive limit.

We say a unit x} is continuous, if the associated CP-semigroup Tx
t ðbÞ ¼ /xt; bxtS

is uniformly continuous. More generally, a set S of units is continuous, if UpS is
uniformly continuous.

4.4.11. Lemma. Let x} be a unital continuous unit for E}; and denote by E the one-

sided inductive limit for x}: Let z} be another unit. Then the following conditions are

equivalent.

1. The function t/x}ztAE is continuous.

2. The semigroups Uz;x and T z are uniformly continuous.

3. The functions t//zt; xtS and t//zt; ztS are continuous.

Moreover, if z}; z0} are two units both fulfilling one of the three conditions above, then

also the function t//zt; z
0
tS is continuous, hence, also the semigroup Uz;z0 is uniformly

continuous.

Proof. The crucial step in the proof is the observation that the norm of mappings on
B of the form b//x; byS (for x; y in some pre-Hilbert B–B-module) can be
estimated by jjxjj jjyjj:
1 ) 2: We have

x}ztþe � x}zt ¼ x}ze}zt � x}xe}zt ¼ x}ðze � xeÞ}zt; ð4:4:5Þ
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so that t/x}zt is continuous, if and only if jjzt � xtjj-0 for t-0: Thus, 1 implies

jjUz;x
t � idjjpjjUz;x

t � Tx
t jj þ jjTx

t � idjj-0;

because the norm of Uz;x
t � Tx

t : b//zt � xt; bxtS is smaller than jjzt � xtjj jjxtjj-0;
and

jjT z
t � idjjpjjTz

t � Uz;x
t jj þ jjUz;x

t � idjj-0;

because the norm of T z
t � Uz;x

t : b//zt; bðzt � xtÞS is smaller than jjztjj jjzt � xtjj-0

and by the preceding estimate.
2 ) 3 is trivial, so let us come to 3 ) 1: We have

jjzt � xtjj2pjj/zt; ztS� 1jj þ jj/zt; xtS� 1jj þ jj/xt; ztS� 1jj þ jj/xt; xtS� 1jj

which tends to 0 for t-0; if 3 holds. Then (4.4.5) implies continuity of x}zt:

Now let z}; z0} be two units fulfilling 3. Then

jj/zt; z
0
tS� 1jjpjj/zt; z

0
t � xtSjj þ jj/zt � xt; xtSjj þ jj/xt; xtS� 1jj-0

for t-0 so that t//zt; z
0
tS is continuous. As before, this implies that Uz;z0 is

uniformly continuous. &

The following theorem is simple corollary of Theorem 4.3.5 and Lemma 4.4.11.
Taking into account also the extensions following Corollary 5.4.3 which assert that a
continuous unit is contained in a time ordered product systems of von Neumann
B��–B��-modules, and the fact that by Lemma 3.5.4(2) units in such product systems
may be normalized within that system, one may show that we can drop the
assumption in brackets.

4.4.12. Theorem. For a CPD-semigroup T on a set S containing an element s such that

Ts;s is uniformly continuous (and that Ts;s
t ð1Þ ¼ 1 for all tARþ) the following

statements are equivalent:

1. T is uniformly continuous.

2. The functions t/Ts00;s0
t ð1Þ are continuous for all s00; s0AS:

3. The functions t/Ts;s0
t ð1Þ and t/Ts0;s0

t ð1Þ are continuous for all s0AS:

The main idea in the proof of Lemma 4.4.11 is that a certain (completely bounded)
mapping can be written as b//x; byS for some vectors in some GNS-space.
Theorem 4.4.12 is an intrinsic result about CPD-semigroups obtained, roughly
speaking, by rephrasing all statements from Lemma 4.4.11 involving units in terms
of the associated CPD-semigroup. It seems difficult to show Theorem 4.4.12 directly
without reference to the GNS-system of the CPD-semigroup.

ARTICLE IN PRESS
S.D. Barreto et al. / Journal of Functional Analysis 212 (2004) 121–181160



Another consequence of Lemma 4.4.11 concerns continuity properties of local
cocycles.

4.4.13. Corollary. Let E} be generated by a subset SC ðE}Þ of units such that UpS

is a uniformly continuous CPD-semigroup. Let x}AS be a unital unit, and denote by E

the one-sided inductive limit for x}: Then for a morphism w} and the associated local

cocycle w ¼ ðid}wtÞtAT the following equivalent conditions

1. The CPD-semigroup UpðS,w}SÞ (see Observation 4.2.3) is uniformly continuous.

(In particular, if S is maximal continuous, then w} leaves S invariant.)

2. For some x0}AS all functions t//x0t; ztS; t//zt; ztS ðz}Aw}SÞ are

continuous.

both imply that w is strongly continuous.

Proof. By simple applications of Lemma 4.4.11(1) and (2) are equivalent, and for the

remaining implication it is sufficient to choose x0} ¼ x}: So assume that all

functions t//zt; ztS; t//xt; ztS ðz}AS,w}SÞ are continuous. Then

jjwtzt � ztjj ¼ jjx}wtzt � x}ztjjpjjx}wtzt � xjj þ jjx}zt � xjj-0 ð4:4:6Þ

for t-0: Applying wsþe � ws ¼ id}ðwe � idEeÞ}ws to a vector of the form x}xt

where xtAEt is as in (4.2.3), we conclude from (4.4.6) (choosing e40 so small that
we � idEe comes to act on a single unit only) that the function s/wsðx}xtÞ is
continuous. Since the vectors x}xt span E; w is strongly continuous. &

4.4.14. Observation. If w is bounded locally uniformly (for instance, if w} is

contractive) or, equivalently, if the extension of w to %E is also strongly continuous,
then also the reverse implication holds. (We see by the same routine arguments that
the inner product /xt;wtztS ¼ /x}xt; x}wtztS ¼ /x;wtðx}ztÞS depends con-
tinuously on t and, similarly, also /wtzt;wtztS:)

4.4.15. Definition. A morphism w} is continuous, if S,w}S is continuous for some
generating continuous subset S of units.

5. Type I product systems

In this chapter we show that type Is product systems of von Neumann modules are
time ordered Fock modules. This is the analogue of Arveson’s result that type I
Arveson systems are symmetric Fock spaces [Arv89].
In Section 5.1 we show that a product system is contained in a time ordered

product system, if it contains at least one (continuous) central unit. In Section 5.2 we
study the continuous endomorphisms of the time ordered Fock module. We find its
projection morphisms. In Section 5.3 and provide a necessary and sufficient criterion
for that a given set of (continuous) units is (strongly) generating. The basic idea (used
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by Bhat [Bha01] for a comparable purpose) is that a product system of von
Neumann modules is generated by a set of units, if and only if there is precisely one
projection endomorphism (namely, the identity morphism), leaving the units of this
set invariant. In Section 5.4 we utilize the Christensen–Evans Lemma C.2 to show
that the GNS-system of a uniformly continuous CPD-semigroup has a central unit
and, therefore, is contained in a time ordered Fock module by Section 5.1. By
Section 5.3 these units generate a whole time ordered subsystem. We point out that
the result by Christensen and Evans is equivalent to show existence of a central unit
in any type Is system.

5.1. Central units in type I product systems

In this section we show that type I product systems are contained in time ordered

Fock modules, if at least one of the continuous units is central. So let o} be a central

unit in an arbitrary product system and let x} be any other unit. Then

Ux;o
t ðbÞ ¼ /xt; botS ¼ /xt;otSb ¼ Ux;o

t ð1Þb ð5:1:1Þ

and

Ux;o
sþtð1Þ ¼ Ux;o

t ðUx;o
s ð1ÞÞ ¼ Ux;o

t ð1ÞUx;o
s ð1Þ:

In other words, Ux;oð1Þ is a semigroup in B and determines Ux;o by (5.1.1). In

particular, Uo;oð1Þ is a semigroup in CBðBÞ: If o} is continuous, then all Uo;o
t ð1Þ are

invertible. Henceforth, we may assume without loss of generality that o} is unital,
i.e. To ¼ id is the trivial semigroup.

5.1.1. Lemma. Let o} be a central unital unit and let x} be another unit for a product

system E} such that the CPD-semigroup Upfo}; x}g is uniformly continuous. Let

bAB denote the generator of the semigroup Uo;xð1Þ in B; i.e. Uo;x
t ð1Þ ¼ etb; and let Lx

denote the generator of the CP-semigroup Tx on B: Then the mapping

b/LxðbÞ � bb� b�b ð5:1:2Þ

is completely positive, i.e. Lx is a CE-generator.

Proof. We consider the CP-semigroup Uð2Þ ¼ ðUð2Þ
t ÞtARþ

on M2ðBÞ with U
ð2Þ
t ¼

Uo;o
t

U
x;o
t

Uo;x
t

U
x;x
t

� �
whose generator is

Lð2Þ b11 b12

b21 b22

� 	
¼ d

dt






t¼0

Uo;o
t ðb11Þ Uo;x

t ðb12Þ
Ux;o

t ðb21Þ Ux;x
t ðb22Þ

 !
¼

0 b12b

b�b21 Lxðb22Þ

� 	
:
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By Theorem 3.4.7 and Lemma 3.4.6 Lð2Þ is conditionally completely positive. Let

Ai ¼ 0
ai

0
ai

� �
and Bi ¼ 0

0
�bi

bi

� �
: Then AiBi ¼ 0; i.e.

P
iAiBt ¼ 0; so that

0p
X

i;j

B�
i L

ð2ÞðA�
i AjÞBj ¼

X
i;j

B�
i

0 a�
i ajb

b�a�
i aj Lxða�

i ajÞ

 !
Bj

¼
X

i;j

0 0

0 b�
i ðLxða�

i ajÞ � a�
i ajb� b�a�

i ajÞbj

� 	
:

This means that (5.1.2) is completely positive. &

Now we show how the generator of CPD-semigroups (i.e. many units) in product

systems with a central unit boils down to the generator Lx of a CP-semigroup (i.e. a
single unit) as in Lemma 5.1.1. Once again in these notes, we exploit the ideas of
Section 2.2.

5.1.2. Theorem. Let E} be a product system with a subset SC ðE}Þ of units and a

central (unital) unit o} such that UpS,fo}g is a uniformly continuous CPD-

semigroup. Then the generator L of the (uniformly continuous) CPD-semigroup T ¼
UpS is a CE-generator.

Proof. For x}AS denote by bxAB the generator of the semigroup Uo;xð1Þ in B: We

claim as in Lemma 5.1.1 that the kernel L0 on S defined by setting

L
x;x0

0 ðbÞ ¼ Lx;x0 ðbÞ � bbx0 � b�xb

(for ðx}; x0}ÞAS � S) is completely positive definite, what shows the theorem. By

Lemma 3.2.1(4) it is equivalent to show that the mapping L
ðnÞ
0 on MnðBÞ defined by

setting

ðLðnÞ
0 ðBÞÞij ¼ Lxi ;x j

ðbijÞ � bijbx j � b�xi bij

is completely positive for all choices of nAN and xi}AS ði ¼ 1;y; nÞ:
First, observe that by Section 2.2 MnðE}Þ ¼ ðMnðEtÞÞtAT is a product system of

MnðBÞ–MnðBÞ-modules. Clearly, the diagonal matrices XtAMnðEtÞ with entries xi
tdij

form a unit X} for MnðE}Þ: Moreover, the unit O} with entries dijo} is central

and unital. For the units O} and X} the assumptions of Lemma 5.1.1 are fulfilled.

The generator #b of the semigroup UO;Xð1Þ is the matrix with entries dijbxi : Now

(5.1.2) gives us back L
ðnÞ
0 which, therefore, is completely positive. &

5.1.3. Corollary. The GNS-system E} of T is embedable into a time ordered product

system. More precisely, let ðF ; zÞ be the (completed) Kolmogorov decomposition for the
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kernel L0 with the canonical mapping z : x}/zx: Then

x}/x}ðbx; zxÞ

extends as an isometric morphism E}- }ðFÞ:

Notice that (in the notations of Theorem 5.1.2) the preceding morphism may be

extended to ESo} where So ¼ S,fo}g; by sending o}A ðE}Þ to o}A cðFÞ:

5.2. Morphisms of the time ordered Fock module

In the preceding section we found that, roughly speaking, type I product systems
with a central unit may be embedded into a time ordered Fock module. In the
following section we want to find criteria to decide, whether this Fock module is
generated by such a subsystem. To that goal, in this section we study the

endomorphisms of }ðFÞ:
After establishing the general form of (possibly unbounded, but adjointable)

continuous morphisms, we find very easily characterizations of isometric,
coisometric, unitary, positive, and projection morphisms. The generalizations of
ideas from Bhat’s ‘‘cocycle computations’’ in [Bha01] are straightforward.
Contractivity requires slightly more work and, because we do not need it for our
main goal, we postpone it to Appendix A.
Besides (4.1.3), the crucial property of a morphism is to consist of adjointable

mappings. Adjointability, checked on some total subset of vectors, assures well-

definedness by Observation 2.1.1. If w} is a morphism (on an algebraic product
system) except that the wt are allowed to be unbounded, then we speak of a possibly

unbounded morphism. As product systems we consider the algebraic subsystems

ðFÞ ¼ ð ðFÞÞtARþ
of the time ordered systems }ðFÞ which are generated by

the sets cðFÞ of continuous units.
Recall that a continuous morphism w} of time ordered Fock modules

corresponds to a transformation

x}ðb; zÞ/x}ðgwðb; zÞ; Zwðb; zÞÞ ð5:2:1Þ

among sets of continuous units. We want to know which transformations of the
parameter space B � F of the continuous units define operators wt by extending
(5.2.1) to vectors of the form (4.2.3).

5.2.1. Theorem. Let F and F 0 be Hilbert B–B-modules. Then setting

wtxtðb; zÞ ¼ xtðgþ bþ/Z; zS; Z0 þ azÞ; ð5:2:2Þ
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we establish a one-to-one correspondence between possibly unbounded continuous

morphisms w} ¼ ðwtÞtARþ
from ðFÞ to ðF 0Þ and matrices

G ¼
g Z�

Z0 a

� 	
A ðB"F ;B"F 0Þ ¼

CBðBÞ CBðFÞ�

CBðF 0Þ ðF ;F 0Þ

� 	
:

Moreover, the adjoint of w} is given by the adjoint matrix G� ¼ g�
Z

Z0�
a�

� �
:

Proof. From bilinearity and adjointability of wt we have

/xtðb; zÞ; bxtðgw� ðb0; z0Þ; Zw� ðb0; z0ÞÞS ¼ /xtðgwðb; zÞ; Zwðb; zÞÞ; bxtðb0; z0ÞS ð5:2:3Þ

for all tARþ; b; b
0AB; zAF ; z0AF 0 or, equivalently, by differentiating at t ¼ 0 and

(3.5.2)

/z; bZw� ðb0; z0ÞSþ bgw� ðb0; z0Þ þ b�b ¼ /Zwðb; zÞ; bz0Sþ bb0 þ gwðb; zÞ�b: ð5:2:4Þ

It is easy to check that validity of (5.2.2) implies (5.2.4) and, henceforth, (5.2.3).
Therefore, (5.2.2) defines a unique adjointable bilinear operator ŵt from the
bimodule generated by all xtðb; zÞ ðbAB; zAFÞ (i.e. the Kolmogorov decomposition
of Utp cðFÞ) into ðF 0Þ: It is clear that (as in the proof of Proposition A.6) the ŵt

define an operator on ðFÞ; that this operator is the extension of (5.2.1) to vectors
of the form (4.2.3), and that the operators fulfill (4.1.3). We put w0 ¼ idB; and the
wt form a morphism.
It remains to show that (5.2.2) is also a necessary condition on the form of the

functions gw : B � F-B and Zw : B � F-F 0: Putting z ¼ 0; z0 ¼ 0 in (3.5.2), we find

bgw� ðb0; 0Þ þ b�b ¼ bb0 þ gwðb; 0Þ
�
b: ð5:2:5Þ

Putting also b ¼ b0 ¼ 0 and b ¼ 1; we find gw� ð0; 0Þ� ¼ gwð0; 0Þ: We denote this
element of B by g: Reinserting arbitrary bAB; we find that gACBðBÞ: Reinserting
arbitrary bAB; we find gwðb; 0Þ ¼ gþ b and, similarly, gw� ðb0; 0Þ ¼ g� þ b0:
Putting in 5.2.4 z ¼ 0; inserting gwðb; 0Þ� and subtracting b�b; we obtain

bgw� ðb0; z0Þ ¼ /Zwðb; 0Þ; bz0Sþ bb0 þ g�b ¼ /Zwðb; 0Þ; bz0Sþ bgw� ðb0; 0Þ

(recall that g commutes with b), or

bgw� ðb0; z0Þ � bgw� ðb0; 0Þ ¼ /Zwðb; 0Þ; bz0S: ð5:2:6Þ

We obtain a lot of information. Firstly, the left-hand side and the right-hand side

cannot depend on b0 and b; respectively. Therefore, Zwðb; 0Þ ¼ Zwð0; 0Þ which we
denote by Z0AF 0: Secondly, we put b ¼ 1 and multiply again with an arbitrary bAB
from the left. Together with the original version of (5.2.6) we obtain that Z0ACBðF 0Þ:
Finally, with b ¼ 1 we obtain gw� ðb0; z0Þ ¼ g� þ b0 þ/Z0; z0S: A similar computation
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starting from z0 ¼ 0; yields Zw� ðb0; 0Þ ¼ Zw� ð0; 0Þ ¼ Z for some ZACBðFÞ and
gwðb; zÞ ¼ gþ bþ/Z; zS:

Inserting the concrete form of gwð�Þ into (5.2.4) and subtracting g�b þ bb0 þ b�b ¼
bg� þ bb0 þ b�b; we obtain

/z; bZw� ðb0; z0ÞSþ b/Z0; z0S ¼ /Zwðb; zÞ; bz0Sþ/z; ZSb: ð5:2:7Þ

Again, we conclude that Zw� ðb0; z0Þ ¼ Zw� ð0; z0Þ and Zwðb; zÞ ¼ Zwð0; zÞ cannot depend
on b0 and b; respectively. Putting b ¼ 1; we find /z; Zw� ð0; z0Þ � ZS ¼ /Zwð0; zÞ �
Z0; z0S: It follows that the mapping a : z/Zwð0; zÞ � Z0 has an adjoint, namely,

a� : z0/Zw� ð0; z0Þ � Z: Since F and F 0 are complete, a is an element of ðF ;F 0Þ:
Inserting a and a� in (5.2.7), and taking into account that Z and Z0 are central, we find
that aA ðF ;F 0Þ; and Zwðb; zÞ ¼ Z0 þ az and Zw� ðb0; z0Þ ¼ Zþ a�z0 as desired. &

5.2.2. Corollary. A (possibly unbounded) continuous endomorphism w} of ðFÞ is

self-adjoint, if and only if G is self-adjoint.

Of course, the correspondence is not functorial in the sense that ww0} ¼
ðwtw

0
tÞtARþ

is not given by GG0: However, we easily check the following.

5.2.3. Corollary. Let w} be a morphism with matrix G: Then

1 0 0

g 1 Z�

Z0 0 a

0
B@

1
CA

1

b

z

0
B@

1
CA ¼

1

gwðb; zÞ
zwðb; zÞ

0
B@

1
CA and the mapping w}/ #G ¼

1 0 0

g 1 Z�

Z0 0 a

0
B@

1
CA

is functorial in the sense that #G00 ¼ #G #G0 for w00} ¼ ww0}:

5.2.4. Corollary. The continuous morphism w} with the matrix G ¼ g
Z0

Z�
a

� �
is

isometric, if and only if a is isometric, Z0ACBðF 0Þ arbitrary, Z ¼ �a�Z0; and g ¼
ih � /Z0;Z0S

2
for some h ¼ h�ACBðBÞ: It is coisometric, if and only if a is coisometric,

ZACBðFÞ arbitrary, Z0 ¼ �aZ; and g ¼ ih � /Z;ZS
2

for some h ¼ h�ACBðBÞ: It is unitary

(i.e. an isomorphism), if and only if a is unitary, ZACBðFÞ arbitrary, Z0 ¼ �aZ; and

g ¼ ih � /Z;ZS
2

for some h ¼ h�ACBðBÞ or, equivalently, if a is unitary, Z0ACBðF 0Þ
arbitrary, Z ¼ �a�Z0; and g ¼ ih � /Z0;Z0S

2
for some h ¼ h�ACBðBÞ:

The form of these conditions reminds us very much of the form of the
corresponding conditions for solutions of quantum stochastic differential equations;
see e.g. [Ske00c].
After the characterizations of isomorphisms we come to projections. Of course, a

projection endomorphism must be self-adjoint and so must be its matrix.
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5.2.5. Corollary. A continuous endomorphism w} of ðFÞ is a projection

morphism, if and only if its matrix G has the form

G ¼
�/Z; ZS Z�

Z p

� 	
;

where p is a projection in ðFÞ; and ZAð1� p ÞCBðFÞ:

Since a continuous morphism of a product system }ðFÞ or s}ðFÞ (or between
such) sends continuous units to continuous units, it restricts to a morphism of

ðFÞ (or between such). Therefore, all characterizations extend to the case of
Hilbert modules and the case of von Neumann modules.

5.3. Strongly generating sets of units

Now we characterize strongly generating sets of continuous units for time ordered
product systems of von Neumann modules. The idea is that, if a set of units is not
strongly generating, then by Observation 4.1.2 there exists a non-trivial projection
morphism onto the subsystem generated by these units. In order to apply our
methods we need to know that this morphism is continuous.

5.3.1. Lemma. Let p} be a projection morphism leaving invariant (i.e. px} ¼ x} for

all x}AS) a non-empty subset SC cðFÞ of continuous units for s}ðFÞ: Then p} is

continuous.

Proof. By Lemma 3.5.4(2), the completion (therefore, a fortiori the strong closure) of

what a single continuous unit x}ðb; zÞAS generates in a time ordered system

contains the unital unit x}ð� /z;zS
2

; zÞ: Therefore, we may assume that S contains a

unital unit x}: Now let x0} be an arbitrary continuous unit. Then the function

t//xt; ptx
0
tS ¼ /ptxt; x

0
tS ¼ /xt; x

0
tS is continuous. Moreover, we have

/ptx
0
t; ptx

0
tS�/xt; xtS ¼ /x0t � xt; ptx

0
tSþ/xt; ptðx0t � xtÞS-0

for t-0: From this it follows as, for instance, in (4.4.5) that also the function

t//ptx
0
t; ptx

0
tS is continuous. By Lemma 4.4.11 also the unit px0} is continuous. As

x0} was arbitrary, p} is continuous. &

5.3.2. Theorem. Let F be a von Neumann B–B-module and let SC cðFÞ be a

continuous subset of units for s}ðFÞ: Then S is strongly generating, if and only if the
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B–B-submodule

F0 ¼
Xn

i¼1
aizibi j nAN; ziASF ; ai; biAB :

Xn

i¼1
aibi ¼ 0

( )
ð5:3:1Þ

of F is strongly dense in F, where SF ¼ fzAF j (bAB : x}ðb; zÞASg:

Proof. Denote by S} the strong closure of the product subsystem of s}ðFÞ
generated by the units in S: We define another B–B-submodule

F0 ¼
Xn

i¼1
aizibi j nAN; ziASF ; ai; biAB

( )

of F : We have F*F0
s
*F0

s
: Denote by p0 and p0 in ðFÞ the projections onto

F0
s
and F 0

s
; respectively. (Since F0

s
and F0

s
are von Neumann modules, the

projections exist, and since F0
s
and F 0

s
are B–B-submodules, the projections are

bilinear.) We have to distinguish three cases.

(i) FaF 0
s
: In this case p0a1 and the matrix 0

0
0
p0

� �
defines a non-trivial projection

morphism leaving S} invariant.

(ii) F ¼ F 0
s
aF0

s
: Set q ¼ 1� p0: We may rewrite an arbitrary element of F 0 as

Xn

i¼1
aizibi ¼

Xn

i¼1
ðaizi � ziaiÞbi þ

Xn

i¼1
ðziai � zaiÞbi þ z

Xn

i¼1
aibi;

where zASF is arbitrary. We find q
Pn

i¼1aizibi ¼ qz
Pn

i¼1aibi: Putting ai ¼ bi ¼ 1dik;

we see that the element Z ¼ qz cannot depend on z: Varying ak ¼ b for zk ¼ z; we see

that bZ ¼ Zb; i.e. ZACBðFÞ: Finally, p0a1 and Za0: Hence, the matrix �/Z;ZS
Z

Z�
p0

� �
defines a non-trivial projection morphism leaving S} invariant.

(iii) F ¼ F 0
s ¼ F0

s
: Consider the projection morphism with matrix �/Z;ZS

Z
Z�
p

� �
and suppose that it leaves S} invariant. Then z ¼ Zþ pz for all zASF : Since Z is in
the center, an element in F0 written as in (5.3.1) does not change, if we replace zi with

pzi: It follows pF ¼ pF0
s ¼ F0

s ¼ F ; whence p ¼ 1 and Z ¼ ð1� p ÞZ ¼ 0: Therefore,

the only (continuous) projection morphism leaving S} invariant is the identity
morphism. &

5.3.3. Corollary. A single unit x}ðb; zÞ is generating for s}ðFÞ; if and only if

F ¼ spansfðbz� zbÞb0 : b; b0ABg:

5.3.4. Remark. In the case where B ¼ ðGÞ for some separable Hilbert space G

we have F ¼ ðG;G %#HÞ where HDid#H ¼ CBðFÞ is the center of F and
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z ¼
P

nbn#en for some ONB ðenÞnAN (N a subset of N) and biAB such thatP
nb�

nbnoN: The condition stated in [Bha01], which, therefore, should be equivalent

to our cyclicity condition in Corollary 5.3.3, asserts that the set f1; b1; b2;yg should
be linearly independent in a certain sense (stronger than usual linear independence).

5.3.5. Observation. We see explicitly that the property of the set S to be generating

or not is totally independent of the parameters bi of the units x}ðbi; ziÞ in S: Of
course, we new this before from the proof of Lemma 5.3.1.

5.3.6. Remark. We may rephrase Step (ii) as F0
s ¼ F0

s
"qB for some central

projection in qAB such that qB is the strongly closed ideal in B generated by /Z; ZS:
By the same argument as in Step (iii) we obtain the most important consequence.

5.3.7. Corollary. The mapping

x}ðb; zÞ/x} bþ/Z; ZS
2

; z� Z
� 	

(which is isometric by (2.3.5)) extends as an isomorphism from the subsystem of
s}ðFÞ generated by S onto s}ðF0

sÞ: In other words, each strongly closed product

subsystem of the time ordered product system s}ðFÞ of von Neumann modules

generated by a subset SC cðFÞ of continuous units, is isomorphic to a time ordered

product system of von Neumann modules over a von Neumann submodule of F.

5.3.8. Remark. If F0
s
aF0

s
; then, clearly, the subsystem isomorphic to s}ðF0

sÞ
does not coincide with the subsystem s}ðF0

sÞ: It does not even contain the vacuum
unit of s}ðFÞ:

5.3.9. Remark. If S contains a unit x}ðb0; z0Þ with z0 ¼ 0 (in other words, as for the
condition in Theorem 5.3.2 we may forget about b0; if S contains the vacuum unit

o} ¼ x}ð0; 0Þ), then F0 ¼ F0: (Any value of
Pn

i¼1aibi may be compensated inPn
i¼0aibi by a suitable choice of a0; b0; because a0z0b0 does not contribute to the sumPn
i¼0aizibi:) We obtain a strong version of Theorem 3.5.5.

5.4. Type Isn product systems

5.4.1. Theorem. Let T ¼ ðTtÞtARþ
be a normal uniformly continuous CP-semigroup on

a von Neumann algebra B: Let F, zAF ; and bAB be as in Theorem C.4 (by [CE79]), i.e.

F is a von Neumann B–B-module such that F ¼ spansfðbz� zbÞb0 : b; b0ABg and

T ðb;zÞ ¼ T : Then the strong closure of the GNS-system of T is (up to isomorphism)
s}ðFÞ and the generating unit is x}ðb; zÞ: Here F and x}ðb; zÞ are determined up to

unitary isomorphism.
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Proof. This is a direct consequence of Theorem C.4 and Corollary 5.3.3 of
Theorem 5.3.2. &

Proof of Theorem 3.5.2. By Theorem 5.4.1 the subsystem of the GNS-system
generated by a single unit in S has a central (continuous) unit. By Theorem 5.1.2 the
generator of T is a CE-generator. The uniqueness statement follows as in Corollary

5.3.7 from the construction of the module F0
s
: &

5.4.2. Theorem. Type Isn product systems are time ordered product systems of von

Neumann modules.

Proof. By Theorem 3.5.2 (and Corollary 5.1.3) a type Isn product system is contained

in a time ordered product system. By Corollary 5.3.7 it is all of a time ordered
product system. &

5.4.3. Corollary. The (strong closure of the) GNS-system of a uniformly continuous

normal CPD-semigroup is a time ordered product system of von Neumann modules.

Extensions. Section 5.1 works for Hilbert modules F (even for pre-Hilbert
modules, but honestly speaking, it is not reasonable to do so, because the
construction of sufficiently many units in a time ordered Fock modules involves
norm limits). Also the analysis of continuous morphisms in Section 5.2 works for
Hilbert modules. In the proof of Theorem 5.3.2 we need projections onto
submodules in two different places. Firstly, we need the projections onto the

submodules F0
s
and F 0

s
of F : Secondly, if S is not strongly generating, then

there should exists projections onto the members of the subsystem strongly
generated by S:
For both it is sufficient that F is a right von Neumann module (the left action of B

need not be normal). Then the projections onto F0
s
and F 0

s
; clearly, exist. But, also

for the second condition we simply may pass to the strong closure of the members of
the product systems. (For this it is sufficient that B is a von Neumann algebra. Left
multiplication by bAB is strongly continuous as operation on the module. It just may
happen that left multiplication is not strongly continuous as mapping b/bx:) This

even shows that }ðFÞ and s}ðFÞ have the same continuous morphisms (in
particular, projection morphisms), as soon as F is a right von Neumann module (of
course, still a Hilbert B–B-module), because any continuous morphism leaves
invariant the continuous units and whatever is generated by them in whatever
topology.
As Lemma C.2 does not need normality, Theorem 5.4.1 remains true for

uniformly continuous CP-semigroups (still on a von Neumann algebra). We find
Theorem 3.5.2 for uniformly continuous CPD-semigroups. Consequently, Theorem
5.4.2 remains true for type Is product systems of (right) von Neumann modules and
Corollary 5.4.3 remains true for uniformly continuous CPD-semigroups on von
Neumann algebras.
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Finally, all results can be extended in the usual way to the case when B is a (unital)
C�-algebra, by passing to the bidual B��: We obtain then the weaker statements that
the type I product systems and GNS-systems of uniformly continuous CPD-
semigroups are strongly dense subsystems of product systems of von Neumann
modules associated with time ordered Fock modules. Like in the case of the CE-
generator, we can no longer guarantee that the inner products of the canonical units

x} and the bx are in B: Example 4.2.4 shows clearly (maybe, more clearly than

existing examples) that we cannot discuss this away: There are product systems of
uniformly continuous CP-semigroups (even automorphism groups) on a unital C�-
algebra whose generator cannot be written in CE-form.

Resumé. Notice that Theorem 5.4.1 is the first and the only time where we use the
results by Christensen and Evans [CE79] quoted in Appendix C (in particular,
Lemma C.2). In Sections 5.1 and 5.2 we reduced the proof of Theorem 5.4.2 to the
problem to show existence of a central unit among the (continuous) units of a type Isn
product system. In fact, Lemma 5.1.1 together with Corollary 5.3.7 shows that
existence of a central unit is equivalent to Lemma C.2. With our methods we are also
able to conclude back from the form (3.5.1) of a generator to Lemma C.2, a result
which seems not to be accessible by the methods in [CE79]. We summarize:

5.4.4. Theorem. The following statements are equivalent:

1. Bounded derivations with values in a von Neumann module are inner.
2. The generator of a normal uniformly continuous CP-semigroup on a von Neumann

algebra has CE-form.

3. The GNS-system of a normal uniformly continuous CP-semigroup on a von

Neumann algebra has a central unital unit.

If we are able to show existence of a central unit directly, then we will provide a
new proof of the results by Christensen and Evans [CE79]. We do not yet have
concrete results into that direction. But, we expect that a proof, if possible, should
reduce the problem to the application of one deep theorem (like the Krein–Milman
theorem or an existence theorem for solutions of quantum stochastic differential
equations) and rather algebraic computations in product systems. Also the order
structure of CPD-semigroups, which we discuss in Appendix A, could play an
essential role.
We remark that the methods from Section 5.1 should work to some extent also for

unbounded generators. More precisely, if E} is a product system with a central

unital unit o} such that the semigroups Ux;o in B have a reasonable generator (not
in B; but for instance, a closed operator on G; when BC ðGÞ), then this should be
sufficient to split of a (possibly unbounded) completely positive part from the
generator. It is far from being clear what a ‘‘GNS-construction’’ for such unbounded
completely positive mappings could look like (see, for instance, the example from
[LS01] mentioned in Remark 2.3.15). Nevertheless, the splitting of the generator
alone, so far a postulated property in literature, would constitute a considerable
improvement.
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6. Outlook

In these notes we defined type I product systems and we clarified the structure of
type I systems of von Neumann modules as being (up to isomorphism) time ordered
systems. For type I systems of Hilbert modules we know at least that they are
(strongly dense) subsystems of time ordered systems of von Neumann modules.
Example 4.2.4 tells us that this may not be improved without additional
assumptions.
In [Ske01c] the category of spatial product systems of Hilbert modules is defined as

those which admit a central unital unit. It is shown that a spatial type I system of
Hilbert modules (a so-called completely spatial system) is isomorphic to a time

ordered system }ðFÞ for a two-sided Hilbert module F (unique up to
isomorphism). Moreover, a spatial product system contains a unique maximal
completely spatial subsystem. The index of a spatial system is defined as the two-
sided module F of its maximal completely spatial subsystem and a product of spatial
product systems is provided, under which the index is additive (direct sum).
So far, we have a theory of type Isn systems and of spatial type I systems which

parallels completely that of Arveson. A uniform definition of type I was possible,
because the properties of a type I system do not depend on our choice of the
generating set of continuous units. (A simple multiplication by a non-measurable
phase function shows that incompatible choices are possible.) For more general
product systems, those not of type I, it is no longer possible to express continuity
requirements just in terms of units. Presently, we are working on a definition of
continuous types II and III systems; see [Ske03]. For type II systems, where we fix a
unital reference unit, our definition will be compatible with that notion of a
continuous section which comes from the embedding of all Et into the same
inductive limit E; see Section 4.4. Example 4.2.8 provides us with a type III system.
We see in the case of spatial systems that we have to distinguish between two

different types of units, such which are just continuous and central ones. Only in the
case of von Neumann modules the difference between spatial and non-type III
disappears. We mention also a construction from Liebscher [Lie03] who constructs
from every Arveson system a type II Arveson system (with index f0g). This
construction promises to work also for Hilbert modules and von Neumann modules.
Presently, we apply it starting from both time ordered systems and our type III
example.
With any Arveson system there is an associated spectral C�-algebra. Zacharias

[Zac00a,Zac00b] computed their K-theory and showed their pure infiniteness in the
non-type III case. Also here it is likely that the same methods work for spatial
product systems of Hilbert modules.

Appendix A. Morphisms and order

The goal of this appendix is to establish the analogue of Theorem 3.3.3 for the
(strong closure of the) GNS-system of a (normal) CPD-semigroup T in KSðBÞ for

ARTICLE IN PRESS
S.D. Barreto et al. / Journal of Functional Analysis 212 (2004) 121–181172



some von Neumann algebra B: It is a straightforward generalization of the result for
CP-semigroups obtained in [BS00] and asserts that the set of CPD-semigroups
dominated by T is order isomorphic to the set of positive contractive morphisms of
its GNS-system. Then we investigate this order structure for the time ordered Fock
module with the methods from Section 5.2.

A.1. Definition. Let T be a CPD-semigroup in KSðBÞ: By DT we denote the set of
CPD-semigroups S in KSðBÞ dominated by T; i.e. StADTt

for all tAT; which we

indicate by TXS: If we restrict to normal CPD-semigroups, then we write Kn
SðBÞ

and Dn
T; respectively.

Obviously, X defines partial order among the CPD-semigroups.

A.2. Proposition. Let TXS be two CPD-semigroups in KSðBÞ: Then there exists a

unique contractive morphism v} ¼ ðvtÞtAT from the GNS-system E} of T to the GNS-

system F} of S; fulfilling vtx
s
t ¼ zst for all sAS:

Moreover, if all vt have an adjoint, then w} ¼ ðv�t vtÞtAT is the unique positive,

contractive endomorphism of E} fulfilling Ss;s0
t ðbÞ ¼ /xst ;wtbx

s0
t S for all s; s0AS;

tAT and bAB:

Proof. This is a combination of the construction in the proof of Lemma 3.3.2 (which
asserts that there is a family of contractions v̆t from the Kolmogorov decomposition

Ĕt of Tt to the Kolmogorov decomposition F̆t of St) and arguments like in Section

4.3. More precisely, denoting by bT
ts; iTt and bS

ts ; iSt the mediating mappings and the

canonical embeddings for the two-sided inductive limits for the CPD-semigroups T

and S; respectively, we have to show that the mappings iSt v̆tĔt-Ft; where vt ¼
v̆tn

}?}v̆t1 ðtAJtÞ; define a mapping vt :Et-Ft (obviously, contractive and

bilinear). From

v̆s}v̆t ¼ v̆s^t ðA:1Þ

we conclude bS
ts v̆s ¼ v̆tb

T
ts: Applying iSt to both sides the statement follows. Again

from (A.1) (and Remark 4.3.6) we find that vs}vt ¼ vsþt: Clearly, v} is unique,

because we know the values on a generating set of units. The statements about w}

are now obvious. &

A.3. Theorem. Let E
%}s ¼ ðEtÞtAT be a product system of von Neumann B–B-modules

Et; and let SC ðE %}sÞ be a subset of units for E
%}s

: Then the mapping O : w}/Sw

defined by setting

ðSx;x0
w ÞtðbÞ ¼ /xt;wtbx

0
tS

for all tAT; x; x0AS; bAB; establishes an order morphism from the set of contractive,

positive morphisms of E
%}s

(equipped with pointwise order) onto the set Dn
T of normal
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CPD-semigroups S dominated by T ¼ UpS: It is an order isomorphism, if and only if

ES %}s ¼ E
%}s

:

Proof. If ES %}s

aE
%}s

; then O is not one-to-one, because the identity morphism

wt ¼ idEt
and the morphism p} ¼ ðptÞtAT of projections pt onto ES

t

s
are different

morphisms giving the same CPD-semigroup Sw ¼ Sp: On the other hand, any

morphism w} for ES %}s

extends to a morphism composed of mappings wtpt of E
%}s

giving the same Schur semigroup Sw: Therefore, we are done, if we show the

statement for ES %}s ¼ E
%}s

:
So let us assume that S is generating. Then O is one-to-one. It is also order

preserving, because w}
Xw0} implies

ðSx;x0
w ÞtðbÞ � ðSx;x0

w0 ÞtðbÞ ¼/xt; ðwt � w0
tÞbx

0
tS

¼/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wt � w0

t

p
xt; b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wt � w0

t

p
x0tS ðA:2Þ

so that ðSwÞtXðSw0 Þt in KSðBÞ: By obvious extension of Proposition A.6 to von

Neumann modules, which guarantees existence of v�t ; we see that O is onto. Now let

TXSXS0 with morphisms w} ¼ O�1ðSÞ and w0} ¼ O�1ðS0Þ and construct

vtA ð %Es
t ; %F

s
tÞ; v0tA ð %Es

t ;F 0s
tÞ; and utA ð %Ft;F 0s

tÞ; for the pairs TXS;

TXS0; and SXS0; respectively, as in Proposition A.6 and extension to the strong
closures. Then by uniqueness we have v0t ¼ utvt: It follows wt � w0

t ¼ v�t ð1�
u�

t utÞvtX0: This shows that also O�1 respects the order and, therefore, is an order

isomorphism. (Observe that for the last conclusion (A.2) is not sufficient, because the

vectors bxtb
0 ðx}AS; b; b0ABÞ do not span Et:) &

Observe that this result remains true, if we require that the morphisms respect
some subset of units like, for instance, the continuous units in the time ordered Fock
module. We investigate now the order structure of the set of (possibly unbounded)

positive continuous morphisms on ðFÞ: We will see that it is mirrored by the

positivity structure of the corresponding matrices GA ðB"FÞ where F is an
arbitrary Hilbert B–B-module. Recalling that by Lemma 2.1.9 positive contractions
are dominated by 1; we find a simple criterion for contractive positive morphisms as

those whose matrix G is dominated (in ðFÞ) by the matrix G ¼ 0
0

0
1

� �
of the

identity morphism.

A.4. Lemma. A (possibly unbounded) continuous endomorphism w} of ðFÞ
with the matrix G ¼ g

Z
Z�
a

� �
is positive, if and only if it is self-adjoint and a is

positive.
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Proof. w} is certainly positive, if it is possible to write it as a square of a self-adjoint

morphism with matrix #D ¼
1 0 0
d 1 w�

w 0 c

0
@

1
A say (d and c self-adjoint). In other words,

we must have

1 0 0

g 1 Z�

Z 0 a

0
B@

1
CA ¼

1 0 0

d 1 w�

w 0 c

0
B@

1
CA

1 0 0

d 1 w�

w 0 c

0
B@

1
CA ¼

1 0 0

2dþ/w; wS 1 w� þ ðcwÞ�

wþ cw 0 c2

0
B@

1
CA:

This equation can easily be resolved, if aX0: We put c ¼
ffiffiffi
a

p
: Since cX0

we have 1þ cX1 so that 1þ c is invertible. We put w ¼ ð1þ cÞ�1Z: Finally,

we set d ¼ g�/w;wS
2

ð¼ d�Þ: Then #D determines a self-adjoint endomorphism whose

square is w}:

On the other hand, if w} is positive, then G is self-adjoint and the generator Lw of
the CPD-semigroup Sw is conditionally completely positive definite. For Lw we find
(rewritten conveniently)

Lðb;zÞ;ðb0;z0Þ
w ðbÞ ¼ /z; baz0Sþ b /Z; z0Sþ b0 þ g

2

� �
þ /z; ZSþ b� þ g

2

� �
b:

For each zAF we choose bAB such that /z; ZSþ b� þ g
2
¼ 0: Then it follows as in

Remark 5.3.9 (z ¼ 0AF ) that the kernel b//z; baz0S on F is not only conditionally
completely positive definite, but completely positive definite. This implies that
aX0: &

A.5. Remark. By applying the lemma to the endomorphism with matrix #D; we see
that it is positive, too.

A.6. Lemma. For two self-adjoint possibly unbounded morphisms w} and v} with

matrices G ¼ g
Z

Z�
a

� �
and D ¼ d

w
w�
c

� �
; respectively, we have w}

Xv}; if and only if

GXD in ðB"FÞ:

Proof. By Theorem A.3 and Lemma 3.4.12 we have w}
Xv}; if and only if SwXSv;

if and only if LwXLv: By Eqs. (5.2.2) and (5.2.4) we see that in the last infinitesimal
form Lw � Lv; only the difference G� D enters. Furthermore, evaluating the

difference of these kernels at concrete elements x}ðb; zÞ; x}ðb0; z0Þ; the b; b0 do not
contribute. Therefore, it is sufficient to show the statement in the case when D ¼ 0;

i.e. w} dominates (or not) the morphism v} which just projects onto the
vacuum, and to check completely positive definiteness only against exponential
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units. We findX
i;j

b�
i ðLw � LvÞð0;ziÞ;ð0;zjÞða�

i ajÞbj

¼
X

i;j

b�
i ð/zi; a�

i ajazjSþ/zi; a�
i ajZSþ a�

i aj/Z; zjSþ a�
i ajgÞbj

¼
X

i;j

/aizibi; aajzjbjSþ/aizibi; ZSajbj þ ðaibiÞ�/Z; ajzjbjSþ ðaibiÞ�gajbj

¼ /Z;GZS;

where Z ¼
P

i ðaibi; aizibiÞAB"F : Elements of the form Z do, in general, not range

over all of B"F : However, to check positivity of G with ðz; bÞAB"F we choose

z1 ¼ lz; z2 ¼ 0; a1 ¼ a2 ¼ 1; and b1 ¼ 1
l; b2 ¼ b: Then Z-ðb; zÞ for l-N: This

means that Lw � LvX0; if and only if Gð¼ G� DÞX0: &

A.7. Corollary. The set of contractive positive continuous morphisms of }ðFÞ is

order isomorphic to the set of those self-adjoint matrices GA ðB"FÞ with aX0

and Gp 0
0

0
1

� �
:

It is possible to characterize these matrices further. We do not need this
characterization.

Appendix B. CPD-semigroups in KSðBÞ versus CP-semigroups on ðHSÞ %#sB

In the proof of Theorem 5.1.2 we utilized the possibility to pass from a product

system E} of B–B-modules to a product system MnðE}Þ of MnðBÞ–MnðBÞ-modules.
Given a family xi} ði ¼ 1;y; nÞ of units for E} we defined the diagonal unit X} for

MnðE}Þ with diagonal entries xi}:

We remark that X} is generating for MnðE}Þ; if and only if the set S ¼
fx1};y; xn}g is generating for E}: In this case TXðBÞ ¼ /Xt;BXtS is a CP-

semigroup on MnðBÞ whose GNS-system is MnðE}Þ: Moreover, TX is uniformly

continuous, if and only if the CPD-semigroup UðE}ÞpS is (and the same holds for

normality, if B is a von Neumann algebra). We may apply Theorem 5.4.1 to TX and
obtain that the GNS-system of MnðBÞ–MnðBÞ-modules is isomorphic to a time
ordered product system. Taking into account that as explained in Section 2.2 a
product system of MnðBÞ–MnðBÞ-modules is always of the form MnðEtÞ where the Et

form a product system, we obtain that the two descriptions are interchangeable.
Specifying that, on the one hand, we look at product systems generated by not more
than n units and, on the other hand, that we look only at CP-semigroups on MnðBÞ
and units for MnðE}Þ which are diagonal, we obtain that the analogy is complete.
This way to encode the information of a CPD-semigroup into a single CP-

semigroup is taken from Accardi and Kozyrev [AK99] which was also our
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motivation to study completely positive definite kernels and Schur semigroups of
such. In [AK99] the authors considered only the case of the product system of

symmetric (i.e. time ordered) Fock modules (see [Ske98]) Gs}ðL2ðRþ; ðGÞÞÞ
D s}ð ðGÞÞ; where two central exponential units, namely, the vacuum plus any
other, are generating. They were lead to look at CP-semigroups on M2ð ðGÞÞ:
(Notice that in our case we have even interesting results with a single generating
unit.) What we explained so far is the generalization to n generating units (in the case
of B ¼ ðGÞ already known to the authors of [AK99]).
Now we want to extend the idea to generating sets S containing an arbitrary

number of units. It is good to keep the intuitive idea of matrices, now of infinite, even
possibly uncountable, dimension. Technically, it is better to change the picture from
matrices MnðEÞ to exterior tensor products Mn#E as explained in Section 2.2. Now

the diagonal unit X} should have infinitely many entries. For that we must be able
to control the norm of each entry. Some sort of continuity should be sufficient, but
as we want to control also the norm of the generator, we restrict to the uniformly
continuous case.

Let S be a set of continuous units for s}ðFÞ and denote by HS the Hilbert space
with ONB ðexÞx}AS: We have

L2ðRþ; ðHSÞ %#sFÞ ¼L2ðRþÞ %#sð ðHSÞ %#sFÞ

¼ ðHSÞ %#sðL2ðRþÞ %#sFÞ ¼ ðHSÞ %#sL2ðRþ;FÞ;

where ðHSÞ %#sF and, henceforth, L2ðRþ; ðHSÞ %#sFÞ is a von Neumann

ðHSÞ %#sB– ðHSÞ %#sB-module see Section 2.2. Consequently, we find

ðHSÞ %#s s}ðFÞ ¼ s} ð ðHSÞ %#sFÞ:

A continuous unit x}ðB;ZÞ ðBA ðHSÞ %#sB;ZA ðHSÞ %#sFÞ is diagonal (in the

matrix picture), if and only if B and Z are diagonal. A diagonal unit x}ðB;ZÞ is
strongly generating for s}ð ðHSÞ %#sFÞ; if and only if the set fx}ðb; zÞg running

over the diagonal entries of x}ðB;ZÞ is strongly generating for s}ðFÞ:
Can we put together the units from S to a single diagonal unit? In order that a

family ðaxÞxAS of elements in B (in F ) defines (as strong limit) an element in

ðHSÞ %#sB (in ðHSÞ %#sF ) with entries ax in the diagonal, is it necessary and

sufficient that it is uniformly bounded. This will, in general, not be the case.
However, as long as we are only interested in whether S is generating or not, we may
modify S without changing this property. By Observation 5.3.5 we may forget
completely about the parameters bx: Moreover, for the condition in Theorem 5.3.2

the length of the zx is irrelevant (as long as it is not 0, of course). We summarize.

B.1. Theorem. Let T be a normal uniformly continuous CPD-semigroup on S in

KSðBÞ: Then there exists a normal uniformly continuous CP-semigroup T on
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ðHSÞ %#sB such that the GNS-system (of von Neumann modules) of T is

ðHSÞ %#sE
%}s

where E
%}s

is the GNS-system (of von Neumann modules) of T:

So far, we considered diagonal units for the time ordered Fock module
s}ð ðHSÞ %#sFÞ: Of course, x}ðB;ZÞ is a unit for any choice of BA ðHSÞ %#sB

and ZA ðHSÞ %#sF : The off-diagonal entries of such a unit fulfill a lot of recursive
relations. In the case of Hilbert spaces ðB ¼ CÞ and finite sets S ( ðHSÞ ¼ Mn) we

may hope to compute x}ðB;ZÞ explicitly. This should have many applications in the
theory of special functions, particularly those involving iterated integrals of
exponential functions.

Appendix C. Generators of CP-semigroups

C.1. Definition. Let A be a unital Banach algebra and T ¼ Rþ or T ¼ N0: A
semigroup in A is a family T ¼ ðTtÞtAT of elements TtAA such that T0 ¼ 1 and

TsTt ¼ Tsþt: If A ¼ ðBÞ is the algebra of bounded operators on a Banach space B

(with composition 3 as product), then we say T is a semigroup on B.
A semigroup T ¼ ðTtÞtARþ

in A is uniformly continuous, if

lim
t-0

jjTt � 1jj ¼ 0:

If B is itself a Banach space of operators on another Banach space (for instance, if B

is a von Neumann algebra), then T is strongly continuous, if t/TtðbÞ is strongly
continuous in B for all bAB:

The form of generators of uniformly continuous CP-semigroups was found by
Christensen–Evans [CE79] for arbitrary, even non-unital, C�-algebras B: We quote
the basic result [CE79, Theorem 2.1] rephrased in the language of derivations with
values in a pre-Hilbert B–B-module F ; i.e. a mapping d : -F fulfilling

dðbb0Þ ¼ bdðb0Þ þ dðbÞb0:

Then we repeat the cohomological discussion of [CE79] which allows to find the
form of the generator in the case of von Neumann algebras.

C.2. Lemma. Let d be a bounded derivation from a pre-C�-algebra B ðC ðGÞÞ to a

pre-Hilbert B–B-module F ðC ðG;F}GÞÞ: Then there exists zAspansdðBÞB
ðC %FsC ð %G;F}GÞÞ such that

dðbÞ ¼ bz� zb: ðC:1Þ

Observe that spansdðBÞB is a two-sided submodule of %Fs: Indeed, we have
bdðb0Þ ¼ dðbb0Þ � dðbÞb0 so that we have invariance under left multiplication.
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Recall that a derivation of the form as in (C.1) is called inner, if zAF : Specializing
to a von Neumann algebra B we reformulate as follows.

C.3. Corollary. Bounded derivations from a von Neumann algebra B to a von Neumann

B–B-module are inner (and, therefore, normal).

Specializing further to the von Neumann module B; we find the older result that
bounded derivations on von Neumann algebras are inner; see e.g. [Sak71].
In the sequel, we restrict to normal CP-semigroups on von Neumann algebras. As

an advantage (which is closely related to self-duality of von Neumann modules) we
end up with simple statements as in Corollary C.3 instead of the involved ones in
Lemma C.2. The more general setting does not give more insight (in fact, the only
insight is that satisfactory results about the generator are only possible in the context
of von Neumann algebras), but just causes unpleasant formulations.

C.4. Theorem (Christensen and Evans [CE79]). Let T be a normal uniformly

continuous CP-semigroup on a von Neumann algebra B with generator L: Then there

exist a von Neumann B–B-module F, an element zAF ; and an element bAB such that L
has the Christensen–Evans form (3.5.1). Moreover, the strongly closed submodule of F

generated by the derivation dðbÞ ¼ bz� zb is determined by L up to (two-sided)
isomorphism.

Proof. We proceed similarly as for the GNS-construction, and try to define an inner
product on the B–B-module B#B with the help of L: However, since L is only
conditionally completely positive, we can define this inner product not for all
elements in this module, but only for those elements in the two-sided submodule
generated by elements of the form b#1� 1#b: This is precisely the subspace of allP

iai#bi for which
P

iaibi ¼ 0 with inner product

X
i

ai#bi;
X

j

aj#bj

* +
¼
X

i;j

b�
i Lða�

i ajÞbj: ðC:2Þ

We divide out the length-zero elements and denote by F the strong closure.
By construction, F is a von Neumann B–B-module and it is generated as a von

Neumann module by the bounded derivation dðbÞ ¼ ðb#1� 1#bÞ þ F : By
Corollary C.3 there exists zAF such that dðbÞ ¼ bz� zb: Moreover, we have

Lðbb0Þ � bLðb0Þ � LðbÞb0 þ bLð1Þb0

¼ /z; bb0zS� b/z; b0zS�/z; bzSb0 þ b/z; zSb0

from which it follows that the mapping D : b/LðbÞ �/z; bzS�
bðLð1Þ�/z;zSÞþðLð1Þ�/z;zSÞb

2
is a bounded hermitian derivation on B: Therefore, there
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exists h ¼ h�AB such that DðbÞ ¼ ibh � ihb: Setting b ¼ Lð1Þ�/z;zS
2

þ ih we find

LðbÞ ¼ /z; bzSþ bbþ b�b:
Let F 0 be another von Neumann module with an element z0 such that the

derivation d 0ðbÞ ¼ bz0 � z0b generates F 0 and such that LðbÞ ¼ /z0; bz0Sþ bb0 þ b0�b

for some b0AB: Then the mapping dðbÞ/d 0ðbÞ extends as a two-sided unitary
F-F 0; because the inner product (C.2) does not depend on b: &
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