On Morita's Localization

John A. Beachy*
Department of Mathematical Sciences, Northem Illinois Eniversity, DeKalb, Illinois 60115
Communicated by P. M. Cohn

Received April 22, 1974

Introdection

Any injective module $V \in R$-Mod defines a torsion radical (torsion theory) and an associated quoticnt category $R-\mathrm{Mod} / V$, which is a full reflective Grothendieck subcategory of R-Mod with exact reflector (quotient functor). In this case, V can be chosen so that the ring of quotients it determines can be realized as the bicommutator (double centralizer) of V. Morita [13, 16] has generalized this construction by considering certain modules for which the reflector into the quotient category need not be exact, although he requires that the generalized ring of quotients must coincide with the bicommutator of the module.

It is possible to omit the latter condition, as is shown by Theorem 1.8 and this enlarges the class of modules that can be considered to include, in particular, any module that is injective modulo its annihilator. The new conditions obtained are not only more general, but appear to simplify the proofs as weil.

Heinicke [7] has characterized localization functors as idempotent, left exact monads, and quotient categories as their categories of algebras. Given any monad T of R-Mod, there is an associated monad Q_{T} studied by Lambek and Rattray [10], which is idempotent and left exact if T is left exact and which gives the usual localization functor if $T=\operatorname{Hom}(\operatorname{Hom}(-, V), V)$ for ${ }_{R} V$ injective. It is shown in Theorem 2.10 that if T is left exact when restricted to $Q_{T}(R)$-Mod, then the category of Q_{T}-algebras is a generalized quotient category in Morita's sense, thus extending Morita's theory of noncommutative localization. (This gives another proof of part of Theorem 1.8, in which, as in all of Section 1, the categorical language has been suppressed so as to provide easier access to the theory.)

The final section gives some applications. Morita's characterization of balanced modules [15] is modified in Theorem 3.1, while Theorem 3.2 extends

[^0]a theorem of Lambek [8] giving a condition under which the generalized ring of quotients determined by V is a dense subring of the bicommutator of V. Theorem 3.5 generalizes results of [1], and Corollary 3.6 shows that if K is any ideal of R, then any subring of $Q_{\max }(R / K)$ determined by a radical of R-Mod is a generalized ring of quotients of R. Finally, Theorem 3.7 applies Theorem 2.10 to the monad $T=\operatorname{Hom}(P, P \otimes-)$ and extends results of [5].

In the standard theory of noncommutative localization, for any ring of quotients Q of R, the kernel of the natural homomorphism $R \rightarrow Q$ must be the annihilator of an injective module. Morita's theory allows any ideal to be such a kernel and in addition, includes as a generalized ring of quotients any epinorphism in the category of rings. It is hoped that this theory will provide a language for certain more specialized constructions that are not standard rings of quotients.

1. On Morita's Localization

Let R be an associative ring with identity and let R-Mod denote the category of unital left R-modules. A subfunctor ρ of the identity on R-Mod is called a radical if $\rho(M / \rho(M))=0$ for all $M \in R$-Mod and a torsion radical if $\rho\left(M^{\prime}\right)=M^{\prime} \cap \rho(M)$ for all submodules $M^{\prime} \subseteq M$. Any class of modules defines a radical by assigning to each module the intersection of kernels of homomorphisms into the class and conversely, every radical is defined by the corresponding class of torsionfree modules. (Recall that M is ρ-torsion free if $\rho(M)=0$ and ρ-torsion if $\rho(M)=M$.)

For $V \in R$-Mod, let rad_{V} be the radical of R-Mod defined for $M \in R-M o d$ by

$$
\operatorname{rad}_{V}(M)=\left\{m \in M ; f(m)=0 \text { for all } f \in \operatorname{Hom}_{R}(M, V)\right\} .
$$

If M^{\prime} is a submodule of M, then the rad_{V}-closure of M^{\prime} in M is

$$
\left\{m \in M: f(m)^{\prime}=0 \text { for all } f \in \operatorname{Hom}_{R}(M, V) \text { such that } f\left(M^{\prime}\right)=0\right\}
$$

We say that M^{\prime} is rad_{V}-closed in M if this closure is M itself, which occurs if and only if M / M^{\prime} is $\operatorname{rad}_{V^{-}}$-torsionfree. If $f \in \operatorname{Hom}_{R}(M, N)$ and $f\left(M^{\prime}\right) \subseteq N^{\prime}$ for submodules $M^{\prime} \subseteq M$ and $N^{\prime} \subseteq N$, then f maps the $\operatorname{rad}_{V^{V}}$-closure of M^{\prime} into the $\operatorname{rad}_{V^{\prime}}$-closure of N^{\prime}.

For $V \in R$-Mod, let $E=\operatorname{End}\left({ }_{R} V\right)$ and $B=\operatorname{Bic}\left({ }_{R} V\right)=\operatorname{End}\left(V_{E}\right)$. The composition of $\operatorname{Hom}_{R}(-, V): R-\operatorname{Mod} \rightarrow \operatorname{Mod}-E$ and $\operatorname{Hom}_{E}(-, V): \operatorname{Mod}-E \rightarrow$ B-Mod is covariant (where Mod- E is the category of right E-modules). We denote this composition by $T_{V}: R-\operatorname{Mod} \rightarrow B-$ Mod and note that T_{V} can be viewed as merely an endofunctor of R-Mod. If $\eta_{M}: M \rightarrow T_{V}(M)$ is defined
by $\eta_{M}(m)=[f \rightarrow f(m)]$ for $m \in M$ and $f \in \operatorname{Hom}_{R}(M, V)$, then $\eta: I \rightarrow T_{V}$ defines a natural transformation, where I is the identity functor, and $\operatorname{ker}\left(\eta_{M}\right)=$ $\operatorname{rad}_{V}(M)$. (When the meaning is obvious, we will write η instead of η_{M}.) If V is injective, then rad_{V} is a torsion radical and since $T_{V}(M)$ belongs to the quotient category determined by rad_{V} [8, Proposition 3.1], it follows that the rad_{V}-closure of $\eta(M)$ in $T_{V}(M)$ gives the module of quotients of M. This motivates the following definition given for any $V \in R$ - Mod.

Definition 1.1. For $V, M \in R$ - Mod, let $Q_{V}(M)$ be the rad_{V}-closure of $\eta(M)$ in $T_{V}(M)$. In particular,

$$
\begin{array}{r}
Q_{V}(R)=\left\{b \in \operatorname{Bic}\left({ }_{R} V\right) \mid f(b)=0 \text { for all } f \in \operatorname{Hom}_{R}\left(\operatorname{Bic}\left({ }_{R} V\right), V\right)\right. \\
\text { such that } f \eta(R)=0\} .
\end{array}
$$

Note that $Q_{V}: R$-Mod $\rightarrow R$-Mod is a functor, since, if $f \in \operatorname{Hom}_{R}(M, N)$, then $T_{V}(f) \eta_{M}=\eta_{N} f$ and so $T_{V}(f)$ maps $Q_{V}(M)$ into $Q_{V}(N)$. Thus, $Q_{V}(f)$ can be defined as the restriction of $T_{V}(f)$ to $Q_{V}(M)$.

The next proposition shows that actually, Q_{V} can be viewed as a functor from R-Mod to $Q_{V}(R)$-Mod.

Proposition 1.2. Let $V \in R$-Mod.
(a) $Q_{V}(R)$ is a subring of $\operatorname{Bic}\left({ }_{R} V\right)$.
(b) Any rad_{V}-closed R-submodule of a $\left.\operatorname{Bic}_{R_{R}} V\right)$-module is a $Q_{V}(R)$ submodule.
(c) If $M, N \in \operatorname{Bic}\left({ }_{R} V\right)$-Mod and $\operatorname{rad}_{V}(N)=0$, then any R-homomorphism $f: M \rightarrow N$ is a $Q_{V}(R)$-homomorphism.

Proof. (c) If $f: M \rightarrow N$ satisfies the stated condition, then for $m \in M$, define $g \in \operatorname{Hom}_{R}(B, N)$ by $g(b)=b f(m)-f(b m)$, for all $b \in B=\operatorname{Bic}\left({ }_{R} V\right)$. Since $g_{\eta}(R)=0$ and $\operatorname{rad}_{V}(N)=0$, it follows that $g\left(Q_{V}(R)\right)=0$ and thus, $q f(m)=f(q m)$ for all $q \in Q_{V}(R)$.
(b) If ${ }_{R} M \subseteq_{B} M$ is rad_{V}-closed, then it follows easily from (c) that $q m \in M^{\prime}$ for all $q \in Q_{V}(R)$ and $m \in M^{\prime}$.
(a) This follows from (b).

Proposition 1.3. Let $V \in R$-Mod and let $0 \rightarrow M^{\prime} \rightarrow^{i} M \rightarrow i M^{\prime \prime} \rightarrow 0$ be an exact sequence in $R-M o d . T h e n, Q_{V}(f)$ is an isomorphism if $\operatorname{Hom}_{R}(i, V)=0$.

Proof. If $\operatorname{Hom}_{R}(i, V)=0$, then $\operatorname{Hom}_{R}(f, V)$ is an isomorphism and hence, $T_{\nu}(f)$ is an isomorphism. Since f is epic, $T_{V}(f)(\eta(M))=\eta\left(M^{\prime \prime}\right)$ and this implies that $T_{V}(f)\left(Q_{V}(M)\right)=Q_{V}\left(M^{\prime \prime}\right)$.

Corollary 1.4. Let $V, M \in R$-Mod.
(a) $Q_{V}\left(M / M^{\prime}\right) \simeq Q_{V}(M)$ for any R-submodule $M^{\prime} \subseteq \operatorname{rad}_{V}(M)$.
(b) $Q_{V}\left((R \mid K) \otimes_{R} M\right) \simeq Q_{V}(M)$ for any ideal $K \subseteq \operatorname{Ann}\left({ }_{R} V\right)$.

In Corollary 1.4, both isomorphisms are natural isomorphisms. Many questions are reduced by the second isomorphism to the case of faithful modules, since, if $K=\operatorname{Ann}\left({ }_{R} V^{Y}\right)$, then for any R / K-module M, the construction of $Q_{V}(M)$ is the same whether M and V are regarded as R / K-modules or as R-modules.

Lemma 1.5. The following conditions are equivalent for $V \in R$-Mod.
(1) For $M \in Q_{V}(R)$-Mod, any R-homomorphism $f: M \rightarrow V$ is a $Q_{V}(R)$ homomorphism.
(2) The natural map $\phi: V \rightarrow \operatorname{Hom}_{R}\left(Q_{V}(R), V\right)$, defined by $\phi(v)(q)=q v$ for $v \in V, q \in Q_{V}(R)$, is an isomorphism.
(3) Every R-homomorphism $f: Q_{V}(R) \rightarrow V$ can be extended to $\operatorname{Bic}\left({ }_{R} V\right)$.

Proof. (1) \Rightarrow (2). This is immediate, since $V \subset Q_{V}(R)-\mathrm{Mod}$.
(2) \Rightarrow (3). If $f: Q_{V}(R) \rightarrow V$, then by assumption, there exists $v \in V$ such that $f(q)=q v$ for all $q \in Q_{V}(R)$. This can be extended to $g: \operatorname{Bic}\left({ }_{R} V\right) \rightarrow V$ by defining $g(b)=b v$, for all $b \in \operatorname{Bic}\left({ }_{R} V\right)$.
(3) \Rightarrow (1). As in the proof of Proposition 1.2 (c), given $f: M \rightarrow V$ and $m \neq M$, define $g: Q_{V}(R) \rightarrow V$ and then extend g to $\operatorname{Bic}\left(_{R} V\right)$ and apply Proposition 1.2.

An additional condition equivalent to those of Lemma 1.5 is that the category of rad_{V}-torsionfree $Q_{V}(R)$-modules is a full subcategory of R-Mod. This can be shown by using condition (1). It follows that if the conditions are satisfied, then V determines the same radical rad_{V} of $Q_{V}(R)$-Mod whether viewed as a $Q_{\nu}(R)$-module or an R-module.

Following Morita, for $V \in R$-Mod, we let $D(V)$ denote the full subcategory of R-Mod determined by all modules ${ }_{R} M$ for which there exists an exact sequence $0 \rightarrow M \rightarrow X_{0} \rightarrow X_{1}$ in R-Mod, such that X_{0} and X_{1} are each isomorphic to a direct product of copies of V. Note that there exists such an exact sequence for M if and only if M is isomorphic to a rad_{V}-closed sub-
module of a direct product of copies of V. In this case, it follows from Proposition (1.2) that M is a $Q_{V}(R)$-module.

If M is any right module over $E=\operatorname{End}\left({ }_{R} V\right)$, then a free resolution $\oplus_{I} E \rightarrow \ominus_{J} E \rightarrow M I \rightarrow 0$ gives an exact sequence $0 \rightarrow \operatorname{Hom}_{E}(M, V) \rightarrow$ $\operatorname{Hom}_{E}\left(\Theta_{,} E, V\right) \rightarrow \operatorname{Hom}_{E}\left(\oplus_{t} E, V\right)$, which is just an exact sequence $0 \rightarrow \operatorname{Hom}_{E}(M, V) \rightarrow \Pi_{J} V \rightarrow \Pi_{I} V$. This shows that $\operatorname{Hom}_{E}(-, V)$ is a functor from Mod- E into $\mathscr{D}(V)$ and in particular, T_{V} is a functor from R-Mod into $\mathscr{B}\left(V^{\prime}\right)$.

If ${ }_{R} V$ is injective, then the quotient category $R-M o d / V$, determined by rad_{V}, coincides with $\mathscr{D}(V)$ and in fact, every quotient category can be
 subcategory of R-Mod and the next proposition gives a more general condition under which this occurs. In fact, conditions (b) and (c) are equivalent without any assumptions [11, Proposition 1.2].

Lemba 1.6. Let ${ }_{R} V$ be injective in $\mathscr{D}(V)$.
(a) If M is an R-submodule of $N \in \mathscr{D}(V)$, then $M \in \mathscr{D}(V) \Leftrightarrow M$ is $\operatorname{rad}_{V}-$ closed in N.
(b) For all $M \in R$-Mod, every R-homomorphism $f: Q_{V}(M) \rightarrow V$ can be extended to $T_{V}(M)$.
(c) $Q_{V}: E-\mathrm{Mod} \rightarrow \mathscr{O}(V)$ is left adjoint to the inclusion $U_{V}: \mathscr{F}(V) \rightarrow$ R-Mod.

Proof. (a) Assume that N is a rad_{V}-closed submodule of some direct product $\prod_{I} V$ of copies of V.
(\Leftrightarrow) If $w \in N \backslash M$, then since M is rad_{V}-closed, there exists $f: N \rightarrow V$ with $f(x) \neq 0$ and $f(M)=0$. Since V is injective in $\mathscr{D}(V), f$ can be extended to $\Pi_{I} V$. On the other hand, if $x \in \prod_{I} V \backslash N$, then since N is rad_{V}-closed in $\Pi_{I} V$, there exists $f: \Pi_{I} V \rightarrow V$ with $f(M) \subseteq f(N)$ and $f(x) \neq 0$. Thus, M is rad_{V}-closed in $\prod_{I} V$.
(\Rightarrow) Assume that M is a rad_{V}-closed submodule of $\Pi_{J} V$ and let M^{\prime} be the $\operatorname{rad}_{V^{V}}$-closure of M in N. Then, in the diagram

the identity 1: $M \rightarrow M$ can be extended to $f: N \rightarrow \Pi_{J} V$, since V is injective in $\mathscr{X}(V)$ and so M must be a direct summand of M^{\prime}, since $f\left(M^{\prime}\right) \subseteq M$. Thus, if $M \neq M^{\prime}$, there exists $0 \neq g: M^{\prime} \rightarrow V$ with $g(M)=0$ and this can be
extended to N, since, by the converse (proved above), $M^{\prime} \in \mathscr{E}(V)$ and this contradicts the definition of M^{\prime}.
(b) If $f: Q_{V}(M) \rightarrow V$, then f can be extended to $T_{V}(M)$ since by (a), $Q_{V}(M) \in \mathscr{D}(V)$.
(c) If $M \in \mathscr{D}(V)$, then by (a) M is rad_{V}-closed in $T_{V}(M)$ and so $Q_{V}(M)=M$. If $f: N \rightarrow M$ in R-Mod, then $Q_{V}(f): Q_{V}(N) \rightarrow Q_{V}(M)=M$ is an extension of f and the extension is unique, since (b) implies that $\operatorname{Hom}_{R}\left(Q_{V}(M) / \eta(M), V\right)=0$. This shows that Q_{V} is a left adjoint for U_{V}.

Proposition 1.7. The following conditions are equivalent for $V \in R$-Mod.
(1) V is injective in both $Q_{V}(R)-M o d$ and $\mathscr{D}(V)$.
(2) V is injective in $Q_{V}(R)$-Mod and the natural map $V \rightarrow \operatorname{Hom}_{R}\left(Q_{V}(R), V\right)$ is an isomorphism.
(3) Every R-homomorphism from a $Q_{V}(R)$-submodule of $\operatorname{Bic}\left({ }_{R} V\right)$ into V can be extended to $\operatorname{Bic}\left({ }_{K} V\right)$.

Proof. (1) \Rightarrow (2). This follows from Lemma 1.6(b) and Lemma 1.5.
(2) \Rightarrow (3). By Lemma 1.5, every R-homomorphism from a $Q_{V}(R)$ submodule of $\operatorname{Bic}\left({ }_{R} V\right)$ into V is a $Q_{V}(R)$-homomorphism, so it can be extended by the injectivity of V to $\operatorname{Bic}\left({ }_{R} V\right)$.
(3) \Rightarrow (1). Baer's criterion for injectivity shows that V is injective in $Q_{V}(R)$-Mod. If $M \in \mathscr{D}(V)$, then M is a $Q_{V}(R)$-module and by Lemma 1.5, every R-homomorphism from M into V is a $Q_{V}(R)$-homomorphism, since by assumption condition (3) of Lemma 1.5 is satisfied.

Theorem 1.8. If $V \in R$-Mod satisfies the conditions of Proposition 1.7, then $\mathscr{O}(V)$ is a full reflective Grothendieck subcategory of R-Mod.

Conversely, if \mathscr{B} is a full reflective Grothendieck subcategory of R-Mod, with reflector $Q: R$-Mod $\rightarrow \mathscr{B}$, then any injective cogenerator V of \mathscr{B} satisfies the conditions of Proposition 1.7 and $\mathscr{B}=\mathscr{L}(V)$ with $Q \simeq Q_{V}$.

Proof. If V satisfies the conditions of Proposition 1.7, then by Lemma 1.5, the category of rad_{V}-torsionfree $Q_{V}(R)$-modules is a full subcategory of R-Mod and so the $Q_{V}(R)$-module structure of any module ${ }_{R} M \subseteq \mathscr{V}(V)$ uniquely extends its R-module structure. Furthermore, any exact sequence $0 \rightarrow M \rightarrow \Pi_{I} V \rightarrow \Pi_{J} V$ in R-Mod is also in $Q_{V}(R)$-Mod. In $Q_{V}(R)$-Mod, rad_{V} is a torsion radical since V is injective and so $\mathscr{D}(V)$ is equivalent to $Q_{V}(R)-\mathrm{Mod} / V$, which is a Grothendieck category. By Lemma 1.6, $\mathscr{H}(V)$ is a reflective subcategory with reflector Q_{V}.

Conversely, assume that \mathscr{B} is a full Grothendieck subcategory with reflector $Q: R-$ Mod $\rightarrow \mathscr{B}$. Let V be an injective cogenerator of \mathscr{B}. If $B \in \mathscr{B}$,
then in \mathscr{B}, there exists an exact sequence $0 \rightarrow B \rightarrow \Pi_{I} V \rightarrow \prod_{J} V$, and this is exact in R-Mod since the inclusion functor must be left exact, so $\mathscr{B} \subseteq \mathscr{D}(V)$. On the other hand, the inclusion is full and preserves kernels and direct products, so if there exists an exact sequence $0 \rightarrow M \rightarrow \Pi_{I} V \rightarrow \Pi_{J} V$ in R-Mod, then $M \in \mathscr{X}$ and so $\mathscr{D}(V) \subseteq \mathscr{B}$. Now, since V is injective in \mathscr{B}, Lemma 1.6 implies that Q_{V} is a left adjoint for the inclusion and then $Q_{V} \simeq Q$ by uniqueness of adjoints. Thus, $Q_{V}(R)$ is a generator for \mathscr{B} and since \mathscr{B} is a full subcategory, $Q_{V}(R) \simeq \operatorname{End}\left({ }_{R} Q_{V}(R)\right.$). By the Gabriel Popescu theorem [17, Theorem 10.3], $\operatorname{Hom}_{R}\left(Q_{V}(R),-\right): \mathscr{B} \rightarrow Q_{V}(R)$-Mod has an exact left adjoint and so $\operatorname{Hom}_{R}\left(Q_{V}(R),-\right)$ must preserve injectives. Thus, V is injective as a $Q_{V}(R)$-module and so it satisfies condition (1) of Proposition 1.7.

Note that in Theorem 1.8, the first implication can be shown without using Lemma 1.6, since once it has been established that $\mathscr{\mathscr { D }}(V)$ is equivalent to $Q_{V}(R)$-Mod $/ V$, then the latter has a reflector $Q_{V}{ }^{*}: Q_{V}(R)$-Mod \rightarrow $Q_{V}(R)-M o d / V$, so $Q_{V}(R) \otimes_{R}$ - followed by $Q_{V}{ }^{*}$ gives the required adjoint. The ring of quotients of $Q_{V}(R)$ constructed with respect to rad $_{V}$ is just $Q_{V}(R)$, since the $Q_{V}(R)$-bicommutator of V is just $\operatorname{Bic}\left({ }_{R} V\right)$. This makes it possible to apply many of the standard results on rings of quotients.

In [13], a module ${ }_{R} V$ is said by Morita to be of type $F I$ if; (i) V is injective in $\operatorname{Bic}\left({ }_{R} V\right)$-Mod; (ii) the natural map $V \rightarrow \operatorname{Hom}_{R}\left(\operatorname{Bic}\left({ }_{R} V\right), V\right)$ is an isomorphism; and (iii) V is finitely generated over $\operatorname{End}{ }_{{ }_{R}}{ }^{F}$). (Condition (iii) is equivalent to Morita's condition by [16, Lemma 9.3].) If V satisfies the conditions of Proposition 1.7 and is finitely generated over $\operatorname{End}\left({ }_{R} V\right)$, then applying [13, Theorem 5.6] to V in $Q_{\mathrm{V}}(R)$-Mod, it follows that $Q_{V}(R)=$ $\operatorname{Bic}\left({ }_{R} V\right)$ and so V is of type $F I$. Conversely, if V is of type $F I$, then it follows from condition (ii) that $\left.\operatorname{Hom}_{R}\left(\operatorname{Bic}_{(} V\right) \mid \eta(R), V\right)=0$ and so $\left.Q_{V}(R)=\operatorname{Bic}_{R_{R}} V\right)$. Thus, ${ }_{R} V$ is of type $F I$ if and only if ${ }_{R} V$ satisfies the conditions of Proposition 1.7 and V is finitely generated over $\operatorname{End}\left({ }_{R} V\right)$.

Theorem 1.8 considerably enlarges the class of modules that may be used in constructing a localization in Morita's sense, in which the quotient functor need not be exact, since any module ${ }_{R} V$ that is injective in $R / \operatorname{Ann}(V)$-Mod satisfies condition (3) of Proposition 1.7, while it need not be finitely generated over $\operatorname{End}\left({ }_{R} V\right)$. Of course, by [14, Theorem 1.1], the localization can be constructed with respect to some module ${ }_{R} W$ of type $F I$. Since Q_{V} is a left adjoint, it is exact if and only if U_{V} preserves injectives, which occurs if and only if R^{V} is injective, in which case we have just the standard localization.

The next proposition characterizes rad_{V}-torsionfree ${\underset{\sim}{V}}_{V}(R)$-modules.

Proposition 1.9. Let $V \in R$-Mod satisfy the conditions of Lemma 1.5. If $M \in R-M o d$ with $\operatorname{rad}_{V}(M)=0$, then M has a $Q_{V}(R)$-module structure extending its R-module structure if and only if M is generated by the R-module $Q_{V}(R)$.

Proof. We prove only the "if" part and for this, it is sufficient to assume that M is a submodule of a direct product $\Pi_{I} V$ of copies of V. Then, by assumption, M is the image of an R-homomorphism from a direct sum $\oplus_{J} Q_{V}(R)$ of copies of $Q_{V}(R)$ into $\Pi_{J} V$. If V satisfies Lemma 1.5, then this R-homomorphism is a $Q_{V}(R)$-homomorphism, so M must be a $Q_{V}(R)$ submodule of $\prod_{I} V$.

If $R \rightarrow S$ is an epimorphism in the category of rings, then S-Mod is a full reflective Grothendieck subcategory of R - Mod [17, Proposition 13.7] and so S-Mod $=\mathscr{Z}(V)$ for any injective cogenerator $V \in S$-Mod. Then $Q_{V} \simeq S \otimes_{R}-$ and it follows from the construction of $Q_{V}(R)$ and the fact that V is a cogenerator in S-Mod that $Q_{v}(R)=S$. The next theorem shows that conversely, if V satisfics the conditions of Proposition 1.7 and $Q_{V}(R)-\mathrm{Mod}=\mathscr{O}(V)$, then V is a cogenerator in $Q_{V}(R)-\mathrm{Mod}, Q_{V} \simeq Q_{V}(R) \otimes_{R}-$ and $R \rightarrow Q_{V}(R)$ is an epimorphism in the category of rings.
If ${ }_{R} V$ satisfies the conditions of Proposition 1.7, then we have the following diagram.

$$
Q_{v}\left(\begin{array}{c}
R-\operatorname{Mod} \\
Q_{V}(P) \otimes_{p}+\eta^{+}\langle \\
Q_{v}(2)-\operatorname{Mod} \\
Q_{v+i}^{*} u_{v}^{*} \\
D(v)
\end{array}\right) u_{v}
$$

lt has been shown in Theorem 1.8 that $\mathscr{\mathscr { D }}(V)$ is a quotient category of $Q_{V}(R)$-Mod and so $Q_{V}{ }^{*}$ is the quotient functor defined by considering V as a $Q_{V}(R)$-module. The functor U is the forgetful functor and has a left adjoint $Q_{V}(R) \otimes_{R}-$. The next theorem generalizes the standard theorem on perfect quotient functors [17, Theorem 13.1], with the exception of the conditions stated in terms of the filter of left ideals of R. However, U_{V} is exact and commutes with direct sums if and only if $U_{V}^{\Gamma}{ }^{*}$ does, so the conditions could be stated in terms of the filter of left ideals of $Q_{V}(R)$ determined by rad_{V}.

Theorev 1.10. If ${ }_{R} V$ satisfies the conditions of Proposition 1.7, then with reference to the above diagram, the following conditions are equivalent:
(1) $U_{V}{ }^{*}$ is an equivalence.
(2) V is a cogenerator in $Q_{V}(R)$-Mod.
(3) Every $Q_{V}(R)$-module is rad $_{V}$-torsionfree.
(4) U_{V} is exact and commutes with direct sums.
(5) $U_{V} * Q_{V} \simeq Q_{V}(R) \otimes_{R}-$.
(6) $R \rightarrow Q_{V}(R)$ is an epimorphism in the category of rings and for all R-homomorphisms $f, Q_{V}(f)=0$ implies that $Q_{V}(R) \otimes_{R} f=0$.
(7) $Q_{V}(f)=0$ implies that $Q_{V}(R) \otimes_{R} f=0$, for all R-homomorphisms f.

Proof. Conditions (1)-(5) can be shown to be equivalent either directly (the proofs are straightforward), or by reducing to the case when V is of type $F I$ and applying [16, Theorem 4.2].
(1), (5) \Rightarrow (6). If $U_{V}{ }^{*}$ is an equivalence, then L must be a full functor, so $R \rightarrow Q_{V}(R)$ is a ring epimorphism [17, Proposition 13.7].
(6) \Rightarrow (7). \quad Immediate.
(7) \Rightarrow (3). Let $M \in Q_{V}(R)$-Mod. If $\operatorname{rad}_{V}(M) \neq 0$, then there exists $0 \neq f: Q_{V}(R) \rightarrow \operatorname{rad}_{V}(M) \subseteq M$ in $Q_{V}(R)-\operatorname{Mod}$ with $Q_{V}(R) \otimes_{R} f \neq 0$. This is a contradiction, since applying Q_{V} to the exact sequence $Q_{V}(R) \rightarrow \rightarrow^{f} M \rightarrow^{i}$ $\operatorname{coker}(f) \rightarrow 0$ shows that $Q_{v}(f)=0$, since Q_{v} is right exact and $Q_{v}(p)$ is an isomorphism by Corollary 1.4.

Proposition 1.11. Let $\alpha: R \rightarrow S$ be an epimorphism in the category of rings and let $V \in S$-Mod. Then, $Q_{V}(R)=Q_{V}(S)$ and V satisfies the conditions of Proposition 1.7 in R-Mod if and only if it satisfies them in S-Mod.

Proof. Since $\alpha: R \rightarrow S$ is epic, S-Mod is a full subcategory of R-Mod, so $\operatorname{End}\left({ }_{R} V\right)=\operatorname{End}(s V)$. Therefore, $\operatorname{Bic}\left({ }_{R} V\right)=\operatorname{Bic}\left({ }_{s} V\right)$. If $q \in Q_{V}(R)$ and $f \in \operatorname{Hom}_{s}\left(\operatorname{Bic}\left({ }_{R} V\right), V\right)$ with $f \eta(S)=0$, then $f \eta \alpha(R)=0$ and hence, $f(q)=0$. Thus, $Q_{V}(R) \subseteq Q_{V}(S)$. Conversely, if $q \subseteq Q_{V}(S)$ and $f \in \operatorname{Hom}_{R}\left(\operatorname{Bic}\left({ }_{R} V\right), V\right)$, then $f_{\eta \alpha}(R)=0$ implies that $f_{\eta}(S)=0$, since f must be an S-homomorphism and hence, $f(q)=0$. Thus, $Q_{V}(S) \subseteq Q_{V}(R)$. The second part is then obvious.

We remark that a similar result holds if S is a ring of quotients R_{σ} of R with respect to some torsion radical σ and ${ }_{R} V$ belongs to the quotient category R-Mod $/ \sigma$.

Proposition 1.12. Let K be an ideal of R and let V be the injective envelope of R / K in $R / K-M o d$. Then, $Q_{V}(R) \simeq Q_{\max }(R / K)$ and so $Q_{V}(R)$ is semisimple Artinian if and only if R / K has finite dimension and zero singular ideal in R / K-Mod.

Proof. By Corollary $1.4, Q_{V}(R) \simeq Q_{V}\left(R / K \bigotimes_{R} R\right) \simeq Q_{V}(R / K)$ and since V is the injective envelope of $R \mid K, Q_{V}(R \mid K)$ is just the complete ring of quotients $Q_{\max }(R / K)$ of R / K. The remainder is a well-known result.

2. Monads and Localization

Recall that a monad of R-Mod is an endofunctor $T: R-$ Mod $\rightarrow R$-Mod with natural transformations $\eta: I \rightarrow T$ and $\mu: T^{2} \rightarrow T$, such that the following diagrams commute. (I is the identity functor.)

If $F: R$-Mod $\rightarrow \mathscr{A}$ and $G: \mathscr{A} \rightarrow R$-Mod are covariant functors I with F a left adjoint of G, then $G F$ is a monad, with $\eta: I \rightarrow G F$ and $\mu=G \delta F$: $G F G F \rightarrow G F$, where η and $\delta: F G \rightarrow I$ are the natural transformations associated with the adjoint situation. Similarly, for $V \in R-$ Mod, the functor T_{V} defined in Section 1 is a monad in a natural way, since it is the composite of two (contravariant) adjoint functors.

Throughout this section, T will be a fixed additive monad of R-Mod. A T-algebra is a pair $\langle M, x\rangle$ with $M \subseteq R$ - Mod and $\alpha \in \operatorname{Hom}_{R}(T(M), M)$, such that the following diagrams commute.

A T-morphism (of T-algebras) $f:\langle M, \alpha\rangle \rightarrow\langle N, \beta\rangle$ is an R-homomorphism $f: M \rightarrow N$, such that the following diagram commutes.

Assigning to each module ${ }_{R} M$ and R-homomorphism f the T-algebra $\left\langle T(M), \mu_{M}\right\rangle$ and T-morphism $T(f)$ defines a functor from R-Mod into the category of T-algebras that is left adjoint to the forgetful functor and in fact, this pair of adjoints defines the monad T.

Heinicke [7], calls a left exact idempotent monad a localization functor. If σ is a torsion radical of R-Mod with quotient category $R-$ Mod $/ \sigma$, then the quotient functor $Q_{g}: R-\operatorname{Mod} \rightarrow R$-Mod is a localization functor, with $R-\mathrm{Mod} / \sigma$ isomorphic to the category of Q_{σ}-algebras. Conversely, if T is any
localization functor, then $T \simeq Q_{\sigma}$ for some torsion radical σ [7, Theorem 2.4]. The following definition is motivated by Lambek's result [8, Corollary 3.1a], that if ${ }_{R} V$ is injective and $T=T_{V}$, then Q_{T} is the corresponding localization functor.

Definition 2.1. For the monad $\langle T, \eta, \mu\rangle$, let rad_{T} denote the largest radical ρ of R-Mod, such that $T(M)$ is ρ-torsion free for all $M \in R-M o d$. For $M \subset R$-Mod, let $Q_{T}(M)$ denote the rad_{T}-closure of $\eta(M)$ in $T(M)$.

If ${ }_{R} M$ is a direct summand of $T(M)$, then M is rad_{T}-cosed in $T(M)$ and so $Q_{T}(M)=M$. This occurs, for instance, if M is injective and rad_{T}-torsionfree. The observation proves the following proposition and shows that $Q_{T} T$ is naturally isomorphic to T, since $T(M)$ is a T-algebra for all $M \in R$-Mod. (Note that since η_{M} must be a monomorphism, we can identify M and $\eta(M)$.)

Proposition 2.2. If $M \in R$ - Mod is a T-algebra, then $Q_{T}(M)=M$.

Proposition 2.3. Let $M \in R$ - Mod.
(a) $\operatorname{rad}_{T}(M)=\operatorname{ker}\left(\eta_{M}\right)$
(b) $Q_{T}(M)=\operatorname{ker}\left(\eta_{T(M)}-T\left(\eta_{M}\right)\right)$.
(c) $Q_{T}(M)=T(M) \Leftrightarrow \eta_{T(M)}$ is an isomorphism.

Proof. (a) Since $T(M)$ is rad_{T}-torsionfree, $\eta_{M}\left(\operatorname{rad}_{T}(M)\right)=0$ and it follows that $\operatorname{rad}_{T}(M) \subseteq \operatorname{ker}\left(\eta_{M}\right)$. On the other hand, if $f: M \rightarrow T(N)$ for some $N \in R$-Mod, then $T(f) \eta_{M} i=0$ for $i: \operatorname{ker}\left(\eta_{M}\right) \rightarrow M$ and so $\eta_{T(N)} f i=0$, which implies $f i=0$, since $\eta_{T(N)}$ is monic. Thus, $\operatorname{ker}\left(\gamma_{I M}\right) \subseteq \operatorname{rad}_{T}(M)$.
(b) Let $K=\operatorname{ker}\left(\eta_{T(M)}-T\left(\eta_{M}\right)\right)$. Since $\eta_{T(M)}$ and $T\left(\eta_{M}\right)$ agree on $\eta(M)$, it follows from the definition of $Q_{T}(M)$ that they agree on $Q_{T}(M)$ and hence, $Q_{T}(M) \subseteq K$. On the other hand, if $f: T(M) \rightarrow T(N)$ with $f \eta_{M}=0$, then $T(f) T\left(\eta_{M}\right)=0$ implies that $T(f) \eta_{T(M)}(K)=T(f) T\left(\eta_{M}\right)(K)=0$. Thus, $\eta_{T(W)} f(K)=0$, which implies that $f(K)=0$, since $\eta_{T(N)}$ is monic and so $K \subseteq Q_{T}(M)$.

(c) If $\eta_{T(M)}$ is an isomorphism, then $\mu_{M} \eta_{T(M)}=1_{T(M)}=\mu_{M} T\left(\eta_{M}\right)$ shows that $T\left(\eta_{M}\right)=\mu_{M}^{-1}=\eta_{T(M)}$ and so $Q_{T}(M)=T(M)$ by (b). Conversely, if $Q_{T}(M)=T(M)$, then by $(\mathrm{b}), \eta_{T}(M)=T\left(\eta_{M}\right)$. Using this and the fact that μ
is a natural transformation, $\eta_{T(M)} \mu_{M}=T\left(\eta_{M}\right) \mu_{M}=\mu_{T(M)} T\left(T\left(\eta_{M}\right)\right)=$ $\mu_{T(M)} T\left(\eta_{T(M)}\right)=1_{T(M)}$, and $\eta_{T(M)}$ is an isomorphism.

When $T=G F$ for an adjoint pair (with $\eta: I \rightarrow G F, \delta: F G \rightarrow I$), then rad_{T} is also the largest radical ρ such that every module of the form $G(A)$ is ρ-torsionfree. In this setting, Proposition 2.2(b) is just [11, Proposition 1.5]. By [4, Lemma 4.7], the following conditions are equivalent for $M \in R-\mathrm{Mod}$: (1) $Q_{T}(M)=M$; (2) $\delta_{F(M)}$ is an epimorphism; (3) $F\left(\eta_{M}\right)$ is a monomorphism; and (4) $\eta_{T(M)}$ is an isomorphism.

Proposition 2.2b shows that Q_{T} is the construction used by Fakir [6], so that Q_{T} is a monad, with $Q_{T}=T$ if and only if T is idempotent. To show that Q_{T} is a monad, factor $\eta: I \rightarrow T$ as $\eta=\epsilon \eta^{\prime}$, where $\eta^{\prime}: I \rightarrow Q_{T}$ and $\epsilon: Q_{T} \rightarrow T$. Since $Q_{T}(T(M))=T(M), Q_{T}(\epsilon)=\mu \eta_{T} Q_{T}(\epsilon)=\mu T(\epsilon) \in Q_{T}$. Using this and the fact that $\eta_{T} \mu \epsilon_{T} Q_{T}(\epsilon)=T(\eta) \mu \epsilon_{T} Q_{T}(\epsilon)$, it can be shown that $Q_{T}(\epsilon)$ factors through ϵ, say, $\epsilon \mu^{\prime}=Q_{T}(\epsilon)$. It can be verified that, with these natural transformations, $\left\langle Q_{T}, \eta^{\prime}, \mu^{\prime}\right\rangle$ is a monad. Note that if $T(\epsilon)$ is monic, then so is $Q_{T}(\epsilon)$ and hence, μ^{\prime}, so that μ^{\prime} must be an isomorphism. Thus, Q_{T} is idempotent if $T\left(\epsilon_{M}\right)$ is monic for all $M \in R-$ Mod.

Proposition 2.4. If T is left exact, then Q_{T} is a localization functor.
Proof. By the preceding remarks, Q_{T} must be idempotent. Let $0 \rightarrow M^{\prime} \rightarrow^{i}$ $M \rightarrow M^{\prime \prime} \rightarrow 0$ be an exact sequence in R-Mod. Then, $Q_{T}(j i)=0$ and $Q_{T}(i)$ is monic, since Q_{T} is just the restriction of T. If $x \in \operatorname{ker}\left(Q_{T}(j)\right)$, then $x \in \operatorname{ker}(T(j))=\operatorname{Im}(T(i))$, so that $x=T(i)\left(x^{\prime}\right)$ for some $x^{\prime} \in T\left(M^{\prime}\right)$. Thus, $\eta_{T(M)} T(i)\left(x^{\prime}\right)=\eta_{T(M)}(x)=T\left(\eta_{M}\right)(x)=T\left(\eta_{M}\right) T(i)\left(x^{\prime}\right)$, since $x \in Q_{T}(M)$ and so $T^{2}(i) \eta_{T\left(M^{\prime}\right)}\left(x^{\prime}\right)=T^{2}(i) T\left(\eta_{M^{\prime}}\right)\left(x^{\prime}\right)$. This shows that $x^{\prime} \in \operatorname{ker}\left(\eta_{T\left(M^{\prime}\right)}-T\left(\eta_{M^{\prime}}\right)\right)=$ $Q_{T}\left(M^{\prime}\right)$, since T is exact and therefore, $T^{2}(i)$ is monic. Thus, $Q_{T}(M)$ is left exact.

Propostion 2.5. Let $N=M \oplus M^{\prime} \in R$-Mod, with $i: M \rightarrow N$ and $p: N \rightarrow M$ the inclusion and projection, respectively. If $\langle N, \beta\rangle$ is a T-algebra, then for $\alpha=p \beta T(i)$, the following conditions are equivalent.
(1) $\langle M, \alpha\rangle$ is a T-algebra and p is a T-morphism.
(2) $p \beta T(i p)=p \beta$.
(3) $\beta\left(T\left(M^{\prime}\right)\right) \subseteq M^{\prime}$.

Proof. (1) \Rightarrow (2). If p is a T-morphism, then $p \beta=\alpha T(p)=p \beta T(i) T(p)$.
(2) \Rightarrow (1). By assumption, $\alpha T(\alpha)=p \beta T(i) T(p \beta T(i))=p \beta T(\beta) T^{2}(i)$ and so $\alpha T(\alpha)=p \beta T(i) \mu_{M}=\alpha \mu_{M}$, which shows that $\langle M, \alpha\rangle$ is a T-algebra. It is immediate from the assumption, that p is a T-morphism.

(2) $\Leftrightarrow(3) . \quad p \beta T(i p)=p \beta \Leftrightarrow \beta(T(i p)-1) \subseteq \operatorname{ker} p$. The result then foilows, since ker $p=M^{\prime}$ and the image of $T(i p)-1_{T(N)}$ is $T\left(M^{\prime}\right)$.

Proposition 2.6. A rad_{T}-closed submodule of a T-algebra is a Q_{T}-algebra and in this case, any T-morphism restricts to a Q_{T}-morphism.

Proof. Let ${ }_{R} M$ be a rad_{T}-closed submodule of a T-algebra $\langle N, \beta\rangle$, Since $Q_{T} T=-T$ and $Q_{T}(N)-N$, any R-homomorphism $f: N \rightarrow T(X), X \in R-\lambda$ Iod, is a Q_{T}-morphism, so $\operatorname{ker}(f)$ is a Q_{T}-algebra, since the category of Q_{T}-algebras has kernels. Since the category also has intersections, M must be a Q_{T}-algebra. In fact, if $i: M \rightarrow N$ is the inclusion, then $\beta T(i) \epsilon_{M}$ factors through i, say, $i \alpha=\beta T(i) \epsilon_{M}$ and $\langle M, \alpha\rangle$ gives the required Q_{T}-algebra structure. If $\left\langle N^{\prime}, \gamma\right\rangle$ is a T-algebra and $f: N \rightarrow N^{\prime}$ is a T-morphism, then $Q_{T}\left(N^{\prime}\right)=N^{\prime}$ and $f i \alpha=f \beta T(i) \epsilon_{M}=\gamma T(f) T(i) \epsilon_{M}=\gamma \eta_{v^{\prime}} Q_{T}(f i)=Q_{T}(f i)$, so $f i$ is a Q_{T}-morphism.

Definition 2.7. The category of Q_{T}-algebras will be cienoted by R-Mod $/ T$.
Propositions 2.5 and 2.6 show that modules in $R-\mathrm{Mod} / T$ can be characterized as certain direct summands of rad_{T}-closed submodules of T-algebras.

Theorem 2.8. For $M \in R$-Mod, the following conditions are equizalent.
(1) $r_{M, M}: M \rightarrow T(M)$ is an isomorphism.
(2) $\eta_{T(M)}$ is an isomorphism and M is isomorphic to a rad_{T}-closed submodule of $T(N)$, for some $N \in R$-Mod.
(3) $Q_{T}(M)=T(M)$ and M is a Q_{T}-algebra.

Proof. That (1) $\Rightarrow(2)$ is obvious and (2) \Rightarrow (3) follows from Propositions 2.3 and 2.6. If (3) holds, then M is a direct summand of $Q_{T}(M)=T(M)$, since it is a Q_{T}-algebra and so $M=Q_{T}(M)$ by Proposition 2.2, and thus, (1) holds.

If $\langle M, \alpha\rangle$ is a T-algebra, then for $m \in M$, let $\rho_{m}{ }^{*}=\alpha T\left(\rho_{m}\right): T(R) \rightarrow M$, where $\rho_{r i}=[r \rightarrow r m]: R \rightarrow M$. For $q \in T(R)$, define $q m=\rho_{m} *(q)$. Then, $\rho_{m}{ }^{*} \rho_{q}{ }^{*}=\rho_{q m}^{*}$, since $\rho_{m}{ }^{*} \rho_{q}{ }^{*}$ is a T-morphism and extends $\rho_{q m}$ and furthermore, $\rho_{n^{*}}{ }^{*} \rho_{n}{ }^{*}=\rho_{m+n}^{*}$ for any $n \in M$, since T is assumed to be additive. These remarks can be used to show that $T(R)$ is a ring and that any T-algebra is a $T(R)$-module. In addition, any T-morphism is a $T(R)$-homomorphism.

Of course, since Q_{T} is a monad, $Q_{T}(R)$ is also a ring. As in Proposition 1.2, if $M, N \in T(R)$-Mod and $\operatorname{rad}_{T}(N)=0$, then any R-homomorphism $f: M \rightarrow N$ is a $Q_{T}(R)$-homomorphism.

In particular, if T is idempotent, then $Q_{T}=T$ and any R-homomorphism from a $T(R)$-module into a T-algebra is a $T(R)$-homomorphism. More generally, the following result holds.

Lemua 2.9. The following conditions are equivalent for any T-algebra $\langle M, \alpha\rangle$.
(1) μ_{M} is an isomorphism.
(2) η_{M} is an isomorphism.
(3) For any T-algebra $\langle N, \beta\rangle$, every R-homomorphism $\gamma: M \rightarrow N$ is a T-morphism.

Proof. (1) \Leftrightarrow (2). If μ_{M} is an isomorphism, then $T\left(\eta_{M}\right)=\eta_{T(M)}$ is an isomorphism, so $\eta_{M} \alpha-T(\alpha) \eta_{T(M)}=T(\alpha) T\left(\eta_{M}\right)=T\left(\alpha \eta_{M}\right)-1$ and η_{M} is an isomorphism. Conversely, if η_{M} is an isomorphism, then so is $T\left(\eta_{M}\right)$ and hence, also μ_{M}.
(2) \Leftrightarrow (3). If η_{M} is an isomorphism and $f: M \rightarrow N$, then $f \alpha=\beta \eta_{N} f_{\alpha}=$ $\beta T(f) \eta_{M^{\alpha}}=\beta T(f)$, since $\eta_{M^{\alpha}}=1$ and thus, f is a T-morphism.

Assuming the converse shows that $\eta_{M}: M \rightarrow T(M)$ is a T-morphism, so $\eta_{M^{\alpha}}=\mu_{M} T\left(\eta_{M}\right)=1$ and η_{M} is an isomorphism.

Theorem 2.10. Let $U: Q_{T}(R)$-Mod $\rightarrow R$-Mod be the forgetful functor. If TU is left exact, then the following conditions hold.
(a) Q_{T} is idempotent.
(b) $Q_{T} U$ is a localization functor of $Q_{T}(R)$-Mod.
(c) R-Mod/T is a full Grothendieck subcategory of R-Mod.

Proof. (a) The monomorphism $\epsilon_{M}: Q_{T}(M) \rightarrow T(M)$ is the kernel of the Q_{T}-morphism $\eta_{T(M)}-T\left(\eta_{M}\right)$ and so it is a $Q_{T}(R)$-homomorphism. By assumption, $T U\left(\epsilon_{M}\right)$ is monic and so $\epsilon_{M} \mu_{M}^{\prime}-Q_{T}\left(\epsilon_{M}\right)$ is monic and thus, μ_{M}^{\prime} is an isomorphism.
(b) Since Q_{T} is idempotent, by Lemma 2.9 the R-homomorphism $\eta_{M}: M \rightarrow T(M)$ is a $Q_{T}(R)$-homomorphism for all $M \in Q_{T}(R)$-Mod. Using the fact that $T(M)$ has a unique $Q_{T}(R)$-module structure extending the R module structure, it follows that $(T U)^{2}=T^{2} U$ and it can be shown that $\left\langle T U^{T}, \eta, \mu\right\rangle$ is a monad of $Q_{T}(R)$-Mod. By assumption, $T U$ is left exact and since $Q_{T} U(M)=\operatorname{ker}\left(T U^{\top}\left(\eta_{M}\right)-\eta_{T U(M)}\right)$, Proposition 2.4 implies that $Q_{T} U$ is left exact and idempotent.
(c) Since Q_{T} is idempotent, Lemma 2.9 shows that $R-\mathrm{Mod} / T$ is a full subcategory and so any Q_{T}-algebra has a unique $Q_{T}(R)$-module structure extending the R-module structure. Thus, U is an isomorphism of categories when restricted to a functor from $Q_{T} U$-algebras to Q_{T}-algebras and this shows that $R-\operatorname{Mod} / T$ is a Grothendieck category, since $Q_{T} U$ is a localization functor.

3. Applications

If $V \in R$-Mod and $T=T_{V}$ is the monad defined by $\operatorname{Hom}_{R}(-, V)$, then $Q_{T}=Q_{V}$ and we will denote the category of Q_{V}-algebras by $R-\mathrm{Mod} / V$. By Yroposition 2.6, each module $M \in D(V)$ belongs to $R-\operatorname{Mod} / V$. If V satisfies the equivalent conditions of Proposition 1.7, then the two categories coincide and it follows from Lemma 1.5, that $Q_{V} U: Q_{V}(R)$-Mod $\rightarrow R$-Mod is left exact since $\operatorname{Hom}_{R}(-, V)$ is exact on $Q_{V}(R)-\operatorname{Mod}$. Thus, the first part of Theorem 1.8 is a special case of Theorem 2.10, which shows in addition that Q_{V} is idempotent, while the second part provides a converse to Theorem 2.10 in that any full reflective Grothendieck subcategory is of the form R-Mod! T^{*} for some monad T such that $T U$ is left exact.

Recall that a module ${ }_{R} V$ is called balanced if $\eta_{R}: R \rightarrow \operatorname{Bic}\left({ }_{R} V\right)$ is an isomorphism. Applying Theorem 2.8 to the monad T_{V}, gives the following generalization of [15, Theorem 5.1].

Theoreai 3.1. Let V be a faithful left R-module. Then, V is balanced $\Leftrightarrow R \in R-\operatorname{Mod}!V$ and $Q_{V}(R)=\operatorname{Bic}\left({ }_{R} V\right)$.

The next theorem is a generalization of part (1) of [8, Theorem 4.2], where a proof is given in case ${ }_{R} V$ is injective. Recall that $Q_{V}(R)$ is said to be a dense subring of $\operatorname{Bic}\left({ }_{R} V\right)$ if for each $E=\operatorname{End}\left({ }_{R} V\right)$-finitely generated submodule $F \subseteq V_{E}$ and $b \subseteq \operatorname{Bic}\left({ }_{R} V\right)$, there exists $q \in Q_{V}(R)$, such that $(b-q) F=0$. Note that the hypothesis of the theorem is satisfied if $U_{V} V^{:} R-\mathrm{Mod} / V \rightarrow R-\mathrm{Mod}$ is exact and the conditions of Proposition 1.7 hold for V.

Theorem 3.2. Q_{V} is dense in $\operatorname{Bic}\left({ }_{R} V\right)$ if for any direct sum $V^{n}, n>0$, each cyclic $Q_{V}(R)$-submodule is rad_{V}-closed.

Proof. If $\nabla_{1}, \ldots, v_{n} \subseteq V$, let $\tau=\left(\varepsilon_{1}, \ldots, v_{n}\right) \subseteq V^{n}$. If $b v_{\dot{\prime}} Q_{V}(R) \in$ for some $b \in \operatorname{Bic}\left({ }_{R} V\right)$, then, since $Q_{V}(R) w$ is rad_{V}-closec in V^{n}, there exists $g \in \operatorname{Hom}_{R}\left(V^{n}, V\right)$ with $g\left(Q_{V}(R) \vec{v}\right)=0$, but $g(b \bar{v}) \neq 0$. This is a contradiction, since $g(v) \in g\left(Q_{v}(R) v\right)=0$ implies that $g(b i)=\sum_{i=1}^{n} g_{i}\left(b v_{i}\right)=b \sum_{i=1}^{n} g_{i}\left(v_{i}\right)=$

$\operatorname{Bic}\left({ }_{R} V\right) v=Q_{V}(R) v$ and for each $b \in \operatorname{Bic}\left({ }_{R} V\right)$, there exists $q \in Q_{V}(R)$, such that $q v_{i}=b v_{i}$ for $1 \leqslant i \leqslant n$.

If ${ }_{R} V$ is injective, then $R / \operatorname{Ann}(V)$ can be embedded in some direct product W of copies of V and so $Q_{W}(R)=\operatorname{Bic}\left({ }_{R} W\right)$ [16, Theorem 3.2]. But two injective modules that cogenerate each other determine isomorphic rings of quotients and so $\operatorname{Bic}\left({ }_{R} W\right) \simeq Q_{V}(R)$. These results can be recovered in a much more general setting.

The bicommutator of $V_{1} \oplus V_{2} \in R-M o d$ is the set of matrices of the form $\left(\begin{array}{cc}b_{1} \\ 0^{1} & 0 \\ b_{2}\end{array}\right)$ such that $b_{1} \in \operatorname{Bic}\left(V_{1}\right), b_{2} \in \operatorname{Bic}\left(V_{2}\right)$ and $b_{2} f_{21}=f_{21} b_{1}, b_{1} f_{12}=f_{12} b_{2}$ for all $f_{21} \in \operatorname{Hom}_{R}\left(V_{1}, V_{2}\right), f_{12} \in \operatorname{Hom}_{R}\left(V_{2}, V_{1}\right)$ (see [1]). There is a natural ring homomorphism from $\operatorname{Bic}\left(V_{1} \ominus V_{2}\right)$ into $\operatorname{Bic}\left(V_{1}\right)$ that is a monomorphism if V_{1} cogenerates V_{2} and an isomorphism if V_{1} both generates and cogenerates V_{2}.

Similarly, if $W=\prod_{I} V$ is a direct product of copies of ${ }_{R} V$, then $\operatorname{Bic}(V \oplus W)$ is the set of matrices $\left(\begin{array}{ll}b & \frac{0}{0} \\ 0\end{array}\right)$ such that $b \in \operatorname{Bic}(V), \bar{b}$ acts on W by componentwise multiplication by b and $f \bar{b}=b f$ for all $f \in \operatorname{Hom}_{R}(W, V)$. (The latter condition guarantees that $b \in \operatorname{Bic}(W)$ and the condition that $f b=\bar{b} f$ for $f \in \operatorname{Hom}_{R}(V, W)$ is automatically satisfied.) Note that the natural homomorphism ϕ : $\operatorname{Bic}(V \oplus W) \rightarrow \operatorname{Bic}(V)$ is an isomorphism if V is finitely generated over End $\left.{ }_{R} V\right)$, since in this case, V both generates and cogenerates $\Pi_{I} V[4$, Proposition 2.7].

Proposition 3.3. If $V \in R-\mathrm{Mod}$ and $\operatorname{Bic}(V)$ is embedded in a direct product $W=\prod_{x \in I} V_{\alpha}$ of copies of V, then the following conditions hold for the natural ring homomorphism $\phi: \operatorname{Bic}(V \oplus W) \rightarrow \operatorname{Bic}(V)$.
(a) $\operatorname{Im}(\phi)$ is rad_{V}-closed in $\operatorname{Bic}(V)$.
(b) $\operatorname{Im}(\phi)=Q_{V}(R)$ if every R-homomorphism $f: \operatorname{Bic}(V) \rightarrow V$ can be extended to W.

Proof. (a) If $a \in \operatorname{Bic}(V) \backslash \operatorname{Im}(\phi)$, then by the preceding remarks characterizing $\operatorname{Bic}\left(V \oplus W^{\prime}\right)$, there exists $f \in \operatorname{Hom}_{R}(W, V)$, with $f(a w) \neq a f(w)$ for some $w \subseteq W$. Define $g: \operatorname{Bic}(V) \rightarrow V$ by $g(b)=f(b w)-b f(w)$, for all $b \in \operatorname{Bic}(V)$. Since g is an R-homomorphism, $g \phi=0$ and $g(a) \neq 0$, this shows that $\operatorname{Im}(\phi)$ is rad_{V}-closed in $\operatorname{Bic}(V)$.
(b) Because $\operatorname{Im}(\phi) \supseteq \eta(R)$, by (a) we must have $\operatorname{Im}(\phi) \supseteq Q_{V}(R)$. If $f \in \operatorname{Hom}_{R}(\operatorname{Bic}(V), V)$ with $f \eta(R)=0$, then by assumption, f can be extended to $g: W \rightarrow V$. If $b \in \operatorname{Im}(\phi)$, then $f(b)=g(b)=b g(1)=b f(1)=0$, since b must commute with elements of $\operatorname{Hom}_{R}(W, V)$. Thus, $\operatorname{Im}(\phi) \subseteq Q_{V}(R)$.

Proposition 3.4. If $V, W \in R-M o d$ and V and W both generate and cogenerate each other, then $Q_{v}(R) \simeq Q_{w}(R)$.

Proof. By assumption, the homomorphisms $\operatorname{Bic}(V \rho W) \rightarrow \operatorname{Bic}(V)$ and $\operatorname{Bic}(V \doteq W) \rightarrow \operatorname{Bic}(W)$ are isomorphisms. Since V ance W cogenerate each other, $\operatorname{rad}_{V}=\operatorname{rad}_{W}$ and it follows that $Q_{V}(R) \simeq Q_{W}(R)$.

The module ${ }_{R} V$ is called fully divisible if it is generated by the injective envelope $E(R)$ of the module ${ }_{R} R$. In [1], it has been shown that if V is faithful, fully divisible, and finitely generated over $\operatorname{End}\left({ }_{R} V\right)$, then $\operatorname{Bic}\left({ }_{R} V\right)$ is isomorphic to the rad_{V}-closure of R in $E(R)$, a subring of $Q_{\max }(R)$. The next theorem uses techniques of this paper to generalize the result to the case in which V is merely faithful and fully divisible. In this situation, if $R_{R} M$ is fully divisible and rad_{V}-torsion free, then M can be embedded as a $Q_{V}(R)$ submodule in a direct product W of copies of V. That is, M inherits the $Q_{V}(R)$-module structure of W (which is unique), but there may be other $Q_{V}(R)$-module structures extending the R-module structure (see [2]).

Throren 3.5. If $R_{R} V$ is faithful and fully divisible, then $Q_{V}(R)$ is isomorphic to the subring of $Q_{\max }(R)$ defined by the rad_{V}-closure of R in $E(R)$.

Proof. Let S be the rad_{V}-closure of R in $E(R)$, which is a subring of $\mathcal{O}_{\max }(R)$ by [1, 'I'heorem 2.3]. Since V is fully divisible, every R-homomorphism from R to V extends to $E(R)[1$, Proposition 1.5$]$ and so $\operatorname{Hom}_{R}(i, V)$ is epic for the inclusion $i: R \rightarrow E(R)$, which implies that $T_{V}(i)$ and hence, $Q_{V}(i)$ is a monomorphism. Because $\operatorname{rad}_{V} \leqslant \operatorname{rad}_{E(R)}, \eta_{E(R)}: E(R) \rightarrow T_{V}(R)$ is monic and since $E(R)$ is injective, $\eta_{E(R)}$ has a splitting map π with $\pi \eta_{E(R)}=1$. Thus, $Q_{V}(E(R))=E(R)$ and so $Q_{v}(i)\left(Q_{v}(R)\right)=\pi \eta_{E(R)} Q_{V}(i)\left(Q_{v}(R)\right)=$ $\pi T_{V}(i) \epsilon_{R}\left(Q_{V}(R)\right) \subseteq S$ since $\pi T_{V}(i)$ maps R into R and therefore, maps the rad_{V}-closure of R in $\operatorname{Bic}\left({ }_{R} V\right)$ into the rad_{V}-closure of R in $E(R)$. Since $T_{V}(i) \epsilon_{R}=\eta_{R} Q_{V}(i)$, then $s=Q_{V}(i)(q)$ has the property (for all $q \subseteq Q_{V}(R)$) that

$$
[f \rightarrow q f(1)]=T_{\nu}(i) \epsilon_{R}(q)=\eta_{E(R)} Q_{\nu}(i)(q)=\eta_{E(R)}(S)=[f \rightarrow f(s)]
$$

i.e., $q f(1)=f(s)$, for all $f \in \operatorname{Hom}_{R}(E(R), V)$.

Now, V is an S-module by extending $\rho_{y}=[r \rightarrow r ข]: R \rightarrow \Gamma^{*}$ to $\rho_{c}{ }^{\prime}$: $E(R) \rightarrow V^{\prime}$ (the extension is unique on S) and defining $s z^{\prime}=p_{r}^{\prime}(s)$ for all $s \in S$ and $z \in V$. Define $\left.h: S \rightarrow \operatorname{Bic}_{(} V\right)$ by $h(s)=[\tau \rightarrow s \tau]$, for $s \in S$, $z \in V$. Then, for $q \in Q_{V}^{\circ}(R)$,

$$
\begin{aligned}
h Q_{V}(i)(q) & =h(s)=[v \rightarrow s v]=\left[v \rightarrow \rho_{v}^{\prime}(s)\right] \\
& =\left[v \rightarrow q \rho_{v}^{\prime}(1)\right]=[v \rightarrow q \tau]=q,
\end{aligned}
$$

where $s=Q_{V}(i)(q)$ and so $h Q_{V}(i)=1$.
We have shown that the monomorphism $Q_{v}(i): Q_{v}(R) \rightarrow Q_{v}(E(R))-E(R)$
factors through S and in fact, $Q_{V}(R)$ is a direct summand of S. This forces $\operatorname{Im}\left(Q_{V}(i)\right)=S$, since $E(R)$ is an essential cxtension of $R \subseteq \operatorname{Im}\left(Q_{V}(i)\right)$.

Corollary 3.6. Let ρ be a radical of R-Mod, with $\rho(R)=K$ and let S be the ρ-closure of R / K in $E\left({ }_{R i K} R / K\right)$. If $S \subseteq Q_{\max }(R / K)$, then there exists $V \in R$-Mod with $S \simeq Q_{V}(R)$.

Proof. If $S \subseteq Q_{\max }(R / K)$, then it is a subring by [1, Lemma 2.1]. Furthermore S is the rad_{V}-closure of R / K in $E\left(_{R / K} R / K\right)$ for $V=E\left({ }_{R / K} R / K\right) \oplus E\left({ }_{R / K} R / K\right) / S$ and so, by Theorem 3.5, $S \simeq Q_{V}(R / K)$. (In fact, by [1, Proposition 3.1], $\left.S \simeq \operatorname{Bic}\left({ }_{R} V\right)\right)$. By Proposition 1.11, we have that $S \simeq Q_{V}(R)$.

The final theorem concerns the monad of R-Mod determined by $P \otimes_{R}$. By [4, Lemma 4.7] any module of type $F P$ [13] satisfies the hypothesis of the theorem, so this includes the case when P_{R} is finitely generated projective [13, Corollary 1.2]. The theorem gencralizes [5, Theorem 2.1], which shows that the ring of quotients determined by a projective module coincides with its bicommutator.

Theorem 3.7. Let $P \in \operatorname{Mod}-R, E=\operatorname{End}\left(P_{R}\right)$ and $T(M)=\operatorname{Hom}_{E}\left(P, P \otimes_{R} M\right)$ for all $M \in R$-Mod. If P is flat in $\operatorname{Mod}-Q_{T}(R)$ and the natural map ϕ : $P \otimes_{R} Q_{T}(R) \rightarrow P$ given by $\phi(p \otimes q)=p q$ for all $p \in P, q \in Q_{T}(R)$ is an isomorphism, then the following conditions hold.
(a) $R-\mathrm{Mod} / T$ is a full Grothendieck subcategory.
(b) If P is projective in $\operatorname{Mod}-Q_{T}(R)$, then $Q_{T}(R)=\operatorname{Bic}\left(P_{R}\right)$.
(c) If P is projective and finitely generated in $\operatorname{Mod}-Q_{T}(R)$, then T is idempotent and consequently, $Q_{T}=T$.

Proof. (a) Let $Q=Q_{T}(R)$ and let $U: Q-$ Mod $\rightarrow R$-Mod. The result follows from Theorem 2.10, since, if P_{R} satisfies the assumption, then for $M \in Q$-Mod, $P \otimes_{R} M \simeq P \otimes_{R}\left(Q \otimes_{Q} M\right) \simeq\left(P \otimes_{R} Q\right) \otimes_{Q} M \simeq P \otimes_{Q} M$ and so $T U$ is left exact since P_{Q} is flat.
(b) Since $\operatorname{Bic}\left(P_{Q}\right)=\operatorname{Bic}\left(P_{R}\right)$ and Q is its own ring of quotients with respect to $\operatorname{Hom}_{E}\left(P, P \otimes_{Q}-\right) \simeq T U$, we can apply [5, Theorem 2.1] to show that $Q=\operatorname{Bic}\left(P_{R}\right)$, since Q is just the ring of quotients constructed with respect to $\operatorname{ker}(T U)$.
(c) If P_{Q} is finitely generated and projective, then it is well known that the natural homomorphism $P \otimes_{R} \operatorname{Hom}_{E}(P, M) \rightarrow M$ is an isomorphism for all $M \in E$-Mod. Since this homomorphism is used to define $\mu: T^{2} \rightarrow T$ in the monad, μ must be an isomorphism and T is idempotent.

References

1. John A. Beachy, Bicommutators of cofaithful fully divisible modules, Can. J. Math. 23 (1971), 202-213.
2. John A. Beachy, Corrigendum: Bicommutators of cofaithful, fully divisible modules, Can. J. Math. 26 (1974), 256.
3. Johy A. Beachy, A characterization of torsionfree modules over rings of quotients, Proc. Amer. Math. Soc. 34 (1972), 15-19.
4. Jomn A. Beachy, T-faithful subcategories and localization, Trans. Amer. Math. Soc. 195 (1974), 61-79.
5. R. S. Cunningham, E. A. Rutter, Jr., and D. R. Turnidge, Rings of quotients of endomorphism rings of projective modules, Pacific J. Math. 41 (1972), 647668.
6. S. Fakir, Monade idempotente associée à une monade, C. R. Acad. Sci, Paris Ser. A-B 270 (1970), A99-A101.
7. A. G. Heivicke, Triples and localizations, Cumad. Math. Eull. 14 (1971), 333-339.
8. I. Laybek, Localization and completion, J. Pure Appl. Algebra 2 (1972), 343-370.
9. I. Lantbek, Noncommutative localization, Bull. Amer. Math. Soc. 79 (1973), 857-872.
10. J. Lambek and B. A. Rattray, Localization at injectives in complete categories, Proc. Amer. Math. Soc. 41 (1973), 1-9.
11. J. Lambek, Localization and sheaf reflectors, preprint.
12. Saunders MacLane, "Categories for the Working Mathematician," SpringerVerlag, New York, 1971.
13. Kirti Morita, Localizations in categories of modules. I, Math. Z. 114 (1970), 121-144.
14. Kuti Morita, Localizations in categories of modules. II, J. Reine Angew. Math. 242 (1970), 163-169.
15. Kitta Morita, Flat modules, injective modules and quotient rings, Math. Z. 120 (1971), 25-40.
16. Kitt Morita, Ring theory, in "Quotient rings," (R. Gordon, Ed.), Academic Press, New York, 1972.
17. Bo Stenstron, Rings and modules of quotients, in "Lecture Notes in Mathematics:" vol. 237, Springer-Verlag, New York, 1971.

[^0]: * Partially supported by NSF Grant No. GP20434.

