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II\TRODUCTIOX 

Any injective module F’ E R-Mod defines a torsion radical (torsion theory) 
and an associated quotient category R-Mod/V, which is a hli reflective 
Grothendieck subcategory of R-Mod with exact reflector (quotient functor). 
In this case, V can be chosen so that the ring of quotients it determines can be 
realized as the bicammutator (double centralizer) of I/-. Morita ji3, 16j has 
generalized this construction by considering certain modules for which the 
reflector into the quotient category need not be exact, although he requires 
that the generalized ring of quotients must coincide with the bicommutator 
of the module. 

It is possible to omit the latter condition, as is shown b!; Theorem 1.8 and 
this enlarges the class of modules,that can be considered to include, in partic- 
ular, am module that is injective modulo its annihilator. The new conditions 
obtained are not only more general, but appear to simplify the proofs as well. 

Heinicke [7] has characterized localization functors as idempotent, ieft 
exact monads, and quotient categories as their categories of algebras. Given 
any monad T of R-Nod, there is an associated monad 0, studied by Lambek 
and Rattray [IO], which is idempotent and left exact if T is left esact and 
which gives the usual localization functor if T = Hom(Hom(-, F), EV) for 
R V injective. It is shown in Theorem 2.10 that if T is left exact den 

restricted to Q,(R)-Mod, then the category of &,-algebras is a generalized 
quotient category in Morita’s sense, thus extending Morita’s theory of 

noncommutative localization. (This gives another proof of part of Theorem 
1.8, in which, as in all of Section 1, the categorical language has been wp- 
pressed so as to provide easier access to the theory.) 

The final section gives some applications. Nor&a’s characterization of 
balanced modules [I51 is modified in Theorem 3.1, while Theorem 3.2 extends 
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a theorem of Lambek [S] giving a condition under which the generalized ring 
of quotients determined by P’ is a dense subring of the bicommutator of V. 
Theorem 3.5 generalizes results of [I], and Corollary 3.6 shows that if K is 
any ideal of R, then any subring of _O,,(R,/K) determined by a radical of 
R-Mod is a generalized ring of quotients of R. Finally, Theorem 3.7 applies 
Theorem 2.10 to the monad T = Hom(P, P 0 -) and extends results of [5]. 

In the standard theory of noncommutative localization, for any ring of 
quotients Q of R, the kernel of the natural homomorphism R + Q must be 
the annihilator of an injective module. Morita’s theory allows any ideal to be 
such a kernel and in addition, includes as a generalized ring of quotients any 
epimorphism in the category of rings. It is hoped that this theory will provide 
a language for certain more specialized constructions that are not standard 
rings of quotients. 

1. OS MORITA'S LOCALIZATIOK 

Let R be an associative ring with identity and let R-Mod denote the 
category of unital left R-modules. A subfunctor p of the identity on R-Mod 
is called a radical if p(M/p(M)) = 0 f or all M E R-Mod and a torsion radical 
if p(M) = M’ n p(M) for all submodules M’ c $I. Any class of modules 
defines a radical by assigning to each module the intersection of kernels of 
homomorphisms into the class and conversely, every radical is defined by the 
corresponding class of torsionfree modules. (Recall that M is p-torsion free 
if p(M) = 0 and p-torsion if p(M) = Me) 

For V E R-Mod, let rad, be the radical of R-Mod defined for ME R-Mod 

by 

rad,(N) = {m E M / I = 0 for all f E Hom,(M, V)>. 

If M’ is a submodule of M, then the rad,-closure of M’ in M is 

{RZ E M / f(nz) ‘= 0 for all f E Hom,(M, V) such that f (;%I’) = 0). 

We say that M’ is rad,-closed in M if this closure is M’ itself, which occurs 
if and only if M/M’ is rad,-torsionfree. If f E Hom,(M, IV) and f (:I/') C N' 
for submodules M’ c M and N’ c X, then f maps the rad,-closure of M 
into the rad,-closure of X’. 

For V E R-Mod, let E = End(,V) and B = Bic(, V) = End( Ye). The 
composition of Hom,(--, V): R-M d o + Mod-Rand Hom,(--, V): Mod-E-+ 
B-Mod is covariant (where Mod-E is the category of right E-modules). We 
denote this composition by T,: R-Mod + B-Mod and note that TV can be 
viewed as merely an endofunctor of R-Mod. If qar: M + T,(M) is defined 
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by m&4 = [f -+ f(m)1 f or m E Ad and f E Hom,(M, V), then 7: I -+ T, 

defines a natural transformation, where I is the identity functor, and ker(q,\.;) = 
rad,(M). (When the meaning is obvious, we will write v instead of yal .) 
If V is injective, then rad, is a torsion radical and since T,(M) belongs to the 

quotient category determined by rad, [8, Proposition 3.11, it follows that the 

rad,-closure of q(M) in T,(M) gives the module of quotients of M. This 
motivates the following definition given for any T’ E R-3Iod. 

DEFISITIOK 1.1. For V, ME R-Mod, let QG7(M) be the rad,-closure of 

7(M) in T,(M). In particular, 

Q,(R) = (b E Bic(,V) 1 f(b) = 0 for all f f Hom,(Bic(,V), V) 

such that f7(R) = O>. 

Kate that QV: R-Mod -+ R-AIod is a functor, since, if f E Hom,(-5~i/l, M), 
then T,(f) yw = vyf and so T&f) maps Q&Wj into QV(Nj. Thus, &(f) 
can be defined as the restriction of TV(f) to &(M). 

The next proposition shows that actually, & can be viewed as a functor from 

R-Mod to Q,(R)-Mod. 

PROPOSITION 1.2. Let VE R-Mod. 

(aj Q!,(R) is a subring of Bic(,V). 

(b) Any rad,-closed R-submodule 

submodule. 

of a Bic(,V)-.module is a Q,(R)- 

(c) 1f M, ,Y E Bic(, V)-Mod and rad,(N) = 0, &en. any R-homomol-- 

phism f : M - AT is a Q,(R)-homomorphism. 

Proof. (c) If f : M + M satisfies the stated condition, then for m E _M, 

define g E Hom,(B, N) by g(b) = bf (m) - f(bm), for all b E B = Bic(,V). 
Since g?(R) = 0 and rad,(N) = 0, it follows that g@(R)) = 0 and thus, 

rrf(m) = f (qm) for all q E Q,(R). 

(b) If ,M’ C Bill is rad,-closed, then it follows easily from (c) that 
qm E 44’ for all q E Q,(R) and m E Al’. 

(a) This follows from (b). 1 
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PROPOSITION 1.3. Let V E R-Mod alzd let 0 -+ N’ -9 M -J 31” + 0 

be an exact sequence in R-Mod. Then,Qv(f) is an isomorphism if Hom,(i, V) = 0. 

Proof. If Hom,(i, V) = 0, then Hom,(f, Y) is an isomorphism and hence, 

TV(f) is an isomorphism. Since f is epic, Ty(f)(T(M)) = I and this 
implies that Tv(f)(Q&W)) = Q&W’). 1 

COROLLARY 1 A. Let V, M E R-Mod. 

(a) QJMjM’) -N Qv(.M) f or any R-submodule M’ C rad,(M). 

(b) Q,((R/K) OR AZ) N Q&14) for any ideal K C Am&V). 

In Corollary 1.4, both isomorphisms are natural isomorphisms. Many 

questions are reduced by the second isomorphism to the case of faithful 
modules? since, if K = Ann(, V), then for any R/K-module M, the construc- 

tion of Q,(M) is the same whether df and V are regarded as R/K-modules or 
as R-modules. 

LEMON 1.5. The following conditions aye equivalent for V E R-Mod. 

(1) For MEQy(R)-Mod, any R-homomorphism f: Al -+ V is a QY(R)- 

homomorphism. 

(2) The natural map 4: V + Horn,(Q),(R), V), dejined by 4(“)(q) = qv 

for v E V, q c Q,(R), is an isomorpkism. 

(3) Every R-homomorphism f : Q”(R) -+ V can be extended to Bic(RTJ). 

Proof. (1) * (2). Th is is immediate, since V E Q,(R)-Mod. 

(2) =S (3). If f:QV(R) -+ V, then by assumption, there exists lz’ z V 
such that f (q) = qv for all q E Q,(R). This can be extended tog: Bic(, V) ---f V 

by definingg(b) = bv, for all b E Bic(,V). 

(3) 3 (1). As in the proof of Proposition 1.2 (c), given-f: M-t V and 
nz E M, define g: Q,(R) -+ V and then extend g to Bic(, V) and apply Propo- 

sition 1.2. B 

An additional condition equivalent to those of Lemma 1.5 is that the 
category of rad,-torsionfree QQ,(R)-modules is a full subcategory of R-Mod. 
This can be shown by using condition (1). It follows that if the conditions 

are satisfied, then V determines the same radical rad, of QV(R)-Mod whether 
viewed as a Q,(R)-module or an R-module. 

Following Morita, for V E R-Mod, we let D(V) denote the full subcategory 
of R-Mod determined by all modules RM for which there exists an exact 
sequence 0 -+ .M + X,, -+ X1 in R-Mod, such that X0 and X1 are each 
isomorphic to a direct product of copies of V. Note that there exists such an 
exact sequence for M if and only if M is isomorphic to a rad,-closed sub- 
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module of a direct product of copies of V. In this case, it follows from Propo- 
sition (1.2) that M is a Q,(R)-module. 

If ~11 is any right module over E = End(,V), then a free resolution 
0; E -+ cl, E + M---f 0 gives an exact sequence 0 + Horn,(M, V) + 
Hom,(& E, F’) + Hom,(sl E, V), which is just an exact sequence 
0 + Hom,(M, V) -+ & V -+nl V. This shows that Homc(-, Y) is a 
functor from Mod-E into g(V) and in particular, TV is a functor from 
R-Mod into %(I’). 

If RV is injectire, then the quotient category R-hIodl;T;; determined by 

rad, , coincides with g(V) and in fact, every quotient category can be 
obtained in this manner [13, Theorem 5.41. In this case, g(Y) is a reffective 
subcategory of R-Mod and the next proposition gives a more general condition 
under ssyhich this occurs. In fact, conditions (b) and (c) are equivalent without 
any assumptions [ 11, Proposition 1.21. 

LE~SWIA 1.6. Let RI;’ be injectize in G?(V). 

(a) If X is an R-submodule of NE 52( V), the?: 31 E g’(V) o N is 

rad,-closed ill 9. 

(b) For all X E R-Mod, ezery R-homomorphism f: Q,(M) + I7 call be 
extended to T,(M). 

(c) Qy: E-Mod -+ g:(V) is left adjoint to the iltclusion UF: S(V) + 

R-Xod. 

Proof. (a) -4ssume that N is a rad,-closed submodule of some direct 
product JJ V of copies of Ii. 

(-) If x E N\$f, then since M is rad,-closed, there existsf : N -+ V with 
f(x) f 0 and f (184) = 0. Since T’ is injective in L@(V), f can be extended to 
I-J1 V. On the other hand, if s E n1 Y\X, then since N is rad,-closed in n1 V, 
there exists f: HI V + V with f(M) C f (AT) and f(x) f 0. Thus, M is 
rad,-closed in nl V. 

(3) ,4ssume that N is a rad,,-closed submodule of nJ I’T and let M’ be 
the rad,-closure of M in N. Then, in the diagram 

the identity 1: M -+ A/I can be extended to f : N + )JJ V, since IT is injective 
in CZ( V) and so M must be a direct summand of M’, sincef(M’) C M. Thus, 
if M f M’, there exists 0 f g: M’ + V with g(LM) = 0 and this can be 
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extended to X, since, by the converse (proved above), M’ E 9(V) and this 
contradicts the definition’ of M’. 

(b) If f: Q,(M) -+ V, then f can be extended to T,(M) since by (a), 
Q,(M) E S?(Y). 

(c) If J4E 9( V), then by (a) M is rad,-closed in T,(M) and so 
Q,(M) = M. If f : N -+ M in R-Mod, then Q,(f ): Q,(X) --f Q&M) = N 
is an extension of f and the extension is unique, since (b) implies that 
Hom,(Q,(M)/q(M), V) = 0. This shows that Qy is a left adjoint for U, . 1 

PROPOSITION 1.7. The following conditions are equiz;alent for V E R-Mod. 

(1) I’ is injectize in both Qy(R)-Mod and 9(V). 

(2) Visinjectiz;einQ),(R)-Modand thenaturalmzp V+Hom,(QV(R), V) 
is an isomorphism. 

(3) Every R-homomorphism from a Q),(R)-submodule of Bic(,V) into V 

can be extended to Bic(, V). 

Proof. (1) * (2). This follows from Lemma 1.6(b) and Lemma 1.5. 

(2) => (3). By L emma 1.5, every R-homomorphism from a Qv(R)- 
submodule of Bic(, V) into V is a Q,(R)-h omomorphism, so it can be extended 
by the injectivitp of V to Bic(, V). 

(3) =S (1). Baer’s criterion for injectivity shows that r is injective in 
QV(R)-Mod. If ME S?(V), then M is a Q,(R)-module and by Lemma 1,5, 
every R-homomorphism from dd into V is a Q,(R)-homomorphism, since 
by assumption condition (3) of Lemma 1.5 is satisfied. m 

THEOREM 1.8. If V E R-Mod satisfies the conditions of Proposition 1.7, 

then 9(V) is a full rejlective Grothendieck subcategory of R-Mod. 

Conoersely, if 99 is a full rejlectizz:e Grothendieck subcategory of R-Mod, with 
reflector Q: R-Mod += J%, tlzen any injectiz’e cogenerator I/’ of W satisfies the 

conditions of Proposition 1.7 and 2 = 9(V) with Q N Qv . 

Proof. If V satisfies the conditions of Proposition 1.7, then by Lemma 1.5, 
the category of rad,-torsionfree QJR)- modules is a full subcategory of 
R-Mod and so the Q,(R)-module structure of any module &E~(V) 
uniquely extends its R-module structure. Furthermore, any exact sequence 
0 --f M --) n1 V -+ JJ V in R-Mod is also in Qv(R)-Mod. In Qv(R)-Mod, 
rad, is a torsion radical since I’ is injective and so 9(V) is equivalent to 
Q,(R)-Mod/V, which is a Grothendieck category. By Lemma 1.6, 9(V) is 
a reflective subcategory with reflector Q, . 

Conversely, assume that 99 is a full Grothendieck subcategory with 
reflector Q: R-Mod + 9. Let V be an injective cogenerator of W. If B E .g, 
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then in 22, there exists an exact sequence 0 -+ B -+ n1 I; ---f & 1;; and this 
is exact in R-Mod since the inclusion functor must be left exact, so .% c&2(V). 
On the other hand, the inclusion is full and preserves kernels and direct 
products, so if there exists an exact sequence 0 -+ M -+ & V L nJ V in 
R-Mod, then M E 3 and so S(V) c 9. Xo’ow, since V is injective in W, 
Lemma 1.6 implies that QV is a left adjoint for the inclusion and then Qr, ~si Q 
by uniqueness of adjoints. Thus, Qr,(R) is a generator for .2 and since .% is a 
full subcategory, Q,(R) N End&&(R)). By the Gabriel-Popeseu theorem 
[17, Theorem 10.31, Horn&&(R), -): @ + QV(R)-Mod has an exact left 
adjoint and so Horn&&(R), -) must preserve injectives. Thus, Vis injective 
as a f&(R)-module and so it satisfies condition (1) of Proposition 1.7. 1 

Sate that in Theorem 1.8, the first implication can be shown without 
using Lemma 1.6, since once it has been established that B”(V) is equivalent 
to Q,(R)-Mod/V, then the latter has a reflector Q,*: &(R)-Mod -+ 
Q,(R)-Mod/V, so Q,(R) sR - followed by QVx gives the required adjoint. 
The ring of quotients of Q,(R) constructed with respect to rad, is just Qv(R), 

since the &(R)-bicommutator of 17 is just Bic(,F). This makes it possible 
to apply many of the standard results on rings of quotients. 

In [ 133, a module RV is said by Morita to be of typeR1 if: (i) V is injective 
in Bic(,V)-Mod; (ii) the natural map Ii -+ Hom,(Bic(,V), V) is an isomor- 
phism; and (iii) V is finiteIp generated over End(,F). (Condition (iii) is 
equivalent to Morita’s condition by [16, Lemma 9.31.) If V satisfies the 
conditions of Proposition 1.7 and is finitely generated over End(,V), then 
applying [13, Theorem 5.61 to V in Q,;(R)-Mod, it follows that Q,(R) = 

Bic(,V) and so V is of type FI. Conversely, if V is of 9-pe FI, then it follows 
from condition (ii) that Hom,(Bic(,V)/?(R), V) = 0 and so Qv(R) = Bic(,V). 
Thus, R V is of type FI if and onlp if s 17 satisfies the conditions of Proposition 
1.7 and V is finitely generated over End(, V). 

Theorem 1.8 considerably enlarges the class of modules that may be used 
in constructing a localization in Morita’s sense, in which the quotient functor 
need not be exact, since any module R V that is inject&e in R/Ann( Q-Mod 
satisfies condition (3) of Proposition 1.7, while it need not be finitely generated 
over End(,V). Of course, by [14, Theorem 1.11, the localization can be 
constructed &h respect to some module RW of type FI. Since Qr, is a left 
adjoint, it is exact if and only if ??&, preserves injectives, which occurs if and 
only if RTi is inject&e, in which case we have just the standard localization. 

The next proposition characterizes rad,-torsionfree Q,(R)-modules. 

PROPOSITIOS 1.9. Let V E R-Mod sattify the conditirms of Lemma 1.5. q 
.M E R-Mod with rad,(M) = 0, then AI has a Q,(R) -mod&e structure extending 

its R-module structure if and o&j: if M is generated by the R-modzzle Qv(R). 
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Proof. We prove only the “if” part and for this, it is sufficient to assume 
that M is a submodule of a direct product I-III V of copies of V. Then, by 

assumption, AZ is the image of an R-homomorphism from a direct sum 

&Q,(R) of copies of Q,(R) into flJ V. If J/’ satisfies Lemma 1.5, then this 
R-homomorphism is a Q,(R)-homomorphism, so dl must be a Qy(R)- 
submodule of nII TI 1 

If R + S is an epimorphism in the category of rings, then S-Mod is a full 

reflective Grothendieck subcategory of R-Mod [17, Proposition 13.71 and so 
S-Mod =S?( V) for any injective cogenerator V E S-Mod. Then Q”N S OR - 
and it follows from the construction of Qv(R) and the fact that Y is a co- 

generator in S-Mod that Qy(R) = S. Th e next theorem shows that conversely, 

if Jr satisfies the conditions of Proposition 1.7 and Q,(R)-Mod = 9(V), 

then V is a cogenerator in Q,(R)-Mod, Qv ,z QL,(R) @JR - and R -+ Qy(R) 

is an epimorphism in the category of rings. 

If s V satisfies the conditions of Proposition 1.7, then we have the following 

diagram. 

It has been shown in Theorem 1.8 that 9(V) is a quotient category of 

Q,(R)-Mod and so Qr,* is the quotient functor defined by considering I’ as a 

Q,(R)-module. Th e f unctor C is the forgetful functor and has a left adjoint 

Qv(R) B)R -. The next theorem generalizes the standard theorem on perfect 

quotient functors [17, Theorem 13.11, with the exception of the conditions 
stated in terms of the filter of left ideals of R. However, U, is exact and 

commutes with direct sums if and only if l.‘r, * does, so the conditions could be 

stated in terms of the filter of left ideals of Q,(R) determined by rad, . 

THEOREM 1.10. If R V satisjies the conditions of Proposition 1.7, then with 

reference to the aboae diagram, the follozxing conditions are equivalent: 

(1) U,* is an equivalence. 

(2) V is a cogenerator in Q,(R)-Mod. 

(3) Every Q,(R)-module is rad,-touion.ee. 

(4) LTV is exact and commutes with direct sums. 

(5) U,*Q, --v(R) @:.R -. 
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(6) R + Q,(R) is an epimwphism in the category of rings and for all 

R-homomol-phisms f, Qrr(f) = 0 implies that Q,(R) OR f = 0. 

(7) Q,(f) = 0 implies that Qv(R) OR f = 0, for all R-homxxnorphi~~sf. 

Proof. Conditions (l)-(5) can be shown to be equivalent either directly 
(the proofs are straightforward), or by reducing to the case when 5’ is of 
typeF1 and applying [16, Theorem 4.21. 

(1) (5) =+ (6). If U,” is an equivalence, then Lr must be a full functor, 
so R + Q,(R) is a ring epimorphism [17, Proposition 13.71. 

(6) * (7). Immediate. 

(7) 3 (3). Let :MEQ,(R)-M~~. If rad,(M) + 0, then there exists 
0 + f: Q&R) -+ rad,(N) c i11 in Q,(R)-JIod with Q.(R) @jI( f f 0. This 
is a contradiction, since applying Q, to the exact sequence Q,(R) -+f M -+ 

coker(f) + 0 shows that QV(f) = 0, since Q, is right exact and Q,(p) is an 
isomorphism by Corollary 1.4. 1 

PROPOSITION 1.11. Let cy: R + S be an epimorphism in the category of 

rifzgs axd let V-E S-Mod. Then, Q,(R) = Qv(S) and V satisf;,es the conditions 

cf Proposition 1.7 ilz R-Mod if and only if it satkjies them in S-Mod. 

Proof. Since pi: R -+ S is epic, S-Mod is a full subcategory of R-Mod, so 
End(, F) = End&F’). Therefore, Bic(,V) = B&V). If q EQ~(R) and 
f f Hom,(Bic(,V), V) withfq(S) = 0, then fr&R) = 0 and hence, f(q) = 0. 

Thus, Q,(R) 6 Qv(S). Conversely, if q fQ,(S) and f~ Hom,(Bic(,V), Vj, 
then_+(R) = 0 implies thatfq(S) = 0, sincefmust be an S-homomorphism 
and hence, f(q) = 0. Thus, QV(S) !Z Q,(R). The second part is then 
obvious. 1 

We remark that a similar result holds if S is a ring of quotients R, of R with 
respect to some torsion radical (J and R7i belongs to the quotient category 
R-xIod.ici. 

PROPOSITION 1.12. Let K be an ideal of R and let Y be the injectke eneelope 

of R/K in R/K-Mod. Then, Q,(R) N Q)ma,x(RjK) and so Qv(R) is semisimple 
Artinian if and only if R/K has finite dimension and zero singular ideal in 

R/K-Mod. 

Proof. By Corollary 1.4, Q),(R) N Q,(R/K i@;R R) N Q,(RjK) and since 
V is the injective envelope of R/K, Q,(R/K) is just the complete ring of 
quotients Qm&R,!K) of RlK. The remainder is a well-known result. fl 
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2. MONADS AND LOMLIZATIOS 

Recall that a monad of R-Mod is an endofunctor T: R-Mod + R-Mod 
with natural transformations v: I -+ T and I*: T” + T, such that the following 
diagrams commute. (I is the identity functor.) 

TP 
T3-TP 

?T 
IT-------t T” 

l-7 
+--- Tl 

T2- T T ____ T ____ T 
u 

If F: R-Mod -+ ~2 and G: d---f R-Mod are covariant functors I with F 
a left adjoint of G, then GF is a monad, with 7: I -+ GF and TV = G 8F: 
GFGF -+ GF, where 71 and 6: FG + I are the natural transformations 
associated with the adjoint situation. Similarly, for V E R-Mod, the functor 
TV defined in Section 1 is a monad in a natural way, since it is the composite 
of two (contravariant) adjoint functors. 

Throughout this section, T will be a fixed additive monad of R-Mod. A 
T-algebra is a pair (LW,X) with ME R-Mod and CY E Horn,,, T(M), ill), such 
that the following diagrams commute. 

A T-morphism (of T-algebras) f : (M, LX> -+ (N, pi is an R-homomorphism 
f : M + AT, such that the following diagram commutes. 

T(M) Tcf) T(N) 
I I 

Assigning to each module &!l and R-homomorphism f the T-algebra 
(T(M), ,LL,& and T-morphism T(f) d e fi nes a functor from R-Mod into the 

category of T-algebras that is left adjoint to the forgetful functor and in fact, 
this pair of adjoints defines the monad T. 

Heinicke [7], calls a left exact idempotent monad a localization functor. If 
0 is a torsion radical of R-Mod with quotient category R-Mod/o, then the 
quotient functor QO: R-Mod + R-Mod is a localization functor, with 
R-Mod!o isomorphic to the category of Q,-algebras. Conversely, if T is any 
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localization functor, then T e Q,, for some torsion radical CT 17, Theorem 2.4. 
The following definition is motivated by Lambek’s result [8, Corollary Xla], 
that if s 17 is injective and T = TV , then QT is the corresponding localization 

functor. 

DEFIXITION 2.1. For the monad (T, 7, p}, let rad, denote the largest 
radical p of R-Mod, such that T(M) is p-torsion free for all 31 E R-Mod. For 
N E R-Mod, let Q&M) denote the radr-closure of q(M) in T(M). 

If J$ is a direct summand of T(M), then 34 is radr-Cased in T(M) and so 
Q(M) = M. This occurs, for instance, if M is injective and rad,-torsionfree. 
The observation proves the following proposition and shows that QTT is 
naturally- isomorphic to T, since T(M) is a T-algebra for all ME R-Mod. 

(Note that since T_~ must be a monomorphism, we can identify M and &I$).) 

PROPOSITIOX 2.2. If NE R-Mod is a T-algebra, then QT(X) = M. 

PROPOSITION 2.3. Let X’ E R-Mod. 

(a) rad,(N) = ker(qzll) 

(b) Q&W = ker(rlT(,\I) - WA). 

(c) Qr(N) = T(M) o qTcAcr) is an ismorphism 

Proof. (a) Since T(M) is rad,-torsionfree, q.21(radr(M)) = 0 and it 
follows that rad,(M) Z ker(q,). On the other hand? iff: M -+ T(iN) for some 
.N E R-Mod, then T(f) qnri = 0 for i: ker(q,) + M and so TTcN)fi = 0, 

which impliesfi = 0, since ?rtN! is manic. Thus, ker(5,,) C rad,(M). 

(b) Let K = ker(rlr(,,r) - T(qJ). S ince qrcar) and T(yzw) agree on 
T(M), it follows from the definition of Q,(X) that they agree on Qr(M) and 
hence, Q,(M) C K. On the other hand, if f: T(M) -+ T(N) with fqlul = 0, 

then T( f > T(v.~~) = 0 implies that T(f) qT(_&K) = T(f) T(q,,)(K) = 0. 

Thus, TTt.\:jf (K) = 0, which implies that f(K) = 0, since rir(.,,) is manic 
and so K C QT(X). 

(4 If ww) is an isomorphism, then PAW = lT(.w) = pMT(rlnf) 
shows that T(riar) = ~2 = qT(.ci) and so QT(M) = T(M) by (b). Conversely, 
if &(M) = T(lM), then by (b), qr-tLrr) = T(T.~). Using this and the fact that p 
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is a natural transformation, 77r(1Vf~l-L~~ = %JM) CL.%4 = ~LrCM) w%,)) = 
MM) T(wM)) = ~z-(M) , and Q-M is m isomorphism. I 

When T = GF for an adjoint pair (with 7: I + GF, S: FG -+ I), then 
rad, is also the largest radical p such that every module of the form G(A) is 
p-torsionfree. In this setting, Proposition 2.2(b) is just [ll, Proposition 1.51. 
By [4, Lemma 4.71, the following conditions are equivalent for M E R-Mod: 

(1) Qiw) = M; (2) %(‘\I) is an epimorphism; (3) .R(vJ is a monomorphism; 
and (4) ~r(~,~) is an isomorphism. 

Proposition 2.2b shows that QT is the construction used by Fakir [6], so 
that QT is a monad, with QT = T if and only if T is idempotent. To shovv that 
QT is a monad, factor 7: I -+ T as 77 = ET’, where 7’: I -j- Q, and E: Qr + T. 

Since Q,(T(M)) = T(M), Q=(E) = ~T~Q~(E) = pT(r) cQT . Using this and 
the fact that ?~+E~Q&E) = T(v) P+Q~(E), ‘t 1 can be shown that QT(c) factors 
through E, say, EP’ = Q&E). It can be verified that, with these natural trans- 
formations, (QT , T’, p’) is a monad. Note that if T(E) is manic, then so is 
QT(c) and hence, p’, so that EL’ must be an isomorphism. Thus, Q, is idem- 
potent if T(E,) is manic for all ME R-Mod. 

PROPOSITION 2.4. If T is left exact, then QT is a localization fumto7. 

Proof. By the preceding remarks, QT must be idempotent. Let 0 + AI -+; 
Ail -9 A/I” + 0 be an exact sequence in R-Mod. Then, Q,( ji) = 0 and 
Q=(i) is manic, since QT is just the restriction of T. If x: E ker(Q,( j)), then 
x E ker(T(j)) = Im(T(i)), so that x = T(i)(r’) for some x’ E T(M’). Thus, 

ww T(W) = w&) = T(%Jx) = T(w) T@Xtiv’), since x E QT(W and 
so Ta(i)qT(_w,)(x’) = T”(i)T(rl,,)(x’). This shows that X’ E ker(qr(.vf,) - T(T,,~,)) = 

Q,(W), since T is exact and therefore, T”(i) is manic. Thus, Q,(X) is left 
exact. 1 

PR~P~~I~I~K 2.5. Let N = M G X’ E R-Mod, zlith i: X---f 11’ and 

p: N + M the inclusion and projection, respectively. If <X, /3> is a T-algebra, 

then for O[ = #T(i), the following conditions are equivalent. 

(1) (M, a!> is a T-algebra and p is a T-morphism. 

(2) PPT(iP) = PP. 

(3) /3(T(M’)) _C M’. 

Proof. (1) - (2). Ifp is a T-morphism, then p/3 = aT( p) = p/3T(i) T(p). 

(2) * (1). By assumption, olT(ol) = @T(i) T(ppT(i)) = p/3T(p)TT”(i) 
and so aT(a) = p,6T(i) par = a~,\* , which shows that (M, a) is a T-algebra. 
It is immediate from the assumption, that p is a T-morphism. 
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T(i) 

P(M) - Tb) q&f) ____f < T(X) 

I T(B) i 

UUM 2 j ;? 

v i 4 
T(M) X M y--- iy 

P 

(2j G. (3). $T(ip) = p/3 e /3(T(ip) - 1) !Z ker p. The result then f&- 
lows, since kerp = 3~ and the image of T(ip) - lTcN) is T(W). 1 

PROPO~I~IOS 2.6. A rad,-closed szcbmodule of a T-akebra is a &-algebra 

and in tlzis case, a?zJ) T-morphism restricts to a Q-nzoFphist!z. 

Proof. Let &I be a rad,-closed submodule of a T-algebra <-Yz p>. Since 
Q,T = T and C&(X) = K, any R-homomorphism f : A+ T(X), X E R-Mod, 

is a &-morphism, so ker( f) is a &-algebra, since the category- of &-algebras 
has kernels. Since the category also has intersections, M must be a &-algebra. 
In fact, if i: J -+ N is the inclusion, then pT(i) E:,,[ factors through i, say, 
ix = ,gT(i) E.,,~ and (XI, CE> gives the required Q,-algebra structure. If 
<W, ;J> is a T-algebra and f: _Y 1 + N’ is a T-morphism: then C&(X’) = N’ 
and fix =iZT(ij E,\[ = yT(f) T(i) E:\~ = y~AvrQr(fij := &(fi), so fi is a 
C&-morphism. 1 

DEFXMTIOS 2.7. The category of &algebras will be ti.enoted by R-Mod/T. 

Propositions 2.5 and 2.6 show that modules in R-Mod/T can be charac- 
terized as certain direct summands of rad,-closed submodules of T-algebras. 

THEOEX 2.8. For :I71 E R-Mod, the follokzg conditions nre eqz&.*alerzt. 

(I) r,,,: 31 ---f T(M) is an isomorphiurz. 

(2) ~~c_,,~-i) is aiz isomorphism and M is isonwrpizic to a rad,-closed su6- 
fjzodule of T(_Y), for some N E R-Mod. 

(3) Q,(M) = T(M) and dl is a &-algebra. 

Proqf. That (1) a (2) is obvious and (2) * (3) follows from Proposi- 
tions 2.3 and 2.6. If (3) holds, then M is a direct summand of Q,(N) = T(M), 
since it is a &-algebra and so M = Q,(M) by Proposition 2.2, and thus, 
(I) holds. 1 

If :<M, .z> is a T-algebra, then for m E M, let prfi* = ~T(P,~): T(R) -+ M, 
where p,,, = [r -+ rwz]: R + 34. For q E T(R), define 47~ = pfiZz*(q). ??hen, 

Fni rQ *a x = p& I since pm*pQ* is a T-morphism and extends pam and further- 

more, f3!nx: + P.~* = p& for any n E M, since T is assumed to be additive. 
These remarks can be used to show that T(R) is a ring and that any T-algebra 
is a T(R)-module. In addition, any T-morphism is a T(R)-homomorphism. 



238 JOHN 9. BEACHY 

Of course, since Q, is a monad, Qr(R) is also a ring. As in Proposition 1.2, 
if M, -17 E T(R)-Mod and rad,(N) = 0, then any R-homomorphism 
f: M ---f N is a Q,(R)-homomorphism. 

In particular, if T is idempotent, then QT = T and any R-homomorphism 
from a T(R)-module into a T-algebra is a T(R)-homomorphism. More 
generally, the following result holds. 

LEMMA 2.9. The follwuing conditions are equivalent for any T-algebra 

(M, a). 

(1) pal is an isomorphism. 

(2) T,,~ is an isomorphism. 

(3) For any T-algebra (N, /3>, eaery R-homomorphism y: M -+ N is a 

T-morphism. 

Proof. (1) 0 (2). If /J&f is an isomorphism, then T(T~,,,) = T~(,,~) is an 

isomorphism, so T.~N = T(a) yT(.Mb = T(r) T(r;,) = T(017],,,) = 1 and v,,~ is 
an isomorphism. Conversely, if rlzw is an isomorphism, then so is T(val) and 
hence, also ,u,,* . 

(2) + (3). If T,~~ is an isomorphism and f: M + X, thenfa = &:,,fa = 
/3T(f) ~.,~z = ,8T(f), since ~,,,~a = 1 and thus, f is a T-morphism. 

Assuming the converse shows that vxl: M + T(M) is a T-morphism, so 
T.+Y = P+~T(T+~) = 1 and 7sf is an isomorphism. 1 

THEOREM 2.10. Let U: Q=(R)-YI d o -+ R-Mod be the forgetful functor. 

If TL7 is left exact, then the following conditions hold. 

(a) Qr is idempotent. 

(b) Q, U is a localization functor of Q=(R)-Mod. 

(c) R-Mod,!T is a full Grothendieck subcategory of R-Mod. 

Proof. (a) The monomorphism E_,~: Qr(M) -+ T(M) is the kernel of the 

Qr-morphism VT(M) - T(w) and so it is a Qr(R)-homomorphism. By 
assumption, TU(E.,~) is manic and so ~_,~p_+r’ = Q~(E~,~) is manic and thus, 
pLv’ is an isomorphism. 

(b) Since Q, is idempotent, by Lemma 2.9 the R-homomorphism 
rlar: ill-+ T(M) is a Q,(R)-h omomorphism for all M E Qr(R)-Mod. Using 
the fact that T(M) has a unique Qr(R)-module structure extending the R- 
module structure, it follows that (TU)? = T’U and it can be shown that 
(TV, 7, t.~> is a monad of Q,,(R)-Mod. By assumption, TU is left exact and 
since Q,6r(M) = ker( TL’(‘(rl<,,) - ~~o(~~)), Proposition 2.4 implies that Q,r/ 
is left exact and idempotent. 
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(c) Since Qr is idempotent, Lemma 2.9 shows that R-Mod/T is a full 
subcategory and so any Qr-algebra has a unique Q*(R)-module structure 
extending the R-module structure. Thus, U is an isomorphism of categories 
when restricted to a functor from Qr U-algebras to Qr-algebras and this shows 
that R-Mod/T is a Grothendieck category, since Q,C: is a localization. 
functor. 1 

3. APPLICATIONS 

If I;’ E R-Mod and T = T, is the monad defined b>- Hom,(-, F), then 
Q, = QV and we will denote the category of QV-algebras by R-%Iod!V. By 
Proposition 2.6, each module ME D(V) belongs to R-Mod/J/: If V satisfies 
the equivalent conditions of Proposition I .7, then the two categories coincide 
and it follows from Lemma 1.5, that QvG: Q,(R)-Mod -+ R-Mod is left 
exact since Hom,(-, V) is exact on Q),(R)-Mod. Thus, the first part of 
.Theorem 1.S is a special case of Theorem 2.10, which shows in addition that 
Qy is idempotent, while the second part provides a converse to Theorem 2.10 
in that any fulI reflective Grothendieck subcategory is of the form R-Mod/T 
for some monad T such that TI?’ is left exact. 

Recall that a module RJr is called balanced if ye: R ---f Bic(,V) is an iso- 
morphism. Applying Theorem 2.5 to the monad T, , gives the following 
generalization of [15, Theorem 5.11. 

?hOREhi 3.1. Let P be a faithful left R-module. Thelz, Y is balanced 

o R E R-Mod;‘P and Q,(R) = Bic(, V). 

The next theorem is a generalization of part (1) of [S, Theorem 4.21, where 
a proof is given in case R J/? is injective. Recall that Q,(R) is said to be a dense 
subring of Bic(,V) if for each E = End(,V)-finitely generated submodule 
F C I/E and 6 5 Bic(,V), there exists 4 EQ~,(R), such that (6 - Q)F = 0. 
Xote that the hypothesis of the theorem is satisfied if LTV: R-Mod! Jr+ R-Mod 
is exact and the conditions of Proposition 1.7 hoId for T/‘. 

THEOREM 3.2. Qv is dense in Bic(,I;) if,fm any direct mm Pi. n > 0, 

each cyclic Q,(R)-submodule is rad,,-closed. 

Proof. If cl ,.._, ‘G, c: I’, let F = (or ,..., +Y~) E F. If be; 6 Q,(R)z for 
some b E Bic(,V), then, since Q,(R)z is rad,-cioset in V”, there exists 
g E Hom&Vn, V) withg(QV(R)a) = 0, butg(bz) f 0. Tlnis is a contradiction: 
since g(z>) E g(Qv(R)z) = 0 implies that g(bz) = z~=, g,(b.r,) = b xbl gi(zi) = 

bg(r) = 0, since b commutes with the components gi E End(,V) of g. Thus, 

&x/38j1-16 
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Bic(RV)n = Qy(R)z and f or each b s Bic(,V), there exists q E Q,(R), such 
that p’zi = bzd for 1 < i < n. 1 

If s 17 is injective, then RiAnn( V) can be embedded in some direct product 
W of copies of V and so SW(R) = Bic(RW) [16, Theorem 3.21. But two 
injective modules that cogenerate each other determine isomorphic rings of 
quotients and so Bic(,W) _N Qr,(R). Th ese results can be recovered in a 
much more general setting. 

The bicommutator of V, 13 Va E R-Mod is the set of matrices of the form 
(:I iz) such that b, E Bic( V’), b, E Bic( Vs) and bsfa, = fsrb, , b,& = j&b, 
for all $& E Horn,,, lr; , V2), fi2 E Horn,,, Fs , V,) (see [I]). There is a natural 
ring homomorphism from Bic(V1 @ Vs) into Bic(V1) that is a monomor- 
phism if V, cogenerates V, and an isomorphism if F1 both generates and 
cogenerates Vs . 

Similarly, if W= n1 Vis a direct product of copies of R V, then Bic( T; 3 W’) 
is the set of matrices (i i) such that b E Bic( V), 6 acts on W by componentwise 
multiplication by b and p = /jf f or allf E Horn,,, TV, V). (The latter condition 
guarantees that b E Bic( W) and the condition that fb = hf forf E Horn,,, V, W) 
is automatically satisfied.) Note that the natural homomorphism 4: 
Bic( F’ @ W) + Bic( F) is an isomorphism if V is finitely generated over 
End(, V), since in this case, Y both generates and cogenerates nI V [4, Propo- 
sition 2.71. 

PROPOSITION 3.3. If V E R-Mod and Bit(V) is embedded in a direct 

product W = JJSS1 V, of copies of V, then t?ze following conditions hold for the 

natural ring homomorphism 4: Bic( V 9 W) + Bic( 17). 

(a) Im(4) is rad,-closed in Bic( V). 

(b) Im($) = Q,(R) if ezery R-homomorphism f: Bic( V) -+ V can be 

extended to W. 

Proof. (a) If a E Bic( V)\Im(#)? then by the preceding remarks charac- 

terizing Bic( F’ ~3 W), there exists f E Horn,,, W, V), with f (aw) f af(w) 
for some zc c TV. Define g: Bic( V) - V by g(b) = f (bz) - bf(z~), for all 
b E Bic( V). Since g is an R-homomorphism, g$ = 0 and g(a) f 0, this shows 
that Im($) is rad,-closed in Bic( V). 

(b) Because Im($) 1 q(R), by (a) we must have Im(+) 2 Qv(R). If 
f E Hom,(Bic( F), V) with fT(R) = 0, then by assumption, f can be extended to 
g: IF--, V. If b E Im($), then f (6) = g(b) = bg( 1) = bf( 1) = 0, since b must 
commute with elements of Hom,(W, V). Thus, Im($) C Q,(R). 1 

PROPOSITIOS 3.4. If V, WE R-Mod and V and W both generate and 

cogenwate each other, then QY(R) z Q,,(R). 
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Proof. By assumption, the homomorphisms Bic(V 9 W) ---j. Bic(I’) and 
Bic(F 2 W) --f Bic(?Vj are isomorphisms. Since 6’ an< W cogenerate each 

other, rad, = rad, and it follows that Q&R) N SW(R). 1 

Tile module .V is called fully divisible if it is generated by the injective 
envelope E(R) of the module RR. In [l], it has been shown that if V is 
faithful, fully divisible, and finitely generated over End(,V), then Bic(,I’) 
is isomorphic to the rad,-closure of R in E(R), a subring of Q),,(R). The 

next theorem uses techniques of this paper to generalize the result to the case 
in which 17 is merely faithful and fully divisible. In this situation, if $W is 
fully divisible and rad,,-torsion free, then M can be embedded as a Q,(R)- 

submodde in a direct product W of copies of V. That is, N inherits the 
Q,(R)-module structure of W (which is unique), but there may be other 
QV(R)-module structures extending the R-module structure (see [2]). 

THEOREM 3.5. If RV is faithful and$A!y dtiisible, then Qy(R) is isonzo1-phiz 

to the sub&g of Q,,,(R) dejned by the rad,-closure of R in E(R). 

Proof. Let S be the rad,-closure of R in E(R), which is a subring of 
Q,,(R) bp [l, Theorem 2.31. Since I‘ is fully divisible, ever]; R-homomor- 
phism from R to V extends to E(R) [I, Proposition 1.51 and so Hom,(i, I;) 
is epic for the inclusion i: R -+ E(R), which implies that TV(i) and hence, 
Qr,(ij is a monomorphism. Because rad, < rad,(,) , TV: E(R) 4 T,(R) is 

monk and since E(R) is injectire, 7E(R) has a splitting map z with rTs(A.j = 1. 

Thus, Q,(E(Rjj = E(R) and SO QV(i)(QG.(R)) = rqEcR,Qv(ij(Q,(Rj) = 
n-TY(i) E~(Q~(R)) C S since rT,(i) maps R into R and therefore: maps the 
rad,-closure of R in Bic(,V) into the rad,-closure of R in E(R). Since 
T,(i) Ed = TROY(i), then s = Qv(i)(q) has the property (for all 4 E Q,,(R)! that 

i.e., qf( 1 j = f(s), for all f E Hom,(E(R), V). 
Now, Ii is an S-module by extending ,o~ = [r +- YE]: R + I7 to pc’: 

E(R) + T; (the extension is unique on S) and defining se? = pi.‘(s) for all 
s E S and ‘2% E IT. ,Define h: S - Bic(, V) by h(s) = k + SC]: for s E S, ‘~1 E 5;. 

Then, for 4 E Q,(R), 

hQ),(i)(q) = h(s) = [v + w] = [v ---f p?‘(sjj 

= fi --f qp,‘( l)] = [Zl + &j = 4, 

where s = Qv(i)(qj and so IzQv(i) = 1. 
We have shown that the monomorphism Qv(i): ~,,(Rj --f &(E(Rj) = E(R) 
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factors through S and in fact, Qy(R) is a direct summand of S. This forces 
Im(Qv(i)) = S, since E(R) is an essential extension of R C Im(Q,(i)). b 

COROLLARY 3.6. Let p be a radical of R-Mod, mitla p(R) = K and let S be 

the p-closure of R/K in E(R;KR,/K). If S C Qmflx(R/K), then there exists 

V E- R-Mod with S N SC,(R). 

Pwof. If S 82 Qmax(RIK), then it is a subring by [ 1, Lemma 2.11. Furthermore 
S is the rad,-closure of RjK in E(R;KR,/K) for V = E(R:KR/K) @ E(R;KR,/K)/S 

and so, by Theorem 3.5, S N_ Q,(R/K). (In fact, by [l, Proposition 3.11, 
S N Bic(sV)). By Proposition 1.11, we have that S z QY(R). i 

The final theorem concerns the monad of R-Mod determined by P OR -. 

By [4, Lemma 4.71 any module of type FP [13] satisfies the hypothesis of the 
theorem, so this includes the case when PR is finitely generated projective 
[13, Corollary 1.2-j. The theorem generalizes [5, Theorem 2.11, which shows 
that the ring of quotients determined by a projective module coincides with 
its bicommutator. 

THEOREM 3.7. Let PE Mod-R, E = End(P,) and T(M) = Hom,(P, P@,M) 

for all M E R-Mod. If P is jlat in Mod-Q,(R) and the natural nzap 4: 

P OR QT(R) --f P given bJ7 $( p @ q) = pq for all p E P, q E QT(R) is an 

isonzorphism, then the following conditions hold. 

(a) R-Mod/T is a full Grothendieck subcategory. 

(b) If P is projectire in Mod-Q,(R), then QT(R) = Bic(P,). 

(c) If P is projective and fwzitely generated in Mod-Q,(R), then T is 

idempotent and consequently, QT = T. 

Proof. (a) Let Q = Qr(R) and let U: Q-Mod -+ R-Mod. The result 
follows from Theorem 2.10, since, if PR satisfies the assumption, then for 
ME Q-Mod, P OR M ci P OR (Q @o M) ci (P C& Q) @o M = P C&, M 

and so TU is left exact since Po is flat. 

(b) Since Bic(Po) = Bic(P,) and Q is its own ring of quotients with 
respect to Hom,(P, P go - ) = TC’, we can apply [5, Theorem 2.11 to show 
that Q = Bic(P,), since Q is just the ring of quotients constructed with 
respect to ker( TU). 

(c) If P, is finitely generated and projective, then it is well known that 
the natural homomorphism P @!R Hom,(P, M) -+ 1%’ is an isomorphism 
for all ME E-Mod. Since this homomorphism is used to define TV: T2 + T 

in the monad, p must be an isomorphism and T is idempotent. 1 
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