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IxTRODTCTION

Any injective module 1" e R-Mod defines a torsion radical (torsion theory)
and an associated quotient category R-Mod/V, which is a full reflective
Grothendieck subcategory of R-NMod with exact reflector (quotient functor).
In this case, ¥ can be chosen so that the ring of quotients it determines can be
realized as the bicommutator (double centralizer) of V. Morita [13, 16] has
generalized this construction by considering certain modules for which the
reflector into the quotient category need not be exact, although he requires
that the generalized ring of quotients must coincide with the bicommutator
of the module.

It is possible to omit the latter condition, as is shown by Theorem 1.8 and
this enlarges the class of modules that can be considered to include, in partic-~
ular, any module that is injective modulo its annihilator. The new conditions
obtained are not only more general, but appear to simplify the proofs as well.

Heinicke [7] has characterized localization functors as idempotent, left
exact monads, and quotient categories as their categories of algebras. Given
any monad 7 of R-Nlod, there is an associated monad @ studied by Lambek
and Rattray [10], which is idempotent and left exact if T is left exact and
which gives the usual localization functor if T = Hom(Hom{—, I}, I} for
&V injective. It is shown in Theorem 2.10 that if T is left exact when
restricted to Op(R)-Mod, then the category of Qr-algebras is a generalized
quotient category in Morita’s sense, thus extending Morita’s theory of
noncommutative localization. (This gives another proof of part of Theorem
1.8, in which, as in all of Section 1, the categorical language has been sup-
pressed so as to provide easier access to the theory.)

The final section gives some applications. Morita’s characterization of
balanced modules [15] is modified in Theorem 3.1, while Theorem 3.2 extends
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a theorem of Lambek [8] giving a condition under which the generalized ring
of quotients determined by 1" is a dense subring of the bicommutator of V.
Theorem 3.5 generalizes results of [1], and Corollary 3.6 shows that if K is
any ideal of R, then any subring of Q. (R/K) determined by a radical of
R-Mod is a generalized ring of quotients of R. Finally, Theorem 3.7 applies
Theorem 2.10 to the monad 7' = Hom(P, P (%) -} and extends results of [5].

In the standard theory of noncommutative localization, for any ring of
quotients O of R, the kernel of the natural homomorphism R — Q must be
the annihilator of an injective module. Morita’s theory allows any ideal to be
such a kernel and in addition, includes as a generalized ring of quotients any
epimorphism in the category of rings. It is hoped that this theory will provide
a language for certain more specialized constructions that are not standard
rings of quotients.

1. Ox MoriTaA’s LocALIZATION

Let R be an associative ring with identity and let R-Mod denote the
category of unital left R-modules. A subfunctor p of the identity on R-Mod
is called a radical if p(M/p(M)) = O for all ;M € R-Mod and a torsion radical
if p(M’'y =M N p(M) for all submodules M’ C M. Any class of modules
defines a radical by assigning to each module the intersection of kernels of
homomorphisms into the class and conversely, every radical is defined by the
corresponding class of torsionfree modules. (Recall that MM is p-torsion free
if p(M) = 0 and p-torsion if p(M) = M.)

For V € R-Mod, let rad, be the radical of R-Mod defined for M € R-Mod
by

rad (M) = {me M | f(m) = 0 for all fe Homg(M, V)}.
If A’ is a submodule of M, then the rady-closure of 34" in M is
{me M f(m) ' 0 for all f € Homg(M, V') such that f(M') = 0}.

We say that M’ is rady~closed in M if this closure is M’ itself, which occurs
if and only if M/M" is rad,-torsionfree. If f € Homg(M, N) and f(M') C N’
for submodules M'C M and N’ C N, then f maps the rad,-closure of M’
into the rad,-closure of N'.

For Ve R-Mod, let E = End(;V) and B = Bic(zV) = End(V;). The
composition of Homgz(—, ¥): R~-Mod — Mod-E and Homg(—, ¥V): Mod-E —
B-Mod is covariant (where Mod-E is the category of right E-modules). We
denote this composition by 7: R-Mod — B-Mod and note that 7 can be
viewed as merely an endofunctor of R-Mod. If 7,,: M — T(M) is defined
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by nulm) == [f — f(m)] for me M and fe Homp(M, V), then 21— T,
defines a natural transformation, where I is the identity functor, and ker(n,,) =
rad,(M). (When the meaning is obvious, we will write % instead of 5,,.)
If V is injective, then rad,, is a torsion radical and since 7'{3) belongs to the
quotient category determined by rad;, [8, Proposition 3.1], it follows that the
radp-closure of (M) in T,(M) gives the module of quotients of M. This
motivates the following definition given for any I € R-Nod.

DrerixtiioN 1.1, For ¥V, M e R-Mod, let Qp (M) be the rad,-closure of
(M) in Tp(M). In particular,

Ou(R) = {be Bic(zV) | f(6) = 0 for all fe Homg(Bic(zV), V)
such that fo(R) = 0}.

Note that Oyt R-Mod — R-Mod is a functor, since, if e Homg(M, N},
then T'u(f) ny = nnf and so Tp(f) maps Qp(37) into Qp(N). Thus, Op(f)
can be defined as the restriction of T',(f) to Op(M).

M—2 s y(M)C Qy(M)C Ty(M)
7| i Tef)
N A Y
N ——s 9(N) COyN) C TH{(N)

D

The next proposition shows that actually, Qp can be viewed as a functor from
R-Mod to O, (R)-Mod.

ProposiTiox 1.2. Let Ve R-Mod.
(a) Op(R)is a subring of Bic(zV).
(b) Any rady-closed R-submodule of a Bic(xV)-module is a Op(R)-
submodule.

{c) If M, N eBic(yV)-Mod and rad,(N) = 0, then any R-homomor-
phism f: M — N is a Q,(R)-homomorphism.

Proof. (c) If f: M — N satisfies the stated condition, then for m e M,
define g = Homg(B, N) by g(b) = bf () — f(bm), for all be B = Bic(z}).
Since gn(R) = 0 and rad,(N) = 0, it follows that g{(Q(R)) = 0 and thus,
af (m) = f(gm) for all g < Oy(R).

(b) If M’ C zM is rad,-closed, then it follows easily from (c) that
gme M’ for all geQp(R) and me M.

(2) This follows from (b). |
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PropostTioN 1.3. Let VeR-Mod and let 0— M -t M " M"—0
be an exact sequence in R-Mod. Then, Qy(f) is an isomorphism if Homy(Z, V) =0.

Proof. TIf Homg(Z, V) = 0, then Homg(f, V')is an isomorphism and hence,
Ty(f) is an isomorphism. Since f is epic, Tp{(f)(m(M)) = 5(M") and this
implies that T(f QO (M) = Q,(M"). |

CoroLLARY 1.4. Let V, M e R-Mod.
(a) Op(M{M') ~Qy (M) for any R-submodule M’ C rad, (M).
(b) Ou((RIK) ®p M) =~ Qu(M) for any ideal K C Ann(iV").

In Corollary 1.4, both isomorphisms are natural isomorphisms. Many
questions are reduced by the second isomorphism to the case of faithful
modules, since, if K = Ann(z}"), then for any R/K-module 34, the construc-
tion of O,(M) is the same whether M and ¥ are regarded as R/K-modules or
as R-modules.

Levva 1.5.  The following conditions are equivalent for V e R-Mod.

(1) For MeQy(R)-Mod, any R-homomorphism f: M — V is a Qp(R)-
howmomorphism.

(2) The natural map ¢: V — Homg(Op(R), I), defined by $(v)q) = qv
JorveV, g Qu(R), is an isomorphism.

(3) Ewery R-homomorphism f:Qp(R) — V can be extended to Bic(xV).

Proof. (1) = (2). This is immediate, since V € Q,(R)-Mod.

(2) = (3). If f: Op(R)— V, then by assumption, there exists z& V
such that f(g) = g¢v for all ¢ € O, (R). This can be extended to g: Bic(z V) — V
by defining g(b) = bv, for all b € Bic(, V).

(3) = (1). Asin the proof of Proposition 1.2 (c), given f: M — V and
m e M, define g: Qp(R) — V and then extend g to Bic(z V') and apply Propo-
sition 1.2. |}

An additional condition equivalent to those of Lemma 1.5 is that the
category of rad,-torsionfree O, (R)-modules is a full subcategory of R-Mod.
This can be shown by using condition (1). It follows that if the conditions
are satisfied, then V determines the same radical rad, of Q,(R)-Mod whether
viewed as a Op(R)-module or an R-module.

Following Morita, for V' € R-Mod, we let D(1) denote the full subcategory
of R-Mod determined by all modules M for which there exists an exact
sequence 0 — M — X; — X, in R-Mod, such that X, and X, are each
isomorphic to a direct product of copies of V. Note that there exists such an
exact sequence for A if and only if M is isomorphic to a rad,-closed sub-
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module of a direct product of copies of V. In this case, it follows from Propo-
sition (1.2) that M is a Q,(R)-module.

If A is any right module over E = End(;V), then a free resolution
©E—> S;E—~> M-—>0 gives an exact sequence 0 — Homg(M, V) —
Homy (&, E, V) — Homy(ZE, E, V), which is just an exact sequence
0— Homy (M, V)—JI; V=TI, V. This shows that Homg(—, V') is a
functor from Mod-E into Z(V) and in particular, T is a functor from
R-Mod into Z(I).

If ¥V is injective, then the quotient category R-Mod/V, determined by
rady , coincides with Z(17) and in fact, every quotient category can be
obtained in this manner [13, Theorem 5.4]. In this case, Z(F) is a reflective
subcategory of R-Mod and the next proposition gives a more general condition
under which this occurs. In fact, conditions (b) and (c) are equivalent without
any assumptions [11, Proposition 1.2].

Levinia 1.6, Let z 1V be injective in (V).

() If M is an R-submodule of Ne G(V), ther Mec (V)< M s
rady~closed in N.

(b) For all M € R-Mod, every R-homomorphism f:0,(M)— 1 can be
extended to T (M).

() Qp: E-Mod — (V) is left adjoint to the inclusion Uy: (V) —
R-2od.

Proof. (a) Assume that N is a rad,-closed submodule of some direct
product T, V of copies of V.

(=) 1If xe N\M, then since M is rad ~closed, there exists f: NV — V with
J(x) 5% 0 and f(M) = 0. Since V is injective in Z{I), f can be extended to
I1; V. On the other hand, if x ], I\ N, then since N is rad-closed in [, ¥,
there exists f: [, V' — V with f(M)C f(N) and f(x) % 0. Thus, M is
rady~closed inJ], V.

(=) Assume that 3 is a rad,-closed submodule of [, ¥ and let M’ be
the rady-closure of M in N. Then, in the diagram

MCMCN
/
SF

¥
MCILV

i

the identity 1: M — M can be extended to f: N — T, V, since ¥ is injective
in 2(V) and so M must be a direct summand of M’, since f(M") C M. Thus,
if M # M’, there exists 0 5% g: M’ — V with g(]4) = 0 and this can be
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extended to N, since, by the converse (proved above), M’ € Z(V) and this
contradicts the definition” of M.

(b) If f:Qu(M)— ¥, then f can be extended to T,(A1) since by (a),
O, (M)e Z(V).

(¢) If MeZ(V), then by (a) M is rady-closed in T'p(M) and so
Ov(M)=M.If f: N— M in R-Mod, then Qp(f): Op(N) = Qp(M) = M
is an extension of f and the extension is unique, since (b) implies that
Homg(Q,(M)in(M), V') = 0. This shows that O}, is a left adjoint for U},. |}

ProposttioN 1.7.  The following conditions are equivalent for V € R-Mod.
(1) V is injective in both Qy(R)-Mod and Z(V').
(2) VisinjectiveinQ,(R)-Mod and the natural map V—Homg(Qp(R), V)
is an isomorphism.

(3) Every R-homomorphism from a Qy(R)-submodule of Bic(zV') into V
can be extended to Bic(x V).

Proof. (1) = (2). This follows from Lemma 1.6(b) and Lemma 1.5.

(2) = (3). By Lemma 1.5, every R-homomorphism from a Q,(R)-
submodule of Bic(z V') into V is a Oy (R)-homomorphism, so it can be extended
by the injectivity of V to Bic(z V).

(3) = (1). Baer’s criterion for injectivity shows that }7 is injective in
Ou(R)-Mod. If M e Z(V), then M is a Q,(R)-module and by Lemma 1.5,
every R-homomorphism from M into V is a Qp(R)-homomorphism, since
by assumption condition (3) of Lemma 1.5 is satisfied. |

TueoreMm 1.8. If Ve R-Mod satisfies the conditions of Proposition 1.7,
then Z(V') is a full reflective Grothendieck subcategory of R-Mod.

Conzersely, if B is a full reflective Grothendieck subcategory of R-Mod, with
reflector Q: R-Mod — A, then any injective cogenerator V of & satisfies the
conditions of Proposition 1.7 and B = S(V) with Q ~ Q.

Proof. If V satisfies the conditions of Proposition 1.7, then by Lemma 1.5,
the category of rad,-torsionfree Q) (R)-modules is a full subcategory of
R-Mod and so the Qp(R)-module structure of any module M e Z(V)
uniquely extends its R-module structure. Furthermore, any exact sequence
0—->M>TLV—]ILVin R-Mod is also in Qp(R)-Mod. In Q;(R)-Mod,
rad, is a torsion radical since V is injective and so Z(V) is equivalent to
O (R)-Mod/V, which is a Grothendjeck category. By Lemma 1.6, Z(V) is
a reflective subcategory with reflector Oy, .

Conversely, assume that # is a full Grothendieck subcategory with
reflector Q: R-Mod — . Let V be an injective cogenerator of Z. If B e %,
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then in %, there exists an exact sequence 0 — B — T; ¥V — I, V, and this
is exact in R-Mod since the inclusion functor must be left exact, so & C 2(F).
On the other hand, the inclusion is full and preserves kernels and direct
products, so if there exists an exact sequence 0 — M — [,V — [, ¥V in
R-Mod, then M eZ and so Z(V)C #. Now, since V' is injective in 2,
Lemma 1.6 implies that Qy is a left adjoint for the inclusion and then Q, ~Q
by uniqueness of adjoints. Thus, Q(R) is a generator for # and since # is a
full subcategory, Op(R) ~ End(z0,(R)). By the Gabriel-Popescu theorem
[17, Theorem 10.3], Homg(Qw(R), —): # — Qp(R)-Mod has an exact left
adjoint and so Homg(Q(R), —) must preserve injectives. Thus, V"is injective
as a O, (R)-module and so it satisfies condition (1} of Proposition 1.7. ]

Note that in Theorem 1.8, the first implication can be shown without
using Lemma 1.6, since once it has been established that (1) is equivalent
to Op{R)-Mod/V, then the latter has a reflector Op*: Oy (R)-Mod —
Ou(R)-Mod/V, so Op(R) R — followed by O, * gives the required adjoint,
"The ring of quotients of Q,(R) constructed with respect to rady is just O, {R),
since the O, (R)-bicommutator of V is just Bic(,1"). This makes it possible
to apply many of the standard results on rings of quotients.

In [13], 2 module 4V is said by Morita to be of tvpe FI if: (i) I is injective
in Bic(pV)-Mod; (ii) the natural map ¥ — Homg(Bic(;1"), V) is an isomor-
phism; and (iil) ¥ is finitely generated over End(31"). (Condition (iii) is
equivalent to Morita’s condition by [16, Lemma 9.3].) If V satisfies the
conditions of Proposition 1.7 and is finitely generated over End(z}), then
applying {13, Theorem 5.6] to V in O {R)-Mod, it follows that Qp(R) =
Bic(zV) and so V is of type FI. Conversely, if V is of type FI, then it follows
from condition (ii) that Homg(Bic(z ¥ )in(R), V) = 0 and s0 O,(R) = Bie(z}").
Thus, z1is of type FI if and only if 5} satisfies the conditions of Proposition
1.7 and I is finitely generated over End(zV).

Theorem 1.8 considerably enlarges the class of modules that mav be used
in constructing a localization in Morita’s sense, in which the quotient functor
need not be exact, since any module pV that is injective in R/Ann{¥)-Mod
satisfies condition (3) of Proposition 1.7, while it need not be finitely generated
over End(zF). Of course, by [14, Theorem 1.1}, the localization can be
constructed with respect to some module z W of type FI. Since Qy is a left
adjoint, it is exact if and only if U}, preserves injectives, which occurs if and
only if ¥ is injective, in which case we have just the standard localization.

The next proposition characterizes rad,-torsienfree O (R)-modules.

Prorositiox 1.9, Let V e R-Mod satisfy the conditions of Lemma 1.5. If
M e R-Mod with rad (M) = 0, then M has a Q,(R)-module structure extending
its R-module structure if and only if M is generated by the R-module Q,(R).
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Proof. We prove only the “if”’ part and for this, it is sufficient to assume
that M is a submodule of a direct product J]; V' of copies of V. Then, by
assumption, A is the image of an R-homomorphism from a direct sum
E,Op(R) of copies of O, (R) into T, V. If V satisfies Lemma 1.5, then this
R-homomorphism is a Q,(R)-homomorphism, so M must be a2 Q,(R)-
submodule of TT; V. |}

If R — Sis an epimorphism in the category of rings, then S-Mod is a full
reflective Grothendieck subcategory of R-Mod [17, Proposition 13.7] and so
S-Mod = Z(V) for any injective cogenerator V' e S-Mod. Then Qp~ S ®zp —
and it follows from the construction of Q(R) and the fact that ¥ is a co-
generator in S-Mod that Q,(R) = S. The next theorem shows that conversely,
if V7 satisfies the conditions of Proposition 1.7 and Qp(R)-Mod = Z(V),
then V' is a cogenerator in Qp(R)-Mod, QO ~ Op(R) @z — and R — Q,(R)
is an epimorphism in the category of rings.

If ¥V satisfies the conditions of Proposition 1.7, then we have the following
diagram.

F-Mod
‘ 14,
9, (M@

o

Q\I.(?)—Mod v,

*h
Gvit
2w

1t has been shown in Theorem 1.8 that Z(V) is a quotient category of
Oy(R)-Mod and so Qy* is the quotient functor defined by considering " as a
Oy(R)-module. The functor U is the forgetful functor and has a left adjoint
Op(R) ®x —. The next theorem generalizes the standard theorem on perfect
quotient functors [17, Theorem 13.1], with the exception of the conditions
stated in terms of the filter of left ideals of R. However, U, is exact and
commutes with direct sums if and only if U}, * does, so the conditions could be
stated in terms of the filter of left ideals of Q,(R) determined by rad, .

TueoreM 1.10. If RV satisfies the conditions of Proposition 1.7, then with
reference to the above diagram, the following conditions are equivalent:

(1) Up* is an equivalence.

(2) V is a cogenerator in Q(R)-Mod.

(3) Every Qy(R)-module is rad~torsionfree.
(4) Uy is exact and commutes with direct sums.

(5) Up*Qp ~Qp(R) ®g —.
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(6) R— Qu(R) is an epimorphism in the category of rings and for all
R-homomorphisms f, Qp(f) = O implies that Op(R) @z f = 0.
(7)Y Qu(f) = O implies that Qu(R) Ry f = 0, for all R~homomorphisms f.

Proof. Conditions (1)-(5) can be shown to be equivalent either directly
(the proofs are straightforward), or by reducing to the case when V is of
type FI and applying [16, Theorem 4.2].

(1), (8) = (6). If Uy*is an equivalence, then L’ must be a full functor,
s0 R — O, (R) is a ring epimorphism [17, Proposition 13.7].

(6) = (7). Immediate.

(7) = (3). Let MeQy(R)-Mod. If rad (M) # 0, then there exists
0 = 1 Qp(R) —~ rad (M) T M in Qp(R)-Mod with Q(R) Rz f #% 0. This
is a contradiction, since applying O} to the exact sequence Qp(R) — M —?
coker(f) — 0 shows that Q,(f) = 0, since Oy, is right exact and Oy p) is an
isomorphism by Corollary 1.4. ||

ProrosrrioN 1.11. Let a: R— S be an epimorphism in the category of
rings and let V e S-Mod. Then, Q(R) = Qp(S) and V satisfies the conditions
of Proposition 1.7 in R-Mod if and only if it satisfies them ¢n S-Mod.

Proof. Since a: R — S is epic, S-Mod is a full subcategory of R-Maoad, so
End(3V") = End(sV). Therefore, Bic(zV) = Bic(sV). If ¢eQ(R) and
feHomg(Bic(zV), V) with f(S) = 0, then fna(R) = 0 and hence, f(g) = 0.
Thus, Qp(R) C Q,(S). Conversely, if ¢ £Q,(S) and f e Homg(Bic( V), V),
then fna(R) = O implies that fy(S) = 0, since f must be an S-homomorphism
and hence, f(g) = 0. Thus, Q,(S)C Oy(R). The second part is then
obvious. J

We remark that a similar result holds if S is a ring of quotients R, of R with

respect to some torsion radical ¢ and RV belongs to the quotient category
R-Mod/o.

Prorosrrion 1.12. Let K be an ideal of R and let V be the injective envelope
of RIK in R{K-Mod. Then, Qp(R) =~ Opax(R/K) and so Q(R) is semisimple
Artinian if and only if R{K has finite dimension and zero singular ideal in
R/K-Mod.

Proof. By Corollary 1.4, Op(R) ~ O (R/K &; R) =~ OQp(R/K) and since
V is the injective envelope of R/K, Q,(R/K) is just the complete ring of
quotients Oy (R/K) of R/K. The remainder is a well-known result. J
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2. MonNaps AND LOCALIZATION

Recall that a monad of R-Mod is an endofunctor T R-Mod — R-Mod
with natural transformations 7: I — T and p: 7% — T, such that the following
diagrams commute. (J is the identity functor.)

Tu T Tn

73— T2 T 7?2 I
R

i fi
72— T T T T

m

If F: R-Mod —~ &/ and G: &/ — R-Mod are covariant functors I with F
a left adjoint of G, then GF is a monad, with 4:/ — GF and p = G 8F:
GFGF — GF, where n and 8:FG — I are the natural transformations
associated with the adjoint situation. Similarly, for ¥ € R-Mod, the functor
Ty defined in Section 1 is a monad in a natural way, since it is the composite
of two (contravariant) adjoint functors.

Throughout this section, T will be a fixed additive monad of R-Mod. A
T-algebra is a pair {M, a) with M = R-Mod and « € Homg(T(M), M), such -
that the following diagrams commute.

T 22 ) MM T

ll!‘d, l l x \ l o

T(M) ——> M S M
A T-morphism (of T-algebras) f: (M, o> — (N, ) is an R-homomorphism
f: M — N, such that the following diagram commutes.

70— 7(V)

-4 8

M — N

Assigning to each module zM and R-homomorphism f the T-algebra
{T(M), pyry and T-morphism T'(f) defines a functor from R-Mod into the
category of T-algebras that is left adjoint to the forgetful functor and in fact,
this pair of adjoints defines the monad 7.

Heinicke [7], calls a left exact idempotent monad a localization functor. If
g is a torsion radical of R-Mod with quotient category R-Mod/o, then the
quotient functor Q,: R-Mod — R-Mod is a localization functor, with
R-Mod/s isomorphic to the category of O -algebras. Conversely, if T is any
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localization functor, then T ~ Q, for some torsion radical o [7, Theorem 2.4].
The following definition is motivated by Lambek’s result [8, Corollary 3.1a],
that if ;F is injective and T = T, then Qy is the corresponding localization
funcror.

DeriNitioN 2.1, For the monad (T, %, p>, let rad; denote the largest
radical p of R-Mod, such that T(A{) is p-torsion free for all M € R-Mod. For
M = R-Mod, let Q,(M) denote the radp-closure of n(M) in T(M).

If pM is a direct summand of T(M), then M is rady-ciosed in T(}) and so
O(M) = M. This occurs, for instance, if M is injective and rad -torsionfree.
The observation proves the following proposition and shows that O, T is
naturally isomorphic to T, since T'(M) is a T-algebra for all M e R-Mod.
(Note that since 7,, must be a monomorphism, we can identify M and 5{3d).)

Prorosrriox 2.2, If M e R-Mod is a T-algebra, then Q (M) = M.

Proposrriox 2.3. Let M= R-Mod.
(2) radp(M) = ker(n,)

(b) Qr(M) = ker(nran — T(man)-
(©) Or(M) = T(M) < nrqy is an isomorphism.

Proof. (a) Since T(M) is rad,-torsionfree, n,(radp(3)) =0 and it
follows that rad(14) C ker(n,,). On the other hand, if f: M — T(N) for some
N e R-Mod, then T(f)nui =0 for i: kexr(ny) — M and so nppnfi =0,
which implies f7 = 0, since n(y) is monic. Thus, ker(s,,) C rad{(3).

(b) Let K = ker(nr(n — T(nar)- Since nrqp and T'(yy) agree on
1), it follows from the definition of Oy (M) that theyv agree on Oy (M) and
hence, Or{M)C K. On the other hand, if f: T(3) — T(N) with f,, =0,
then 7(f) T(py) — O implies that 7(f) nron(K) = T(f) T(ns)(K) = 0.
Thus, 9penf(K) = 0, which implies that f(K) = 0, since ny¢y is monic
and so K T Qn(M).

M—2% 5 KCT(M) —L— T(N)

M (M) AT(N)

\i
T(M) —p—> THM) — > THN)

(¢) If nrup is an isomorphism, then pymron = lran = pu T (M)
shows that T(n,1) = g7 = Mrap and so Op(M) = T(M) by (b). Conversely,
if Qr(M) = T(M), then by (b), 57 = T(ns,). Using this and the fact that g
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is a mnatural transformation, wrpopy == T(pag) far = pren T(T(ny) =
#ran T(ron) = lres , and 97y is an isomorphism. ||

When T = GF for an adjoint pair (with %:1— GF, §: FG — I), then
rady is also the largest radical p such that every module of the form G(4) is
p-torsionfree. In this setting, Proposition 2.2(b) is just [11, Proposition 1.5].
By [4, Lemma 4.7], the following conditions are equivalent for 4/ € R-Mod:
(1) QM) = M; (2) 8p(ap Is an epimorphism; (3) F(z,,) is a monomorphism;
and (4) 97(yy) is an isomorphism.

Proposition 2.2b shows that Oy is the construction used by Fakir [6], so
that Qy is a monad, with O = T'if and only if T is idempotent. To show that
QOr is a monad, factor 9: I — T as y = e, where 4': [ — OQr and : Q7 — T.
Since Qp(T(M)) = T(M), Q) = pnyOr(e) = uT(e) eQr . Using this and
the fact that nruerQr(€) = T'(n) per Or(e), it can be shown that Or(e) factors
through e, say, ep’ = Qr(e). It can be verified that, with these natural trans-
formations, {Qr, 7', "> is a monad. Note that if 7'(¢) is monic, then so is
O+(€) and hence, p’, so that p’ must be an isomorphism. Thus, O is idem-
potent if T'(e,,) is monic for all 31 € R-Mod.

Prorositrion 2.4. If T is left exact, then Qr is a localization funcior.

Proof. By the preceding remarks, (0 must be idempotent. Let 0 — 14’ —#
M —3 M"— 0 be an exact sequence in R-Mod. Then, Qn(ji) = 0 and
Or(#) is monic, since Qr is just the restriction of T. If x e ker(Qr(7)), then
x e ker(71'(y)) = Im(T(7)), so that & = T(:){x") for some &’ e T(M’). Thus,
1200 TOE) = 1760(®) = T(n)(®) = T(na) TG)(¥), since x & Or(M) and
50 T2(iY77 (') — T(E) T (s ). This shows that o’ € ker(ny o)~ T(1ar) =
O (M), since T is exact and therefore, T%7) is monic. Thus, Q,(M) is left
exact. |

ProrositionN 2.5. Let N =W &M =R-Mod, with i: M—>N and
P N — M the inclusion and projection, respectively. If (N, B> is a T-algebra,
then for o = pBT(7), the following conditions are equivalent.

(1) <M, oy is a T-algebra and p is a T-morphism.
(2) pBT(p) = pB-
(3) B(TMY)C M.
Proof. (1) = (2).If pis a T-morphism, then pf = aT(p) = pBT () T(p).

(2) = (1). By assumption, oT'(a) = pBT() T(pBT () = pBT(B)T*F)
and so aT(¢) = pBT () pras = ¥y , which shows that (M, «) is a T-algebra.
It is immediate from the assumption, that p is a T-morphism.
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T(x) T
TAM) —2 s T(M) T T(N)
1 T{p) i
upg % ! 5
l 2 ; ¥
TM) —— > M ——— N
* ?

(2) = (3). pBT@Ep) = pB < B(T(fp) — 1) C ker p. The resule then foi-
lows, since ker p = ' and the image of T'(5p) — Iy ts T(M'). §

ProposiTioN 2.6. A rad;-closed submodule of a T-algebra is a Qp-algebra
and in this case, any T-morphisin restricts to a Qp-morphisn.

Proof. Let M be a radg-closed submodule of a T-algebra {V, 8. Since
O;T = Tand Q4(NN) = N, any R-homomorphism f: N — T(X), X € R-Aod,
is a Qp-morphism, so ker(f) is a Qr-algebra, since the category of Q,-algebras
has kernels. Since the category also has intersections, M must be a Or-algebra.
In fact, if ©+ M — N is the inclusion, then B7'(f) €, factors through 7, say,
ia = BT({} e,y and (M, a> gives the required U, -elgebra structure. If
{N',v> is a T-algebra and f: N — N’ is a T-morphism, then O(N") = N’
and fix — fBT() ey = yT(f) TG) ex = y1x Qe fi) = Oz, 50 fi s a
Opmorphism. }

DeriniTION 2.7. The category of Q-algebras will be denoted by R-Mod/T.

Propositions 2.5 and 2.6 show that modules in R-Mod/7" can be charac-
terized as certain direct summands of rad;-closed submodules of T-algebras.

TreoreM 2.8. For M e R-Mod, the following conditions are equivalent.
(Y myt M — T(M) is an isomorphism.
(2) Wr &5 an isomorphism and M is isomorphic to a rady-closed sub-
module of T(.N'), for some N € R-Xod.
(3) On(M) = T(M) and M is a Qr-algebra.

Proof. That (1) = (2) is obvious and (2) = (3) follows from Proposi-
tions 2.3 and 2.6. If (3) holds, then 4 is a direct summand of O, (M) = T'(A1},
since it is a Qr-algebra and so M = Q{I) by Proposition 2.2, and thus,
(1) bolds. |

If (A, o 1s a T-algebra, then for me M, let p,,* = aT(p,): T(R) — M,
where p,, == [r — rm]: R — M. For ge T(R), define gm = p,*(g). Then,
pu 0™ = pk. . since p,,*p,* is a T-morphism and extends p,,, and further-
more, p,* -+ p,* = pk., for any n e M, since T is assumed to be additive.
These remarks can be used to show that T(R) is a ring and that any 7-algebra
is a2 T(R)-module. In addition, any T-morphism is a T(R)-homomorphism.
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Of course, since Oy is a monad, Q(R) is also a ring. As in Proposition 1.2,
if W,NeT(R)-Mod and rad;(N) =0, then any R-homomorphism
f: M — N is a Qp(R)-homomorphism.

In particular, if T is idempotent, then Qp = T and any R-homomorphism
from a T(R)-module into a T-algebra is a T'(R)-homomorphism. More
generally, the following result holds.

Lemya 2.9, The following conditions are equivalent for any T-algebra
M, o).

(1) pay is an isomorphism.
(2)  ny 15 an isomorphism.

(3) For any T-algebra (N, B>, every R-homomorphism y: M — N is a
T-morphism.

Proof. (1)< (2). If wy is an isomorphism, then T(n:) = nrup is an
isomorphism, so gy = T(e) 9rp = T(x) T(ns) = T(omy) = 1 and 7, is
an isomorphism. Conversely, if ,, is an isomorphism, then so is T(y,,) and
hence, also w,; -

(2) < (3). Ifn, isanisomorphismandf: M — N, thenfo = Byyfu =
BT(f) nasx = BT(f), since ny = 1 and thus, fis a T-morphism.

Assuming the converse shows that 5,,: M — T(M) is a T-morphism, so
e = parT(na) = 1 and v,y is an isomorphism. |

TraeoREM 2.10. Let U: Qr(R)-Mod — R-Mod be the forgetful functor.
If TU is left exact, then the following conditions hold.

(a) Or is idempotent.
(b) OrU s a localization functor of Qr(R)-Mod.
(c) R-Mod/T is a full Grothendieck subcategory of R-Mod.

Proof. (a) The monomorphism e,: Op(M)— T(M) is the kernel of the
Op-morphism 7y — T(na) and so it is a Qr(R)-homomorphism. By
assumption, TU(ey) is monic and so eyp, = Or(e) is monic and thus,
s 18 an isomorphism,

(b) Since Q, is idempotent, by Lemma 2.9 the R-homomorphism
g M — T(M) is a Or(R)-homomorphism for all M € Qr(R)-Mod. Using
the fact that T'(M) has a unique Qr(R)-module structure extending the R-
module structure, it follows that (TU)? = T?U and it can be shown that
(TU, n, x> is a monad of Q;(R)-Mod. By assumption, T'U is left exact and
since O U(M) = ker(TU(ns) — nrvap), Proposition 2.4 implies that QrU
is left exact and idempotent.
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(¢} Since Qr is idempotent, Lemma 2.9 shows that R-Mod;T is a full
subcategory and so any Qg-algebra has a unique Qn(R)-module structure
extending the R-module structure. Thus, U is an isomorphism of categories
when restricted to a functor from Q. U-algebras to Qr-algebras and this shows
that R-Mod/T is a Grothendieck category, since O;U is a localization
functor. §

3. APPLICATIONS

If Ve R-Mod and T == T is the monad defined by Homg(—, V"), then
Or = 0y and we will denote the category of Qp-algebras by R-Mod/F". By
*roposition 2.6, each module M € D(V') belongs to R-Mod/ V. If I satisfies
the equivalent conditions of Proposition 1.7, then the two categories coincide
and it follows from Lemma 1.5, that Q,U: Q(R)-Mod — R-Mod is left
exact since Hompy(—, ¥) is exact on Qp(R)-Mod. Thus, the first part of
Theorem 1.8 is a special case of Theorem 2.10, which shows in addition that
0, is idempotent, while the second part provides a converse to Theorem 2.10
in that any full reflective Grothendieck subcategory is of the form R-Mod/T"
for some monad T such that T'U is left exact.

Recall that a module ¥ is called balanced if 5z: R — Bic(z}") is an iso~
morphism. Applying Theorem 2.8 to the monad T , gives the following
generalization of [15, Theorem 5.1].

Tueores 3.1. Let V be a faithful left R-module. Then, V is balanced
<> Re R-Mod/V and OQ,(R) = Bic(zV).

The next theorem is a generalization of part (1) of [8, Theorem 4.2], where
a proof is given in case z I is injective. Recall that Q(R) is said to be a dense
subring of Bic(zV) if for each £ = End(z")-finitely generated submodule
FC Ve and b= Bic(xl"), there exists ¢ € Op(R), such that (b — ¢g)F = 0.
Note that the hypothesis of the theorem is satisfied if U7 R-Mod!/V — R-Mod
is exact and the conditions of Proposition 1.7 hold for V.

TrroreEM 3.2. Oy is dense in Bic(zl") if for any direct sum V¥, n > 0,
each cyclic Qy(R)-submodule is rad~closed.

Proof. U o ,.,o,sV, let v =(v,,..,00 V" U beéQu(R) for
some b€ Bic(xV), then, since Qp{R)v is rad,-closec in ", there exists
g € Homg(V'", V) with g(Q(R)z) = 0, but g(bv) == 0. This is a contradiction,

since g(2) € g(Qv(R)e) = O implies that g(bv) =3 ;. gi(bey) = b T gi(z) =
bg(z) = 0, since b commutes with the components g; € End{(; V") of g. Thus,

481/38/1-16
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Bic(xV)v = Qp(R)v and for each b Bic(zV), there exists ¢ €0, (R), such
that gz, = by for 1 <7< n |

If xV is injective, then R/Ann(¥’) can be embedded in some direct product
W of copies of V" and so Qu{R) = Bic(z W) [16, Theorem 3.2]. But two
injective modules that cogenerate each other determine isomorphic rings of
quotients and so Bic(x W) ~ O, (R). These results can be recovered in a
much more general setting.

The bicommutator of V; @© ¥, € R-Mod is the set of matrices of the form
(o g_z) such that b, € Bic(Vy), by € Bic(Vy) and byfyy == furby , bifiz = fiobe
for all f,; e Homg(F7y, V3), fio € Homg(V,, V3) (see [1]). There is 2 natural
ring homomorphism from Bic(V, © V) into Bic(¥;) that is a monomor-
phism if J'} cogenerates V, and an isomorphism if 7, both generates and
cogenerates J7, .

Similarly, if W =TT, Vis a direct product of copies of x ¥, then Bic(}F @ W)
is the set of matrices (§ 7) such that b € Bic(V"), b acts on W by componentwise
multiplication by b and fb = bf for all f € Homg(W, V). (The latter condition
guarantees that b & Bic(W) and the condition that fb = bf for f € Homg(V, W)
is automatically satisfied.) Note that the natural homomorphism ¢:
Bic(V @ W) — Bic(}) is an isomorphism if V is finitely generated over
End(;¥), since in this case, I both generates and cogenerates [ [, V' [4, Propo-
sition 2.7].

ProrosiTioN 3.3. If VeR-Mod and Bic(V) is embedded in a direct
product W= T1..; V, of copies of V, then the following conditions hold for the
natural ring homomorphzsm ¢: Bic(V O W) — Bic(V).

(a) Im(d) és rad,-closed in Bic(V').
(b) Im(p) = Qu(R) if every R-homomorphism f:Bic(F)— V can be
extended to W.

Proof. (a) If ae Bic(V)\Im(4), then by the preceding remarks charac-
terizing Bic(}” P W), there exists fe Homg(W, V), with f(aw) % af (z)
for some we W. Define g: Bic(V)-— I by g(b) = f(bw) — bf (=), for all
b & Bic(V). Since g is an R-homomorphism, gé = 0 and g(a) == 0, this shows
that Im(¢) is rad,-closed in Bic(V).

(b) Because Im(¢) 2 n(R), by (a) we must have Im(é) 2 Op(R). If
Je Homg(Bic(l"), V') with fp(R) = 0, then by assumption, f can be extended to
g: W— V. If b e Im(8), then f(b) = g(b) = bg(1) = bf (1) = 0, since b must
commute with elements of Homy(W, V). Thus, Im(¢) C O,(R). |

ProrosiTiox 34. If V, WeR-Mod and V and W both generate and
cogenerate each other, then Qp(R) ~ Qy(R).
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Proof. By assumption, the homomorphisms Bic(} & W) — Bic(V) and
Bic(V & W) — Bic(W) are isomorphisms. Since I” anc W cogenerate each
other, rad, = rady and it follows that Q(R) ~ Op(R). 1

The module 1 is called fully divisible if it is generated by the injective
envelope E(R) of the module zR. In [1], it has been shown that if I is
faithful, fully divisible, and finitely generated over End(z1), then Bic(zI"}
is isomorphic to the rad,-closure of R in E(R), a subring of Oy, (R). The
next theorem uses techniques of this paper to generalize the result to the case
in which V' is merely faithful and fully divisible. In this situation, if g3 is
fully divisible and rad,-torsion free, then M can be embedded as a O, (R)-
submodule in a direct product W of copies of V. That is, M inherits the
O;(R)-module structure of W (which is unique), but there mav be other
Ou(R)-module structures extending the R-module structure (see {2]).

TreorREM 3.5. If RV is faithful and fully diwisible, then Q ,(R) is isomorphic
to the subring of Quax(R) defined by the rad~closure of R in E(R).

Proof. Let S be the radp-closure of R in E(R), which is a subring of

Omax(R) by [1, Theorem 2.3]. Since I” is fullv divisible, every R-homamor-
phism from R to V extends to E(R) [1, Proposition 1.5] and so Homg(7, V)
is epic for the inclusion 7: R — E(R), which implies that 7'(7) and hence,
0y(7) is a monomorphism. Because rad, < radg(z) , e E(RY — TH(R) is
monic and since E(R) is injective, ngz) has a splitting map = with mnz = 1.
Thus, Q/(ER)) = E(R) and so Qu(i)Qr(R)) = mem0ri)On(R) =
7 Ty(f) ex(OQ(R)) € S since #T',(¢) maps R into R and therefore, maps the
rady-closure of R in Bic(zV) into the rad,-closure of R in E(R). Since
Ty (i) eg = np0yp (i), then s = Qp(¢)(g) has the property (for all ¢ s 0 (R)) that

Uf = gf (1] = To(0) ex(9) = me@Qv(IX9) = 1ew(S) = [f = F(9)]

Le., gf(1) = f(s), for all f € Homg(E(R), V).

Now, V is an S-module by extending p, = [r —#¢]: R— " to p,":
E(R) — T (the extension is unique on S) and defining sv = pL'(S) for all
se Sand v e V. Define &: S — Bic(gV) by h(s) = [v — st], forse S, ve .
Then, for ¢ ﬁOV(R)

hQV(E)(q) = h(s) = [v — s¢] = [v — p,'(s)]
= T‘.’ - qprl(l)] = EU g qt‘] =

where 5 = Q,{f)(¢) and so 2O, (1) = 1.
We have shown that the monomorphism Q(7): O (R) — Oy(E(R)) = E(R)
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factors through S and in fact, Q(R) is a direct summand of S. This forces
Im(Qp (7)) = S, since E(R) is an essential extension of R C Im(Q,(2)). |

CoROLLARY 3.6. Let p be a radical of R-Mod, with p(R) = K and let S be
the p~closure of RiK in E(gzRIK). If ST Onax(R/K), then there exists
V e R-Mod with S ~ Qp(R).

Proof. 1{ S COmax(R/K), then it is a subring by [1, Lemma 2.1]. Furthermore
S'is the rad-closure of R/K in E(z . R/K) for V' = E(,x RIK) @ E( xR/ K)/S
and so, by Theorem 3.5, S ~ Qy(R/K). (In fact, by [1, Proposition 3.1],
S =~ Bic(zV)). By Proposition 1.11, we have that S ~Q,(R). §

The final theorem concerns the monad of R-Mod determined by P &), —.
By [4, Lemma 4.7] any module of type FP [13] satisfies the hypothesis of the
theorem, so this includes the case when Py is finitely generated projective
[13, Corollary 1.2]. The theorem generalizes [5, Theorem 2.1], which shows
that the ring of quotients determined by a projective module coincides with
its bicommutator.

TueoreM 3.7. Let Pe Mod-R, E =End(Py) and T(M ) =Homg(P, PR x M)
for all M € R-Mod. If P is flat in Mod-Q;(R) and the natural map ¢:
P Qg Qr(R) — P given by ¢(p ® q) = pq for all pe P, qeQr(R) is an
isomorphism, then the following conditions hold.

(2) R-Mod/T is a full Grothendieck subcategory.

(b) If Pis projective in Mod-Qy(R), then Q(R) = Bic(Ppg).

() If P is projective and finitely generated in Mod-O(R), then T is
idempotent and consequently, Or = T.

Proof. (2) Let Q = Ox(R) and let U: Q-Mod — R-Mod. The result
follows from Theorem 2.10, since, if Py satisfies the assumption, then for
MeQ-Mod, PQrM~P R (0 o M) PRz 0) Qo M~P R, M
and so TU is left exact since Py, is flat.

(b) Since Bic(Py) = Bic(PR) and Q is its own ring of quotients with
respect to Hom(P, P ®, —) =~ TU, we can apply [5, Theorem 2.1] to show
that Q = Bic(Py), since O is just the ring of quotients constructed with
respect to ker(TU).

(¢) If Py is finitely generated and projective, then it is well known that
the natural homomorphism P Qg Homg(P, M)~ M is an isomorphism
for all M e E-Mod. Since this homomorphism is used to define y: T2 — T
in the monad, g must be an isomorphism and T is idempotent. J
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