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a b s t r a c t

Principal component analysis (PCA) is widely used in genome-wide association studies (GWAS), and the
principal component axes often represent perpendicular gradients in geographic space. The explanation
of PCA results is of major interest for geneticists to understand fundamental demographic parameters.
Here, we provide an interpretation of PCA based on relatedness measures, which are described by the
probability that sets of genes are identical-by-descent (IBD). An approximately linear transformation
between ancestral proportions (AP) of individuals with multiple ancestries and their projections onto
the principal components is found.

In addition, a new method of eigenanalysis ‘‘EIGMIX’’ is proposed to estimate individual ancestries.
EIGMIX is a method of moments with computational efficiency suitable for millions of SNP data, and
it is not subject to the assumption of linkage equilibrium. With the assumptions of multiple ancestries
and their surrogate ancestral samples, EIGMIX is able to infer ancestral proportions (APs) of individuals.
The methods were applied to the SNP data from the HapMap Phase 3 project and the Human Genome
Diversity Panel. The APs of individuals inferred by EIGMIX are consistent with the findings of the program
ADMIXTURE.

In conclusion, EIGMIX can be used to detect population structure and estimate genome-wide ancestral
proportions with a relatively high accuracy.

© 2015 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Principal component analysis was introduced for the study of
genetic data almost thirty years ago by Menozzi et al. (1978), and
has since become a standard tool. Population differentiation can be
inferred frommultivariate statistical methods such as PCA of allele
frequencies (Menozzi et al., 1978; Cavalli-Sforza and Feldman,
2003). In a new approach, Patterson et al. (2006) applied PCA
to SNP genotypic data for individuals rather than populations.
Their method, implemented in a software package ‘‘EIGENSTRAT’’,
has been widely used to correct for population stratification in
genome-wide association studies (GWAS) (Price et al., 2010).
AlthoughPCA is not based on apopulation geneticsmodel, andmay
seem like a ‘‘black box’’ method, principal component axes often
represent perpendicular gradients in geographic space (Cavalli-
Sforza and Feldman, 2003; Price et al., 2006; Novembre et al.,
2008). The relationship of PCA results to fundamental demographic
parameters is of major interest to geneticists.

Novembre and Stephens (2008) showed that the gradient and
wave patterns of principal components do not necessarily reflect
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migration events in history. From the perspective of coalescent
theory, McVean (2009) provided a genealogical interpretation of
PCA. He showed that the projection of samples onto the principal
components could be obtained from the pairwise coalescence
times between study individuals. Ma and Amos (2010) proposed
a formulation of PCA based on the variance–covariance matrix of
the sample allele frequencies.

We now provide an alternative interpretation of PCA based
on relatedness measures: probabilities that sets of genes have
descended from a single ancestral gene and so are identical by
descent (ibd). The ibd concept is essential for genetic analyses
such as linkage studies for mapping disease genes and forensic
DNA profiling (Weir et al., 2006; Thompson, 2013). In population
genetics, Weir and Hill (2002) extended the work of Weir and
Cockerham (1984) by allowing different levels of coancestry
for different populations, and by allowing non-zero coancestries
between pairs of populations. Our further extension is to allow
different coancestries between pairs of individuals and different
inbreeding coefficients for individuals. The coancestry coefficient
between two populations defined in the model of Weir and Hill
is now replaced by the average kinship coefficient among pairs of
study individuals from these two populations respectively, relative
to a single ancestral population, so that the assumption of random
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rating can be relaxed. These individual-perspective measures of
population structure can be used to explain the behavior of PCA.

Ancestral proportions (AP) of an individual refer to the frac-
tions of the genome derived from specific ancestral populations
(Pritchard et al., 2000; Falush et al., 2003; Tang et al., 2005; Alexan-
der et al., 2009). The early approach for estimating AP can track
back to Hanis et al. (1986), and the ancestral allele frequencies
should be known to allow estimating allele admixture in this
method. However, ancestral allele frequencies are usually esti-
mated from surrogate ancestral samples in practice and later stud-
ies took into account in describing the uncertainty of estimated
ancestral information.

A Bayesian approach, STRUCTURE, was developed to infer
population substructure using unlinked genotypes (Pritchard et al.,
2000). Later, itwas extended tomodel linkedmarkers (Falush et al.,
2003) through admixture linkage disequilibrium (LD). STRUCTURE
is computationally intensive and not likely to be suitable for large-
scale studies, like GWAS, involved with thousands of individuals
and hundreds of thousands of SNPs. SNP pruning has to be done
before applying STRUCTURE, and this can introduce selection
bias with respect to different SNP sets. A maximum-likelihood
estimation method, frappe, has also been proposed to estimate AP
with much less computation than STRUCTURE, but it assumes the
markers are unlinked (Tang et al., 2005). The ADMIXTURE method
was developed to analyze thousands of markers — it adopts the
likelihood model embedded in STRUCTURE with an assumption of
linkage equilibrium among the markers (Alexander et al., 2009).

Instead of estimating global ancestry via genome-widemarkers,
detection of local ancestry from chromosomal segments in
admixed populations becomes of great interest. Recently, HAPMIX
and MULTIMIX were proposed to infer local ancestry from dense
SNP markers based on approximate coalescent models modeling
linkage disequilibrium with two or more ancestries (Price et al.,
2009; Churchhouse and Marchini, 2013). However, their methods
require a fine genetic map.

The potential connection between ancestral proportions and
principal components in the eigenanalysis has been investigated
by the previous studies with a limited number of numerical
simulations (Patterson et al., 2006; Engelhardt and Stephens,
2010). McVean (2009) indicated it is possible to identify relative
admixture proportions from principal components. Ma and Amos
(2012) showed how to estimate two-way admixture proportions
with a proof under their framework of variance–covariancematrix.
They also observed that an admixed population could divide
the triangle of three parental populations in the PC plot into
three small triangles with areas according to the three-way
admixture proportions. However, none of these studies provided a
sufficient proof for inferring admixture fractions from the principal
components under their theoretical framework in the cases of
more than two ancestral populations.

In our study, an approximately linear transformation between
ancestral proportions (AP) of individuals with multiple ancestries
and their projections onto the principal components is revealed,
and a proof is given under the framework of identity by descent.
This linear transformation could explain the perpendicular gradi-
ents in geographic space, and it also justifies the observation that
the ratios of triangle areas correspond to admixture fractions in the
study of Ma and Amos (2012). We also propose a new method of
eigenanalysis ‘‘EIGMIX’’ to estimate individual ancestries. EIGMIX
usesmethodofmoments estimationwith computational efficiency
suitable formillions of SNPdata, and it is not subject to the assump-
tion of linkage equilibrium. Ancestral proportions can be estimated
by making assumptions of surrogate samples for ancestral popu-
lations, but inferring ancestral allele frequencies is not necessary.
The calculation uses all study individuals simultaneously with-
out projecting the remaining individuals onto the existing axes of
surrogates.
We applied various methods to the SNP data of 1198 founders
from the HapMap Phase 3 project and 938 unrelated individuals
from the Human Genome Diversity Project (HGDP). The ancestral
proportions of individuals inferred by PCA and EIGMIX are
consistent with the findings of the program ADMIXTURE. All
eigenanalysis in the study are implemented in the R package
‘‘SNPRelate’’ (Zheng et al., 2012), allowing users to apply our
method to their SNP data.

2. Methods

Wedevelop our approachwith a series of indicator variables xijkl
for the kth allele, k = 1, 2, at the lth locus, l = 1, 2, . . . , L, in the jth
individual sampled from the ith population, j = 1, 2, . . . , ni; i =

1, 2 . . . ,N . The total sample size is n =


i ni. The variables take
the value 1 for alleles of a specific type, e.g. the reference allele,
at a locus, and the value 0 otherwise. Genotypes are indicated by
gijl = xij1l + xij2l, and these take the values 0, 1, 2.

2.1. Population coancestry framework of Weir and Hill (2002)

Under the framework of Weir and Hill (2002), the expectations
for first and second moments of the x’s are

E[xijkl] = pl
E[x2ijkl] = pl

E[xijkl xijk′ l] = p2l + pl(1 − pl)Fij, k ≠ k′, the same individual
E[xijkl xij′k′ l] = p2l + pl(1 − pl)θi, j ≠ j′, the same population
E[xijkl xi′j′k′ l] = p2l + pl(1 − pl)θii′ , i ≠ i′, different populations.

Here expectation is over both repeated samples from the
population and over evolutionary replicates of the populations.
These expressions introduce the total inbreeding coefficient Fij, the
within-population coancestries θi, and the between-population-
pair coancestries θii′ . The quantities pl are the overall, or ancestral,
frequencies of the reference alleles if all study individuals can
be traced back to a single reference population. This reference
population could be common ancestors at a point in time of the
past. The equal values for E[xij1l xij2l] and E[xijkl xij′k′ l] require an
assumption of randommating.

The coancestry coefficient θi refers to the ibd probability for
a random pair of alleles in population i, and the pair of alleles
can come from the same individual. The coancestry coefficient
θii′ refers to the ibd probability for a random pair of alleles, one
from population i and the other from population i′. Note that
we implicitly assume θi and θii′ are the same at each locus, and
in practice θi and θii′ are actually the average inbreeding and
coancestry coefficients over all L loci.

Now consider an individual perspectivemeasures of population
structure, i.e., a special case of Weir and Hill’s model where each
population i has only one sampled individual (ni = 1) so j = 1 for
each population. The assumption of randommating is relaxed, and
the sample size n is also the number of populations r . Therefore,

p̄l =
1
n

n
i=1

p̄il =
1
n

n
i=1


1
2

1
j=1

(xij1l + xij2l)


E[p̄l] = pl

Var[p̄il] =
1
2
pl(1 − pl)(1 + θi)

Cov[p̄il, p̄i′ l] = pl(1 − pl)θii′

Var[p̄l] =
n − 1
n

pl(1 − pl)θT +
1
2n

pl(1 − pl)(1 + θI)

E[p̄l(1 − p̄l)] =
n − 1
n

pl(1 − pl)(1 − θT )+
1
2n

pl(1 − pl)(1 − θI)

(1)

where θI =
n

i=1 θi/n, the average inbreeding coefficient among
all study individuals, and θT =

n
i,i′=1, i≠i′ θii′/[n(n − 1)],
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Fig. 1. A genetic model at a single locus for observed samples. The alleles of all study individuals at tnow can be tracked to a single reference population at t0 , and there are
N distinct ancestral populations at t1 . The relationships among ancestral populations are described by a coancestry matrixΘA .
the average kinship coefficient among all study individuals. The
individual perspective measures do not account for familial data
and the relatedness of individuals is established from evolutionary
history.

Each study individual is assigned to one population, thereby the
genetic covariance matrix defined by Patterson et al. (2006) at the
individual level can be expressed using an index i, MP

= [mP
i,i′ ]n×n:

mP
i,i′ =

1
L

L
l=1

(gi1l − 2p̄l)(gi′1l − 2p̄l)
p̄l(1 − p̄l)

. (2)

The expected values of the numerator in Eq. (2) is:

E[(gi1l − 2p̄l)2] = 2pl(1 − pl)

1 + θi + 2

n − 1
n

θT − 4ψi


+

2
n
pl(1 − pl)(θI + 2θi − 1), for i = i′

E[(gi1l − 2p̄l)(gi′1l − 2p̄l)]

= 4pl(1 − pl)

θii′ +

n − 1
n

θT − ψi − ψi′


+

2
n
pl(1 − pl)(θI + θi + θi′ − 1), for i ≠ i′

where ψi =
n

i′=1 θii′/n (setting θii = θi).
When the number n of study individuals is large,

E


1
4
mP

i,i′


=


1 + θi

2(1 − θT )
+
θT − 2ψi

1 − θT
, if i = i′

θii′

1 − θT
+
θT − ψi − ψi′

1 − θT
, if i ≠ i′.

(3)

2.2. Eigen-decomposition in PCA

If we are interested in individual inbreeding coefficients (1 +

θi)/2 (the coancestry of an individual with itself) and individual-
pair coancestries θii′ , the factors (1−θT ) and (θT −ψi−ψi′)/(1−θT )
in Eq. (3) will confound the estimates when 1

4m
P
i,i′ is used. Thismay

explainwhy a large proportion ofmP
i,i′ is negative, whereas the true

θi and θii′ are always between zero and one.
2.2.1. The population perspective
PCA conducts eigen-decomposition on the stochastic matrix

MP, and it is possible to investigate the structural features of
MP with its expectation. To illustrate what eigen-decomposition
does, we introduce a genetic model consisting of populations at
three points in time as shown in Fig. 1. The alleles of all study
individuals at tnow can be tracked to a single reference population
at t0 through at least one of distinct ancestral populations at
t1. The study samples S1, . . . , SN are directly inherited from the
ancestral populations A1, . . . , AN without admixture, and the
sample Sadmixture is admixed from N ancestral populations.

What we can observe are the genomes of study individuals
at tnow. It could be appropriate to assume there are N ancestral
populations at t1 which is between t0 and tnow, and the samples
S1, . . . , SN are good candidates (or pseudo-ancestors) to represent
the ancestral populations. For example, in the initial phase of the
HapMap Project, genetic datawere gathered from four populations
(CEU, YRI, CHB and JPT) with European, African and Asian ancestry
respectively. Here, N = 3, S1 represents CEU individuals, S2 for YRI
and S3 for CHB + JPT.

A coancestry matrix ΘA is used to describe the relationships
among N ancestral populations at t1 based on population
perspective measures, where

ΘA =


θ∗

1 θ∗

12 · · · θ∗

1N
θ∗

12 θ∗

2 · · · θ∗

2N

· · · · · ·
. . . · · ·

θ∗

1N θ∗

2N · · · θ∗

N

 . (4)

That is, θ∗

h is the average IBD probability for a pair of alleles
randomly sampled with replacement from the hth ancestral
population, and θ∗

hh′ is the coancestry coefficient for random
pairs of individuals from the hth and h′th ancestral populations
respectively. Since we track all individuals back to the reference
population at t0, the sample allele frequencies at t1 are treated as
random variables over a probability space, which starts from the
reference population at t0 and arrives at t1 with the coancestry
stateΘA.
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2.2.2. Ancestral proportions
In practice individuals may have recent ancestors in more than

one population, and an admixture model is introduced in which
each individual is assumed to have inherited some proportion of its
ancestry from each population. For an individual i, let the ancestral
proportions be a vector ai = (ai,1, . . . , ai,N)T , where

N
h=1 ai,h = 1

and 0 ≤ ai,h ≤ 1. Let Ziklh = 1 when the kth allele of individual i
at SNP l is inherited from the hth ancestral population at t1, and
Ziklh = 0 otherwise. The vector Zikl = {Zikl1, . . . , ZiklN}

T is modeled
as a random variable with probabilities ai, i.e., E[Ziklh] = ai,h.
Further,

ai,h = E


1
L

L
l=1

Ziklh


(5)

represent the genomic ancestral proportions. Note that Eq. (5) still
holds even if loci are correlated due to linkage disequilibrium.
We assume that the two alleles in individual i at SNP l are
independently derived from ancestral populations, since pairs
of chromosomes of an individual are independently inherited
from two parents respectively. Then the expected value of the
inbreeding coefficient at SNP l for individual i is E[ZT

i1lΘAZi2l] =

aTi ΘAai, the same for each SNP. The average inbreeding coefficient
over L loci is θii′ = aTi ΘAai, assuming the coancestry matrix of
ancestral populations is identical at each locus.

For a pair of individuals i and i′, we assume that any pair
of alleles, one from i and the other from i′ are independently
derived from ancestral populations. Then the expected value of
the kinship coefficient at SNP l is E[ZT

iklΘAZi′k′ l] = aTi ΘAai′ ,
and the average kinship coefficient over L loci is also θii′ =

aTi ΘAai′ . This assumption is appropriate to model relatedness in
structured populationwith admixture,with aTi ΘAai′ as background
relatedness due to evolutionary history. However, the validity of
the assumption could be violated if individuals i and i′ are in a
family, e.g., parent and offspring.

2.2.3. Matrix decomposition
For a study sample, there are n unrelated individuals. Each

individual i has AP ai with respect to N ancestral populations. Let
A = [a1, a2, . . . , an]T be a n-by-N matrix with rows representing
ancestral proportions of individuals. Then the coancestry matrix of
study individualsΘS can be expressed as

ΘS = AΘAAT . (6)

We rewrite Eq. (3) in matrix notation for large n,

E[MP
] =

4
1 − θT


A −

1
n JnA


ΘA

A −

1
n JnA

T  
def
=ΘM

+ diag


2(1−θ1)
1−θT

, . . . , 2(1−θn)
1−θT


  

bias

(7)

where Jn is a matrix of dimension n × n with entries equal to one,
since
1
n
JnA

ΘA


1
n
JnA
T

=
1
n2

JnΘS Jn

=
1
n2


j≠j′

θjj′ +


j

θj


Jn

=


θT

n(n − 1)
n2

+
1
n
θI


Jn

≈ θT Jn

1
n
JnA

ΘAAT

=
1
n
JnΘS =

ψ1 ψ2 · · · ψn
...

...
. . .

...
ψ1 ψ2 · · · ψn

 .
The diagonal diag( 2(1−θ1)1−θT

, . . . , 2(1−θn)
1−θT

) is considered as a bias term
in the PCA with respect to ancestral proportions.

Note that rank(A −
1
n JnA) ≤ N − 1 because we lose a

dimension by forcing each column to sum to zero. The eigenvectors
corresponding to the largest N − 1 eigenvalues of ΘM form a
new coordinate with N − 1 dimensions while AP form an old N-
dimensional coordinates. The mapping from the old coordinate
to the new one is a linear transformation, and the proof is
given in the Appendix A.1. In addition, this mapping is actually
an affine transformation equivalent to a (N − 1)-dimensional
linear transformation followed by a translation, and the affine
transformation can be represented as a linear transformation on
the higher dimensional space.

For example, assume there are three ancestral populations
and seven individuals, in which individuals 1, 2, 3 are inherited
from the ancestral populations without admixture, individuals
4, 5, 6 have two ancestral populations with equal contributions
and individual 7 has three ancestral populations with equal
contributions. The matrix A of ancestral proportions is

A =

1 0 0 1/2 1/2 0 1/3
0 1 0 1/2 0 1/2 1/3
0 0 1 0 1/2 1/2 1/3

T

,

and ΘA is assumed to diag(0.05, 0.05, 0.05). The AP coordinates
are shown in Fig. 2(a), and the new eigen-decomposition
coordinates are shown in Fig. 2(b).

2.3. EIGMIX — Inferring ancestral proportions

The mapping in Fig. 2 suggests an approach to estimate an-
cestral proportions using the largest principal components. Let S1,
. . . , SN be the observed surrogate samples for the ancestral popu-
lations, as shown in Fig. 1. Nowwe look at the largest (N −1) prin-
cipal components, and identify each location of pseudo-ancestor
i ∈ {1, . . . ,N} in the eigen coordinates, by averaging the locations
of the sample Si. So we have N positions in the eigen coordinates,
which corresponds to N independent components in the AP coor-
dinates. Then a linear transformation can be made to reverse the
original mapping, i.e., the principal components of all study indi-
viduals are reversed to the AP coordinates by a linear transforma-
tion. In addition, the property of linearmappingmakes the inferred
ancestral proportions unique if N surrogate samples are specified
and their locations in the eigen coordinates are distinct.

For example, the positions of individuals 1, 2 and 3 with ances-
tral proportions (1,0,0), (0,1,0) and (0,0,1) in the eigen coordinate
of Fig. 2(b) are denoted by es1, es2 and es3 respectively. Let T2×2 be
a linear transformation and L be a translation operator. A transfor-
mation from the AP coordinates to the eigen coordinates is:1 0
0 1
0 0


T2×2 + L3×2 =

e′

s1
e′

s2
e′

s3

 . (8)

Therefore, L3×2 = [es3, es3, es3]′ (moving every point a constant
distance) and T2×2 = [es1 − es3, es2 − es3]′. The inverse transforma-
tion is:

ancestral proportion = (eadmix − es3) T−1
2×2 (9)

where eadmix is an arbitrary point in the eigen coordinate.
Note that there is a bias term in the diagonal shown in Eq. (7).

A scheme for bias removal is to define a new genetic covariance
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Fig. 2. The relationship between ancestral proportions and eigen-decomposition: (a) seven admixture fractions from three ancestral populations are plotted in the figure;
(b) the first and second eigenvectors of matrix ΘM = (A −

1
n JnA)ΘA(A −

1
n JnA)

T , where the ancestral coancestry matrix ΘA is assumed to diag(0.05, 0.05, 0.05), A is an
n-by-N matrix with rows representing admixture proportions of individuals, n = 7 and N = 3. The mapping from the two-dimensional coordinate in (a) to that of (b) is a
linear transformation followed by a translation.
matrix, the EIGMIX coancestry matrix M∗
= [m∗

j,j′ ]n×n, EIGMIX
coancestry matrix:

m∗

j,j′ =



L
l=1
(gjl − 2p̄l)2 − gjl(2 − gjl)

4
L

l=1
p̄l(1 − p̄l)

, j = j′

L
l=1
(gjl − 2p̄l)(gj′ l − 2p̄l)

4
L

l=1
p̄l(1 − p̄l)

, j ≠ j′.

(10)

ThenE[M∗
] = ΘM/(1−θT )without anybiaswhen there are a large

number of individuals. We have previously (Weir and Cockerham,
1984) suggested the simple modification of taking the ratios of
the sums over loci of the numerators and denominators instead
of averaging the ratios to reduce the variance, in part by reducing
the impact of rare variants. Since the ratio of expected values is an
approximation for the expected value of an ratio of two random
variables, our modification tends to have an advantage of bias
correction due to division compared to the original PCA.

In practice, the matrix M∗ of real data could have more than
N − 1 significant eigenvalues when we assume the number of an-
cestral populations N to be a specific number (e.g., N = 3 for
Europe, Asia and Africa). The largest N − 1 eigenvalues with their
eigenvectors form a low-rank approximation of M∗ (a real sym-
metric matrix), which minimizes the Frobenius normwith respect
to a n-by-nmatrix M with rank(M) ≤ N − 1:

∥M∗
− M∥

2
F =

n
j=1

n
j′=1

m2
j,j′

where M∗
− M = [mj,j′ ]n×n. The closest matrix to M∗ is M̂ =N−1

i=1 λieie
T
i , as measured in the Frobenius norm, where |λ1| ≥

|λ2| ≥ · · · ≥ |λn| are the eigenvalues of M∗ and ei is the eigenvec-
tor corresponding to λi, and

∥M∗
− M̂∥

2
F =

n
i=N

λ2i

M∗ is not necessarily a nonnegative definite matrix, i.e., its eigen-
values are not necessarily all nonnegative. Here ‘‘largest eigen-
values’’ refer to the absolute values of eigenvalues in descending
order.

In addition, the estimates of EIGMIX given an arbitrary number
of ancestral populations are not always bounded from 0 to 1,
although we force the proportions to sum to one. If the inferred
ancestral proportions lie much outside the range [0, 1], signaling
outliers, we could conclude that the assumption of N ancestral
populationswith their surrogates is not appropriate or that the SNP
markers have no power to distinguish ancestral populations.

According to PCA, we might expect the eigen-decomposition
of E[

1
4MP

] and E[M∗
] could result in similar eigenvectors

corresponding to a few most significant eigenvalues when there
are true structural feature in data, since the difference between
E[

1
4MP

] and E[M∗
] depends only on the diagonal. The average

difference per entry in the term of Frobenius norm becomes small
when the total number of study individuals n is large:

1
n2

E  14MP
− E[M∗

]
2
F =

1
4n2

n
j=1

(1 − θj)
2

(1 − θT )2
→ 0,

as n → ∞.

A few largest eigenvalues and eigenvectors could capture the sim-
ilar structure information of E[

1
4MP

] and E[M∗
]. Here, ‘‘similar’’

means similar relative positions in the eigen coordinates, since nu-
merical calculation does not guarantee that the resulting eigenvec-
tors will have the same absolute positions in the coordinate, e.g., if
a vector v is an eigenvector then−v is also the eigenvector accord-
ing to the same eigenvalue. A further numerical study is shown in
the Appendix A.2.

3. Results

3.1. Materials

The Phase 3 HapMap data consist of SNP genotypes gener-
ated from 1397 samples in total, collected using two platforms:
the Illumina Human1M (by the Wellcome Trust Sanger Institute)
and the Affymetrix SNP 6.0 (by the Broad Institute) (Interna-
tional HapMap 3 Consortium et al., 2010). Data from the two plat-
forms have been merged for the release. The PLINK format of
HapMap 3 data was downloaded from http://hapmap.ncbi.nlm.
nih.gov/downloads/genotypes/hapmap3_r3/plink_format/. The
consensus and polymorphic dataset of 1198 founders were used
in the study analyses, which include only SNPs that passed quality
control in all populations, as shown in Table 1.

The Human Genome Diversity Panel data consist of 1043 indi-
viduals from 51 populations over the world: sub-Saharan Africa,
North Africa, Europe, the Middle East, Central and South Asia, East
Asia, Oceania and the Americas (Cann et al., 2002). The study in-
dividuals were genotyped on the Illumina 650 K platform, and the
SNP data could be downloaded from http://www.hagsc.org/hgdp/

http://hapmap.ncbi.nlm.nih.gov/downloads/genotypes/hapmap3_r3/plink_format/
http://hapmap.ncbi.nlm.nih.gov/downloads/genotypes/hapmap3_r3/plink_format/
http://hapmap.ncbi.nlm.nih.gov/downloads/genotypes/hapmap3_r3/plink_format/
http://hapmap.ncbi.nlm.nih.gov/downloads/genotypes/hapmap3_r3/plink_format/
http://hapmap.ncbi.nlm.nih.gov/downloads/genotypes/hapmap3_r3/plink_format/
http://hapmap.ncbi.nlm.nih.gov/downloads/genotypes/hapmap3_r3/plink_format/
http://hapmap.ncbi.nlm.nih.gov/downloads/genotypes/hapmap3_r3/plink_format/
http://hapmap.ncbi.nlm.nih.gov/downloads/genotypes/hapmap3_r3/plink_format/
http://hapmap.ncbi.nlm.nih.gov/downloads/genotypes/hapmap3_r3/plink_format/
http://hapmap.ncbi.nlm.nih.gov/downloads/genotypes/hapmap3_r3/plink_format/
http://hapmap.ncbi.nlm.nih.gov/downloads/genotypes/hapmap3_r3/plink_format/
http://hapmap.ncbi.nlm.nih.gov/downloads/genotypes/hapmap3_r3/plink_format/
http://www.hagsc.org/hgdp/files.html
http://www.hagsc.org/hgdp/files.html
http://www.hagsc.org/hgdp/files.html
http://www.hagsc.org/hgdp/files.html
http://www.hagsc.org/hgdp/files.html
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Fig. 3. The principal component analysis on HapMap Phase 3 data, using a pruned set of 9949 SNPs and 1198 founders consisting of 11 populations: (a) the first and
second eigenvectors; (b) a linear transformation of coordinate from (a) followed by a translation, assuming three ancestral populations with surrogate samples: CEU, YRI
and CHB + JPT. The average positions of three surrogate samples are masked by a red plus sign.
Table 1
Summary of population samples in the eigenanalysis.

Name Population # of samples

HapMap Phase III (1198 founders):
ASW African ancestry in Southwest USA 53
CEU Utah residents with Northern and Western

European ancestry from the CEPH collection
112

CHB Han Chinese in Beijing, China 137
CHD Chinese in Metropolitan Denver, Colorado 109
GIH Gujarati Indians in Houston, Texas 101
JPT Japanese in Tokyo, Japan 113
LWK Luhya in Webuye, Kenya 110
MEX Mexican ancestry in Los Angeles, California 58
MKK Maasai in Kinyawa, Kenya 156
TSI Toscani in Italia 102
YRI Yoruba in Ibadan, Nigeria 147

The Human Genome Diversity Panel (HGDP, 938 unrelated individuals):
Africa 101
Europe 157
Middle East 163
Central and South Asia 199
East Asia 228
Oceania 26
America 64

files.html. The dataset contains a small number of relatives, and
938 individuals remained in the analysis after filtering out first
and second degree relatives ofwhichwere suggested by Rosenberg
(2006).

To reduce potential effects of linkage disequilibrium, SNP
pruning was conducted by randomly selecting autosomal SNPs
for which each pair was at least as far apart as 200 kb: 9949
remaining SNPs for HapMap Phase 3 and 9790 for HGDP. All
analyses were performed on both of the pruned and full SNP sets,
and the unbound estimates of ancestral proportion are reported. In
the full sets, there are 1423,833 and 644,258 autosomal SNPs for
HapMap3 and HGDP respectively.

3.2. Analyses of HapMap Phase 3 data

To avoid the confounding effect of relatives, 1198 founderswere
selected for the PCA analysis by removing the offspring. The first
two principal components are the focus, since more eigenvectors
provide little additional information for inferring primary popula-
tion structure. As shown in Fig. 3(a), the samples fromCEU, YRI and
CHB + JPT correspond to three vertices of a triangle, and the other
populations tend to be admixtures from these three ancestries. In-
ferring ancestral proportionswas conducted by a coordinate trans-
formation, assuming three ancestral populations with surrogate
samples: CEU, YRI and CHB + JPT. The X and Y axes in Fig. 3(b)
represent the proportions of genome from African and Asian an-
cestries respectively. Gujarati Indians in Houston (GIH, yellow) and
Mexican ancestry in Los Angeles (MEX, green) appear to be admix-
tures between Europeans and Asians. ASW, MKK and LWK tend to
be more related to African ancestry with some admixture, while
CHD and TSI are quite close to the surrogate samples of Asia. The
PCA plot with the largest two principal components generated by
the full SNP set is shown in Fig. B.1), which is similar to Fig. 3.

The population admixture proportions are estimated by aver-
aging ancestral proportions of individuals using the full SNP set.
African Americans (ASW) are a typically admixed sample, esti-
mated with ∼78% of genome from YRI and 21% from CEU, and ap-
proximately no genome from CHB + JPT. The result confirms the
estimates of 78% African and 22% European ancestry shown in the
supplementary materials of the HapMap Phase 3 report (Interna-
tional HapMap 3 Consortium et al., 2010). The HAPMIX algorithm
(Price et al., 2009) was used in HapMap Phase 3 project, the opti-
mal linear combination of 74% YRI and 26% CEU was observed for
MKK, and a combination of 94% YRI and 6% CEU for LWK. In our
analyses, the PCA-inferred combinations are 74% YRI + 24% CEU
for MKK and 94% YRI + 5% CEU for LWK. Our results are consistent
with the admixture proportions previously estimated.

The supervised ADMIXTURE and EIGMIXmethodswere applied
to the HapMap3 SNP data assuming three ancestral populations
with surrogate samples CEU, YRI and CHB + JPT. ADMIXTURE is
a model-based method with an assumption of markers in link-
age equilibrium, therefore a pruned SNP set was used to avoid
the strong influence of SNP clusters. The pseudo-ancestors (YRI,
CHB + JPT and CEU) are specified in the analyses of ADMIXTURE
according to the AP (1, 0, 0), (0, 1, 0) and (0, 0, 1). As shown in
Fig. 4, the AP inferred by PCA tend to be consistent with those esti-
mated byADMIXTUREusing the sameSNP set. However, the offsets
are observed for admixed populations, such like GIH andMKK. The
PCA-based proportions of genome from CEU are lower than AD-
MIXTURE for GIH, and those are higher for MKK. Actually, our in-
ference on MKK was actually consistent with what HapMap Phase
3 has reported. Note that PCA is a dimension reduction technique
and may lose information if we look only at the largest two prin-
cipal components, and the assumption of pseudo-ancestors (CEU,
YRI, CHB + JPT) might not truly represent the ancestors in human
evolution.

http://www.hagsc.org/hgdp/files.html
http://www.hagsc.org/hgdp/files.html
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Fig. 4. A comparison between PCA and supervised ADMIXTURE with respect to ancestral proportions for the HapMap Phase 3 data. A pruned set of 9949 SNPs was used by
both PCA and ADMIXTURE.
Table 2
The differences on ancestral proportions of individuals between supervised ADMIXTURE and the eigenanalysis for the HapMap Phase 3 data.

Pop. PCA − ADMIXTURE EIGMIX − ADMIXTURE
mean ± sd mean ± sd
% CEU % CHB + JPT % YRI % CEU % CHB + JPT % YRI

ASW 0.30 ± 0.75 −0.29 ± 1.11 −0.01 ± 0.90 0.18 ± 1.09 −0.27 ± 1.24 0.09±0.73
CHD −1.10 ± 1.65 1.09 ± 1.66 0.01 ± 1.15 −1.16 ± 1.82 1.11 ± 1.70 0.05±1.34
GIH −4.15 ± 0.85 0.42 ± 0.57 3.74 ± 0.87 −3.39 ± 0.84 −0.60 ± 0.74 3.98±1.12
LWK 1.50 ± 1.33 0.24 ± 1.22 −1.74 ± 1.25 0.86 ± 1.42 −0.02 ± 1.35 −0.84±1.03
MEX −0.62 ± 0.70 0.23 ± 0.57 0.40 ± 0.75 −0.31 ± 0.91 0.02 ± 0.83 0.29±1.01
MKK 1.60 ± 0.85 0.61 ± 1.10 −2.21 ± 0.77 0.72 ± 1.07 0.33 ± 1.03 −1.05±0.66
TSI −1.07 ± 1.74 −0.78 ± 1.69 1.84 ± 1.12 −0.85 ± 1.73 −1.14 ± 1.80 1.99±1.32
The EIGMIX coancestry matrix was used in the eigenanalysis
instead of the PCA covariance matrix. As shown in Table 2, the
differences of ancestral proportions at the individual level between
ADMIXTURE and PCA/EIGMIX were calculated to evaluate the
potential biases compared to the estimates of ADMIXTURE. The
estimated proportions of EIGMIX tend to be less biased than
PCA’s except Chinese in Metropolitan Denver (CHD), whereas the
differences are relatively small overall for the HapMap3 data. The
variances of EIGMIX are comparable to PCA if the ADMIXTURE
estimates are assumed to be true values.

3.3. Analyses of HGDP

As suggested by Rosenberg (2006), a standardized subset of
HGDP data consisting of 938 unrelated individuals was employed
in the admixture analyses with a pruned set of 9790 SNPs.
The number of ancestral populations is suggested by geographic
regions, the worldwide human relationship inference (Rosenberg
et al., 2002; Li et al., 2008) and the plots of eigenvectors (shown in
Fig. B.2), and we used six ancestries in our primary analyses. The
surrogate samples are suggested by the previous inferred regional
ancestry (Li et al., 2008) and relative positions in the plots of
eigenvectors: Sardinian for Europe (n = 28), Chinese Han for East
Asia (n = 44), Kalash for Central and South Asia (n = 22), Pygmy
for Africa (n = 34), Karitiana for America (n = 14) and Papuan for
Oceania (n = 16).

The supervised ADMIXTURE and EIGMIX methods were both
applied to the HGDP SNP data with six ancestral populations. The
estimated ancestral proportions of individuals are shown in Fig. 5.
Overall the estimates of EIGMIX are consistent with what ADMIX-
TURE does, however a difference of 10% admixture proportion is
observed for samples from Africa and Middle East when the per-
cents of Europe are inferred. In Fig. 5(e), the samples of America
are also observed to be off the diagonal line. PCA was applied to
the same study individuals and SNP set: the PCA-inferred admixed
ancestries are shown in Fig. 6 and Fig. B.3. The PCA method is ob-
served to have higher variance than EIGMIX, especially for the sam-
ples fromAfrica andMiddle East. The variance reduction in EIGMIX
is primarily due to themodification of taking the ratios of the sums
over loci, rather than diagonal bias removal.

4. Discussion

In this study, we provide an interpretation of principal compo-
nents analysis (PCA) based on relatedness measures, i.e., the prob-
ability that sets of genes are identical-by-descent. The expected
values of pairwise estimates in the genetic covariance matrix of
PCA are relative kinship coefficients with an additional term with
respect to a single reference population in the past. An approxi-
mately linear transformation between ancestral proportions of in-
dividuals with multiple ancestries and their projections onto the
principal components is revealed. A newmethod ‘‘EIGMIX’’ is pro-
posed to estimate ancestries, allowing both linked and unlinked
genetic markers regardless of linkage disequilibrium. The ances-
tral proportions can be estimated bymaking assumptions of surro-
gate ancestral samples. EIGMIX is a method of moments with high
computational efficiency compared to existing MLE and Bayesian
methods such like ADMIXTURE and STRUCTURE, and it is suitable
to large-scale GWAS data with thousands of individuals and mil-
lions of SNPs. We applied the PCA, EIGMIX and supervised AD-
MIXTURE methods to the real SNP data from the HapMap Phase
3 project and the Human Genome Diversity Panel. The ancestral
proportions inferred by PCA and EIGMIX are consistent with the
findings of ADMIXTURE, but EIGMIX proportions are observed to
be less biased and more robust than PCA.

Novembre et al. (2008) showed that SNP profiles of individuals
within Europe can be used to infer their geographic origin with
relatively high accuracy by PCA. The reason why the PC axes
often represent perpendicular gradients in geographic space can
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Fig. 5. A comparison of ancestral proportions between EIGMIX and supervised ADMIXTURE with 6 ancestral populations for the HGDP data. A pruned set of 9790 SNPs was
used by both EIGMIX and ADMIXTURE.
Fig. 6. A comparison of ancestral proportions between PCA and supervised
ADMIXTUREwith 6 ancestral populations with a pruned set of 9790 SNPs. The color
legend is as the same as Fig. 5, and EIGMIX is more robust than PCA when inferring
admixture fractions.

be explained by ancestral proportionswith two ormore ancestries.
In our genetic model (see Fig. 1), the time t0 of single reference
population is not specified explicitly, and it could be many
generations ago— even the time beforemodern humans’ ancestors
migrated out of Africa. The repeated migration in the history
of Europe could create gene frequency clines as suggested by
isolation-by-distance models (Wright, 1943). Starting from the
single reference population at t0, such as the population at the time
before humans migrated out of Africa, it would be possible to treat
the observed alleles and the hidden pattern of ibd in the current
generation as a sample from the probability space of a long-term
evolutionary process. However, this strategy could be confounded
by the unknown allele frequencies in the reference population.
To avoid this problem, the derivation of the formulas in PCA and
EIGMIX have removed explicit use of the allele frequencies.

Ma and Amos (2012) observed that a three-way admixed
population could divide the triangle of parental populations
in the PC plot into three small triangles with areas according
to their admixture proportions. They also tried to extend this
observation to the general case of more than three parental
populations. A closed-form estimator of ancestral proportion is
difficult to find so they solved the eigenequation numerically to
confirm the observation. Ourmathematical derivation of the linear
transformation between ancestral proportions and eigenvectors
can be used to confirm the observation of Ma and Amos
(2012). Here, we adopt an three-way admixed example with four
populations (P1, P2, P3 and P4) shown in Fig. 5 of the paper of Ma
and Amos (2012), where P4 is an admixed population. It is shown
in Fig. B.4. The mapping from the two-dimensional coordinate in
Figure B4(a) to that of (b) is an affine transformation. Sets of parallel
lines remain parallel after an affine transformation, and it also
preserves ratios of distances between points lying on a straight
line. Therefore, the ratio of heights in the triangles remain the
same. Ma and Amos’ observation can be confirmed theoretically
under their framework with our linear transformation proof.

It is important to realize the potential limitations and our
findings should be interpreted with caution. The assumption of
ancestral populations used in inferring admixture fractions from
the largest principal components could be confounded by the
fact that human evolution is complex and has involved repeated
migration and admixture from and out of Africa (Cavalli-Sforza
and Feldman, 2003; Abi-Rached et al., 2011). Therefore, the
selection of surrogate samples could be biased due to lack of
historical knowledge or true unknown ancestries. For example,
it is known that Mexicans have mainly Native Americans and
European ancestry, with a small African contribution (Price et al.,
2007). The ancestral proportions of MEX in HapMap Phase 3 data
are confounded by an unknown link between Amerindians and
CHB + JPT, although Amerindian seems closely related to Asian
rather than European and African in genetics. Also, CHB + JPT
andNative Americans represent two evolution branches from their
common ancestors, and it may not be appropriate to assume a
simple linear combination to reflect genetic difference in Native
Americans.

The number of ancestral populations N is another important
issue when we infer admixture proportions. A statistical test for
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how many significant eigenvalues in SNP data has been proposed,
which is based on the approximate Tracy–Widom distribution
(Patterson et al., 2006). The potential impacts on this test include
linkage disequilibrium and categorical genetic data, since the
Tracy–Widom distribution was originally developed for the case
of independent Gaussian matrix entries. The MLE method for
selecting N based on AIC (Akaike information criterion) and BIC
(Bayesian information criterion) statistics was also introduced
with ADMIXTURE (Alexander et al., 2009). However, we suggest
that the choice of N should rely on the knowledge of the history of
a population, with limited advice from statistical significance.

In summary, we provide a genetic interpretation of PCA, and
propose EIGMIX to infer ancestral proportions with relatively high
accuracy. EIGMIX could help us better understand population
structure for isolated and admixed populations.
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Appendix A

A.1. Proof of eigen-decomposition

Here, we perform eigen-decomposition on ΘM = (A −
1
n JnA)ΘA(A −

1
n JnA)

T in Eq. (7), and the mapping from A to the
eigenvectors ofΘM is a linear transformation, where A is a n-by-N
matrixwith rows representing ancestral proportions of individuals
and ΘA is a N-by-N coancestry matrix. Let Y = A −

1
n JnA =

(In −
1
n Jn)A, where In is an identity matrix and Jn is a matrix n × n

with entries equal to one, thenΘM = YΘAY T .

Proof. Note that ΘM and ΘA are not necessarily non-negative
definite matrices, and some of the eigenvalues could be negative.
To avoid a complex matrix, we perform eigen-decomposition on
Θ2

M, since Θ2
M and ΘM have the same eigenvectors and the square

of eigenvalues ofΘM correspond to the eigenvalues ofΘ2
M.

Note that rank(Y ) ≤ N − 1, then rank(ΘM) ≤ N − 1. Let the
eigenvalues of ΘM be |v1| ≥ |v2| ≥ · · · ≥ |vN−1| ≥ |vN | =

· · · = |vn| = 0, and Q(M),i be the ith eigenvector with respect to
vi. [Q(M),1, . . . ,Q(M),n] forms an orthogonal matrix.

Θ2
M = YΘAY TYΘAY T . (11)

We perform singular value decomposition on Y ,

SVD : Y = UYΣYV T
Y .

Since rank(Y ) ≤ N − 1, at least one of the singular values of Y is
ZERO. Replace Y in Eq. (11) by UYΣYV T

Y :

Θ2
M = (UYΣYV T

YΘAVY )(Σ
T
YΣY )(V T

YΘAVYΣ
T
Y U

T
Y )

whereΣT
YΣY forms an N × N diagonal matrix.

Let ZY = UYΣYV T
YΘAVY (Σ

T
YΣY )

1
2 , where Θ2

M = ZYZT
Y . SVD on

ZY = UZΣZV T
Z . Again, at least one of the singular values of Z is

ZERO.
Since

Θ2
M = ZYZT

Y = UZΣZV T
Z VZΣ

T
Z U

T
Z = UZΣZΣ

T
Z U

T
Z ,

UZ is the eigenvector matrix of Θ2
M, i.e., [Q(M),1, . . . ,Q(M),n] = UZ

and the eigenvalue |vi| is the singular value of ZY (non-negative).
Table A.1
The bias of estimating population admixture proportions in the example of two
ancestral populations and three admixed populations with equal sample size npop .

True ancestral proportion 0 0.25 0.5 0.75 1

Inferred population ancestral proportion from E[
1
4 MP

]
a:

npop = 1 0 0.20758 0.50000 0.79242 1
npop = 25 0 0.24849 0.50000 0.75151 1
npop = 50 0 0.24925 0.50000 0.75075 1
npop = 100 0 0.24962 0.50000 0.75038 1
a Calculated by averaging admixture proportion of individuals.

Table A.2
The bias of estimating ancestral proportions in the example of a spatially continuous
admixed population with n individuals in total.a .

# of individuals n 11 51 101 251 501

The maximum bias of
inferred ancestral
proportions of individuals
from E[

1
4 MP

]

0.02270 0.00548 0.00281 0.00114 0.00057

a Ancestral proportions are uniformly distributed from 0 to 1 derived from two
ancestral populations.

Note that

UZΣZ = ZYVZ = (UYΣYV T
Y )ΘAVY (Σ

T
YΣY )

1
2 VZ

= YΘAVY (Σ
T
YΣY )

1
2 VZ

=

In −

1
n Jn

AΘAVY (Σ

T
YΣY )

1
2 VZ

or,

[Q(M),1, . . . ,Q(M),N ]diag(|v1|, . . . , |vN |)  
eigen coordinate

=

In −

1
n Jn


A
AP coordinate

ΘAVY (Σ
T
YΣY )

1
2 VZ . � (12)

The left hand side of Eq. (12) is an n × N matrix where the last
column is ZERO since vN = 0, where as the right hand side is the
AP matrix times (In −

1
n Jn) and ΘAVY (Σ

T
YΣY )

1
2 VZ . Note that this

transformation matrix ΘAVY (Σ
T
YΣY )

1
2 VZ is a function of A. Given

an AP matrix A, the transform matrix is determined, so each data
point (ancestral proportion) in A maps to a new coordinate by a
linear transformation.

A.2. Numerical evaluation of diagonal bias in PCA

To demonstrate the similarity of relative positions in the
eigen coordinates of E[

1
4MP

] and E[M∗
], two pseudo-ancestor

populations (N = 2) and three admixed populations (admixture
fractions 25%, 50%, 75%)with equal sample sizeswere utilized here.
As shown in Table A.1, as the sample size of each population grows,
the bias for estimating the true admixture fraction 25% and 75%
declines from 0.0424 to 0.0004. Another example is a spatially
continuous admixed population, i.e., individuals with ancestral
proportions uniformly distributed from 0 to 1. E.g., if n = 11
is the total number of study individuals, there are 11 individuals
with admixture fractions of 0%, 10%, 20%, . . . , 90% and 100%. The
maximum bias of the estimated ancestral proportions is shown in
Table A.2, and it decreases from 0.02270 to 0.00057 as the total
number of individuals n increases.

Appendix B. Supplementary materials

See Figs. B.1–B.4.
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Fig. B.1. The principal component analysis on HapMap Phase 3 data, using the full set of 1,423,833 SNPs and 1,198 founders consisting of 11 populations: (a) the first and
second eigenvectors; (b) a linear transformation of coordinate from (a) followed by a translation, assuming three ancestral populations with surrogate samples: CEU, YRI
and CHB+ JPT. The average positions of three surrogate samples are masked by a red plus sign. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
Fig. B.2. The eigenanalysis of EIGMIX on HGDP data using a full set of 644,258 SNPs.
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Fig. B.3. A comparison of ancestral proportions between PCA and supervised ADMIXTURE with six ancestral populations with a pruned set of 9790 SNPs.
Fig. B.4. The eigenvectors of the four hypothetical populations for three-way admixture.Ma and Amos (2012) observed that a three-way admixed population P4 could divide
the triangle of parental populations (P1, P2 and P3) into three small triangles with areas according to their admixture proportions, i.e., the area ratio (1P2P3P4 : 1P1P2P3)
is the genome fraction of P4 from P1 . This area ratio equals to the ratio of heights of the base P2P3, h1/h. The mapping from the two-dimensional coordinate in (a) to that
of (b) is an affine transformation, which is a linear transformation followed by a translation. Sets of parallel lines remain parallel after an affine transformation, and it also
preserves ratios of distances between points lying on a straight line. Therefore, the ratio of new heights h∗

1/h
∗ in the coordinate of (b), equals to h1/h in (a). Ma and Amos’

observation can be confirmed under their theoretical framework with our proof of linear transformation.
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