Assessment of mechanical aortic valve prosthesis by means of Doppler echocardiography: What to measure and why?

Mani A. Vannan, MBBS
Kunal Sarkar, MD

Comprehensive 2-dimensional Doppler echocardiography is the modality of choice for anatomic and hemodynamic evaluation of prosthetic heart valves. However, Doppler hemodynamic assessment of mechanical aortic valve prostheses, especially bileaflet valves, requires consideration of the physical principles governing transvalvular flows. In this issue De Carlo and colleagues have evaluated the hemodynamic performance of the small-sized, bileaflet, Sorin Bicarbon aortic valve prosthesis (SBP) using Doppler peak and mean gradients and calculated effective orifice area (EoA) and effective orifice area index (EoAi). They have shown that these parameters are comparable with those of other small bileaflet mechanical valves in the aortic position and that there is significant regression in left ventricular hypertrophy (LVH). Because these data provide references for small SBP valves in the aortic position, it is relevant to ask the question of how best to evaluate aortic mechanical valves by means of Doppler echocardiography. To answer this question, it is important to understand the many physical principles that govern transvalvular flow dynamics and the problems and pitfalls associated with any single parameter. Routine echocardiographic evaluations of transvalvular gradients are done by using a simplification of the modified Bernoulli equation as follows:

$$\frac{P_G}{\rho} = \frac{1}{2} \frac{V^2}{\rho}$$

This simplified equation neglects convective acceleration, flow acceleration, and viscous forces. Neglecting flow acceleration will overestimate transvalvular pressure decrease when the proximal (left ventricular outflow tract [LVOT]) velocities exceed 1 m/sec; normal velocity is between 0.7 and 1 m/sec. Patients who have undergone aortic valve replacement frequently have left ventricular hypertrophy and hyperdynamic left ventricular systolic function when the proximal velocity can exceed 1 m/sec, especially with small prosthetic valves. Under these circumstances, the expanded Bernoulli equation should be applied as follows:

$$P_G = \frac{1}{2} \left(V_1^2 - V_2^2 \right)$$

This simplified equation neglects convective acceleration, flow acceleration, and viscous forces. Neglecting flow acceleration will overestimate transvalvular pressure decrease when the proximal (left ventricular outflow tract [LVOT]) velocities exceed 1 m/sec; normal velocity is between 0.7 and 1 m/sec. Patients who have undergone aortic valve replacement frequently have left ventricular hypertrophy and hyperdynamic left ventricular systolic function when the proximal velocity can exceed 1 m/sec, especially with small prosthetic valves. Under these circumstances, the expanded Bernoulli equation should be applied as follows:

$$P_G = \frac{1}{2} \left(V_1^2 - V_2^2 \right)$$

Another issue pertains to discrepancies in transvalvular gradients measured across prosthetic valves by using invasive catheter techniques and Doppler echocardiography. There have been many studies to elucidate the physics of flow across prosthetic valves by using both pulsatile and steady state fluid systems. Particle image velocimetry and particle tracking velocimetry show that the fluid velocity field downstream of an artificial heart valve is highly inhomogeneous and unsteady, with large-scale vortex formation around valve leaflets. Furthermore, substantial shear stresses occur at the jet-wake interface downstream of valve leaflets and close to large-scale vortices. Given the different geometric configurations of aortic valve prostheses, the amount of spatial variation in pressure fields is extremely high and can contribute to the discrepancies in measurement of gradients (Figures 1 and 2). An additional factor has to do with the phenomenon of pressure...
recovery. For any stenotic orifice, the pressure would be lowest and the velocity highest at the narrowest point, as enunciated by the Bernoulli equation. If the geometry of the bileaflet valve is one in which the flow flares gradually from its narrowest point, then a smooth deceleration is possible. This in turn implies that some of the potential energy converted into kinetic energy at the level of the valve (or stenosis) is reconverted to pressure and potential energy downstream. This is called pressure recovery (Figure 3). In a bileaflet prosthesis the pressure decrease and recovery across the side orifices occurs further downstream and is much less pronounced than in the central orifice. The maximum pressure decrease with an invasive catheter is also seen at the central orifice at the valve level, but in a clinical setting it is not feasible to position the catheter across the valve leaflets. This leads to a situation in which 2 modalities intended to measure the same physical phenomenon are doing so at different locations. The catheter technique measures the gradient a few millimeters downstream, and the continuous-wave Doppler echocardiography provides the maximum velocity along the line of interrogation and reflects the highest gradient along the path of the beam.

The concept of EOA and EOAI provides a complimentary technique to assess the performance of prosthetic valves. However, the formula used to calculate this includes Doppler data, which require meticulous attention to technical details, such as alignment of Doppler beam to flow. The continuity equation is then used to calculate the EoA as follows: EOA = (ALVOT × VTI_{LVOT})/VTI_{valve}, where A is area of LVOT and VTI is the velocity time integral of LVOT (pulsed-wave Doppler echocardiogram) and valvular flows. Additionally, subvalvular geometry, orientation of the prosthesis, and nonuniformity of the subvalvular velocity profile might all lead to underestimation or overestimation of EOA. Normalizing EOA to body surface area yields

Figure 1. Flow visualizations using multiple frame overlapping at the systolic peak (a) and long exposure time acquisitions in the sinus of Valsalva (b and c). The vertical arrows indicate the position of the 2 leaflets when opened. Images B and C correspond to 150 and 180 ms after the beginning of the cycle, respectively. The frame rate was 250 Hz. Reproduced with permission from a presentation at the 11th International Symposium on Application of Laser Anemometry to Fluid Mechanics (Lisbon, Portugal; July 2002) by A. Balducci and colleagues.
EOAi. An EOA of less than 0.9 cm²/m² is suboptimal and is associated with significant residual hemodynamic burden on the left ventricle. Clinical symptoms are often unresolved in these patients and illustrate the problem of patient-prosthesis mismatch. Bortolotti and colleagues have provided reassuring data on the EOAi of small SBP aortic valves, except for in 3 of the 182 patients. Resting EOAi is usually sufficient to assess aortic prosthesis, although stress flow dynamics might be necessary on occasion. If LVH was caused by valve stenosis, aortic valve replacement should result in significant regression of LVH by 6 months if the EoAi is optimal. Hence the data on regression of LVH by De Carlo and associates for small SBP valves over 1 year’s follow-up support their conclusion that these valves have a favorable in vivo hemodynamic profile.

How does one interpret a Doppler peak systolic velocity of 4 m/sec across an aortic mechanical prosthesis? First, attention to mean Doppler gradient is recommended over peak gradient. If the proximal LVOT velocity does not exceed 1 m/sec, then the simplified Bernoulli equation is valid; otherwise, the expanded Bernoulli equation should be used to determine the transvalvular gradient. An early peaking Doppler velocity profile would suggest either a pressure-recovery phenomenon or increased flow across an unobstructed valve, despite a peak velocity of 4 m/sec. If the peak systole is delayed in the Doppler profile, it reflects an obstructed flow either as a result of a patient-prosthesis mismatch or pathologic causes, such as thrombus or pannus. Calculation of EOA and EOAi is helpful in this situation because a pathologically obstructed valve would have an extremely small EOA and EOAi compared with the reference values for any given valve size. Obviously, clinical history is valuable in distinguishing these 2 conditions. Thus Doppler echocardiography can be used effectively for both elucidation of baseline hemodynamics and for long-term follow-up of aortic mechanical valves. An understanding of the physics of flow dynamics and factors relevant to Doppler echocardiography should preclude errors and inaccuracies in the assessment of the performance of aortic mechanical prostheses.

References
2. Rothbart RM, Smucker ML, Gibson RS. Overestimation by Doppler
echocardiography of pressure gradients across Starr-Edwards prosthetic
3. Baumgartner H, Schima H, Kuhn P. Discrepancies between Doppler
and catheter gradients across bileaflet aortic valve prostheses. Am J
Cardiol. 1993;71:1241-3.
4. Baumgartner H, Khan S, DeRobertis M, Czer L, Maurer G. Discrep-
ancies between Doppler and catheter gradients in aortic prosthetic
valves in vitro. A manifestation of localized gradients and pressure
5. Yoganathan AP, Valdes-Cruz LM, Schmidt-Dohna J, Jimoh A, Berry C,
Tamura T, et al. Continuous-wave Doppler velocities and gradients
across fixed tunnel obstructions: studies in vitro and in vivo. Circula-
Comparison of Doppler ultrasound velocity measurements with press-
ure differences across bioprosthetic valves in a pulsatile flow model.
7. Vandervoort PM, Greenberg NL, Powell KA, Cosgrove DM, Thomas
JD. Pressure recovery in bileaflet heart valve prostheses. Localized high
velocities and gradients in central and side orifices with implications for
Doppler-catheter gradient relation in aortic and mitral position. Circu-

JTCVS On-Line Manuscript Submission and Review

Please visit http://www.editorialmanager.com/jtcvs/

Effective September 15, 2001, authors and reviewers may submit manuscripts and reviews
electronically via Editorial Manager, our new Web-based system with full electronic submission,
review, and status update capabilities.

As we move from paper to electronic submissions, the Editorial Office will make proxy sub-
missions of all manuscripts accompanied by a diskette containing the electronic files of the text,
tables, and figures. Editors, authors, and reviewers will receive automatic e-mails when signif-
icant events occur.

We strongly encourage all authors and reviewers to use Editorial Manager. Although we will
continue to accommodate the submission of paper manuscripts for some months, our goal is
to be completely electronic within 9 to 12 months.

All individuals currently in our database for whom we have e-mail addresses will receive via
e-mail a system-assigned username and password that can be used to log in to the system
without prior registration. All those not receiving the e-mail must register the first time they
use the system.

As with any broad systemic change, the conversion to the new system will take some time
to complete. We ask your patience as we replace our in-office database with the new system.
We also encourage you to take advantage of the speed and efficiency that the new system will
provide for us all: editor, author, reviewer, and publisher.