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Abstract

In this paper we study elementary submodels of a stable homogeneous structure. We improve
the independence relation defined in Hyttinen (Fund. Math. 156 (1998) 167-182). We apply
this to prove a structure theorem. We also show that dop and sdop are essentially equivalent,
where the negation of dop is the property we use in our structure theorem and sdop implies
nonstructure, see Hyttinen (1998). (© 2000 Elsevier Science B.V. All rights reserved.
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1. Basic definitions and spectrum of stability

The purpose of this paper is to develop theory of independence for elementary
submodels of a homogeneous structure. We get a model class of this kind if in addition
to its first-order theory we require that the models omit some (reasonable) set of types,
see [2]. If the set is empty, then we are in the ‘classical situation’ from [3]. In other
words, we study stability theory without the compactness theorem. So e.g. the theory
of A-ranks is lost and so we do not get an independence notion from ranks. Our
independence notion is based on strong splitting. It satisfies the basic properties of
forking in a rather weak form. The main problem is finding free extensions. So the
arguments are often based on the definition of the independence notion instead of the
‘independence-calculus’.

Throughout this paper we assume that M is a homogeneous model of similarity type
(=language) L and that M is &-stable for some &<|M| (see [3, Definition 2.2]). Let
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J(M) be the least such & By [2], AM)<I3((2/+*)*). We use M as a monster model
and so we assume that the cardinality of M is large enough for all constructions we
do in this paper. In fact, we assume that |M]| is strongly inaccessible. Alternatively,
we could assume less about M| and instead of studying all elementary submodels of
M, we could study suitably small ones.

Note Th(M) may well be unstable. Note also that if 4 is a stable finite diagram,
then A has a monster model like M, see [2].

By a model we mean an elementary submodel of M of cardinality <|M)|, we write
o/, # and so on for these. So if .o/ C % are models, then .o/ is an elementary submodel
of 4. Similarly by a set we mean a subset of M of cardinality <|M]|, unless we
explicitly say otherwise. We write A, B and so on for these. By a, b and so on we
mean a finite sequence of elements of M. By a €4 we mean a € A4'"9"(®)

By an automorphism we mean an automorphism of M. We write Aut(A4) for the set
of all automorphisms of M such that f [4=id,. By S*(4) we mean the set of all
consistent complete types over 4 and by t(a,4) we mean the type of a over 4 in M.
S§™(A) means the set {t(a,4)|a €M, length(a)=m} and S(4)=J,, ., S"(4).

We define k(M) as k(7)) is defined in the case of stable theories but for strong
splitting, i.e. we let k(M) be the least cardinal such that there are no a, b; and c¢;,
i <x(M), such that
(1) for all i <x(M), there is an infinite indiscernible set /; over | J

bi,ci €1;,
(i) for all i<x(M), there is ¢;(x,y) such that = ¢;(a,b;) A —i(a,c;).

We say that a type p over A4 is M-consistent if there is a € M such that p Ct(a,4)
(i.e. there is g € S(A4) such that p Cgq).

(b Uc;) such that

j<i

Lemma 1.1 (Hyttinen [1]). If p € S*(A) is not M-consistent, then there is finite BC A
such that p | B is not M-consistent.

Lemma 1.2. (i) If (a;)i< is order-indiscernible over A then it is indiscernible over A.

(ii) Assume M is E-stable and |I| > E>=|A|. Then there is J C1I of power >¢ such
that it is indiscernible over A.

(iii) If I is infinite indiscernible over A then for all ¢<|M)| there is J 21 of power
> ¢ such that J is indiscernible over A.

(iv) For all indiscernible I and ¢(x,a), either X ={bel|l=¢(b,a)} or Y ={beI|
E —¢(b,a)} is of power <A(M).

(v) There are no increasing sequence of sets A;, i <<AM), and a such that for all
i<A(M), t(a,A;+1) splits over A;. So for all A and p € S(A), there is BC A of power
<AMM), such that p does not split over B.

(vi) For all A and p € S(A), there is BC A of power <i(M), such that p does
not split strongly over B.

Proof. Conditions (i), (ii) and (v) as in [1]. Condition (iii) follows immediately from
the homogeneity of M. Condition (vi) is trivial.
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We prove (iv): Assume not. Let / be a counterexample. Clearly, we may assume
that |I| = A(M). Then By Lemma 1.1, for every J C I, the type

pr={¢,y)|beJ}U{=d(b,y)[bel - J}
is M-consistent. Clearly, this contradicts A(M)-stability of M. [J

Corollary 1.3. k(M) <A(M).
Proof. Follows immediately from Lemma 1.2(v). O
We will use Lascar strong types instead of strong types:

Definition 1.4. Let SE"(A4) be the set of all equivalence relation £ in M”, such that the
number of equivalence classes is <|M| and for all /' € Aut(4), aEb iff f(a)E f(b).
Let SE(4)= U, ., SE"(4).

Note that E € SE(4) need not be definable but an indiscernible set over 4 is also an
indiscernible set for all £ € SE(4).

Usually, we either do not mention the arities of the equivalence relations we work
with, or we mention that the arity is, e.g. m, but we do not specify what m is. This is
harmless since usually there is no danger of confusion.

Lemma 1.5. If I is an infinite indiscernible set over A, then for all E € SE(A) and
a,bel, aEb.

Proof. Assume not. Let E € SE(4) be a counterexample. Then for all a,be€l, a#b,
—(a E D). Then Lemma 1.2(iii) implies a contradiction with the number of equivalence
classes of £. [J

Lemma 1.6. If E € SE(A), |A|<& and M is E-stable, then the number of equivalence
classes of E is <Z.

Proof. Assume not. Then by Lemma 1.2(ii), we can find / such that it is infinite indis-
cernible over A and for all a,b €1, if a# b then —(a E b). This contradicts Lemma 1.5.
[

Corollary 1.7. For all A and n<w, there is E}, € SE"(A) such that for all a,b and
E€SE"(A), aE,,, (b implies aEb.

Proof. Clearly |SE"(A)| is restricted (<2I5®!) and so NSE"(4) € SE(A). Trivially
NSE"(A) has the wanted property. [

Definition 1.8. (i) We say that .o/ is FM-saturated if for all 4 C ./ of power <x and
a, there is b € .o/ such that t(b,4) =t(a,4).
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(ii) We say that .o/ is strongly FM-saturated if for all A C .o/ of power <x and a
of length m, there is b€ .o/ such that bE a for all E € SE™(A). We write a-saturated
for strongly F™ ov-saturated.

Lemma 1.9. (i) If .7 is strongly FM-saturated then it is FM-saturated.

(i) Assume |A|<&E M is E-stable, E<% =& and there is a regular cardinal 6 such
that k <O<E Then there is strongly FM-saturated of D A such that |.of| <& Fur-
thermore if B2 A is strongly F,ﬂ“-saluraled, then we can choose </ so that </ C A.

(i) Assume M is E-stable, <f is FgM-saturaled, AC .o is of power <& and m< .
Then there are a; € of, i<E, such that for all b of length m, there is i <& such that
a; Eb, for all E€ SE™(A), i.e. o/ is strongly FgM-saturaZed.

(iv) If o is F%M)-saturaZed, then it is a-saturated.

(v) Assume of is strongly FCM—saturated and A C o/ is of power <&. Then for all
B of power <¢, there is f € Aut(A) such that f(B) C .o/ and for all ( finite sequences)
beB, f(b)E"

min, A

Proof. Condition (i) is trivial.

(ii) For all iéé, choose sets A; of power <¢ as follows: Let 4g=4 and if i is limit
then 4; = U/<z . If A; is defined, then we let 4;,1 2O 4; be such that for all B C 4;
of power <k and a there is b € 4;1) such that bE}, pa. By Lemma 1.6, we can find
A;qy so that |4;11] <& By Lemma 1.7, 45 is as wanted.

(iii) By Lemma 1.6, choose b;, i<¢, so that for all b there is i<¢ such that
bE,,, 4bi. Since o/ is F M-saturated we can choose g; € .o/ so that there is f € Aut(A4)
such that for all i<, f (b;)=a,. Clearly this implies the claim.

(iv) Immediate by (iii).

(v) For all ¢ € B, choose a € </ so that a.E}y, ,c. Since .o/ is F-saturated, there
is f€edut(AU{a.|c€B}) such that f(B)C .o/. Clearly f is as wanted. [J

Definition 1.10. We write f € Saut(A) if f € Aut(4) and for all a, f(a)E}, ,a.

Lemma 1.11. Assume M is E-stable and |A| <& If aE™
such that f(a)=0.

b, then there is f € Saut(A4)

min, A

Proof. We define a E b if there is f € Saut(A) such that f(a)=b. Clearly it is enough
to show that £ € SE(4). For a contradiction, assume that this is not the case. Since
E is an equivalence relation and f(E)=E for all f € Aut(A), there are a;, i<ET,
such that for all i#j, —(a; Ea;). Choose B2 A of power ¢ such that every E -
equivalence class is represented in B. Since M is E-stable, there are i<j<¢&T, such
that t(a;, B) =t(a;, B). Then there is f € Aut(B) such that f(a;) = f(a;). By the choice
of B, f € Saut(A), a contradiction. [

Lemma 1.12. Assume & is such that for some & =&, M is &'-stable. If < is Féw—
saturated and A C of has power <&, then t(a,.o/) does not split strongly over A iff
for all b,c€ .o/ and ¢, bE);, ,c implies = ¢(a,b) < ¢(a,c).
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Proof. If t(a,.o/) splits strongly over 4, then by Lemma 1.5, there are b,c € o/ and
¢, such that bE), , c and = ~(¢(a,b) < ¢(a,c)). So we have proved the claim from
right to left. We prove the other direction: For a contradiction assume that there are
b,c€ .o/ and @, such that bE), , c and = ¢(a,b) A =d(a,c).

We define an equivalence relation £ on M™ as follows: a Eb if a=b or there
are I;, i<n<wm, such that they are infinite indiscernible over A, acly, bel,_,
and for all i<n — 1, ;NI #(. Clearly E is an equivalence relation and for all
fedut(4), f(E)=E. By Lemma 1.2(ii), the number of equivalence classes of E is
<|M|. So E € SE™(A).

Then bE c and b+#c. Let I;, i<n, be as in the definition of E. Since .o/ is F|]:1/I\++w_
saturated, we may assume that for all i <n, I; C /. Since t(a, .o/) does not split strongly
over A4, for all d €1y, = ¢(a,d). So there is d €I, such that | ¢(a,d). Again since
t(a, /) does not split strongly over 4, for all d €1,, | ¢(a,d). We can carry this on
and finally we get that = ¢(a,c), a contradiction. [J

Lemma 1.13. Assume AC o/, |A|<k(M), o/ is a-saturated and p € S(/) does not
split strongly over A. Then for all B of, there is q € S(B) such that p C q and for
all C D B there is r € S(C), which satisfies q Cr and r does not split strongly over A.

Proof. We define g € S*(B) as follows: ¢(x,b) €q, b€ B, if there is a € .o/ such that
aky, b and ¢(x,a) € p, where m = length(b). By Lemma 1.12, it is enough to show
that ¢ is M-consistent. By Lemma 1.1, it is enough to show that for all a,a’ € ., if
aky, 4, then ¢(x,a)€ p implies ¢(x,a’) € p. This follows from Lemma 1.12, since

by Lemma 1.9(i), .o/ is F Yy -saturated. [J

Lemma 1.14. Assume AC .o/ C B, |A|<x(M), B is F,%M)-saturaled and for every
c€R there is d € o/ such that dE,;, ,c. If (a,/)=t(b, /) and both t(a,#) and
t(b,#) do not split strongly over A, then t(a,#)=1(b, #).

Proof. For a contradiction, assume ¢ € # and = ¢(a,c) A —~¢(b,c). Choose d € .o/ such
that d E™. ,c. By Lemma 1.12, = ¢(a,d) A —d(b,d), a contradiction.  [J

min, A

Lemma 1.15. If £ =AM) + E<*M) then M is ¢-stable.

Proof. Clearly, we may assume that ¢>A(M) and so by Corollary 1.3, ¢=k(M)*.
Let 4 be a set of power £. We show that [S(4)|<¢&.

Claim. There is o/ DO A such that
(i) o is F)\p,-saturated,
(i) ||<¢,
(iii) for all BC o/ of power <x(M) there is </ C .o/ of power J(M) satisfying:
B C o/p and for all c €M there is d € </p such that dE), ,c.
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Proof. By induction on i <x(M)*t, we define .«/; so that |.«/;|<¢, A C .oy, for i<,
o Cof; and

(1) if i is odd then for all B C Uj<i of; of power <x(M), there is .«/z C .o/, of power
< AUM) satisfying: B C .o/ and for all ¢ € M there is d € .o/ such that dE;Z’m,A c,

(2) if i is even then for all BQU].<I. of; of power <x(M), every p€S(B) is
realized in .<7;.

By Corollary 1.3, Lemma 1.6 and the fact that |S(B)|<A(M) for all B of power
<k(M)T, it is easy to see that such .o7;, i <k(M), exist. Clearly .o/ = U;<K(M)+ oL
is as wanted. [

So it is enough to show that |S(«/)|<¢. By Lemma 1.2(vi), for each p € S(/),
choose B, so that p does not split strongly over B, and |B,|<x(M). Then by
Lemma 1.14, every type p € S(.«/) is determined by p [ ./, and the fact that it does
not split strongly over B. Since the number of possible B is ¢<*™) = ¢ and for each
such B, |S(p)|<AM), |S(&)|<Ex AM)=¢ O

Lemma 1.16. If £<*M) > & then M is not E-stable.

Proof. By the definition of A(M), we may assume that > A(M). Let x <x(M) be the
least cardinal such that &*>¢. By the definition of x(MM), there are a,b; and ¢;, i <K,
such that

(i) for all i<k, there is an infinite indiscernible set I/ over
b,‘, ci € [l-/,

(ii) for all i<k, there is ¢;(x, y) such that = ¢i(a,b;) A —¢i(a,c;).

(bjUcj) such that

J<i

Claim. There are I;, i<k, such that for all i<k, I; ={d} | k<¢} is indiscernible over
U< Ij» bisci €1; and for k<k'<é di#di,.

Proof. By induction on 0 <o <, we define I = {d}"’ |k <¢}, i<a, such that

(1) for all i<a, I is indiscernible over Uj<[ [} and bj,c; €17,

(2) for all f<ua, there is an automorphism f such that f | Uj<ﬁ (bjUcj)=
idy, e and for all j<B, f(dl)y=d}/, k<,

(3) for all i<ao and k<k' <&, d}' #d.

Clearly this is enough, since then [, i<k, are as wanted.

By (2) and homogeneity of M, limits are trivial, so we assume that « = f+1 and that
If, j<p, are defined. By Lemma 1.15, there is 6>¢ such that M is
d-stable. By the assumptions and Lemma 1.2(iii), there is J ={d; |k <01} such that
it is indiscernible over |J,_;(b;Uc;) and by,cp €J. By Lemma 1.2(ii), there is 7 CJ
of power ¢, such that it is indiscernible over |J i<p I]ﬁ . Since J is indiscernible over
U,<p (b Uc;), there is an automorphism f* such that f [ U, 5 (b Uc))=idy,_,puc)
and bg,cp e {f(d)|del}. Welet I} = f(I) and if i < f3, then I} :f(ll-ﬁ). Clearly these
are as required. [
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By Lemma 1.2(iv) we may assume that for all i <k, |= ¢:(a,d}) iff k=0. Then for
all n€¢&* and 0<a <k, we define function f,' so that the following holds ( fy/ = idm):
(a) for all i<f<a and € é&", £, fI,A:fﬁ'7 ML,

(b) if =41 and y € &¥, then

LI = (),
ISR ) = f(dh)

and for all i <&, i#0,n(B),
2 = fi@h,

(c) if nloa=n o then f=F£"
It is easy to see that such f, exist. For limit o this follows from the homogeneity
of M and for successors this follows from the fact that f/?([/g) is indiscernible over
Uicp £700).

For all n € &*, let a, = fi(a). Then clearly for n#1#’, the types of a, and a, over
A= U{f) L) | vel, a<k} are different. By the choice of x, {<*=¢ and so by
(c), |4| =¢. Since & > £, M is not &-stable. [

So we have proved the following theorem. With slightly different definitions this
theorem is already proved in [2].

Theorem 1.17. M is -stable iff &= A(M) + E<<M),
Proof. Follows from Lemmas 1.15 and 1.16. [
Let x,.(M) be the least regular x >x(M). By Lemma 1.16, A(M)<*M) = /(M) and

s0 ¢ f(AM))=k(M). Because cf(A(M)) is regular, x,.(M)<A(M).

2. Indiscernible sets

In this section we prove basic properties of indiscernible sets. We start by improving
Lemma 1.2(iv).

Lemma 2.1. For all infinite indiscernible I and a there is p € S(a) such that
[{bel|t(b,a)# p} <k(M).

Proof. Assume not. By Lemma 1.2(iii), we may assume that / and a are such that
I={b;|i<x(M)+ w-x(M)}, bj#b; for i#j and for some p € S(a), t(b;,a)= p iff
i=zrx(M). For all i<x(M), we define 4; as follows:

(1) 4o=0,
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(ii) i1 =4;U{bi1 }U{b |w-i<j<o-(+ 1)},
(iii) for limit i, 4;= Uj<l. 4;.

Then it is easy to see that for all i <x(M) t(a,A4;+;) splits strongly over A4;, a contra-
diction. [J

Corollary 2.2. For all indiscernible I and $(x,a), either X ={bel|l= $(b,a)} or
Y={bel|E-¢(b,a)} is of power <x(M).

Proof. Follows immediately from Lemma 2.1. [J

Definition 2.3. If / is indiscernible and of power >wx(M), we write Av(l,4) for
{p(x,a)|acd, peL, {bel|E-d(b,a)}| <x(M)}.

Lemma 2.4. (i) If I is indiscernible over A and of power =1x(M), then I U{b} is
indiscernible over A iff t(b,] UA)=Av(l,1 UA).

(it) If I and J are of power =x(M) and IUJ is indiscernible, then for all A,
Av(L,A) = Av(J, A).

(ii1) If I is indiscernible and of power =w1(M), then for all A, Av(I,A) is M-
consistent.

Proof. Conditions (i) and (ii) are trivial. We prove (iii): By (ii) and Lemma 1.2(iii),
we may assume that |/|>|LUA| + k,(M). Then the claim follows by the pigeon hole
principle from (i). [OJ

Definition 2.5. Assume / and J are indiscernible sets of power =x(M).
(i) We say that [ is based on A if for all BOAUI, Av(I,B) does not split strongly
over A.
(ii) We say that / and J are equivalent if for all B, Av(I,B)=Av(J,B).
(iii) We say that [ is stationary over 4 if [ is based on A and for all f € Aut(4),
f(I) and I are equivalent.

Lemma 2.6. Assume [ is an indiscernible set of power =x(M), |A|<& and M is
E-stable. Then the following are equivalent:
(1) I is based on A,
(i) the number of non-equivalent indiscernible sets in {f(I)| f € Aut(A)} is <&,
(iii) the number of non-equivalent indiscernible sets in { f(I)| f € Aut(4)} is <|M|.

Proof. (i)=(ii) Assume not. Let f;(I), i<&", be a counterexample. For all i < A(M),
choose .oZ; so that

(a) AC ./ and every type p € S(A4) is realized in .7,

(b) if i<, then .o/ C o/; and for limit i, o/, = Uj<i<52/j’

(c) every type p € S() is realized in o7,

(d) || <<
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Let of = Uid(M)Jzi,-. Since M is &-stable there are i#j such that Av(f;(1), /)=
Av(f;i(I), /). Let a be such that Av(fi(I), o/ U{a})#Av(f;(I), / U{a}). By Lemma
1.2(v), choose i < A(M) so that t(a, .o/, ) does not split over .«/;. Without loss of gener-
ality, we may assume that i =0. For all i <, choose a; € .7, so that t(a;, U_/gi o) =
t(a,U;<; /). By an easy induction, we see that {a} U {a;|i <} is order-indiscernible
over .« and so also over 4. By Lemma 1.2(i), {a} U{a;|i<w} is indiscernible over
A. But then clearly either Av( f;(1),.«7 U{a}) or Av(fj(I), o/ U{a}) splits strongly over
A, a contradiction.

(i) = (iii) Trivial.

(ili) = (i) Assume not. Then by Lemma 1.2(iii), we can find J = {q; |i<|M|} and
¢(x,y) such that J is indiscernible over 4, for i#j, a;#a;, and ¢(x,a;) € Av(l,J)
iff i=0. But then for all i<|M|, we can find f; € Aut(4) such that for all j<i,
d(x,a;) EAv(fi(1),J) but ¢(x,a;) € Av(fi({),J). Clearly these f;(/) are not equivalent,
a contradiction. [

3. Independence

In this chapter we define an independence relation and prove the basic properties
of it. This independence notion is an improved version of the one defined in [1]. It
satisfies weak versions of the basic properties of forking, e.g. a |44 holds assuming 4
is a-saturated.

Definition 3.1. (i) We write a |4 B if there is C C 4 of power <x(M) such that for
all D2 AUB there is b which satisfies: t(b,4 UB)=t(a,AUB) and t(b,D) does not
split strongly over C. We write C | 4B if for all ac C, a |4 B.

(i) We say that t(a,4) is bounded if |{b|t(b,4)=t(a,4)}|<|M|. If t(a,4) is not
bounded, we say that it is unbounded.

Lemma 3.2. (i) [f ACA'CB' CBand a|4B then al, B

(i1) If ACB and a |4 B then for all C O B there is b such that t(b,B)=t(a,B) and
bl4C.

(iii) Assume that </ is a-saturated. If AC of is such that t(a, /) does not split
strongly over A then for all B such that ACBC .o/, alg.</. Especially a|.; <.

(iv) Assume a and A are such that t(a,A) is bounded. Then for all B2 A, t(a,B)
does not split strongly over A.

(v) Assume A C B and t(a,A) is unbounded. If t(a,B) is bounded, then a 4 B.

(vi) Assume </ is a-saturated and a & </. Then t(a,.</) is unbounded.

(vii) Let & be a cardinal. Assume a and A are such that t(a,A) is unbounded and
al A If a;, i<E, are such that for all i<, t(a;,A)=1t(a,A) and a; | 4 Uj<iaj, then
Haili<i} =<

(viii) Assume ACB, al4A4 and t(a,A) is unbounded. Then there is b such that
bl4B and bE,,, ,a.

(ix) If al4bUc and bE., ,c, then t(b,AUa)=t(c,AUa).

in,
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Proof. (i) is immediate by the definition of |.

(ii) Choose a-saturated & O C. Since a | 4 B, there are b and A’ C 4 such that t(b, B) =
t(a,B), |4’'| <x(M) and t(b,Z) does not split strongly over A’. By Lemma 1.13, b is
as wanted.

(iii) By Lemmas 1.2(vi) and 1.13, a |4 .o/ and so by (i), a |5 /.

(iv) Assume not. Then there are distinct a;, i <|M]|, and ¢, such that {a; |i<|M|}
is indiscernible over 4 and = ¢(a,a;) iff i=0. For all k(M)<i<|M|, find an auto-
morphism f; € Aut(A) such that f;(ag)=a;, f(a;)=ao and for all 0<j <i, fi(a;)=a;.
By Corollary 2.2, it is easy to see that {f;(a)|x(M)<i<|M|} contains |M]| distinct
elements, a contradiction.

(v) Assume not. Then by (ii) we can find C O B and b such that t(b,B)=t(a,B),
b |4 C and beC. By Lemma 1.2(ii), there is an infinite indiscernible set / over A4
such that b € I. Clearly, we cannot find ¢ such that t(c, C)=1t(b, C) and t(c, C UI) does
not split strongly over some A4’ C 4, a contradiction.

(vi) Follows immediately from (iii) and (v).

(vil) Immediate by (v).

(viii) Let &>|4| be such that M is &-stable. Choose a;, i<¢™ so that t(a;,A4)
=t(a,4) and a; |4 |, ; a;. By (vii) and Lemma 1.2(ii), we may assume that {a; | i <o}
is infinite indiscernible over A. Clearly we may also assume that a =ay. Let d =ajy.
Then t(d,4)=t(a,A), d |4a and by Lemma 1.5, d E;;, ,a. Then we can choose b so
that t(b,AUa)=t(d,AUa) and b |4aUB. Clearly then b is as wanted.

(ix) Follows immediately from Lemma 1.12. Note that if bE), ,c, then for all

ded, bUdEp* cud. [
Definition 3.3. (i) We say that M-consistent p € S(4) is stationary if for all a, &
and B D A4 the following holds: if t(a,4)=t(b,4A)=p, a4 B and b |4 B then t(a,B)=
t(b, B).

(ii) We say that / is 4-independent if for all a€ 1, a [,I — {a}.

Lemma 3.4. If o/ is a-saturated, then every M-consistent p € S(.o/) is stationary.

Proof. Assume not. Choose 4 O .«7, a and b so that t(a, o/ )=t(b, /), al., B, bl B
and t(a, #)#t(b,#). By Lemma 3.2(ii) we may assume that % is F}:{'M)-saturated.
Choose ¢ € Z and ¢ so that = ¢(a,c) A —d(b,c). Let A C .o/ be such that |4]| <w(M)
and both t(a,4) and t(b,#) do not split strongly over 4. Choose d € .o/ so that
dEy;, 4¢. By Lemma 1.12, a contradiction follows. [
Corollary 3.5. (i) Assume <o/ is a-saturated. If a }4 B, then there is b€ B such that
(i) If o/ is a-saturated and a;, i <o, are such that ay & </, for all i,j, t(a;, )=
t(a;, /) and a; | 4 Uj<l. a;, then {a; | i <o} is indiscernible over </ and ./-independent
and if i # j, then a; # a;.
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(iil) Assume of is a-saturated. Then for all BO o/ and C there is D such that
t(D, o/ )=t(C,.oZ) and D | s B.

(V) IfACHBCC, B is a-saturated, a |4 % and a |5 C, then a |, C.

(v) Assume of is a-saturated, t(a,o/) does not split strongly over AC o/ and
|[A| <x(M). Then a [, B iff there is finite b€ o/ UB such that a )} 4 b.

Proof. (i) follows immediately from Lemma 3.4 (if a J., B, then t(a,.o/ UB) is not
the unique free extension of t(a,.&/), which can be detected from a finite sequence).

(ii) By Lemma 3.4, it is easy to see that {a; |i <a} is order-indiscernible over .. By
Lemma 1.2(i), {a; |i<o} is indiscernible over 7. Clearly, this implies that {a; |i<a}
is .o/-independent. The last claim follows from Lemma 3.2(v).

(i) Clearly, it is enough to prove the following: If D | ., B, then for all ¢ there
is d such that t(d,o/UD)=t(c,o/UD) and dUD |, B. This follows from Lem-
mas 1.1, 3.2(ii) and 3.4.

(iv) Choose b so that t(b, B)=t(a,#) and b | 4 C. Then b | 4 C and so by Lemma 3.4,
we get t(b, C)=t(a,C). Clearly this implies the claim.

(v) If a | o B then by (iv), a |4 .o/ UB from which it follows that there are no finite
b€ o/ UB such that a /4 b. On the other hand if a J.; B, then t(a, o/ UB) is not the
unique ‘free’ extension of t(a,.o/) defined in the proof of Lemma 1.13. This means that
there are ¢ € / and d € «/ UB such that cE};, ,d and t(c,AUa)#t(d,AUa). Clearly
alscud. O

Lemma 3.6. If </ is a-saturated and a | ., b, then b a.

Proof. Assume not. Let ¢>|./| be such that M is &-stable. For all i <&, choose
a; and b; so that t(a;, o) =t(a, ), a; | 4 Uj<i(aj Ub;), t(bi, /) =t(b,o/) and b; | v a;
U Uj<i (a;Ub;). Then by Lemma 3.4, b; Jya; iff j>i. Clearly this contradicts
Lemma 1.2(i1). O

Corollary 3.7. For all a,b and A, b|4A and a |, b implies b |4 a.

Proof. Assume not. Choose a-saturated .o/ D A4 and b’ so that t(b',4)=t(b,4) and

b |4o/. We may assume that b’ =b. Then choose &’ so that t(a’.AUb)=t(a,AUb)

and @' | 4./ Ub. By Lemma 3.6, b |, da’. By Corollary 3.5(iii), b |4 a’ and so b |4a.
0

Lemma 3.8. (i) If b|4D and ¢ | 4up D, then bUc |4 D.

(i) If </ is a-saturated, B | ;D and C | 5D, then BUC | D.

(ii1) Assume o is a-saturated and BO o/. If al, B, alpC and there is DCB
(e.g. D=B) such that C |p B, then a|,,BUC.

(iv) Assume of is a-saturated. If a|, b and aUb |, B, then a|.,BUb.

(v) Assume a |4 A, for all i<w, t(a,A)=t(a,A) and a; |4 \J;_;a;. Then for all
n<w, {a;|i<n} is A-independent.

j<i
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Proof. (i) Choose BC A of power <x(M) such that

(a) for all C D AUD there is b’ which satisfies: t(b',4UD)=1t(b,AUD) and t(b’,C)
does not split strongly over B and

(b) for all CDAUDUD there is ¢’ which satisfies: t(c’,AUDUb)=t(c,AUDUb)
and t(¢’, C) does not split strongly over B Ub.

Let C D AUD be arbitrary. Choose &’ as in (a) above. By (b) above we can find ¢’
such that t(¢' Ub',AUD)=t(cUb,AUD) and t(¢’,CUb") does not split strongly over
BUD.

For a contradiction, assume t(b’ U ¢’, C) splits strongly over B. Let [ ={qg; |i<w} CC
and ¢ be such that 7 is indiscernible over B and

(c) E o(c, b a0) A (', b ay).
Claim. [ is indiscernible over BUb'.

Proof. If not, then (change the enumeration if necessary) there is { over B such that
}: lp(b/, ag,...,dy—1 ) A ﬁl//(b/, Ayye. ., Aop—1 ) Since

{@mns - s Ami1yn—1) | m<w}
is indiscernible over B, we have a contradiction with the choice of »’. [

By Claim and (c), t(¢, CUb") splits strongly over BUb’. This contradicts the choice
of ¢

(ii) Clearly we may assume that C is finite. Let b € B be arbitrary. We show that
CUb | yD. Choose AC .o/ and A’ C B such that

(a) bed', |[AUA'| <k(M),

(b) for all D' D&/ UBUD there is C’ which satisfies: t(C’,. o/ UBUD)=t(C,AU
BUD) and t(C’,D") does not split strongly over 4 U A’

(c) for all D’ D.e7UD and a€ A’, there is a’ which satisfies: t(a’, o/ UD)=1t(a,AU
D) and t(a’,D") does not split strongly over A.
Then we can proceed as in (i). (We assume that .7 is a-saturated in order to be able
to use Corollary 3.5(iii).)

(iii) By Lemma 3.6, B | .y a. By Corollary 3.7, C | ga. By (ii), these imply BUC | ./ a,
from which we get the claim by Lemma 3.6.

(iv) Choose d' so that t(a’,.«/ Ub)=t(a,.o/ Ub) and o' |, BUb. By (i) and
Lemma 3.4, t(a’ Ub, o/ UB)=t(aUb, .o/ UB).

(v) By (i) it is easy to see that

(*) for all n<w, Y,_,a laA4.
We prove the claim by induction on n. For n=1 the claim follows immediately from
the assumptions. Let i <n. We show that a; |4 U{a;| j<n, j#i}. If i=n—1, then
this is assumption. So assume that i <n — 1. By the choice of a,_,

dn—1 lAUU{a/I.f<n—1, j#iy 4
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By the induction assumption
ailaU{a;|j<n—1, j#i}

and by (*) and Corollary 3.7
Ufajlj<n—1, j#i} L4 a;.

By (i),
an U | Jajlj<n—1, j#i} Laa

By Corollary 3.7, the claim follows. [

Lemma 3.9. Assume B2 A and t(a,A) is unbounded. Then a |4 B iff there is an in-
discernible set I over A such that |I|=x(M), I is based on some A’ CA of power
<k(M) and Av(I,B)=t(a,B).

Proof. From right to left the claim is trivial. So we prove the other direction. Without
loss of generality, we may assume that B is a-saturated. Let A’ C 4 be such that
|A'| <x(M) and for all C D B there is b such that t(b,B) =t(a,B) and t(b, C) does not
split strongly over 4’. Let ¢>|B| be a regular cardinal such that M is ¢-stable. For all
i<&t we define %4; and a; so that

(i) %;, i<(ET, is an increasing sequence of &-saturated models of power ¢ and
B C %y,

(ii) for all i <&%, t(a;, B) =t(a, B), a; € B;y1—%; and t(a;, B;) does not split strongly
over A" (so a; |4 %;).

By Lemma 3.2(v) and Corollary 3.5(ii), {a;|i<&"} is indiscernible over B and a; # a;
for all i<j<&T. We prove that / ={a;|i<x(M)} is as wanted.

Clearly it is enough to show that 7 is based on A4’. For a contradiction, assume
that C D B is such that Av(Z,C) splits strongly over 4’. Clearly, we may assume that
C C Bqmy+1- By Lemma 1.2(ii) there is J C & — (k(M) + 1), such that |J|=¢&T and
{a; |i €J} is indiscernible over C. Then t(a;, C)=Av(l,C) for all i €J. By (ii) above,
for all i €J, t(a;,C) does not split strongly over A’, a contradiction. [

Lemma 3.10. Assume aE,, b, alsc and blyc. If ¢4 A or t(a,A) is bounded or

t(c,4) is bounded, then t(a,AUc)=t(b,AUc).

Proof. We divide the proof to three cases:

Case 1: t(c,A) is bounded: Let B be the set of all e such that t(e,4) is bounded.
Then |B|<|M]| and so |S(AUB)|<|M|. We define E so that x E y if t(x,AUB)=
t(y,AUB). Since for all f € Aut(4), f(AUB)=AUB, E € SE(A). Clearly this implies
the claim.

Case 2: t(a,A) is bounded: Define £ so that x £ y if x=y or t(x,4)#t(a,4) and
t(y,4)#t(a,A). Clearly E € SE™(A), and so a=>b from which the claim follows.
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Case 3: t(a,A) is unbounded and ¢ |4 A: Assume the claim is not true. Let &> ||
be such that M is &-stable. Choose a;, i<t so that t(a;,4dUc)=t(a,AUc) and
a;l4cU U.,'<,~aj~ By Lemmas 3.2(vii) and 1.2(ii), we may assume that {q; |i<®} is
infinite indiscernible over A. Clearly we may also assume that a =ay. Let d =a;. Then
t(d,AUc)=t(a,AUc), d |4aUc and by Lemma 1.5, d E}}, ,a. Then we can choose
this d so that in addition, d |, aUcUb. By Lemma 3.8(i), bUd |4 c. By Corollary 3.7,
clabUd. Since dE,), b, this contradicts Lemma 3.2(ix). [

Note that in the case(s) 1 (and 2) above the assumptions a |4 c and b |4 ¢ are not
used.

Corollary 3.11. Assume a;, i <w, are such that for all i,j<w, a; Epin 49 and for all

i<w, a; |4 Uj.<iaj. Then for all i # j, a;#a; and {a;|i<w} is indiscernible over A.

Proof. By Lemma 3.2(vii), for all i# j, a; #a;. We show that for all iy <ij<--- <
in<w, t(agU---Uay,A)=t(a;,U---Ua;,,A). By Lemma 1.2(i), this is enough.

By Lemma 3.8(v), {a;|i<i,} is A-independent and by Lemma 3.8(i), it is easy
to see that U{a;|i<i,}|44. So by Lemma 3.10, t(ap,AU Uy_;<, @;)="t(ai,AU
Uo<k<n @) So it is enough to show that t(agU---Ua,,4)=t(agUa; U---Ug,,,A4).
As above we can see that t(a;,dUaoU U, <, @) =t(a;,AdUaU U, <, @;)- So
it is enough to show that t(agU---Ua,,4)=t(apUa; Ua;, U---Ua;,A). We can carry
this on and get the claim. [J
Theorem 3.12. Assume alsc, blyc and aE),, (b. Then t(a,AUc)=t(b,AUc).
Proof. Assume not. As in the proof of Lemma 3.10 (Case 3.), we can find ¢’ and
b’ such that t(a’,AUc)=t(a,AUc), t(b',AUc)=t(b,AUc), a’ |4cUa, b’ |4cUb, d
Ey., 4 a and b Ey., 4b. For all i <x(M), choose a; so that a; |4cUaUbU Uj<ia_,-, if
i is odd, then t(a;,AUcUa)=t(a’,AUcUa) and if i is even, then t(a;;AUcUb)=t
(b',AUcUb). By Corollary 3.11, for all i#j, a;#a; and {a;| i<x(M)} is indis-
cernible over 4. Clearly this contradicts Lemma 2.1. [J

Lemma 3.13. Assume M is &-stable and |A| <& Then there is a-saturated <o/ D A of
power <E.

Proof. Immediate by Lemma 1.9(ii) and the fact that x,(M)<A(M) is regular. [J

Theorem 3.14. Assume M is E-stable and |A| <& Then there is Fg’l-saturated o DA
of power <£.

Proof. By Lemma 3.13, there is an increasing continuous sequence 4;, i<&-&, of
models of power <¢ such that

(1) AC Ay and for all i<E-E, A;y; is a-saturated,

(ii) for all i<¢&-& and a, there is b € 4;,, such that t(b,4;)=t(a,4;).
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We show that .o/ =4 is as wanted. For this let BC .o/ of power <¢ and b be
arbitrary. We show that t(b, B) is realized in .o/.

By Theorem 1.17, c¢f (&)= k(M) and so .o/ is a-saturated and there is o’ <& such
that b | 4., .«/. By the pigeon hole principle there is o < ¢ such that o>« and (4o 41—
Aey)NB= 0.

Claim. There is f<¢ such that B |4, , A¢osipi-

Proof. Assume not. Then by the pigeon hole principle, we can find ¢ € B such that

Hy<&leLa, Acarpi | Zef (),

But this is impossible by Lemma 3.2(iii), because cf(&)=k.(M) and /¢, is a-
saturated for all y<¢ such that cf(y)=x,.(M). O

Choose ¢ €A¢.qqpr1 so that t(c,d¢orp) =1t(b,As.nqp). By Claim, B |,. ., c and so

Eatp
ClAawf B. Since b | 4.,,, B, Lemma 3.4 implies, t(c, 4.0 pUB)=t(b,dc.onpUB). [J

coatfp

We finish this chapter by proving that over F%M)—saturated models our independence
notion is equivalent with the notion used in [1].

Lemma 3.15. Assume of is F%M)-saturated model and B2 .of. Then the following

are equivalent:

(i) alsB.

(i) For all be B there is AC o/ of power <A(M) such that t(a, o/ Ub) does not
split over A.

Proof. Let p e S(.«Z) be arbitrary M-consistent type. Let a be such that t(a, /)= p
and a | ., B. Let a’ be such that t(a’,.<7)= p and for all b € B there is 4 C .«/ of power
< (M) such that t(a’,.«/ Ub) does not split over 4. We show that then t(a,B)=t
(d’,B). This implies the claim, since for all M-consistent p € S(.«7) such a and o’
exist: The existence of a follows from Lemma 3.2(ii) and (iii) and the existence of a’
can be seen as in [1].

For a contradiction, assume that there is b€ B such that t(a,.oZ Ub)#t(d’, o/ UDb).
By the choice of a and @’ and Lemma 1.2(vi), there is 4 C .o/ of power <A(M) such
that t(a,.«/ Ub) does not split strongly over 4, t(a’,.«# Ub) and t(b, /) do not split over
4 and t(a,AUb) #t(a',AUD). For all i <w, choose b; € o/ so that t(b;,AU |J,_; b;)=
t(b,AU Uj<ibj)' Since t(b,.o/) does not split over 4, by Lemma 1.2(i), it is easy
to see that {b;|i<w}U{b} is infinite indiscernible over 4. Since t(a, o) =t(d’, /),
either t(a,.oZ Ub) or t(a’,.e/ Ub) splits strongly over 4, a contradiction. [

4. Orthogonality

In this section we study orthogonality. Since we do not have full transitivity of |,
we need stationary pairs:
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Definition 4.1. Assume 4 CB and p € S(B). We say that (p,A4) is stationary pair if
for all a, t(a,B)= p implies a |4 B and for all C D B, a and b, the following holds: if
alyC,blyC and t(a,B)=1t(b,B)= p, then t(a,C)=t(b,C).

Lemma 4.2. (i) Assume ACBCC, al,yC and (t(a,B),A) is a stationary pair. Then
(t(a, C),A) is a stationary pair.

(i1) Assume ACBCCCD, al,C,algD and (t(a,C),B) is a stationary pair. Then
a J,A D.

Proof. (i) is trivial, so we prove (ii): Choose &’ so that t(a’,C)=t(a,C) and a’ | 4 D.
Then o’ |3 D and so t(a’,D)=t(a,D) from which the claim follows. [J

Lemma 4.3. Assume </ is a-saturated, t(a, /) does not split strongly over A C of and
|[A| <1c(M). Then there is BC of such that ACB, |B—A|<w, B|44 and (t(a,B),A4)
is a Sstationary pair.

Proof. By Lemma 1.13, a |4 .«/. Choose b;, i<w, so that for all i<w, t(b;, /)=
t(a,o/) and b; |4/ U\J;_;b;. Then {b;]i<w} is indiscernible over A4 and by
Lemma 3.8(ii),

() {bi|li<w} s .
Especially,
(xx) {b;j|i<w}|44.

Without loss of generality, we may assume that b, =a. Choose a* €./ so that
a* Epy, 4a. Let B=AUa* and I ={b; |i<w}. Then B |4 4.

Claim. Assume J D/ is indiscernible over 4, t(b,B)=t(a,B) and b |4 BUJ Ua. Then
JU{b} is indiscernible over 4.

Proof. By Lemmas 1.12 and 1.5 it is enough to show that t(b,AUl)=t(a,AUI). By
(x), I |4a*. By the choice of a*, a* |4A and so by Corollary 3.7, a* |41. By the
choice of b and Lemma 3.2(i), b | 4uq+ . By Lemma 3.8(i), bUa* | 4I. By (x*) and
Corollary 3.7, I | 4a*Ub. So by Lemma 3.2(ix), t(a*,AUI)=1t(b,4UI). Similarly we
can see that 7/ |4 a* Ua and so by Lemma 3.2(ix), t(a*,AUIl)=t(a,AUI). [

We show that (t(a,B),4) is a stationary pair. Assume not. Since .o/ is F}:EIM)—
saturated, we can find b such that b | 4 ./, t(b, B) =t(a, B) and t(b, o/) # t(a, o/). Choose
¢, i<x(M), so that for all i<x(M), t(c;, o/ )=t(b,.o/) if i is odd, t(c;,.o/)=1t(a, o)
if i is even and for all i<x(M), ¢; |4/ UIUJ,_;c;. By Claim {c¢;|i<x(M)} is
indiscernible. This contradicts Corollary 2.2.

j<i

Definition 4.4. (i) We say that p € S(4) is orthogonal to ¢ € S(C) if for all a-saturated
of DAUC the following holds: if t(b,C)=gq, blc o, t(a,A)=p and a |4 .o/, then
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alyb. We say that peS(4) is orthogonal to C if it is orthogonal to every
q<€S(C).

(i) We say that a stationary pair (p,A) is orthogonal to g€ S(C) if for all a-
saturated .7 O C Udom( p) the following holds: if t(b,C)=gq, b | ¢ A, t(a,dom(p))= p
and a |4 ./, then a |, b. We say that a stationary pair (p,A) is orthogonal to C if it
is orthogonal to every g € S(C).

Lemma 4.5. Assume o/ is a-saturated, ACBC .o/, al4.o/ and (t(a,B),A) is a sta-
tionary pair. Then t(a, <) is orthogonal to C iff (t(a,B),A) is orthogonal to C.

Proof. Immediate. [J

Lemma 4.6. Assume AC o/, o/ is a-saturated and p € S(</). Then the following are
equivalent.

(i) p is orthogonal to A.

(ii) For all a and b, if t(a,.o/)=p and b |4 o/, then a |, b.

Proof. Clearly (i) implies (ii) and so we prove the other direction. Assume (ii) and
for a contradiction assume that there is a-saturated ¥ O .o/ and a and b such that
t(a,Z)=p,aly €, blys% and a [ b.

Choose By C By C ./ so that
(1) [Bi] <k(M),

(2) alp, o/ and b |p 4,

(3) (t(a,B1),By) is a stationary pair.

By Corollary 3.5(v), choose finite d € ¢ such that a /5 d Ub. Choose B, 2 B Ud of
power <k(M) such that B, C% and t(aUb, %) does not split strongly over B;. Since
t(a, %) and t(b, %) do not split strongly over B, we can find by Lemmas 4.3 and 4.2(i)
B3 D B, of power <x(M) such that B3 C% and both (t(a,B3),B;) and (t(b,B3),B>)
are stationary pairs. Then

(*) alp, Bs and b |, 4 Bs.

Choose f € Aut(B)) so that f(B3) C </ and for all ¢ € B3, f(c) E};;, 5, ¢- Then t( f(a),
f(B3))=t(a, f(B3)) and so we may assume that f(a)=a. Now aU f(b) | sz,) f(B3),
and so we can find ¢’ and &’ so that t(a’ Ub’, f(B3))=t(aU f(b), f(B;3)) and a’ UD
L r3,) . Then by (*) and Lemma 4.2(ii), ¢’ |5, .27 and so t(a’,.o/)=t(a, /) and we
may assume that @’ =a. Also by Lemma 4.2(ii) and (*), b’ |p,n4 -/ and so b’ |4 .o/.
Because a [, f(c)Ud’, by Corollary 3.5(v), a } ., b'. Clearly this contradicts (ii). O

Lemma 4.7. Let £=k,(M) be a cardinal. Assume D CC, peS(C), (p,D) is a sta-
tionary pair and orthogonal to o/, |C|<¢&, of CH are strongly Fé“-satumted and
ClyB. Then (p,D) is orthogonal to A.

Proof. For a contradiction, assume that ¢ € S(#4) is not orthogonal to (p,D). Choose
BC % of power <x(M) so that g does not split strongly over B. Choose 4 C ./ so
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that

(i) 4] <¢,

(it) for all c€ C, t(c,. o7 UA) does not split strongly over 4.

By Lemma 1.9(v), we can find B’ C .o/ and f € Aut(A) so that f(B)=B' and for all
beB, bEy, ,f(b). By Lemma 1.12, t(B',C)=t(B,C). Let ¢’ = f(q) | B'. Then it is
easy to see that ¢’ and (p, C) are not orthogonal, a contradiction. [J

Corollary 4.8. Assume o/ C B NE are strongly F}C\fl(M)-satumted, Bloy€and peS(¥)
is orthogonal to <f. Then p is orthogonal to %.

Proof. Follows immediately from Lemmas 4.3, 4.5 and 4.7. [

5. Structure of s-saturated models
We say that M is superstable if k(M) = w.

Lemma 5.1. The following are equivalent:
(1) kx(M)=w.
(ii) There are no increasing sequence <f;, i<w, of a-saturated models and a such
that for all i<, a .4 1.
(iii) There are no increasing sequence <f;, i <w, of F%M)—saturated models and a such
that for all i<, a [ .4 1.

Proof. Clearly (i) implies (ii) and (ii) implies (iii). So we assume that (i) does not
hold and prove that (iii) does not hold either. For this, choose an increasing sequence
of regular cardinals ¢&;, i <w, such that for all i <w, M is ¢;-stable. Let = sup,_,, &;.
By Theorem 1.17, M is not ¢-stable. Let A be such that |[4] <& and |S(4)|>¢. Then
choose an increasing sequence .o7;, i <, of F%M)-saturated models of power &; such
that A CJ,_,, . Then [S(U, ., 4)|>¢. By Corollary 3.5(i), it is enough to show
that there is @ such that for all i<w, a J . |J;_, . For a contradiction, assume not.
Then for all a there is i, <®, such that a | o, Ui~ . Then by Lemma 3.4, for all a,
t(a,U; -, ) is determined by t(a, .7, ). Since for all i<, |S(.%)|<¢, this implies
that |S(U, ., %) <<, a contradiction. [

Definition 5.2. We say that t(a,4) is F’ ?/[—isolated if there is B C 4 of power <¢, such
that for all b, t(b,B)=t(a,B) implies t(b,4A)=t(a,4). We define Fé“—construction,
F ?’l-primary, etc., as in [3]. Instead of F %M)-saturated, F %M)—isolated, etc., we write
s-saturated, s-isolated, etc.

In slightly different context, the following theorem is proved in [2].

Theorem 5.3 (Shelah [2]). Assume &= A(M):
(i) For all A there is an Fé“-primary model over A.
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(i) If o is Féw-primary over A then it is Fi?’l-prime over A.

(i) If o/ is Fé“-primary over A and &= A(M) is regular, then </ is Féw-atomic
over A.

(iv) If E=AM) is regular, then Fé“-primary models over any set A are unique up
to isomorphism over A.

As usual we write A>¢ B if for all a, a |¢ A implies a | ¢ B.

Lemma 5.4. (i) Assume </ is s-saturated and % is s-primary over <o/ UB. Then
B, 4.

(il) Assume o/ CBNC, o is s-saturated and B |, C. If (B,{b;|i<y},(Bi|i<y))
is an s-construction over B, then (BUC,{b;|i<y},(B;|i<?)) is an s-construction
over BUC.

(iii) Assume &=AM), o is FM-saturated and % is FM-primary over </ \UB. Then
By AB.

Proof. (i) Assume not. Then we can find s-saturated .o/, B, b and a so that t(b, .o/ UB)
is s-isolated, a |, B and a } ., b (if («Z UB,{b;|i<y},(B;|i<?y)) is an s-construction
of 4, then let b=0>b;, where i is the least ordinal such that a } ., BU U./' gibj and
rename B U U_,' ~;b;j as B; i exists by Corollary 3.5(v)). Without loss of generality we
may assume that |[B| <A(M). Choose 4 C .o/ so that

(1) t(h,AUB) s-isolates t(b,.o/ UB),

(ii) for all ¢ €B, t(c,./ Ua) does not split strongly over some 4’ CA4 of power
<k(M),

(iii) t(b,.s7) does not split strongly over some 4’ C 4 of power <x(M),

(iv) 4] < A(M).

This is possible since x,(M)<A(M): Let d =|B| + 1 <A(M). Clearly, we can choose
A so that it of the form A’ UA"” where A’ is of power <A(M) and 4" is a union of
0 many sets of power <, (M)<A(M). If (M) is regular, then clearly |4] <A(M).
Otherwise x,(M)<A(M) in which case |4| <|4'| + max(d, x,(M)) < A(M).

By Lemma 1.9(iii), the proof of Lemma 1.13 and (iii) above, there are c,c’,a’ € of
such that cUaE);, , ¢’ Ud" and t(bUcUa,4)#t(bUc'Ud’,4). By (ii), t(BUcUa,4)
=t(BUc'Ud’,A4). So there is f € Aut(AUB) such that f(c)=c" and f(a)=a’. Then
f(b) contradicts (i) above.

(i1) As (i) above.

(ii1) By (i) we may assume that £> A(IM). For a contradiction, assume that the claim
does not hold. As in (i), we can find s-saturated .7, B, b and a so that t(b,.o/ UB) is
Fé“-isolated, alyB,a[yband|B| <& Let AC o/ be such that t(a,4 UB) Fév[—isolates
t(b, .o/ UB). Choose s-saturated € C .o/ so that |4 |=A(M) and a |4 .o/ UZ. For i <&,
choose a; € o/ such that (a;);<¢ is ¥-independent and for all i<, t(a;,6)=1t(a,¥%).
As in (i), it is enough to show that there is i <& such that a; |¢ A UB. For this we
choose maximal sequence of models .«/; and sets /; C &, j<;*, such that

(a) oAy=% and Iy =0,
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(b) I;41 —1; is finite, .oZ;1; is s-primary over .Z; U(/;+1 —1;) and for some c € AU B,
C chl 1j+1 — [j

(c) if j is limit, then [; = (J,_;Jx and .</; is s-primary over |J,_; /.
Since x,(M)<|AUB| <&, I+ #£ & Let i€ £ —1;+. By (i) and (ii), it is easy to see that
for all j<j*, o is s-primary over .« U/;. Then by (i), a; | «/j and because the
sequence was maximal, 4 UBL@// . ai. So a; |4 AUB as wanted. [J

Corollary 5.5. (i) Assume AC .o/ and </ is s-saturated. If p € S(o7) is orthogonal to
A, then for all C 2 <o/, a and b the following holds: if a |, C, t(a,/)=p and b |4 C,
then a |, CUDb.

(i) Assume M is superstable and y is a limit ordinal. Let <f;, i <y, be an increasing
sequence of s-saturated models and </ be s-primary over \J,_. ;. If a ¢ <o/ then
there is i<y such that t(a, /) is not orthogonal to <f;.

(i) Assume of is s-saturated and p € S(.o7) is orthogonal to AC . If a;, i<o,
are such that for all i<w, t(a;,A)=p and a; |y U].<l. aj, then for all n<ow,
t(U, ., ai, /) is orthogonal to A.

i<y

Proof. (i) Assume not. Let % be s-primary over .« UC. Then by Lemma 5.4(i) and
Corollary 3.5(iv), a |, %, b |4 % and a J4 b, a contradiction.

(ii) Clearly, we may assume that if i <j then .27 # .o7;. Since k(M) = w, there is
i<y such that a |, J,_, . By (i), al <. By Lemma 3.2(v), this is more that

J<v
required.
(iii) Assume not. Then by Lemma 4.6, there is b such that b | 4 % and Ui<n a; Y. b.
Let m<n be the least such that J,_, a; /.~ b. By Lemma 3.8(i), a1 Zﬂ/UU . b
i<m—1 "

Clearly this contradicts (i). [J

Let P be a tree without branches of length >w. Then by 1~ we mean the immediate
predecessor of ¢ if € P is not the root. For all t€P, by ¢t we mean the set of
immediate successors of ¢.

Definition 5.6 (Shelah [3]). We say that (P, f,g)=((P,<), f,g) is an s-free tree of
s-saturated .o/ if the following holds:

(i) (P,<) is a tree without branches of length >w, f : (P — {r}) — &/ and
g : P — P(o), where r € P is the root of P and P(.</) is the power set of o/ — in
order to simplify the notation we write a, for f(¢) and <7 for g(z),

(ii) o/, is s-primary model (over 0),

(iii) if ¢ is not the root and u~ =t then t(a,, o) is orthogonal to .<Z,—,

(iv) if t=u" then 7, is s-primary over o7, U a,,

(v) Assume 7,V CP and u € P are such that

(a) for all te T, t is comparable with u,
(b) T is downwards closed.
(c) if veV then for all ¢ such that vt > u, t ¢ T.
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Then

U Lo, U

teT velV

Definition 5.7. We say that (P, f,g) is an s-decomposition of ./ if it is a maximal
s-free tree of o7.

Note that ‘the finite character of dependence’ implies, that unions of increasing
sequences of s-free trees of .o/ are s-free trees of .o7. So for all s-saturated .o/ there is
an s-decomposition of .o7.

We say that .7 is s-primary over an s-free tree (P, f,g) if o/ is s-primary over

Ul | e P}

Definition 5.8. Assume that (P, f,g) is an s-decomposition of .7, .o is s-saturated.
Let P={t;|i<a} be an enumeration of P such that if # < ¢; then i <j. Then we say
that (.o7;);<, is a generating sequence if the following holds:

(1) for all i<a, of; C .o,

(ii) £ =0,

(iil) o#4; is s-primary over .o7; U.o7,

(iv) if 0<i<o is limit then .« is s-primary over J,;_, /.
Lemma 5.9. Assume that (P, f,g) is an s-free tree of </, o is s-saturated and
()i<a is a generating sequence. Then for all 0<i<o, <, l,g/ﬁ ;.

Proof. By Lemma 5.4(i), it is enough to prove that for all i<a, .o/ is s-primary
i <i ;. We prove this by induction on i. In fact, we need to prove slightly
more to keep the induction going: We show that ./; is not only s-constructible over
U,<; </, but that the natural construction works. Then the limit cases are trivial and
the successor cases follow from Lemma 5.4(ii). [J

over

Definition 5.10. Assume .o/ is s-saturated. We say that t(a, o7) is a c-type if for all s-
saturated € and % the following holds: If ¥ C .o/ is such that t(a,.o/) is not orthogonal
to ¥ and .« Ua C 4, then there is b€ # — .o/ such that b |4 /.

Note that the notion of c-type is a generalization of regular type.

Lemma 5.11. Assume M is superstable. Let .o/ C B be s-saturated and of #+ AB. Then
there is a singleton a € B — of such that t(a, /) is a c-type.

Proof. Since x(M)=w, by Lemma 1.1 it is easy to see that there is a singleton
a€PB — o/ and finite A C .o/ such that the following holds: for all b€ # — &/ and
B C .o/, if there is an automorphism f of M such that f(a)=»b and f(4)=2B8, then
t(b, .o/) does not split strongly over B (and so b |z.27). We show that a is as wanted.
Let s-saturated @ C .o/ be such that t(a,.o/) is not orthogonal to . Since % can now
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be any s-saturated model such that o/ Ua C 4, it is enough to show that there is
be R — o/ such that b |4 .o/.

By Lemma 4.6, find d such that d |4 o/ and a J ., d. Let & be s-primary over ¢ Ud.
Then 9 |4 of and a ), 2. For all i<w, choose .«7; and a; so that t(a;U.o/;, )=
t(aU.o/,2) and a;U.of; |galU .o/ U U_;<i(ajU~‘2{j)~
Claim. {aU/}U{aq;Uof;|i<w} is indiscernible over € and aU/)qg
U,‘<w(ai U ;).

Proof. The first of the claims follow immediately from Corollary 3.5(ii). For a con-
tradiction, assume that the second claim is not true. For all i <w, we define %, as
follows: We let %4, be s-primary over o7 Ua and %;,; be s-primary over %; U <Z; U a;.
By Lemma 5.1, there is i <w such that d | 5, 7 Ua;. Since {aU .o/} U{a; U |i<w}
is indiscernible over 4 and a U ./ |4 |J;_ (@i U o), o Ua; g aU.of U Uj<l.(a_,~ U ;).
By Lemma 5.4(ii), «/; Ua; |4 4;. But then o/;Ua; |4 d, a contradiction. [J

By Claim and Corollary 3.5(v), let n<® be the least such that aU.«/ J¢ U, _,(a;
U.#). Let .o/* be s-primary over .7 U.oZ¢U U0<i<n(¢%Ua[). It is easy to see that
Ayle AU Uy (A Ua)). By Claim, /glg /U Jy.;.,(#Ua;) and so by
Lemma 3.8(iv) and the choice of n, .o/ Ua |4 o/yU U0<i<n(&¢[ Ua;) and so by Lem-
mas 3.6 and 3.2(i), a | s /U U0<i<n(M Ua;). By Lemma 5.4(i), a | ., o/*. Similarly
we see that ag |, /*. Then also a } - a;.

By the choice of .&7 and ay there is f € Aut(%) such that f(.«/)= .27y and f(a)=ay.
Let 4o = f(A4). By Corollary 3.5(v) there is finite C C .o7* such that a }4 Ao U C Uay.
Choose BC % such that t(4Ua, %) does not split strongly over B. Then there is
g € Saut(B) such that g(4y) C €. Since aU .o/ |4 o/* and every h € Aut(.o/*) belongs
to Saut(B), we may assume that

(x) aU |gg(CYUAdyUC.

Then t(g(4pUC),AUa)=t(4gUC,AUa). Choose heSaut(AUg(4yp)) such that
h(g(C)) C o By (*), t(a, o/ Ug(C)) does not split strongly over 4 and so it does not
split strongly over 4 U g(Ap). Then t(g(4o) Uh(g(C)),AUa)=1t(4oUC,4Ua). Choose
b€ % such that t(g(4o) Uh(g(C))Ub,AUa)=1(4oU CUay,AUa). Then by Corollary
3.5(v) and the choice of C, a J.,b and so by Lemma 3.2(iii), b€ B — of (b is a
singleton). By the choice of 4, t(b,.«7) does not split strongly over g(4y). By Lemma
3.2(1i1), by o/ O

Definition 5.12. (i) We say that M has s-SP (structure property) if every s-saturated
&/ is s-primary over any s-decomposition of .o7.

(ii) Let k=>A(M). We say that M has k-dop if there are FM-saturated .o/, i <4,
and a ¢ .o/; such that
(a) o C o/ N,
(b) A |y, a,
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(c) o4 is FKM-primary over .o/ U.o,
(d) t(a, o) is orthogonal to .o/ and to .o75.
We say that M has x-ndop if it does not have x-dop.

Theorem 5.13. Assume M is superstable and has J(M)-ndop. Then M has s-SP.

Proof. Let .o/ be s-saturated and (P, f,g) an s-decomposition of .oZ Let (27 );<, be a
generating sequence and P = {f;|i <o} be the enumeration of P from the definition of
a generating sequence.

Claim. .o/, = .o/.

Proof. Assume not. For all a € .o/ — o7, let i, be the least ordinal such that t(a,.c7,)
is not orthogonal to 7, . Let a € o/ — o/, be any sequence such that

(i) for some /<u either t(a,</) is a c-type and a |, o/, or t(a,</,) is a c-type
and a l% o, and

(ii) among these a, i =i, is the least.
By Lemma 5.11 there is at least one such a.

There are two cases:

Case 1: For some /<o t(a,.oZ,) is a c-type and al_g/tl . Let t*<t; be the least ¢
such that t(a, o7, ) is not orthogonal to .o7,. Since t(a,.o/,) is a c-type choose b so that

(1) bl
and

(2) be o [a] — o, where o, [a] C o/ is s-primary over .o, Ua.
Then if (#*)~ exists, by (2) and Lemmas 4.6 and 5.4(i), t(b, o%,) is orthogonal to
o/ +)- and so by (1) and Lemma 4.6 it is easy to see that t(b, /) is orthogonal to
Ao

By (1), (2) and Lemma 5.4(i), b |, ;.

We define ((P', <), f’,¢’) as follows:

(i) P'=PU{t}, t a new node,

(ii) for all ue P, u<'t iff uxt*

(iii) /" [ P=f and f'(1)=D,

(iv) ¢ | P=g and ¢'(t) C.«/ is s-primary over A; Ub.

Subclaim. ((P',<"), f',g") is an s-free tree of <.

Proof. (i), (ii), (iii) and (iv) in the Definition 5.6 are clear. So we prove (v):
Let TC P, ueP and V C P’ be as in Definition 5.6(v). There are four cases:
Case a:teT—V.Let T'=T—{t} and .7y C .o/, be s-primary over | J{.#4, |d € T'}.
By the choice of & and Lemma 5.4(i),

At l;/r* JZ{T/ U U JZ/U.
velV
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By Lemmas 3.2(i) and 3.6,

U 1., .

velV

By Corollary 3.5(iv), the assumption that (P, f,g) is s-free tree of .o/ and Lemma
5.4(1),

U 1., o Ut

veV

By Lemma 3.6,
U il |
deT veV

Case b: t €V — T: Exactly as the Case a.

Case c: teVNT: Because t €T — P, u<t. Since t € V, u=t. Then because u ¢ P,
User 4a = o4,, and the claim follows from Lemma 3.2(iv).

Case d: t¢ TUV: Immediate by the assumption that (P, f,g) is an s-free tree
of o/, [

Subclaim contradicts the maximality of P. So Case 1 is impossible and we are in
the Case 2:

Case 2: I <o is such that t(a, 7)) is a c-type and a |, </,. Let % C .o/ be s-primary
over .o/, Ua. Clearly i(=i,)<! and so let 5’ be the element given by t(a,.»,) being a
c-type: b' |, o/ and b’ € o/|[a] — /), where o/)[a] C A is s-primary over .o/;Ua. By
Lemma 5.11 we may choose b so that t(b,.oZ) is a c-type and b € .oZ;[b’] — .o/;, where
A[b'1C A is s-primary over .o/ Ub’. Then b |, o,, b¢ o and iy <i(=i,).

(1) i is not a limit >0. This is because otherwise by Lemma 5.5(ii), t(b, ./;) is not
orthogonal to .oZ; for some j<i. Then t(b,oZ,) is not orthogonal to .<7;, i.e., i) <i,.
This contradicts the choice of a.

(2) i is not a successor >1. Assume it is, i=j + 1. Then .o/ is s-primary over
/;U.o/, and by Lemma 5.9, </; | s </, (Note that since Case 1 is not possible,

Ajr1 # 4,;.) By the choice of a t(b, &Z—) is orthogonal to .2Z;. So by A(M)-ndop t(b, o7;)
is not orthogonal to .o7;,. Then as in Case 1 we get a contradiction with the maximality
of (P, f,9)- Alternatively, we can find ¢ such that it satisfies the assumptions of Case 1,
which is a contradiction.

(3) i is not 0 or 1. Immediate, since Case 1 is not possible.

Clearly (1) and (2) above contradict (3). So also Case 2 imply a contradiction. [

Let 4 C.o7 be FM-primary over |J{.¢ |t € P}. We want to show that ¢ = .«/. For
this we choose a generating sequence (.%7;);<y, SO that .o/, C# for all i<a. By the
claim above .o, =.o/ and so ¥ =/ [
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6. On non-structure

Definition 6.1. We say that M has x-sdop if the following holds: there are FM-
saturated .o7;, i <4, and I ={a; |i<A(M)}, a; € /3, such that

(a) Ay C .o\ N .sts, <3 is FM-primary over .o/ U .o/,

(b) 1 |y 2,

(c) I is an indiscernible sequence over .o/} U.o% and if i <j<A(M) then a; # a;.

As in [1], we can prove non-structure theorems from r-sdop. (In [3], this was the
formulation of dop, which was used to get non-structure.)

In this section we show that dop and sdop are essentially equivalent, i.e. A(M)*-
sdop implies A(M)"-dop and A(M)-dop implies A.(M)*-sdop, where A.(M) is the
least regular cardinal > A(M).

Lemma 6.2. Assume M is E-stable and x=ET. If M has k-sdop then it has k-dop.

Proof. Let / and .o/;, i<4, be as in the definition of x-sdop. We need to show that
there is M-consistent type p over .73 such that (d) in Definition 5.12(ii) is satisfied.
We show that Av(/, o/3) is the required type.

By Lemma 2.4(iii), let a be such that t(a,.o/5) =Av(l, o/3). For a contradiction, by
Lemma 4.6, let b be such that

(i) a [ b,

(ii) b |, 5.
Let € C.oZ;, i<4 be I%M-saturated models of cardinality & such that

(1) 6 Co, CNCG=%, G3NA =%, 3N =% and I C %G,

(2) aUb |y o3 and a [4, b,

(3) aUbU®G |4 o/ and aUDUG; |, A,

(4) for all c€%; there is DC % U% of power &, such that t(c,D) ﬂM-isolated
t(c, o1 U o).

We can see the existence of the sets as in the proof of Theorem 3.14 (the only
non-trivial part being to guarantee that the models are QM-saturated).

Let a* € .o/5 be such that it realizes Av(/, %3).

Claim. t(a*,%;) FM-isolates t(a*, % U </ U /).

Proof. Assume not. Then there is d € 4 such that t(a* Ud, % U%) does not ECM-
isolate t(a* Ud, /1 U o).

Subclaim. There is a' €I such that t(a’ Ud, 6 U%)=t(a*Ud, 6 U%G).
Proof. By Lemma 1.2(v), there is i <A(M) such that t(d, % U% UI) does not split

over ¢, U% U{a;|j<i}. Since I is indiscernible over C; U%,, a' =aq; is as wanted.
|
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Clearly Subclaim contradicts (4) above.

Choose b* € .o7) so that t(b*,%,)=1t(b,%,). By (3), t(b*,%;)=1(b,%;). By Claim,
a*lq b*. Let f be an automorphism such that f(b)=5b" and f | 63 =ids. Then
f(a) contradicts Claim. [J

Theorem 6.3. Let A=A, (M) be such that M is A-stable. Then A.(M)-dop implies
AT -sdop.

Proof. Let o7, i<4, and p€S(o4) be as in the the definition of 4,(M)-dop. By
Lemma 4.5, as in the proof of Lemma 3.14, we find these so that |.of;5]| </,(M). Let
By D oAy be Fﬁ -saturated such that %, |, /3. Let %;, i€ {l1,2} be s-primary over
o U%By. Let %5 be s-primary over %) U%, Ut Let €, i€{1,2}, be Fjﬁ’l-prlmary
over %; such that 61 |, %3 and 6, |4 %5 U%.

Let g € S(.o73) be any type such that it is orthogonal to ./, and .o%;. Our first goal
is to show that there is only one g* € S(%) U % U %5) which extends g.

Claim 1. Ut is F, (M)—constructlble over of U By U oty and for all be By, there
is BC /1 U % ofpower <A(M) such that t(b,B) F;_r(M)—lsolates t(b, By U o) U o).

Proof. Follows immediately from the proof of Lemma 5.4(ii) and Theorem 5.3(iii).
O

Claim 2. %, U%, is Ia“fM) -constructible over %, UQBO Uty and for all b€ %,, there
is BC o U%By of power <A.(M) such that t(b,B) F, (M) -isolates t(b, %, U <fy).

Proof. As Claim 1. [J
Claim 3. %, U%,U.o4; is F/lll\_%M)-constructible over .of3 U %Ay.

Proof. By Claims 1 and 2, 4, U %, is F (M) -constructible over .o/} U .o/, U %,. So it
is enough to show that for all a € o4, t(a, o/ U .o/>) F;L],\-/(IM)+ -isolates t(a, % U %,).

Assume not. Choose b € %) and b, € %, so that t(a,.o/; U.o/;) does not ﬂ]}’('M)+-
isolate t(a,.o/1 U.o/ Uby Uby). Choose A C.of), A, C .o/, and By C %, of power
< 4,(M) such that

(1) t(a, 41 UAr) F}] M)-lsolates t(a, o) Uty),

(ii) t(by,4; UBy) F; (M)-lsolates t(a, o/ U.o/h Uy) and t(by, 4, UBy) F; (M)-lsolates
t(by, % U ofp U By),

(ii1) Ay Nofy=A, Ny = A and for all c € 4] UA,, t(c, By) does not split strongly
over Ag.

By Lemma 1.9(v), choose f € Aut(A4y) so that f(By) C o4 and for all ¢ € By, f(c)
Ep.. 4,¢- Let By= f(By). Then by (iii), t(By, 41 UA4y) =t(Bo, 41 UAy). Choose b; € </
so that t(b; U Bj, 4;) =t(b; UBy,4;), i € {1,2}. By (ii) t(b] U, UBj, 4;)=1t(b; Uby UBy,
A;). Clearly this contradicts (i). [J
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Claim 4. %5 is F)%M)—primary over of3 U %,.
Proof. Immediate by Claim 3 and the choice of %;. [

By Claim 4 and Lemma 5.4, there is exactly one ¢’ € S(%4;) such that ¢ C4’. By
Corollary 4.8, ¢’ is orthogonal to % and %,. So if a realizes ¢', then a | 4 %. Then
by Corollary 5.5(i), there is exactly one g* € S(% U% U %3), which extends g¢.

Now choose a;, i<4,(M), so that for all i, t(a;,.o3)=p and a; |, Uj<iaj. Then
I={a;|i<2, (M)} is indiscernible over .«/5 and by Corollary 5.5(iii), for all n<w,
t(apU---Uay,,of3) is orthogonal to .o/; and .o;. So, by what we showed above, / is
indiscernible over 41 U% U%; and for all i <A,.(M), t(a;, o3 UUj _;a;) FM-isolates
t(a, 6 UG UB UL i< aj). So there is an ﬂM-primary model @ over € U% U %;
such that 7 C %;.

So to get A"-sdop, it is enough to show that % is FM-primary over % U%. By
Claim 3 and the choice of %5, %; is Fj}’(IM)-constructible over %) U%,.

Claim 5. For all c €6, there is BC %, of power </ such that t(c,B) F;ﬁ"—isolates
t(c, %3).

Proof. Assume not. Choose B; C %) of power <1 and ¢ € %, so that

(i) t(c, By) FM-isolates t(c, %),

(i) t(c, By) does not FM-isolate t(c, %;).
By (ii) above, choose b€ %3, By C %y C; C %, and C, C %,

(iii) |C) U Ca| <M,

(iv) t(b,CiU () Iﬁ]:’(IM)-isolates t(b, B, U %),

(v) t(c,By) does not FM-isolate t(c, By UCj UC, Ub),

(vi) for all a€ By UC), t(a,%,) does not split strongly over By and |By| <.
Since %, is E}‘f-saturated and M is A-stable, we can find f € Aut(By) such that
f(Cz) C %y and for all a € Cy, f(a)Er'nnin,Bg a. Then by (Vi), t(f(CZ),B() UB U C1)=
t(Cy, By UB UCY). Choose b’ € %, so that t(b/ U f(Cz), )= t(b UGy, Ch). Then by
(iv), t(b' U f(C3),BoUB UC)) =t(bUCy, By UB; UC)). By (vi) t(c,By) does not F;}Y[-
isolate t(c,By U% U f(Cy)Ub’). Clearly this contradicts (i). [J

So Z,U% is Ialt’gM)-constructible over €, U %,.

Claim 6. For all c €6, there is BC %, of power </ such that t(c,B) E}‘f-isolates
t(c, 61 U B3).

Proof. As Claim 5 above. [J

So Z,UB UC, is F%M)-constructible (and so FM-constructible) over % U%. By
the choice of @, this implies that @ is Eﬁ“—primary over 6 U%. O

Note that in Theorem 6.3 the assumption, M is A-stable, is not necessary. We can
avoid the use of it by Lemma 3.15.
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Lemma 6.4. Assume k>A>=AM). Then A-dop implies 1-dop.

Proof. Let .o7;, i <4, and a as in the definition of A-dop. Choose FKM-saturated By O Ay
such that %, |, /| Usts. Let % be FM-primary over %U</, %, be FM-primary
over %y U o/, and %5 be FKM—primary over % U%,. Clearly we can choose the sets so
that .o/3 C %3 and a |, %;. By Lemmas 5.4(iii) and 3.8(iv), % | 4, >. Then o4, |, %
and so < |, %. By Lemma 5.4(iii),

(1) s |y B
Similarly,

Q) 5 |, B
Also by Lemmas 5.4(iii) and 3.8(iv), % | 4, %>.

By (1), (2), Lemma 4.5 and Corollary 4.8, t(a, %) is orthogonal to %, and to %,.

]

Corollary 6.5. /(M)-dop implies 2,.(M)"-sdop.
Proof. Immediate by Lemma 6.4 and Theorem 6.3. [J
We finish this paper by giving open problems:

Question 6.6. What are the relationships among the following properties:
(1 ) a lA A)

(2) ataa,

(3) t(a,A) is unbounded?

Note that (1) does not imply (2) nor (3) (fails already in the ‘classical’ case), (3)
implies (2) (Lemma 3.2(v)) and (1) A(2) implies (3) (just choose a;, i <|M]|, so that
t(a;,A)=1t(a,A) and q; |, U].<l.aj).

Question 6.7. Does Corollary 4.8 hold without the assumption that the sets are
strongly Fy -saturated?

Question 6.8. Does the following hold: If M is superstable, then for all A there exists
an ‘a-primary’ set over A?
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