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Abstract

In this paper we study elementary submodels of a stable homogeneous structure. We improve
the independence relation de�ned in Hyttinen (Fund. Math. 156 (1998) 167–182). We apply
this to prove a structure theorem. We also show that dop and sdop are essentially equivalent,
where the negation of dop is the property we use in our structure theorem and sdop implies
nonstructure, see Hyttinen (1998). c© 2000 Elsevier Science B.V. All rights reserved.
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1. Basic de�nitions and spectrum of stability

The purpose of this paper is to develop theory of independence for elementary
submodels of a homogeneous structure. We get a model class of this kind if in addition
to its �rst-order theory we require that the models omit some (reasonable) set of types,
see [2]. If the set is empty, then we are in the ‘classical situation’ from [3]. In other
words, we study stability theory without the compactness theorem. So e.g. the theory
of �-ranks is lost and so we do not get an independence notion from ranks. Our
independence notion is based on strong splitting. It satis�es the basic properties of
forking in a rather weak form. The main problem is �nding free extensions. So the
arguments are often based on the de�nition of the independence notion instead of the
‘independence-calculus’.
Throughout this paper we assume that M is a homogeneous model of similarity type

(=language) L and that M is �-stable for some �¡|M| (see [3, De�nition 2.2]). Let
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�(M) be the least such �. By [2], �(M)¡i((2|L|+!)+). We use M as a monster model
and so we assume that the cardinality of M is large enough for all constructions we
do in this paper. In fact, we assume that |M| is strongly inaccessible. Alternatively,
we could assume less about |M| and instead of studying all elementary submodels of
M, we could study suitably small ones.
Note Th(M) may well be unstable. Note also that if � is a stable �nite diagram,

then � has a monster model like M, see [2].
By a model we mean an elementary submodel of M of cardinality ¡|M|, we write

A, B and so on for these. So if A⊆B are models, then A is an elementary submodel
of B. Similarly by a set we mean a subset of M of cardinality ¡|M|, unless we
explicitly say otherwise. We write A; B and so on for these. By a; b and so on we
mean a �nite sequence of elements of M. By a∈A we mean a∈Alength(a).
By an automorphism we mean an automorphism of M. We write Aut(A) for the set

of all automorphisms of M such that f �A= idA. By S∗(A) we mean the set of all
consistent complete types over A and by t(a; A) we mean the type of a over A in M.
Sm(A) means the set {t(a; A) | a∈M; length(a)=m} and S(A)=

⋃
m¡! Sm(A).

We de�ne �(M) as �(T ) is de�ned in the case of stable theories but for strong
splitting, i.e. we let �(M) be the least cardinal such that there are no a, bi and ci,
i¡�(M), such that
(i) for all i¡�(M), there is an in�nite indiscernible set Ii over

⋃
j¡i (bj ∪ cj) such that

bi; ci ∈ Ii,
(ii) for all i¡�(M), there is �i(x; y) such that |= �i(a; bi)∧¬�i(a; ci).
We say that a type p over A is M-consistent if there is a∈M such that p⊆ t(a; A)

(i.e. there is q∈ S(A) such that p⊆ q).

Lemma 1.1 (Hyttinen [1]). If p∈ S∗(A) is not M-consistent; then there is �nite B⊆A
such that p �B is not M-consistent.

Lemma 1.2. (i) If (ai)i¡! is order-indiscernible over A then it is indiscernible over A.
(ii) Assume M is �-stable and |I | ¿ �¿|A|. Then there is J ⊆ I of power ¿� such

that it is indiscernible over A.
(iii) If I is in�nite indiscernible over A then for all �6|M| there is J ⊇ I of power

¿� such that J is indiscernible over A.
(iv) For all indiscernible I and �(x; a); either X = {b∈ I | |=�(b; a)} or Y = {b∈ I |

|= ¬�(b; a)} is of power ¡�(M).
(v) There are no increasing sequence of sets Ai; i¡�(M); and a such that for all

i¡�(M); t(a; Ai+1) splits over Ai. So for all A and p∈ S(A); there is B⊆A of power
¡�(M); such that p does not split over B.
(vi) For all A and p∈ S(A); there is B⊆A of power ¡�(M); such that p does

not split strongly over B.

Proof. Conditions (i), (ii) and (v) as in [1]. Condition (iii) follows immediately from
the homogeneity of M. Condition (vi) is trivial.
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We prove (iv): Assume not. Let I be a counterexample. Clearly, we may assume
that |I |= �(M). Then By Lemma 1.1, for every J ⊆ I , the type

pJ = {�(b; y) | b∈ J}∪ {¬�(b; y) | b∈ I − J}
is M-consistent. Clearly, this contradicts �(M)-stability of M.

Corollary 1.3. �(M)6�(M).

Proof. Follows immediately from Lemma 1.2(v).

We will use Lascar strong types instead of strong types:

De�nition 1.4. Let SEn(A) be the set of all equivalence relation E in Mn, such that the
number of equivalence classes is ¡|M| and for all f∈Aut(A); a E b i� f(a)E f(b).
Let SE(A)=

⋃
n¡! SEn(A).

Note that E ∈ SE(A) need not be de�nable but an indiscernible set over A is also an
indiscernible set for all E ∈ SE(A).
Usually, we either do not mention the arities of the equivalence relations we work

with, or we mention that the arity is, e.g. m, but we do not specify what m is. This is
harmless since usually there is no danger of confusion.

Lemma 1.5. If I is an in�nite indiscernible set over A; then for all E ∈ SE(A) and
a; b∈ I; a E b.

Proof. Assume not. Let E ∈ SE(A) be a counterexample. Then for all a; b∈ I , a 6= b;
¬(a E b). Then Lemma 1.2(iii) implies a contradiction with the number of equivalence
classes of E.

Lemma 1.6. If E ∈ SE(A); |A|6� and M is �-stable; then the number of equivalence
classes of E is 6�.

Proof. Assume not. Then by Lemma 1.2(ii), we can �nd I such that it is in�nite indis-
cernible over A and for all a; b∈ I , if a 6= b then ¬(a E b). This contradicts Lemma 1.5.

Corollary 1.7. For all A and n¡!; there is En
min; A ∈ SEn(A) such that for all a; b and

E ∈ SEn(A); a En
min;A b implies a E b.

Proof. Clearly |SEn(A)| is restricted (62|S(A)|) and so ∩ SEn(A)∈ SE(A). Trivially
∩ SEn(A) has the wanted property.

De�nition 1.8. (i) We say that A is FM� -saturated if for all A⊆A of power ¡� and
a, there is b∈A such that t(b; A)= t(a; A).
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(ii) We say that A is strongly FM� -saturated if for all A⊆A of power ¡� and a
of length m, there is b∈A such that b E a for all E ∈ SEm(A). We write a-saturated
for strongly FM�(M)-saturated.

Lemma 1.9. (i) If A is strongly FM� -saturated then it is FM� -saturated.
(ii) Assume |A|6�; M is �-stable; �¡�= � and there is a regular cardinal � such

that �6�6�. Then there is strongly FM� -saturated A⊇A such that |A|6�. Fur-
thermore if B⊇A is strongly FM� -saturated; then we can choose A so that A⊆B.
(iii) Assume M is �-stable; A is FM� -saturated; A⊆A is of power ¡� and m¡!.

Then there are ai ∈A; i¡�; such that for all b of length m; there is i¡� such that
ai E b; for all E ∈ SEm(A); i.e. A is strongly FM� -saturated.
(iv) If A is FM�(M)-saturated; then it is a-saturated.
(v) Assume A is strongly FM� -saturated and A⊆A is of power ¡�. Then for all

B of power ¡�; there is f∈Aut(A) such that f(B)⊆A and for all ( �nite sequences)
b∈B; f(b)Em

min;A b.

Proof. Condition (i) is trivial.
(ii) For all i6�, choose sets Ai of power 6� as follows: Let A0 =A and if i is limit

then Ai=
⋃

j¡i Aj. If Ai is de�ned, then we let Ai+1⊇Ai be such that for all B⊆Ai

of power ¡� and a there is b∈Ai+1 such that b Em
min;B a. By Lemma 1.6, we can �nd

Ai+1 so that |Ai+1|6�. By Lemma 1:7, A� is as wanted.
(iii) By Lemma 1.6, choose bi; i¡�, so that for all b there is i¡� such that

b Em
min;A bi. Since A is FM� -saturated, we can choose ai ∈A so that there is f∈Aut(A)

such that for all i¡�; f(bi)= ai. Clearly this implies the claim.
(iv) Immediate by (iii).
(v) For all c∈B, choose ac ∈A so that ac Em

min;A c. Since A is FM� -saturated, there
is f∈Aut(A∪{ac | c∈B}) such that f(B)⊆A. Clearly f is as wanted.

De�nition 1.10. We write f∈ Saut(A) if f∈Aut(A) and for all a; f(a)Em
min;A a.

Lemma 1.11. AssumeM is �-stable and |A|¡�. If a Em
min;A b; then there is f∈ Saut(A)

such that f(a)= b.

Proof. We de�ne a E b if there is f∈ Saut(A) such that f(a)= b. Clearly it is enough
to show that E ∈ SE(A). For a contradiction, assume that this is not the case. Since
E is an equivalence relation and f(E)=E for all f∈Aut(A), there are ai; i¡�+,
such that for all i 6= j; ¬(ai E aj). Choose B⊇A of power � such that every Em

min;A-
equivalence class is represented in B. Since M is �-stable, there are i¡j¡�+, such
that t(ai; B)= t(aj; B). Then there is f∈Aut(B) such that f(ai)=f(aj). By the choice
of B; f∈ Saut(A), a contradiction.

Lemma 1.12. Assume � is such that for some �′¿�; M is �′-stable. If A is FM� -
saturated and A⊆A has power ¡�; then t(a;A) does not split strongly over A i�
for all b; c∈A and �; b Em

min;A c implies |= �(a; b)↔ �(a; c).
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Proof. If t(a;A) splits strongly over A, then by Lemma 1.5, there are b; c∈A and
�, such that b Em

min;A c and |= ¬(�(a; b)↔ �(a; c)). So we have proved the claim from
right to left. We prove the other direction: For a contradiction assume that there are
b; c∈A and �, such that b Em

min;A c and |= �(a; b)∧¬�(a; c).
We de�ne an equivalence relation E on Mm as follows: a E b if a= b or there

are Ii; i¡n¡!, such that they are in�nite indiscernible over A; a∈ I0; b∈ In−1
and for all i¡n − 1; Ii ∩ Ii+1 6= ∅. Clearly E is an equivalence relation and for all
f∈Aut(A); f(E)=E. By Lemma 1.2(ii), the number of equivalence classes of E is
¡|M|. So E ∈ SEm(A).
Then b E c and b 6= c. Let Ii; i¡n, be as in the de�nition of E. Since A is FM|A|++!-

saturated, we may assume that for all i¡n; Ii ⊆A. Since t(a;A) does not split strongly
over A, for all d∈ I0; |= �(a; d). So there is d∈ I1 such that |= �(a; d). Again since
t(a;A) does not split strongly over A, for all d∈ I1; |= �(a; d). We can carry this on
and �nally we get that |= �(a; c), a contradiction.

Lemma 1.13. Assume A⊆A; |A|¡�(M); A is a-saturated and p∈ S(A) does not
split strongly over A. Then for all B⊇A; there is q∈ S(B) such that p⊆ q and for
all C ⊇B there is r ∈ S(C); which satis�es q⊆ r and r does not split strongly over A.

Proof. We de�ne q∈ S∗(B) as follows: �(x; b)∈ q, b∈B, if there is a∈A such that
a Em

min;A b and �(x; a)∈p, where m= length(b). By Lemma 1.12, it is enough to show
that q is M-consistent. By Lemma 1.1, it is enough to show that for all a; a′ ∈A, if
a Em

min;A a′, then �(x; a)∈p implies �(x; a′)∈p. This follows from Lemma 1.12, since
by Lemma 1.9(i), A is FM�(M)-saturated.

Lemma 1.14. Assume A⊆A⊆B; |A|¡�(M); B is FM�(M)-saturated and for every
c∈B there is d∈A such that dEm

min;A c. If t(a;A)= t(b;A) and both t(a;B) and
t(b;B) do not split strongly over A; then t(a;B)= t(b;B).

Proof. For a contradiction, assume c∈B and |= �(a; c)∧¬�(b; c). Choose d∈A such
that dEm

min;A c. By Lemma 1.12, |= �(a; d)∧¬�(b; d), a contradiction.

Lemma 1.15. If �= �(M) + �¡�(M); then M is �-stable.

Proof. Clearly, we may assume that �¿�(M) and so by Corollary 1.3, �¿�(M)+.
Let A be a set of power �. We show that |S(A)|6�.

Claim. There is A⊇A such that
(i) A is FM�(M)-saturated,
(ii) |A|6�,
(iii) for all B⊆A of power ¡�(M) there is AB ⊆A of power �(M) satisfying:

B⊆AB and for all c∈M there is d∈AB such that dEm
min;A c.
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Proof. By induction on i¡�(M)+, we de�ne Ai so that |Ai|6�; A⊆A0, for i¡j;
Aj ⊆Ai and
(1) if i is odd then for all B⊆⋃

j¡i Aj of power¡�(M), there isAB ⊆Ai of power
6�(M) satisfying: B⊆AB and for all c∈M there is d∈AB such that dEm

min;A c,
(2) if i is even then for all B⊆⋃

j¡i Aj of power ¡�(M), every p∈ S(B) is
realized in Ai.
By Corollary 1.3, Lemma 1.6 and the fact that |S(B)|6�(M) for all B of power

¡�(M)+, it is easy to see that such Ai ; i¡�(M), exist. Clearly A=
⋃

i¡�(M)+ Ai

is as wanted.

So it is enough to show that |S(A)|6�. By Lemma 1.2(vi), for each p∈ S(A),
choose Bp so that p does not split strongly over Bp and |Bp|¡�(M). Then by
Lemma 1.14, every type p∈ S(A) is determined by p �ABp and the fact that it does
not split strongly over B. Since the number of possible B is �¡�(M) = � and for each
such B, |S(AB)|6�(M), |S(A)|6�× �(M)= �.

Lemma 1.16. If �¡�(M) ¿ �; then M is not �-stable.

Proof. By the de�nition of �(M), we may assume that �¿�(M). Let �¡�(M) be the
least cardinal such that ��¿�. By the de�nition of �(M), there are a; bi and ci; i¡�,
such that
(i) for all i¡�, there is an in�nite indiscernible set I ′i over

⋃
j¡i (bj ∪ cj) such that

bi; ci ∈ I ′i ,
(ii) for all i¡�, there is �i(x; y) such that |= �i(a; bi)∧¬�i(a; ci).

Claim. There are Ii; i¡�, such that for all i¡�; Ii= {di
k | k¡�} is indiscernible over⋃

j¡i Ij, bi; ci ∈ Ii and for k¡k ′¡�; di
k 6=di

k′ .

Proof. By induction on 0¡�6�, we de�ne I �i = {d�; i
k | k¡�}; i¡�, such that

(1) for all i¡�; I �i is indiscernible over
⋃

j¡i I
�
j and bi; ci ∈ I �i ,

(2) for all �¡�, there is an automorphism f such that f �
⋃

j¡� (bj ∪ cj)=

id∪j¡�(bj ∪ cj) and for all j¡�; f(d�; j
k )=d�; j

k , k¡�,
(3) for all i¡� and k¡k ′¡�; d�; i

k 6=d�; i
k′ .

Clearly this is enough, since then I �i ; i¡�, are as wanted.
By (2) and homogeneity of M, limits are trivial, so we assume that �= �+1 and that

I�j ; j¡�, are de�ned. By Lemma 1.15, there is �¿� such that M is
�-stable. By the assumptions and Lemma 1.2(iii), there is J = {dk | k¡�+} such that
it is indiscernible over

⋃
j¡� (bj ∪ cj) and b�; c� ∈ J . By Lemma 1.2(ii), there is I ⊆ J

of power �, such that it is indiscernible over
⋃

j¡� I�j . Since J is indiscernible over⋃
j¡� (bj ∪ cj), there is an automorphism f such that f �

⋃
j¡� (bj ∪ cj)= id∪j¡�(bj∪cj)

and b�; c� ∈{f(d) |d∈ I}. We let I �� =f(I) and if i¡�, then I �i =f(I�i ). Clearly these
are as required.



T. Hyttinen, S. Shelah / Annals of Pure and Applied Logic 103 (2000) 201–228 207

By Lemma 1.2(iv) we may assume that for all i¡�, |= �i(a; di
k) i� k =0. Then for

all �∈ �� and 0¡�6�, we de�ne function f�
� so that the following holds (f

�
0 = idM):

(a) for all i¡�¡� and �∈ ��; f�
� � Ii=f�

� � Ii,
(b) if �= � + 1 and �∈ ��, then

f�
� (f

�
� (d

�
0))=f�

� (d
�
�(�));

f�
� (f

�
� (d

�
�(�)))=f�

� (d
�
0)

and for all i¡�; i 6=0; �(�),

f�
� (f

�
� (d

�
i ))=f�

� (d
�
i );

(c) if � � �= �′ � � then f�
� =f�′

� .
It is easy to see that such f�

� exist. For limit � this follows from the homogeneity
of M and for successors this follows from the fact that f�

� (I�) is indiscernible over⋃
i¡� f�

� (Ii).
For all �∈ ��, let a�=f�

� (a). Then clearly for � 6= �′, the types of a� and a�′ over
A=

⋃{f�
�+1(I�) | �∈ ��; �¡�} are di�erent. By the choice of �, �¡�= � and so by

(c), |A|= �. Since �� ¿ �, M is not �-stable.

So we have proved the following theorem. With slightly di�erent de�nitions this
theorem is already proved in [2].

Theorem 1.17. M is �-stable i� �= �(M) + �¡�(M).

Proof. Follows from Lemmas 1.15 and 1.16.

Let �r(M) be the least regular �¿�(M). By Lemma 1.16, �(M)¡�(M) = �(M) and
so cf(�(M))¿�(M). Because cf(�(M)) is regular, �r(M)6�(M).

2. Indiscernible sets

In this section we prove basic properties of indiscernible sets. We start by improving
Lemma 1.2(iv).

Lemma 2.1. For all in�nite indiscernible I and a there is p∈ S(a) such that

|{b∈ I | t(b; a) 6=p}|¡�(M):

Proof. Assume not. By Lemma 1.2(iii), we may assume that I and a are such that
I = {bi | i¡�(M) + ! · �(M)}, bi 6= bj for i 6= j and for some p∈ S(a); t(bi; a)=p i�
i¿�(M). For all i¡�(M), we de�ne Ai as follows:
(i) A0 = ∅,
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(ii) Ai+1 =Ai ∪{bi−1}∪ {bj |! · i6j¡! · (i + 1)},
(iii) for limit i; Ai=

⋃
j¡i Aj.

Then it is easy to see that for all i¡�(M) t(a; Ai+1) splits strongly over Ai, a contra-
diction.

Corollary 2.2. For all indiscernible I and �(x; a); either X = {b∈ I | |=�(b; a)} or
Y = {b∈ I | |=¬�(b; a)} is of power ¡�(M).

Proof. Follows immediately from Lemma 2.1.

De�nition 2.3. If I is indiscernible and of power ¿�(M), we write Av(I; A) for
{�(x; a) | a∈A; �∈L; |{b∈ I | |=¬�(b; a)}|¡�(M)}.

Lemma 2.4. (i) If I is indiscernible over A and of power ¿�(M); then I ∪{b} is
indiscernible over A i� t(b; I ∪A)=Av(I; I ∪A).
(ii) If I and J are of power ¿�(M) and I ∪ J is indiscernible; then for all A;

Av(I; A)=Av(J; A).
(iii) If I is indiscernible and of power ¿�(M); then for all A; Av(I; A) is M-

consistent.

Proof. Conditions (i) and (ii) are trivial. We prove (iii): By (ii) and Lemma 1.2(iii),
we may assume that |I |¿|L∪A|+ �r(M). Then the claim follows by the pigeon hole
principle from (i).

De�nition 2.5. Assume I and J are indiscernible sets of power ¿�(M).
(i) We say that I is based on A if for all B⊇A∪ I , Av(I; B) does not split strongly

over A.
(ii) We say that I and J are equivalent if for all B, Av(I; B)=Av(J; B).
(iii) We say that I is stationary over A if I is based on A and for all f∈Aut(A),

f(I) and I are equivalent.

Lemma 2.6. Assume I is an indiscernible set of power ¿�(M); |A|¡� and M is
�-stable. Then the following are equivalent:

(i) I is based on A;
(ii) the number of non-equivalent indiscernible sets in {f(I) |f∈Aut(A)} is 6�;
(iii) the number of non-equivalent indiscernible sets in {f(I) |f∈Aut(A)} is ¡|M|.

Proof. (i)⇒ (ii) Assume not. Let fi (I), i¡�+, be a counterexample. For all i¡�(M),
choose Ai so that
(a) A⊆A0 and every type p∈ S(A) is realized in A0,
(b) if i¡j, then Ai ⊆Aj and for limit i, Ai=

⋃
j¡i Aj,

(c) every type p∈ S(Ai) is realized in Ai+1,
(d) |Ai|6�.
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Let A=
⋃

i¡�(M)Ai. Since M is �-stable there are i 6= j such that Av(fi (I);A)=
Av(fj(I);A). Let a be such that Av(fi (I);A∪{a}) 6=Av(fj(I);A∪{a}). By Lemma
1.2(v), choose i¡�(M) so that t(a;Ai+!) does not split overAi. Without loss of gener-
ality, we may assume that i=0. For all i¡!, choose ai ∈Ai+1 so that t(ai;

⋃
j6i Aj)=

t(a;
⋃

j6i Aj). By an easy induction, we see that {a}∪ {ai | i¡!} is order-indiscernible
over A and so also over A. By Lemma 1.2(i), {a}∪ {ai | i¡!} is indiscernible over
A. But then clearly either Av(fi (I);A∪{a}) or Av(fj(I);A∪{a}) splits strongly over
A, a contradiction.
(ii)⇒ (iii) Trivial.
(iii)⇒ (i) Assume not. Then by Lemma 1.2(iii), we can �nd J = {ai | i¡|M|} and

�(x; y) such that J is indiscernible over A, for i 6= j, ai 6= aj, and �(x; ai)∈Av(I; J )
i� i=0. But then for all i¡|M|, we can �nd fi ∈Aut(A) such that for all j¡i,
�(x; aj) 6∈Av(fi (I); J ) but �(x; ai)∈Av(fi (I); J ). Clearly these fi (I) are not equivalent,
a contradiction.

3. Independence

In this chapter we de�ne an independence relation and prove the basic properties
of it. This independence notion is an improved version of the one de�ned in [1]. It
satis�es weak versions of the basic properties of forking, e.g. a ↓A A holds assuming A
is a-saturated.

De�nition 3.1. (i) We write a ↓A B if there is C ⊆A of power ¡�(M) such that for
all D⊇A∪B there is b which satis�es: t(b; A∪B)= t(a; A∪B) and t(b; D) does not
split strongly over C. We write C ↓A B if for all a∈C, a ↓A B.
(ii) We say that t(a; A) is bounded if |{b | t(b; A)= t(a; A)}|¡|M|. If t(a; A) is not

bounded, we say that it is unbounded.

Lemma 3.2. (i) If A⊆A′ ⊆B′ ⊆B and a ↓A B then a ↓A′ B′.
(ii) If A⊆B and a ↓A B then for all C ⊇B there is b such that t(b; B)= t(a; B) and

b ↓A C.
(iii) Assume that A is a-saturated. If A⊆A is such that t(a;A) does not split

strongly over A then for all B such that A⊆B⊆A; a ↓B A. Especially a ↓A A.
(iv) Assume a and A are such that t(a; A) is bounded. Then for all B⊇A, t(a; B)

does not split strongly over A.
(v) Assume A⊆B and t(a; A) is unbounded. If t(a; B) is bounded; then a 6 ↓A B.
(vi) Assume A is a-saturated and a 6∈A. Then t(a;A) is unbounded.
(vii) Let � be a cardinal. Assume a and A are such that t(a; A) is unbounded and

a ↓A A. If ai; i¡�; are such that for all i¡�; t(ai; A)= t(a; A) and ai ↓A
⋃

j¡i aj; then
|{ai | i¡�}|= �.
(viii) Assume A⊆B, a ↓A A and t(a; A) is unbounded. Then there is b such that

b ↓A B and b Em
min;A a.

(ix) If a ↓A b∪ c and b Em
min;A c; then t(b; A∪ a)= t(c; A∪ a).
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Proof. (i) is immediate by the de�nition of ↓.
(ii) Choose a-saturated D⊇C. Since a ↓A B, there are b and A′ ⊆A such that t(b; B)=

t(a; B), |A′|¡�(M) and t(b;D) does not split strongly over A′. By Lemma 1.13, b is
as wanted.
(iii) By Lemmas 1.2(vi) and 1.13, a ↓A A and so by (i), a ↓B A.
(iv) Assume not. Then there are distinct ai, i¡|M|, and �, such that {ai | i¡|M|}

is indiscernible over A and |= �(a; ai) i� i=0. For all �(M)6i¡|M|, �nd an auto-
morphism fi ∈Aut(A) such that fi (a0)= ai, f(ai)= a0 and for all 0¡j¡i, fi (aj)= aj.
By Corollary 2.2, it is easy to see that {fi (a) | �(M)6i¡|M|} contains |M| distinct
elements, a contradiction.
(v) Assume not. Then by (ii) we can �nd C ⊇B and b such that t(b; B)= t(a; B),

b ↓A C and b∈C. By Lemma 1.2(ii), there is an in�nite indiscernible set I over A
such that b∈ I . Clearly, we cannot �nd c such that t(c; C)= t(b; C) and t(c; C ∪ I) does
not split strongly over some A′ ⊆A, a contradiction.
(vi) Follows immediately from (iii) and (v).
(vii) Immediate by (v).
(viii) Let �¿|A| be such that M is �-stable. Choose ai, i¡�+ so that t(ai; A)

= t(a; A) and ai ↓A
⋃

j¡i aj. By (vii) and Lemma 1.2(ii), we may assume that {ai | i¡!}
is in�nite indiscernible over A. Clearly we may also assume that a= a0. Let d= a1.
Then t(d; A)= t(a; A), d ↓A a and by Lemma 1.5, dEm

min;A a. Then we can choose b so
that t(b; A∪ a)= t(d; A∪ a) and b ↓A a∪B. Clearly then b is as wanted.
(ix) Follows immediately from Lemma 1.12. Note that if b Em

min;A c, then for all
d∈A, b∪dEm+k

min;A c∪d.

De�nition 3.3. (i) We say that M-consistent p∈ S(A) is stationary if for all a, b
and B⊇A the following holds: if t(a; A)= t(b; A)=p, a ↓A B and b ↓A B then t(a; B)=
t(b; B).
(ii) We say that I is A-independent if for all a∈ I , a ↓A I − {a}.

Lemma 3.4. If A is a-saturated; then every M-consistent p∈ S(A) is stationary.

Proof. Assume not. Choose B⊇A, a and b so that t(a;A)= t(b;A), a ↓A B, b ↓A B

and t(a;B) 6= t(b;B). By Lemma 3.2(ii) we may assume that B is FM�(M)-saturated.
Choose c∈B and � so that |= �(a; c)∧¬�(b; c). Let A⊆A be such that |A|¡�(M)
and both t(a;B) and t(b;B) do not split strongly over A. Choose d∈A so that
dEm

min;A c. By Lemma 1.12, a contradiction follows.

Corollary 3.5. (i) Assume A is a-saturated. If a 6 ↓A B; then there is b∈B such that
a 6 ↓A b.
(ii) If A is a-saturated and ai; i¡�; are such that a0 6∈A; for all i; j; t(ai;A)=

t(aj;A) and ai ↓A
⋃

j¡i aj; then {ai | i¡�} is indiscernible over A and A-independent
and if i 6= j; then ai 6= aj.
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(iii) Assume A is a-saturated. Then for all B⊇A and C there is D such that
t(D;A)= t(C;A) and D ↓A B.
(iv) If A⊆B⊆C; B is a-saturated; a ↓A B and a ↓B C; then a ↓A C.
(v) Assume A is a-saturated; t(a;A) does not split strongly over A⊆A and

|A|¡�(M). Then a 6 ↓A B i� there is �nite b∈A∪B such that a 6 ↓A b.

Proof. (i) follows immediately from Lemma 3.4 (if a 6 ↓A B, then t(a;A∪B) is not
the unique free extension of t(a;A), which can be detected from a �nite sequence).
(ii) By Lemma 3.4, it is easy to see that {ai | i¡�} is order-indiscernible over A. By

Lemma 1.2(i), {ai | i¡�} is indiscernible over A. Clearly, this implies that {ai | i¡�}
is A-independent. The last claim follows from Lemma 3.2(v).
(iii) Clearly, it is enough to prove the following: If D ↓A B, then for all c there

is d such that t(d;A∪D)= t(c;A∪D) and d∪D ↓A B. This follows from Lem-
mas 1.1, 3.2(ii) and 3.4.
(iv) Choose b so that t(b;B)= t(a;B) and b ↓A C. Then b ↓B C and so by Lemma 3.4,

we get t(b; C)= t(a; C). Clearly this implies the claim.
(v) If a ↓A B then by (iv), a ↓A A∪B from which it follows that there are no �nite

b∈A∪B such that a 6 ↓A b. On the other hand if a 6 ↓A B, then t(a;A∪B) is not the
unique ‘free’ extension of t(a;A) de�ned in the proof of Lemma 1.13. This means that
there are c∈A and d∈A∪B such that c Em

min;A d and t(c; A∪ a) 6= t(d; A∪ a). Clearly
a 6 ↓A c∪d.

Lemma 3.6. If A is a-saturated and a ↓A b; then b ↓A a.

Proof. Assume not. Let �¿|A| be such that M is �-stable. For all i¡�+, choose
ai and bi so that t(ai;A)= t(a;A), ai ↓A

⋃
j¡i(aj ∪ bj), t(bi;A)= t(b;A) and bi ↓A ai

∪ ⋃
j¡i (aj ∪ bj). Then by Lemma 3.4, bi 6 ↓A aj i� j¿i. Clearly this contradicts

Lemma 1.2(ii).

Corollary 3.7. For all a; b and A; b ↓A A and a ↓A b implies b ↓A a.

Proof. Assume not. Choose a-saturated A⊇A and b′ so that t(b′; A)= t(b; A) and
b′ ↓A A. We may assume that b′= b. Then choose a′ so that t(a′:A∪ b)= t(a; A∪ b)
and a′ ↓A A∪ b. By Lemma 3.6, b ↓A a′. By Corollary 3.5(iii), b ↓A a′ and so b ↓A a.

Lemma 3.8. (i) If b ↓A D and c ↓A∪b D; then b∪ c ↓A D.
(ii) If A is a-saturated; B ↓A D and C ↓A∪B D; then B∪C ↓A D.
(iii) Assume A is a-saturated and B⊇A. If a ↓A B; a ↓B C and there is D⊆B

(e.g. D=B) such that C ↓D B; then a ↓A B∪C.
(iv) Assume A is a-saturated. If a ↓A b and a∪ b ↓A B; then a ↓A B∪ b.
(v) Assume a ↓A A; for all i¡!; t(ai; A)= t(a; A) and ai ↓A

⋃
j¡i aj. Then for all

n¡!; {ai | i¡n} is A-independent.
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Proof. (i) Choose B⊆A of power ¡�(M) such that
(a) for all C ⊇A∪D there is b′ which satis�es: t(b′; A∪D)= t(b; A∪D) and t(b′; C)

does not split strongly over B and
(b) for all C ⊇A∪D∪ b there is c′ which satis�es: t(c′; A∪D∪ b)= t(c; A∪D∪ b)

and t(c′; C) does not split strongly over B∪ b.
Let C ⊇A∪D be arbitrary. Choose b′ as in (a) above. By (b) above we can �nd c′

such that t(c′ ∪ b′; A∪D)= t(c∪ b; A∪D) and t(c′; C ∪ b′) does not split strongly over
B∪ b′.
For a contradiction, assume t(b′ ∪ c′; C) splits strongly over B. Let I = {ai | i¡!}⊆C

and � be such that I is indiscernible over B and
(c) |= �(c′; b′; a0) ∧ ¬�(c′; b′; a1).

Claim. I is indiscernible over B∪ b′.

Proof. If not, then (change the enumeration if necessary) there is  over B such that
|=  (b′; a0; : : : ; an−1) ∧ ¬ (b′; an; : : : ; a2n−1). Since

{(am·n; : : : ; a(m+1)·n−1) |m¡!}

is indiscernible over B, we have a contradiction with the choice of b′.

By Claim and (c), t(c′; C ∪ b′) splits strongly over B∪ b′. This contradicts the choice
of c′.
(ii) Clearly we may assume that C is �nite. Let b∈B be arbitrary. We show that

C ∪ b ↓A D. Choose A⊆A and A′ ⊆B such that
(a) b∈A′, |A∪A′|¡�(M),
(b) for all D′ ⊇A∪B∪D there is C′ which satis�es: t(C′;A∪B∪D)= t(C; A∪

B∪D) and t(C′; D′) does not split strongly over A∪A′

(c) for all D′ ⊇A∪D and a∈A′, there is a′ which satis�es: t(a′;A∪D)= t(a; A∪
D) and t(a′; D′) does not split strongly over A.
Then we can proceed as in (i). (We assume that A is a-saturated in order to be able
to use Corollary 3.5(iii).)
(iii) By Lemma 3.6, B↓Aa. By Corollary 3.7, C ↓B a. By (ii), these imply B∪C ↓A a,

from which we get the claim by Lemma 3.6.
(iv) Choose a′ so that t(a′;A∪ b)= t(a;A∪ b) and a′ ↓A B∪ b. By (i) and

Lemma 3.4, t(a′ ∪ b;A∪B)= t(a∪ b;A∪B).
(v) By (i) it is easy to see that
(∗) for all n¡!,

⋃
i¡n ai ↓A A.

We prove the claim by induction on n. For n=1 the claim follows immediately from
the assumptions. Let i¡n. We show that ai ↓A ∪{aj| j¡n; j 6= i}. If i= n − 1, then
this is assumption. So assume that i¡n− 1. By the choice of an−1,

an−1 ↓A∪⋃{aj | j¡n−1; j 6= i} ai:
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By the induction assumption

ai ↓A ∪{aj | j¡n− 1; j 6= i}

and by (∗) and Corollary 3.7

∪{aj | j¡n− 1; j 6= i} ↓A ai:

By (i),

an−1 ∪
⋃

{aj | j¡n− 1; j 6= i} ↓A ai:

By Corollary 3.7, the claim follows.

Lemma 3.9. Assume B⊇A and t(a; A) is unbounded. Then a ↓A B i� there is an in-
discernible set I over A such that |I |¿�(M); I is based on some A′ ⊆A of power
¡�(M) and Av(I; B)= t(a; B).

Proof. From right to left the claim is trivial. So we prove the other direction. Without
loss of generality, we may assume that B is a-saturated. Let A′ ⊆A be such that
|A′|¡�(M) and for all C ⊇B there is b such that t(b; B)= t(a; B) and t(b; C) does not
split strongly over A′. Let �¿|B| be a regular cardinal such that M is �-stable. For all
i¡�+ we de�ne Bi and ai so that
(i) Bi ; i¡�+; is an increasing sequence of �-saturated models of power � and

B⊆B0;
(ii) for all i¡�+, t(ai; B)= t(a; B), ai ∈Bi+1−Bi and t(ai;Bi) does not split strongly

over A′ (so ai ↓A′ Bi).
By Lemma 3.2(v) and Corollary 3.5(ii), {ai | i¡�+} is indiscernible over B and aj 6= aj

for all i¡j¡�+. We prove that I = {ai | i¡�(M)} is as wanted.
Clearly it is enough to show that I is based on A′. For a contradiction, assume

that C ⊇B is such that Av(I; C) splits strongly over A′. Clearly, we may assume that
C ⊆B�(M)+1. By Lemma 1.2(ii) there is J ⊆ �+ − (�(M) + 1), such that |J |= �+ and
{ai | i∈ J} is indiscernible over C. Then t(ai; C)=Av(I; C) for all i∈ J . By (ii) above,
for all i∈ J , t(ai; C) does not split strongly over A′, a contradiction.

Lemma 3.10. Assume a Em
min;A b; a ↓A c and b ↓A c. If c ↓A A or t(a; A) is bounded or

t(c; A) is bounded; then t(a; A∪ c)= t(b; A∪ c).

Proof. We divide the proof to three cases:
Case 1: t(c; A) is bounded: Let B be the set of all e such that t(e; A) is bounded.

Then |B|¡|M| and so |S(A∪B)|¡|M|. We de�ne E so that x E y if t(x; A∪B)=
t(y; A∪B). Since for all f∈Aut(A), f(A∪B)=A∪B, E ∈ SE(A). Clearly this implies
the claim.
Case 2: t(a; A) is bounded: De�ne E so that x E y if x=y or t(x; A) 6= t(a; A) and

t(y; A) 6= t(a; A). Clearly E ∈ SEm(A), and so a= b from which the claim follows.
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Case 3: t(a; A) is unbounded and c ↓A A: Assume the claim is not true. Let �¿|A|
be such that M is �-stable. Choose ai, i¡�+ so that t(ai; A∪ c)= t(a; A∪ c) and
ai ↓A c∪ ⋃

j¡i aj. By Lemmas 3.2(vii) and 1.2(ii), we may assume that {ai | i¡!} is
in�nite indiscernible over A. Clearly we may also assume that a= a0. Let d= a1. Then
t(d; A∪ c)= t(a; A∪ c), d ↓A a∪ c and by Lemma 1.5, dEm

min;A a. Then we can choose
this d so that in addition, d ↓A a∪ c∪ b. By Lemma 3.8(i), b∪d ↓A c. By Corollary 3.7,
c ↓A b∪d. Since dEm

min;A b, this contradicts Lemma 3.2(ix).

Note that in the case(s) 1 (and 2) above the assumptions a ↓A c and b ↓A c are not
used.

Corollary 3.11. Assume ai; i¡!; are such that for all i; j¡!; ai Em
min;A aj and for all

i¡!; ai ↓A
⋃

j¡i aj. Then for all i 6= j; ai 6= aj and {ai | i¡!} is indiscernible over A.

Proof. By Lemma 3.2(vii), for all i 6= j, ai 6= aj. We show that for all i0¡i1¡ · · ·¡
in¡!, t(a0 ∪ · · · ∪ an; A)= t(ai0 ∪ · · · ∪ ain ; A). By Lemma 1.2(i), this is enough.
By Lemma 3.8(v), {ai | i6in} is A-independent and by Lemma 3.8(i), it is easy

to see that ∪{ai | i6in} ↓A A. So by Lemma 3.10, t(a0; A∪ ⋃
0¡k6n aik )= t(ai0 ; A∪⋃

0¡k6n aik ). So it is enough to show that t(a0 ∪ · · · ∪ an; A)= t(a0 ∪ ai1 ∪ · · · ∪ ain ; A).
As above we can see that t(a1; A∪ a0 ∪

⋃
1¡k6n aik )= t(ai1 ; A∪ a0 ∪

⋃
1¡k6n aik ). So

it is enough to show that t(a0 ∪ · · · ∪ an; A)= t(a0 ∪ a1 ∪ ai2 ∪ · · · ∪ ain ; A). We can carry
this on and get the claim.

Theorem 3.12. Assume a ↓A c; b ↓A c and a Em
min;A b. Then t(a; A∪ c)= t(b; A∪ c).

Proof. Assume not. As in the proof of Lemma 3.10 (Case 3.), we can �nd a′ and
b′ such that t(a′; A∪ c)= t(a; A∪ c), t(b′; A∪ c)= t(b; A∪ c), a′ ↓A c∪ a, b′ ↓A c∪ b, a′

Em
min;A a and b′ Em

min;A b. For all i¡�(M), choose ai so that ai ↓A c∪ a∪ b∪ ⋃
j¡i aj, if

i is odd, then t(ai; A∪ c∪ a)= t(a′; A∪ c∪ a) and if i is even, then t(ai; A∪ c∪ b)= t
(b′; A∪ c∪ b). By Corollary 3.11, for all i 6= j, ai 6= aj and {ai| i¡�(M)} is indis-
cernible over A. Clearly this contradicts Lemma 2.1.

Lemma 3.13. Assume M is �-stable and |A|6�. Then there is a-saturated A⊇A of
power 6�.

Proof. Immediate by Lemma 1.9(ii) and the fact that �r(M)6�(M) is regular.

Theorem 3.14. Assume M is �-stable and |A|6�. Then there is FM� -saturated A⊇A
of power 6�.

Proof. By Lemma 3.13, there is an increasing continuous sequence Ai, i6�·�, of
models of power 6� such that
(i) A⊆A0 and for all i6�·�, Ai+1 is a-saturated,
(ii) for all i¡�·� and a, there is b∈Ai+1 such that t(b; Ai)= t(a; Ai).
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We show that A=A�·� is as wanted. For this let B⊆A of power ¡� and b be
arbitrary. We show that t(b; B) is realized in A.
By Theorem 1.17, cf(�)¿�r(M) and so A is a-saturated and there is �′¡� such

that b ↓A�·�′ A. By the pigeon hole principle there is �¡� such that �¿�′ and (A�·(�+1)−
A�·�) ∩ B= ∅.

Claim. There is �¡� such that B ↓A�·�+� A�·�+�+1.

Proof. Assume not. Then by the pigeon hole principle, we can �nd c∈B such that

|{¡� | c 6 ↓A�·�+ A�·�++1}|¿cf(�):

But this is impossible by Lemma 3.2(iii), because cf(�)¿�r(M) and A�· is a-
saturated for all 6� such that cf()¿�r(M).

Choose c∈A�·�+�+1 so that t(c; A�·�+�)= t(b; A�·�+�). By Claim, B ↓A�·�+� c and so
c ↓A�·�+� B. Since b ↓A�·�+� B, Lemma 3.4 implies, t(c; A�·�+� ∪B)= t(b; A�·�+� ∪B).

We �nish this chapter by proving that over FM�(M)-saturated models our independence
notion is equivalent with the notion used in [1].

Lemma 3.15. Assume A is FM�(M)-saturated model and B⊇A. Then the following
are equivalent:
(i) a ↓A B.
(ii) For all b∈B there is A⊆A of power ¡�(M) such that t(a;A∪ b) does not

split over A.

Proof. Let p∈ S(A) be arbitrary M-consistent type. Let a be such that t(a;A)=p
and a ↓A B. Let a′ be such that t(a′;A)=p and for all b∈B there is A⊆A of power
¡�(M) such that t(a′;A∪ b) does not split over A. We show that then t(a; B)= t
(a′; B). This implies the claim, since for all M-consistent p∈ S(A) such a and a′

exist: The existence of a follows from Lemma 3.2(ii) and (iii) and the existence of a′

can be seen as in [1].
For a contradiction, assume that there is b∈B such that t(a;A∪ b) 6= t(a′;A∪ b).

By the choice of a and a′ and Lemma 1.2(vi), there is A⊆A of power ¡�(M) such
that t(a;A∪ b) does not split strongly over A, t(a′;A∪ b) and t(b;A) do not split over
A and t(a; A∪ b) 6= t(a′; A∪ b). For all i¡!, choose bi ∈A so that t(bi; A∪ ⋃

j¡i bj)=
t(b; A∪ ⋃

j¡i bj). Since t(b;A) does not split over A, by Lemma 1.2(i), it is easy
to see that {bi | i¡!}∪ {b} is in�nite indiscernible over A. Since t(a;A)= t(a′;A),
either t(a;A∪ b) or t(a′;A∪ b) splits strongly over A, a contradiction.

4. Orthogonality

In this section we study orthogonality. Since we do not have full transitivity of ↓,
we need stationary pairs:
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De�nition 4.1. Assume A⊆B and p∈ S(B). We say that (p; A) is stationary pair if
for all a, t(a; B)=p implies a ↓A B and for all C ⊇B, a and b, the following holds: if
a ↓A C, b ↓A C and t(a; B)= t(b; B)=p, then t(a; C)= t(b; C).

Lemma 4.2. (i) Assume A⊆B⊆C; a ↓A C and (t(a; B); A) is a stationary pair. Then
(t(a; C); A) is a stationary pair.
(ii) Assume A⊆B⊆C ⊆D; a ↓A C; a ↓B D and (t(a; C); B) is a stationary pair. Then

a ↓A D.

Proof. (i) is trivial, so we prove (ii): Choose a′ so that t(a′; C)= t(a; C) and a′ ↓A D.
Then a′ ↓B D and so t(a′; D)= t(a; D) from which the claim follows.

Lemma 4.3. Assume A is a-saturated; t(a;A) does not split strongly over A⊆A and
|A|¡�(M). Then there is B⊆A such that A⊆B; |B−A|¡!; B ↓A A and (t(a; B); A)
is a stationary pair.

Proof. By Lemma 1.13, a ↓A A. Choose bi, i6!, so that for all i6!, t(bi;A)=
t(a;A) and bi ↓A A∪ ⋃

j¡i bj. Then {bi | i6!} is indiscernible over A and by
Lemma 3.8(ii),

(∗) {bi | i¡!} ↓A A:

Especially,

(∗∗) {bi | i¡!} ↓A A:

Without loss of generality, we may assume that b!= a. Choose a∗ ∈A so that
a∗ Em

min;A a. Let B=A∪ a∗ and I = {bi | i¡!}. Then B ↓A A.

Claim. Assume J ⊇ I is indiscernible over A, t(b; B)= t(a; B) and b ↓A B∪ J ∪ a. Then
J ∪{b} is indiscernible over A.

Proof. By Lemmas 1.12 and 1.5 it is enough to show that t(b; A∪ I)= t(a; A∪ I). By
(∗), I ↓A a∗. By the choice of a∗, a∗ ↓A A and so by Corollary 3.7, a∗ ↓A I . By the
choice of b and Lemma 3.2(i), b ↓A∪a∗ I . By Lemma 3.8(i), b∪ a∗ ↓A I . By (∗∗) and
Corollary 3.7, I ↓A a∗ ∪ b. So by Lemma 3.2(ix), t(a∗; A∪ I)= t(b; A∪ I). Similarly we
can see that I ↓A a∗ ∪ a and so by Lemma 3.2(ix), t(a∗; A∪ I)= t(a; A∪ I).

We show that (t(a; B); A) is a stationary pair. Assume not. Since A is FM�(M)-
saturated, we can �nd b such that b ↓A A, t(b; B)= t(a; B) and t(b;A) 6= t(a;A). Choose
ci, i¡�(M), so that for all i¡�(M), t(ci;A)= t(b;A) if i is odd, t(ci;A)= t(a;A)
if i is even and for all i¡�(M), ci ↓A A∪ I ∪ ⋃

j¡i cj. By Claim {ci | i¡�(M)} is
indiscernible. This contradicts Corollary 2.2.

De�nition 4.4. (i) We say that p∈ S(A) is orthogonal to q∈ S(C) if for all a-saturated
A⊇A∪C the following holds: if t(b; C)= q, b ↓C A, t(a; A)=p and a ↓A A, then
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a ↓A b. We say that p∈ S(A) is orthogonal to C if it is orthogonal to every
q∈ S(C).
(ii) We say that a stationary pair (p; A) is orthogonal to q∈ S(C) if for all a-

saturatedA⊇C ∪dom(p) the following holds: if t(b; C)= q, b ↓C A, t(a; dom(p))=p
and a ↓A A, then a ↓A b. We say that a stationary pair (p; A) is orthogonal to C if it
is orthogonal to every q∈ S(C).

Lemma 4.5. Assume A is a-saturated; A⊆B⊆A; a ↓A A and (t(a; B); A) is a sta-
tionary pair. Then t(a;A) is orthogonal to C i� (t(a; B); A) is orthogonal to C.

Proof. Immediate.

Lemma 4.6. Assume A⊆A; A is a-saturated and p∈ S(A). Then the following are
equivalent.
(i) p is orthogonal to A.
(ii) For all a and b; if t(a;A)=p and b ↓A A; then a ↓A b.

Proof. Clearly (i) implies (ii) and so we prove the other direction. Assume (ii) and
for a contradiction assume that there is a-saturated C⊇A and a and b such that
t(a;A)=p, a ↓A C, b ↓A C and a 6 ↓C b.
Choose B0⊆B1⊆A so that

(1) |B1|¡�(M),
(2) a ↓B0 A and b ↓B0 ∩ AA,
(3) (t(a; B1); B0) is a stationary pair.
By Corollary 3.5(v), choose �nite d∈C such that a 6 ↓B1 d∪ b. Choose B2⊇B1 ∪d of
power ¡�(M) such that B2⊆C and t(a∪ b;C) does not split strongly over B2. Since
t(a;C) and t(b;C) do not split strongly over B2 we can �nd by Lemmas 4.3 and 4.2(i)
B3⊇B2 of power ¡�(M) such that B3⊆C and both (t(a; B3); B2) and (t(b; B3); B2)
are stationary pairs. Then
(*) a ↓B0 B3 and b ↓B0 ∩ A B3.
Choose f∈Aut(B1) so that f(B3)⊆A and for all c∈B3, f(c)Em

min;B1 c. Then t(f(a);
f(B3))= t(a; f(B3)) and so we may assume that f(a)= a. Now a∪f(b) ↓f(B2) f(B3),
and so we can �nd a′ and b′ so that t(a′ ∪ b′; f(B3))= t(a∪f(b); f(B3)) and a′ ∪ b′

↓f(B2)A. Then by (*) and Lemma 4.2(ii), a′ ↓B0 A and so t(a′;A)= t(a;A) and we
may assume that a′= a. Also by Lemma 4.2(ii) and (*), b′ ↓B0 ∩ A A and so b′ ↓A A.
Because a 6 ↓B1 f(c)∪ b′, by Corollary 3.5(v), a 6 ↓A b′. Clearly this contradicts (ii).

Lemma 4.7. Let �¿�r(M) be a cardinal. Assume D⊆C; p∈ S(C); (p;D) is a sta-
tionary pair and orthogonal to A; |C|¡�; A⊆B are strongly FM� -saturated and
C ↓A B. Then (p;D) is orthogonal to B.

Proof. For a contradiction, assume that q∈ S(B) is not orthogonal to (p;D). Choose
B⊆B of power ¡�(M) so that q does not split strongly over B. Choose A⊆A so
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that
(i) |A|¡�,
(ii) for all c∈C, t(c;A∪B) does not split strongly over A.
By Lemma 1.9(v), we can �nd B′ ⊆A and f∈Aut(A) so that f(B)=B′ and for all
b∈B, b Em

min;A f(b). By Lemma 1.12, t(B′; C)= t(B; C). Let q′=f(q) �B′. Then it is
easy to see that q′ and (p;C) are not orthogonal, a contradiction.

Corollary 4.8. AssumeA⊆B∩C are strongly FM�r(M)-saturated; B ↓A C and p∈ S(C)
is orthogonal to A. Then p is orthogonal to B.

Proof. Follows immediately from Lemmas 4.3, 4.5 and 4.7.

5. Structure of s-saturated models

We say that M is superstable if �(M)=!.

Lemma 5.1. The following are equivalent:
(i) �(M)=!.
(ii) There are no increasing sequence Ai ; i¡!; of a-saturated models and a such

that for all i¡!; a 6 ↓Ai Ai+1.
(iii) There are no increasing sequence Ai ; i¡!; of FM�(M)-saturated models and a such

that for all i¡!; a 6 ↓Ai Ai+1.

Proof. Clearly (i) implies (ii) and (ii) implies (iii). So we assume that (i) does not
hold and prove that (iii) does not hold either. For this, choose an increasing sequence
of regular cardinals �i, i¡!, such that for all i¡!, M is �i-stable. Let �= supi¡! �i.
By Theorem 1.17, M is not �-stable. Let A be such that |A|6� and |S(A)|¿�. Then
choose an increasing sequence Ai, i¡!, of FM�(M)-saturated models of power �i such
that A⊆⋃

i¡! Ai. Then |S(⋃i¡! Ai)|¿�. By Corollary 3.5(i), it is enough to show
that there is a such that for all i¡!, a 6 ↓Ai

⋃
i¡! Ai. For a contradiction, assume not.

Then for all a there is ia¡!, such that a ↓Aia

⋃
i¡! Ai. Then by Lemma 3.4, for all a,

t(a;
⋃

i¡! Ai) is determined by t(a;Aia). Since for all i¡!, |S(Ai)|6�, this implies
that |S(⋃i¡! Ai)|6�, a contradiction.

De�nition 5.2. We say that t(a; A) is FM� -isolated if there is B⊆A of power ¡�, such
that for all b, t(b; B)= t(a; B) implies t(b; A)= t(a; A). We de�ne FM� -construction,
FM� -primary, etc., as in [3]. Instead of FM�(M)-saturated, F

M
�(M)-isolated, etc., we write

s-saturated, s-isolated, etc.

In slightly di�erent context, the following theorem is proved in [2].

Theorem 5.3 (Shelah [2]). Assume �¿�(M):
(i) For all A there is an FM� -primary model over A.
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(ii) If A is FM� -primary over A then it is FM� -prime over A.
(iii) If A is FM� -primary over A and �¿�(M) is regular; then A is FM� -atomic

over A.
(iv) If �¿�(M) is regular; then FM� -primary models over any set A are unique up

to isomorphism over A.

As usual we write A .C B if for all a, a ↓C A implies a ↓C B.

Lemma 5.4. (i) Assume A is s-saturated and B is s-primary over A∪B. Then
B .A B.
(ii) Assume A⊆B∩C; A is s-saturated and B ↓A C. If (B; {bi | i¡}; (Bi | i¡))

is an s-construction over B; then (B∪C; {bi | i¡}; (Bi | i¡)) is an s-construction
over B∪C.
(iii) Assume �¿�(M); A is FM� -saturated and B is FM� -primary over A∪B. Then

B .A B.

Proof. (i) Assume not. Then we can �nd s-saturated A, B, b and a so that t(b;A∪B)
is s-isolated, a ↓A B and a 6 ↓A b (if (A∪B; {bi | i¡}; (Bi | i¡)) is an s-construction
of B, then let b= bi, where i is the least ordinal such that a 6 ↓A B∪ ⋃

j6i bj and
rename B∪ ⋃

j¡i bj as B; i exists by Corollary 3.5(v)). Without loss of generality we
may assume that |B|¡�(M). Choose A⊆A so that

(i) t(b; A∪B) s-isolates t(b;A∪B),
(ii) for all c∈B, t(c;A∪ a) does not split strongly over some A′ ⊆A of power

¡�(M),
(iii) t(b;A) does not split strongly over some A′ ⊆A of power ¡�(M),
(iv) |A|¡�(M).

This is possible since �r(M)6�(M): Let �=|B| + 1¡�(M). Clearly, we can choose
A so that it of the form A′ ∪A′′ where A′ is of power ¡�(M) and A′′ is a union of
� many sets of power ¡�r(M)6�(M). If �(M) is regular, then clearly |A|¡�(M).
Otherwise �r(M)¡�(M) in which case |A|6|A′|+ max(�; �r(M))¡�(M).
By Lemma 1.9(iii), the proof of Lemma 1.13 and (iii) above, there are c; c′; a′ ∈A

such that c∪ a Em
min;A c′ ∪ a′ and t(b∪ c∪ a; A) 6= t(b∪ c′ ∪ a′; A). By (ii), t(B∪ c∪ a; A)

= t(B∪ c′ ∪ a′; A). So there is f∈Aut(A∪B) such that f(c)= c′ and f(a)= a′. Then
f(b) contradicts (i) above.
(ii) As (i) above.
(iii) By (i) we may assume that �¿�(M). For a contradiction, assume that the claim

does not hold. As in (i), we can �nd s-saturated A, B, b and a so that t(b;A∪B) is
FM� -isolated, a ↓A B, a 6 ↓A b and |B|¡�. Let A⊆A be such that t(a; A∪B) FM� -isolates
t(b;A∪B). Choose s-saturated C⊆A so that |C |= �(M) and a ↓C A∪B. For i¡�,
choose ai ∈A such that (ai)i¡� is C-independent and for all i¡�, t(ai;C)= t(a;C).
As in (i), it is enough to show that there is i¡� such that ai ↓C A∪B. For this we
choose maximal sequence of models Aj and sets Ij ⊆ �, j6j∗, such that
(a) A0 =C and I0 = ∅,
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(b) Ij+1− Ij is �nite, Aj+1 is s-primary over Aj ∪ (Ij+1− Ij) and for some c∈A∪B,
c 6 ↓Aj Ij+1 − Ij,
(c) if j is limit, then Ij =

⋃
k¡j Ik and Aj is s-primary over

⋃
k¡j Ak .

Since �r(M)6|A∪B|¡�, Ij∗ 6= �. Let i∈ �− Ij∗ . By (i) and (ii), it is easy to see that
for all j6j∗, Aj is s-primary over A∪ Ij. Then by (i), ai ↓C Aj∗ and because the
sequence was maximal, A∪B ↓Aj∗ ai. So ai ↓C A∪B as wanted.

Corollary 5.5. (i) Assume A⊆A and A is s-saturated. If p∈ S(A) is orthogonal to
A; then for all C ⊇A; a and b the following holds: if a ↓A C; t(a;A)=p and b ↓A C;
then a ↓A C ∪ b.
(ii) AssumeM is superstable and  is a limit ordinal. LetAi ; i¡; be an increasing

sequence of s-saturated models and A be s-primary over
⋃

i¡ Ai. If a =∈ A then
there is i¡ such that t(a;A) is not orthogonal to Ai.
(iii) Assume A is s-saturated and p∈ S(A) is orthogonal to A⊆A. If ai; i¡!;

are such that for all i¡!; t(ai;A)=p and ai ↓A
⋃

j¡i aj; then for all n¡!;
t(
⋃

i¡n ai;A) is orthogonal to A.

Proof. (i) Assume not. Let C be s-primary over A∪C. Then by Lemma 5.4(i) and
Corollary 3.5(iv), a ↓A C, b ↓A C and a 6 ↓C b, a contradiction.
(ii) Clearly, we may assume that if i¡j then Ai 6=Aj. Since �(M)=!, there is

i¡ such that a ↓Ai

⋃
j¡ Aj. By (i), a ↓Ai A. By Lemma 3.2(v), this is more that

required.
(iii) Assume not. Then by Lemma 4.6, there is b such that b ↓A B and

⋃
i¡n ai 6 ↓A b.

Let m6n be the least such that
⋃

i¡m ai 6 ↓A b. By Lemma 3.8(i), am−1 6 ↓A∪
⋃

i¡m−1
ai
b.

Clearly this contradicts (i).

Let P be a tree without branches of length ¿!. Then by t− we mean the immediate
predecessor of t if t ∈P is not the root. For all t ∈P, by t1¿ we mean the set of
immediate successors of t.

De�nition 5.6 (Shelah [3]). We say that (P; f; g)= ((P;≺); f; g) is an s-free tree of
s-saturated A if the following holds:
(i) (P;≺) is a tree without branches of length ¿!, f : (P − {r}) → A and

g : P → P(A), where r ∈P is the root of P and P(A) is the power set of A – in
order to simplify the notation we write at for f(t) and At for g(t),
(ii) Ar is s-primary model (over ∅),
(iii) if t is not the root and u−= t then t(au;At) is orthogonal to At− ,
(iv) if t= u− then Au is s-primary over At ∪ au,
(v) Assume T; V ⊆P and u∈P are such that

(a) for all t ∈T , t is comparable with u,
(b) T is downwards closed.
(c) if v∈V then for all t such that v¡t � u, t =∈ T .
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Then
⋃

t∈T

At ↓Au

⋃

v∈V

Av:

De�nition 5.7. We say that (P; f; g) is an s-decomposition of A if it is a maximal
s-free tree of A.

Note that ‘the �nite character of dependence’ implies, that unions of increasing
sequences of s-free trees of A are s-free trees of A. So for all s-saturated A there is
an s-decomposition of A.
We say that A is s-primary over an s-free tree (P; f; g) if A is s-primary over⋃{At | t ∈P}.

De�nition 5.8. Assume that (P; f; g) is an s-decomposition of A, A is s-saturated.
Let P= {ti | i¡�} be an enumeration of P such that if ti ≺ tj then i¡j. Then we say
that (Ai)i6� is a generating sequence if the following holds:

(i) for all i6�, Ai ⊆A,
(ii) A0 = ∅,
(iii) Ai+1 is s-primary over Ai ∪Ati ,
(iv) if 0¡i6� is limit then Ai is s-primary over

⋃
j¡i Aj.

Lemma 5.9. Assume that (P; f; g) is an s-free tree of A; A is s-saturated and
(Ai)i6� is a generating sequence. Then for all 0¡i¡�; Ati ↓At−

i

Ai.

Proof. By Lemma 5.4(i), it is enough to prove that for all i¡�, Ai is s-primary
over

⋃
j¡i Atj . We prove this by induction on i. In fact, we need to prove slightly

more to keep the induction going: We show that Ai is not only s-constructible over⋃
j¡i Atj but that the natural construction works. Then the limit cases are trivial and

the successor cases follow from Lemma 5.4(ii).

De�nition 5.10. Assume A is s-saturated. We say that t(a;A) is a c-type if for all s-
saturated C and B the following holds: If C⊆A is such that t(a;A) is not orthogonal
to C and A∪ a⊆B, then there is b∈B−A such that b ↓C A.

Note that the notion of c-type is a generalization of regular type.

Lemma 5.11. Assume M is superstable. Let A⊆B be s-saturated and A 6=B. Then
there is a singleton a∈B−A such that t(a;A) is a c-type.

Proof. Since �(M)=!, by Lemma 1.1 it is easy to see that there is a singleton
a∈B − A and �nite A⊆A such that the following holds: for all b∈B − A and
B⊆A, if there is an automorphism f of M such that f(a)= b and f(A)=B, then
t(b;A) does not split strongly over B (and so b ↓B A). We show that a is as wanted.
Let s-saturated C⊆A be such that t(a;A) is not orthogonal to C. Since B can now
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be any s-saturated model such that A∪ a⊆B, it is enough to show that there is
b∈B−A such that b ↓C A.
By Lemma 4.6, �nd d such that d ↓C A and a 6 ↓A d. Let D be s-primary over C∪d.

Then D ↓C A and a 6 ↓A D. For all i¡!, choose Ai and ai so that t(ai ∪Ai ;D)=
t(a∪A;D) and ai ∪Ai ↓D a∪A∪ ⋃

j¡i(aj ∪Aj).

Claim. {a∪A}∪ {ai ∪Ai | i¡!} is indiscernible over C and a∪A6 ↓C⋃
i¡!(ai ∪Ai).

Proof. The �rst of the claims follow immediately from Corollary 3.5(ii). For a con-
tradiction, assume that the second claim is not true. For all i¡!, we de�ne Bi as
follows: We let B0 be s-primary over A∪ a and Bi+1 be s-primary over Bi ∪Ai ∪ ai.
By Lemma 5.1, there is i¡! such that d ↓Bi Ai ∪ ai. Since {a∪A}∪ {ai ∪Ai | i¡!}
is indiscernible over C and a∪A ↓C

⋃
i¡!(ai ∪Ai), Ai ∪ ai ↓C a∪A∪ ⋃

j¡i(aj ∪Aj).
By Lemma 5.4(ii), Ai ∪ ai ↓C Bi. But then Ai ∪ ai ↓C d, a contradiction.

By Claim and Corollary 3.5(v), let n¡! be the least such that a∪A 6 ↓C

⋃
i¡n(ai

∪Ai). Let A∗ be s-primary over A∪A0 ∪
⋃
0¡i¡n(Ai ∪ ai). It is easy to see that

An ↓C A∪ ⋃
0¡i¡n(Ai ∪ ai). By Claim, A0 ↓C A∪ ⋃

0¡i¡n(Ai ∪ ai) and so by
Lemma 3.8(iv) and the choice of n, A∪ a ↓C A0 ∪

⋃
0¡i¡n(Ai ∪ ai) and so by Lem-

mas 3.6 and 3.2(i), a ↓A A0 ∪
⋃
0¡i¡n(Ai ∪ ai). By Lemma 5.4(i), a ↓A A∗. Similarly

we see that a0 ↓A0 A
∗. Then also a 6 ↓A∗ a1.

By the choice ofA0 and a0 there is f∈Aut(C) such that f(A)=A0 and f(a)= a0.
Let A0 =f(A). By Corollary 3.5(v) there is �nite C ⊆A∗ such that a 6 ↓A A0 ∪C ∪ a0.
Choose B⊆C such that t(A∪ a;C) does not split strongly over B. Then there is
g∈ Saut(B) such that g(A0)⊆C. Since a∪A ↓C A∗ and every h∈Aut(A∗) belongs
to Saut(B), we may assume that

(∗) a∪A ↓C g(C)∪A0 ∪C:

Then t(g(A0 ∪C); A∪ a)= t(A0 ∪C; A∪ a). Choose h∈ Saut(A∪ g(A0)) such that
h(g(C))⊆A. By (*), t(a;A∪ g(C)) does not split strongly over A and so it does not
split strongly over A∪ g(A0). Then t(g(A0)∪ h(g(C)); A∪ a)= t(A0 ∪C; A∪ a). Choose
b∈B such that t(g(A0)∪ h(g(C))∪ b; A∪ a)= t(A0 ∪C ∪ a0; A∪ a). Then by Corollary
3.5(v) and the choice of C, a 6 ↓A b and so by Lemma 3.2(iii), b∈B − A (b is a
singleton). By the choice of A, t(b;A) does not split strongly over g(A0). By Lemma
3.2(iii), b ↓C A.

De�nition 5.12. (i) We say that M has s-SP (structure property) if every s-saturated
A is s-primary over any s-decomposition of A.
(ii) Let �¿�(M). We say that M has �-dop if there are FM� -saturated Ai, i¡4,

and a =∈A3 such that
(a) A0⊆A1 ∩A2,
(b) A1 ↓A0

A2,
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(c) A3 is FM� -primary over A1 ∪A2,
(d) t(a;A3) is orthogonal to A1 and to A2.
We say that M has �-ndop if it does not have �-dop.

Theorem 5.13. Assume M is superstable and has �(M)-ndop. Then M has s-SP.

Proof. Let A be s-saturated and (P; f; g) an s-decomposition of A. Let (Ai)i6� be a
generating sequence and P= {ti | i¡�} be the enumeration of P from the de�nition of
a generating sequence.

Claim. A�=A.

Proof. Assume not. For all a∈A −A� let ia be the least ordinal such that t(a;A�)
is not orthogonal to Aia . Let a∈A−A� be any sequence such that
(i) for some l6� either t(a;Al) is a c-type and a ↓Al

A� or t(a;Atl) is a c-type
and a ↓Atl

A� and
(ii) among these a, i= ia is the least.

By Lemma 5.11 there is at least one such a.
There are two cases:
Case 1: For some l¡� t(a;Atl) is a c-type and a ↓Atl

A�. Let t∗6tl be the least t
such that t(a;Atl) is not orthogonal to At . Since t(a;Atl) is a c-type choose b so that
(1) b ↓At∗ Atl

and
(2) b∈Atl [a]−Atl , where Atl [a]⊆A is s-primary over Atl ∪ a.

Then if (t∗)− exists, by (2) and Lemmas 4.6 and 5.4(i), t(b;Atl) is orthogonal to
A(t∗)− and so by (1) and Lemma 4.6 it is easy to see that t(b;At∗) is orthogonal to
A(t∗)− .
By (1), (2) and Lemma 5.4(i), b ↓At∗ A�.
We de�ne ((P′;≺′); f′; g′) as follows:
(i) P′=P ∪{t}, t a new node,
(ii) for all u∈P, u≺′ t i� u4 t∗

(iii) f′ � P=f and f′(t)= b,
(iv) g′ � P= g and g′(t)⊆A is s-primary over At∗ ∪ b.

Subclaim. ((P′;≺′); f′; g′) is an s-free tree of A.

Proof. (i), (ii), (iii) and (iv) in the De�nition 5.6 are clear. So we prove (v):
Let T ⊆P′, u∈P′ and V ⊆P′ be as in De�nition 5.6(v). There are four cases:
Case a: t ∈T−V . Let T ′=T−{t} and AT ′ ⊆A� be s-primary over

⋃{Ad |d∈T ′}.
By the choice of b and Lemma 5.4(i),

At ↓At∗ AT ′ ∪
⋃

v∈V

Av:
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By Lemmas 3.2(i) and 3.6,

⋃

v∈V

Av ↓AT′ At :

By Corollary 3.5(iv), the assumption that (P; f; g) is s-free tree of A and Lemma
5.4(i),

⋃

v∈V

Av ↓Au
AT ′ ∪At :

By Lemma 3.6,

⋃

d∈T

Ad ↓Au

⋃

v∈V

Av:

Case b: t ∈V − T : Exactly as the Case a.
Case c: t ∈V ∩T : Because t ∈T − P, u6t. Since t ∈V , u= t. Then because u =∈P,⋃
d∈T Ad=Au, and the claim follows from Lemma 3.2(iv).
Case d: t =∈T ∪V : Immediate by the assumption that (P; f; g) is an s-free tree

of A.

Subclaim contradicts the maximality of P. So Case 1 is impossible and we are in
the Case 2:
Case 2: l6� is such that t(a;Al) is a c-type and a ↓Al

A�. Let B⊆A be s-primary
over A� ∪ a. Clearly i(= ia)6l and so let b′ be the element given by t(a;Al) being a
c-type: b′ ↓Ai

Al and b′ ∈Al[a] −Al, where Al[a]⊆B is s-primary over Al ∪ a. By
Lemma 5.11 we may choose b so that t(b;Ai) is a c-type and b∈Ai[b′]−Ai, where
Ai[b′]⊆B is s-primary over Ai ∪ b′. Then b ↓Ai

A�, b =∈Ai and ib6i(= ia).
(1) i is not a limit ¿0. This is because otherwise by Lemma 5:5(ii), t(b;Ai) is not

orthogonal to Aj for some j¡i. Then t(b;A�) is not orthogonal to Aj, i.e., ib¡ia.
This contradicts the choice of a.
(2) i is not a successor ¿1. Assume it is, i= j + 1. Then Ai is s-primary over

Aj ∪Atj and by Lemma 5.9, Aj ↓A
t−
j

Atj . (Note that since Case 1 is not possible,

Aj+1 6=Atj .) By the choice of a t(b;Ai) is orthogonal to Aj. So by �(M)-ndop t(b;Ai)
is not orthogonal to Atj . Then as in Case 1 we get a contradiction with the maximality
of (P; f; g). Alternatively, we can �nd c such that it satis�es the assumptions of Case 1,
which is a contradiction.
(3) i is not 0 or 1. Immediate, since Case 1 is not possible.
Clearly (1) and (2) above contradict (3). So also Case 2 imply a contradiction.

Let C⊆A be FM� -primary over
⋃{At | t ∈P}. We want to show that C=A. For

this we choose a generating sequence (Ai)i6�, so that Ai ⊆B for all i6�. By the
claim above A�=A and so C=A.
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6. On non-structure

De�nition 6.1. We say that M has �-sdop if the following holds: there are FM� -
saturated Ai, i¡4, and I = {ai | i¡�(M)}, ai ∈A3, such that
(a) A0⊆A1 ∩A2, A3 is FM� -primary over A1 ∪A2,
(b) A1 ↓A0

A2,
(c) I is an indiscernible sequence over A1 ∪A2 and if i¡j¡�(M) then ai 6= aj.

As in [1], we can prove non-structure theorems from �-sdop. (In [3], this was the
formulation of dop, which was used to get non-structure.)
In this section we show that dop and sdop are essentially equivalent, i.e. �(M)+-

sdop implies �(M)+-dop and �(M)-dop implies �r(M)+-sdop, where �r(M) is the
least regular cardinal ¿�(M).

Lemma 6.2. Assume M is �-stable and �= �+. If M has �-sdop then it has �-dop.

Proof. Let I and Ai, i¡4, be as in the de�nition of �-sdop. We need to show that
there is M-consistent type p over A3 such that (d) in De�nition 5.12(ii) is satis�ed.
We show that Av(I;A3) is the required type.
By Lemma 2.4(iii), let a be such that t(a;A3)=Av(I;A3). For a contradiction, by

Lemma 4.6, let b be such that
(i) a 6 ↓A3 b,
(ii) b ↓A1

A3.
Let Ci ⊆Ai, i¡4 be FM� -saturated models of cardinality � such that
(1) Ci ⊆Ai, C1 ∩C2 =C0, C3 ∩A1 =C1, C3 ∩A2 =C2 and I ⊆C3,
(2) a∪ b ↓C3 A3 and a 6 ↓C3 b,
(3) a∪ b∪C3 ↓C1 A1 and a∪ b∪C3 ↓C2 A2,
(4) for all c∈C3 there is D⊆C1 ∪C2 of power �, such that t(c; D) FM� -isolated

t(c;A1 ∪A2).
We can see the existence of the sets as in the proof of Theorem 3.14 (the only

non-trivial part being to guarantee that the models are FM� -saturated).
Let a∗ ∈A3 be such that it realizes Av(I;C3).

Claim. t(a∗;C3) FM� -isolates t(a
∗;C3 ∪A1 ∪A2).

Proof. Assume not. Then there is d∈C3 such that t(a∗ ∪d;C1 ∪C2) does not FM� -
isolate t(a∗ ∪d;A1 ∪A2).

Subclaim. There is a′ ∈ I such that t(a′ ∪d;C1 ∪C2)= t(a∗ ∪d;C1 ∪C2).

Proof. By Lemma 1.2(v), there is i¡�(M) such that t(d;C1 ∪C2 ∪ I) does not split
over C1 ∪C2 ∪{aj | j¡i}. Since I is indiscernible over C1 ∪C2, a′= ai is as wanted.



226 T. Hyttinen, S. Shelah / Annals of Pure and Applied Logic 103 (2000) 201–228

Clearly Subclaim contradicts (4) above.
Choose b∗ ∈A1 so that t(b∗;C1)= t(b;C1). By (3), t(b∗;C3)= t(b;C3). By Claim,

a∗ ↓C3 b∗. Let f be an automorphism such that f(b)= b∗ and f � C3 = idC3 . Then
f(a) contradicts Claim.

Theorem 6.3. Let �¿�r(M) be such that M is �-stable. Then �r(M)-dop implies
�+-sdop.

Proof. Let Ai, i¡4, and p∈ S(A3) be as in the the de�nition of �r(M)-dop. By
Lemma 4.5, as in the proof of Lemma 3:14, we �nd these so that |A3|6�r(M). Let
B0⊇A0 be FM�+ -saturated such that B0 ↓A0

A3. Let Bi, i∈{1; 2} be s-primary over
Ai ∪B0. Let B3 be s-primary over B1 ∪B2 ∪A3. Let Ci, i∈{1; 2}, be FM�+ -primary
over Bi such that C1 ↓B1 B3 and C2 ↓B2 B3 ∪C1.
Let q∈ S(A3) be any type such that it is orthogonal to A1 and A2. Our �rst goal

is to show that there is only one q∗ ∈ S(C1 ∪C2 ∪B3) which extends q.

Claim 1. B1 ∪A2 is FM�r(M)-constructible over A1 ∪B0 ∪A2 and for all b∈B1; there
is B⊆A1 ∪B0 of power ¡�r(M) such that t(b; B) FM�r(M)-isolates t(b;B0 ∪A1 ∪A2).

Proof. Follows immediately from the proof of Lemma 5.4(ii) and Theorem 5.3(iii).

Claim 2. B1 ∪B2 is FM�r(M)-constructible over B1 ∪B0 ∪A2 and for all b∈B2; there
is B⊆A2 ∪B0 of power ¡�r(M) such that t(b; B) FM�r(M)-isolates t(b;B1 ∪A2).

Proof. As Claim 1.

Claim 3. B1 ∪B2 ∪A3 is FM�r(M)-constructible over A3 ∪B0.

Proof. By Claims 1 and 2, B1 ∪B2 is FM�r(M)-constructible over A1 ∪A2 ∪B0. So it
is enough to show that for all a∈A3, t(a;A1 ∪A2) FM�r(M)+-isolates t(a;B1 ∪B2).
Assume not. Choose b1 ∈B1 and b2 ∈B2 so that t(a;A1 ∪A2) does not FM�r(M)+-

isolate t(a;A1 ∪A2 ∪ b1 ∪ b2). Choose A1⊆A1, A2⊆A2 and B0⊆B0 of power
¡�r(M) such that
(i) t(a; A1 ∪A2) FM�r(M)-isolates t(a;A1 ∪A2),
(ii) t(b1; A1 ∪B0) FM�r(M)-isolates t(a;A1 ∪A2 ∪B0) and t(b2; A2 ∪B0) FM�r(M)-isolates

t(b2;B1 ∪A2 ∪B0),
(iii) A1 ∩A0 =A2 ∩A0 =A0 and for all c∈A1 ∪A2, t(c;B0) does not split strongly

over A0.
By Lemma 1.9(v), choose f∈Aut(A0) so that f(B0)⊆A0 and for all c∈B0, f(c)

Em
min;A0c. Let B

′
0 =f(B0). Then by (iii), t(B′

0; A1 ∪A2)= t(B0; A1 ∪A2). Choose b′i ∈Ai

so that t(b′i ∪B′
0; Ai)= t(bi ∪B0; Ai), i∈{1; 2}. By (ii) t(b′1 ∪ b′2 ∪B′

0; Ai)= t(b1∪b2 ∪B0;
Ai). Clearly this contradicts (i).
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Claim 4. B3 is FM�r(M)-primary over A3 ∪B0.

Proof. Immediate by Claim 3 and the choice of B3.

By Claim 4 and Lemma 5.4, there is exactly one q′ ∈ S(B3) such that q⊆ q′. By
Corollary 4.8, q′ is orthogonal to B1 and B2. So if a realizes q′, then a ↓B3 C1. Then
by Corollary 5.5(i), there is exactly one q∗ ∈ S(C1 ∪C2 ∪B3), which extends q.
Now choose ai, i¡�r(M), so that for all i, t(ai;A3)=p and ai ↓A3

⋃
j¡i aj. Then

I = {ai | i¡�r(M)} is indiscernible over A3 and by Corollary 5.5(iii), for all n¡!,
t(a0 ∪ · · · ∪ an;A3) is orthogonal to A1 and A2. So, by what we showed above, I is
indiscernible over C1 ∪C2 ∪B3 and for all i¡�r(M), t(ai;A3 ∪

⋃
j¡i aj) FM�+ -isolates

t(ai;C1 ∪C2 ∪B3 ∪
⋃

j¡i aj). So there is an FM�+ -primary model C3 over C1 ∪C2 ∪B3
such that I ⊆C3.
So to get �+-sdop, it is enough to show that C3 is FM�+ -primary over C1 ∪C2. By

Claim 3 and the choice of B3, B3 is FM�r(M)-constructible over B1 ∪B2.

Claim 5. For all c∈C1 there is B⊆B1 of power 6� such that t(c; B) FM�+ -isolates
t(c;B3).

Proof. Assume not. Choose B1⊆B1 of power 6� and c∈C1 so that
(i) t(c; B1) FM�+ -isolates t(c;B1),
(ii) t(c; B1) does not FM�+ -isolate t(c;B3).

By (ii) above, choose b∈B3, B0⊆B0 C1⊆B1 and C2⊆B2
(iii) |C1 ∪C2|¡�r(M),
(iv) t(b; C1 ∪C2) FM�r(M)-isolates t(b;B1 ∪B2),
(v) t(c; B1) does not FM�+ -isolate t(c; B1 ∪C1 ∪C2 ∪ b),
(vi) for all a∈B1 ∪C1, t(a;B2) does not split strongly over B0 and |B0|6�.

Since B0 is FM�+ -saturated and M is �-stable, we can �nd f∈Aut(B0) such that
f(C2)⊆B0 and for all a∈C2, f(a)Em

min;B∗
0
a. Then by (vi), t(f(C2); B0 ∪B1 ∪C1)=

t(C2; B0 ∪B1 ∪C1). Choose b′ ∈B1 so that t(b′ ∪f(C2); C1)= t(b∪C2; C1). Then by
(iv), t(b′ ∪f(C2); B0 ∪B1 ∪C1)= t(b∪C2; B0 ∪B1 ∪C1). By (vi) t(c; B1) does not FM�+ -
isolate t(c; B1 ∪C1 ∪f(C2)∪ b′). Clearly this contradicts (i).

So B3 ∪C1 is FM�r(M)-constructible over C1 ∪B2.

Claim 6. For all c∈C2 there is B⊆B2 of power 6� such that t(c; B) FM�+ -isolates
t(c;C1 ∪B3).

Proof. As Claim 5 above.

So B3 ∪C1 ∪C2 is FM�r(M)-constructible (and so FM�+ -constructible) over C1 ∪C2. By
the choice of C3, this implies that C3 is FM�+ -primary over C1 ∪C2.
Note that in Theorem 6.3 the assumption, M is �-stable, is not necessary. We can

avoid the use of it by Lemma 3.15.
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Lemma 6.4. Assume �¿�¿�(M). Then �-dop implies �-dop.

Proof. Let Ai, i¡4, and a as in the de�nition of �-dop. Choose FM� -saturated B0⊇A0

such that B0 ↓A0
A1 ∪A2. Let B1 be FM� -primary over B0 ∪A1, B2 be FM� -primary

over B0 ∪A2 and B3 be FM� -primary over B1 ∪B2. Clearly we can choose the sets so
thatA3⊆B3 and a ↓A3

B3. By Lemmas 5.4(iii) and 3.8(iv), B1 ↓B0 A2. ThenA2 ↓A0
B1

and so A2 ↓A1
B1. By Lemma 5.4(iii),

(1) A3 ↓A1
B1.

Similarly,
(2) A3 ↓A2

B2.
Also by Lemmas 5.4(iii) and 3.8(iv), B1 ↓B0 B2.
By (1), (2), Lemma 4.5 and Corollary 4.8, t(a;B3) is orthogonal to B1 and to B2.

Corollary 6.5. �(M)-dop implies �r(M)+-sdop.

Proof. Immediate by Lemma 6.4 and Theorem 6.3.

We �nish this paper by giving open problems:

Question 6.6. What are the relationships among the following properties:
(1) a ↓A A;
(2) a 6 ↓A a;
(3) t(a; A) is unbounded ?

Note that (1) does not imply (2) nor (3) (fails already in the ‘classical’ case), (3)
implies (2) (Lemma 3.2(v)) and (1)∧ (2) implies (3) (just choose ai, i¡|M|, so that
t(ai; A)= t(a; A) and ai ↓A

⋃
j¡i aj).

Question 6.7. Does Corollary 4:8 hold without the assumption that the sets are
strongly FM�r(M)-saturated?

Question 6.8. Does the following hold: If M is superstable; then for all A there exists
an ‘a-primary’ set over A?
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