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I. INTRODUCTION 

Various methods, both approximate and exact, have been used to 
replace the mathematical description of a differential system by a pair, or 
by a sequence, of descriptions of systems of lower order. The decom- 
positions, expressed in some convenient “canonical” form, are then 
employed to deduce the behavior of solutions of the overall system from 
characteristics of its interconnected subsystems. This procedure, often 
applied to linear time-invariant systems, is used here to treat nonlinear, 
nonautonomous control systems describable by ordinary vector differential 
equations. 

We give, in Section 2, immediately following some needed definitions and 
the requirements to be put on the differential equations, sufficient con- 
ditions for certain “perturbed” control systems, and for control-linear 
systems to be completely controllable if their subsystems are. We obtain 
similar results, also, for systems whose subsystems are locally controllable, 
locally path controllable, or globally path controllable. 

The existence of a decomposed system is assumed; we do not address the 
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problem of obtaining the decompositions used. Others have found con- 
ditions for the existence of some decompositions, and their work is cited, 
when appropriate, below. 

2. CONTROLLABILITY OF SYSTEMS HAVING A DECOMPOSITION 

Our aim in this section is to provide sufficient conditions for several con- 
trollability properties of systems in decomposed form. The first definition 
specifies the regularity that we will require of the control systems under 
consideration. 

DEFINITION 2.1. A mapping .f‘: R” x R’” x R -+ R” is said to be quasi-C’ 
if the following conditions are satisfied: 

(a) for every TV R the mapping (x, IV)H,~(X, u’, t) is C’; 
(b) for every (x, w) E R” x KY” the mappings 1 H f(4 u’, 0, 

t + D,(x, u’, t), and t I-+ DZf(x, ~2, t) are piecewise-continuous (D,fdenotes 
the partial derivative off with respect to its ith variable); 

(c) the mappings J D, ,L and DJ are locally bounded on 
R” x KY’* x R. It is clear that a C’ mappingf’: R” x R”’ x R + R” is quasi-C’. 
The control systems discussed here will be of the form 

,f = f(-u, u(r), t), (1) 

where f: R” x IR”’ x R -+ R” is quasi-C’ and the controls u are elements of 
PC;, the set of all piecewise-continuous functions U: iw -+ IF” for which 
sup{ // u(t) I/ : t E R 3 is finite. We note that while each control is bounded, 
there is no a priori bound for the entire family of admissible controls. We 
will also have occasion to deal with autonomous system 

-t = .f(-x, u(r)), (2) 

where f: Wx IT"+ R" is C’. 
We say that the nonautonomous system (1) admits a serial decom- 

position if the state x E R” and the control u(t) E R” can be split up into r 
components 

x = col(x, )..., x,), u(t) = col(u,(r),..., u,(t)), (3) 

where 1 <r<min(n,m}, x,ERI”, u,(t)ERF, 1 dibr, C:=, ni=n, 
XI=, mi = m, and with respect to these components (1) has the form 
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(4) 

1, = .f;(x, )...) x, )...) u,(t ), t). 

There is an obvious corresponding notion of a serial decomposition of the 
autonomous system (2). The component labeling (3) of the state and con- 
trol will be used throughout and the meaning of the notation will not be 
repeated in the statements of our results. 

System (1) is said to have a parallel decomposition if it can be written as 

(5) 

where the component labeling given in (3) has been used. The 
corresponding formulation for autonomous systems is evident. 

Respondek [9] has given necessary and sufficient conditions for 
autonomous systems (2) that are linear in the control to be transformable 
by a local change of coordinates, .r = $(x), into a system 

3 = h(y, u(t)), (6) 

which admits either a serial decomposition 

Y, =h,(.v,3 U,(l)), 

.?2 = UY*, l’r, uAt))t 

or (under more stringent requirements) a parallel decomposition 

?;I =h,b,, u,(t)), 

Pz = UY,, u,(t)), 

(6a) 

(6b) 

jr = h,(.Y,, u,(r)). 
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Other results on decompositions of control systems having symmetries 
can be found in [S]. 

The control systems treated here are assumed to have exact global 
decompositions. Our concern is not with how the decomposition is 
obtained, but rather with what one can say about certain controllability 
properties of the system given its decomposition. 

Before proceeding with our results, we recall a few basic definitions. A 
point z E R” is said to be attainable from a point y E R” via the system (1) 
on the interval [t,, t,] if there exists a control u E PC; and an absolutely 
continuous function 4: [to, tl] + R” such that d(t) = f(4(t), u(t), t) a.e. for 
t E [to, t , ] and $( to) = y, $( t , ) = z. The function 4 is called a response of ( 1) 
corresponding to the control U. We denote by &( y; t,, t,) the set of all 
z E R” that are attainable from y via the system (1) on the interval [to, t,]. 
The system (1) is completely controllable on the interval [to, r,] if .d( y; 
t,,, t , ) = R” for every y E R”. Equivalently ( 1) is completely controllable on 
[to, t,] if every pair of points y, z E R” can be joined by a response of (1) 
defined on [to, t,]. 

The first results of this paper deal with the complete controllability of 
systems (1) that have a particular decomposition. Later, we will treat other 
types of controllability. The following theorem is well known, but its proof 
is short and is included for completeness. More general versions of this 
theorem can be found, e.g., in [lo]. 

THEOREM 2.2. Consider the linear control system 

i= A(t)x+ B(r) u(t), (7) 

where A(t), B(t) are n x n, n x m matrices, respectively, with entries that are 
piecewise-continuous functions oft E R. If (7) is completely controllable on an 
interval [t,, t ,I, then for every piecewise-continuous function g: [t,, t ,] + KY 
the system 

x=A(t)x+B(t)u(t)+g(t) 63) 

is also completely controllable on [to, t ,I. 

Proof Fix an initial point x E OX”, let q5(t; U) denote the solution of (7) 
such that &to; U) = 2, and let $( t; U) denote the solution of (8) such that 
fh2w;i;a?. A simple application of the variation-of-parameters formula 

$0; u) = dt; u) + j-L Wt, s) g(s) ds, (9) 
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where X(t, S) is the fundamental-matrix solution of the homogeneous linear 
system ,I?-= A(t)x. The assumption that (7) is completely controllable on 
[to, t,] is equivalent to the assertion that the affine mapping ut+~$(f,; U) 
of PC’: into R” is surjective (for arbitrary X). It follows from (9) that the 
mapping u t-+ &t, ; U) is the translate of the surjective affine mapping 
u H &t, ; U) by the constant vector s:; A’([,, S) g(s) ds. Therefore, the aftine 
mapping u t-+ &t, ; U) is also surjective, which is equivalent to the complete 
controllability of (8) on the interval [to, t,]. 1 

THEOREM 2.3. Let system (I ) have a (“hybrid’) decomposition qf the 
form 

1, = A ,(t)-x + B,(t) u,(t) + s,(t), 

-t2 = AArb + &(f) u,(t) + g,(x,, u,(t), t), 
(10) 

.~,=A,(t)s,+B,(t)u,.(t)+g,(x I)...). Y, ,.u,(t) )..., u,-,(t)), 

where A,(t), B,(t) are nj x ni, n; x mi matrices, respectively, with entries that 
are piecewise-continuous .functions of t E R and g, is C’ in all of its 
arguments, 1 < i < r. If each linear subsystem 

i, = A,(t)x, + B;(t) u,(t), (11) 

1 6 i < r, is completely controllable on [to, I, 1, then ( 10) is also completely 
controllable on [to, t,]. 

Proaf Given arbitrary points y, z in R”, we must show that y and z can 
be joined by a response of (10) defined on the interval [to, t,]. First, we 
write y and ; in component form 

I’= col(,r, ,..., J’,), 2 = col(z, ),.., zr), 

where y,, zi E lW for 1 d i 6 r. The system (11) with i = 1 is completely con- 
trollable on [t,, t,] by assumption. From Theorem 2.2 we infer that the 
perturbed system 

-t, = A ,(1)x, + B,(t) u,(t) + s,(t) (12) 

is also completely controllable on [to, t ,I. Thus we can choose a control 
U E PC: whose corresponding response 6, of (12) satisfies 

$,(fu)=?-,, (aI(tl) 

For I, <t bt, we set g2(t)=gz(T,(t), ii,(t), t) and we observe that El is 
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piecewise continuous. The system (11) with i = 2 is completely controllable 
on [to, t ,] by assumption. Again from Theorem 2.2 we infer that the per- 
turbed system 

f, = Az(fb* + B,(t) u*(t) + i?*(f) 

= A*(f)% + B,(t) df) + sz(im> u,(f), t) 

is also completely controllable on [to, t ,I. Proceeding serially, we obtain 
controls U, E PC;,..., ii, E PC:; whose corresponding responses 

ii = A,(t)x, + B,(r) u,(t) + ‘q;(t), 

where i?,(t) = gi(61(t),..., T,- 1(t), ii,(t) ,..., Uj.- ,(t), t), satisfy J,(to)= y,, 
fjTj(t,)=z for 2<i<r. It follows that $= col($,,..., $,) is the desired 
response of (10) corresponding to the control 17 = col(17, ,..., u,) that joins .r 
to z on the interval [to, t,]. 1 

Note that the linear parts of the system (10) have been assumed to be 
decomposed in parallel, while the nonlinear parts, the “perturbations,” are 
taken to be in series; we have called this a “hybrid” decomposition. We 
emphasize that no assumptions have been made about the size of the per- 
turbations, which may be large or small compared to the linear terms. 

Now, we consider another class of nonlinear systems. A nonlinear 
autonomous control system is said to be (homogeneous) control linear if it 
has the form 

1 = F(x) u(t), (13) 

where F(X) is an n x m matrix whose entries are at least C’-functions of X; 
such systems have also been called symmetric by other authors. A useful 
feature of control-linear systems is that, in spite of their nonlinearity, one 
can give computable sufficient conditions for their complete controllability. 
Specifically, it is known that if F(x) is C” and if the Lie algebra generated 
by the column vectors of F(x) has dimension n at each x E R”, then (13) is 
completely controllable on every interval [to, t,] with t, b t, (see [6, 81 
for details). This condition is also necessary for complete controllability if 
F(x) is real analytic. 

Our next result is similar in spirit to Theorem 2.2. We omit the proof but 
note that the techniques of proof are similar to those found in [3]. 

THEOREM 2.4. Consider the control-linear system (13) where the entries 
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qf the matrix F(x) are C’T/imctions of x. If (13) is completely controllable on 
[t,, t,], then ,for every quasi-c’ mapping g: R” x iw + R” the system 

.t = g(x, t) + F(x) u(t) 

is also completelJt controllable on [t,, , t , ] 

THEOREM 2.5. Let s~~.stem ( 1 ) have the hybrid decomposition Qf the ,form 

-t, = F,(-u, 1 u,(t) + g,(-Y,, 11, 

.42 =F,(.r,) lb(t)+ g,(.u,, .x2, u,(t), t), 
(14) 

.~=F,(.~u,)u,.(t)+g,(.u ,,...,. u,.,u,(t) ,..., 14,. ,(t),t), 

where F,(s,) is an n, x m, matrix M’ith entries that are CL-functions ofx, E R”4 
and g, is C’ in all qf’its arguments, 1 < i < r. [f each control-linear subsystem 

.4, = F;(x) u;(t), (15) 

1 6 i < r, is completely controllable on [t,,, t,], then ( 14) is also completel13 
controllable on [t,,, t,]. 

Prooj: The argument proceeds serially and follows from Theorem 2.4 in 
much the same way that Theorem 2.3 follows from Theorem 2.2. We omit 
the details. 1 

We turn our attention to some more restrictive types of controllability 
for systems having a decomposition. Given a control UE PC; and a 
response 6: [t,,, t,,] + R” of ( 1) corresponding to U with initial condition 
$( to) = .U, we say that (1) is locally controllable along $ at time t, E [to, t,,] 
if g(t) E int .d(.% t,, t, ) (int ,d denotes the interior of a subset d of KY’). A 
well-known sufficient condition for the local controllability of (1) along the 
response $ at time t, is that the linear variational control system 

-e= D, .f(&t), U(t), t)x + D,J’($(t), u(t), t) u(t) (16) 

be completely controllable on [t,, t ,] (see [7]). In what follows we let u’ = 
col(u’, ,..., ~1,) denote the component form of a vector MIE R” with respect to 
the decomposition (3). 

THEOREM 2.6. Assume that the sJ,stem ( 1 ) admits the serial decomposition 
(4), let $R [to, t,,] -+ R” be a response qf (1) corresponding to a control 
UE PCrG, and assume that each linearized subsystem 
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P, = g (d,(t) )..., 6,(t), cl(t) )...) ii,(t), t)x, 
’ I 

+ j$ (dl(f),...> $i(r), ul(t)v..., u,(t), t) U,(t) (17) 

is complerely controllable on [t,,, t,] ,for t, E [f,, t,] and 1 6 i < r. Then ( 1) 
is locally controllable along 6 at time t, 

Proqf Using the decomposition (4) we see that the linear variational 
control system (15) admits the decomposition 

i, = g ((s,(r) )...) B,(t), i,(t) ,...( u,(t), r).u, 
I 

+ 2 (6,(r) t..., &A,(t)> u,(t) ,..., u,(t), f) u,(t) 
I 

(18) 

From the assumed complete controllability of (17) on [t,,, r,] for I’ = l,..., r, 
and from Theorem 2.3, it follows that (18) and hence (16) is completely 
controllable on [r,, r,], whence the result. 1 

In some situations it is of interest not only to reach a specified state, but 
to do so along a specified path (or response). This type of controllability is 
much stronger than the complete and local controllability properties dis- 
cussed above. Consequently it is obtained only under rather stringent 
hypotheses. One illustration of such a local “path-controllability” result is 
given in 

THEOREM 2.7. Let the mapping .f‘ in the system (1) he C’ (as opposed to 
just quasi-C’) and let ii: [w -+ R”” he a bounded continuous control that 
generates a response 6: [t,, t , ] + KY’. Suppose that for every t E [t,, t , ] we 
have 

rank D2f(t$(t), ii(t), t) = n. (19) 
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Then there exists a S > 0 such that if 4: [to, t,] -+ R” is any C’ .function for 
wlhich 

max(ll4(t)-$t-(r)ll + II&t)-&t)ll: tE [to, t,lJ<k 

then there exists a bounded continuous control u: R --t R”’ that generates Q us 
u response of (1) on [t,, t,]. 

Proof See [l, Theorem 41; the output function g that appears in the 
referenced theorem will simply be the identity mapping g(t, X) = x here. 1 

The controllability property in Theorem 2.7 can be referred to as the 
locul C’ path controllability of the system (1) near the response I$. We note 
that it is only claimed that paths which are close to 6 in the C’ norm can 
be generated as responses of (1). It is a routine matter to reformulate 
Theorem 2.7 in the case where the system (1 ) admits the serial decom- 
position (4). 

THEOREM 2.8. Let the mapping .f in the system (1) he C’ and let U: 
R -+ R”’ be a bounded continuous control that generates a response $ 
[to, t ,] -+ R”. Assume that the system (1) admits the serial decomposition 
(4) and assume that .for every! t E [to, t, ] and i = l,..., r we have 

rank$($,(t) ,..., $,(t),ti,(t) ,..., C,(t), t)=n,. (20) 

Then the sy’stem is locally C’ path controllable near the response 6 

Proc$ It is easy to see that the rank conditions (20) for 1 < i< r imply 
the rank condition (19), so the result follows from Theorem 2.7. 1 

Under stronger assumptions, we can obtain global results on C’ path 
controllability. The sytem (1) is said to be completely C’ path controllable 
on the interval [t,, t,] if for every C’ mapping 4: [t,,, t, ] + iw” there exists 
a control UE PC!; that generates 4 as a response of (1). The following 
theorem gives a sufficient condition for (1) to be completely C’ path con- 
trollable (see 14, Theorem 3.1 and Remark 3.31). 

THEOREM 2.9. Let the mupping ,f in the system (1) he C’ and suppose 
that ,f‘satisfies the ,following two conditions: 

(a) ,for every (x, t)E Wx [to, t,] the mapping ww,f(x, w, t) of R”’ 
into KY’ is surjective; 

(b) ,for every’ (x, ~3, t) E R” x IF!“’ x [to, t,] wse have 
rank D2 f(-u, M’, t) = n. 

Then the system ( 1) is completely C’ path controllable on [t,, t ,I. 1 
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Our next result gives an instance of complete C’ path controllability for 
systems having a decomposition. 

THEOREM 2.10. Let the system (1) have a hybrid decomposition qf the 

f orm 

i, =h,(.~,,u,(t),t)+g,(x,,t), 

-22 = h,(x,, uz(t), t) + g,b-, > ~2, u,(t)> t), 
(21) 

ii-, =h,(x,, u,(t), t)+ gr(x,, . . . . .Y,, u,(t) ,..., u,. m,(r), t), 

where the mappings hi and g, are C’ ,for 1 < if r. Suppose, in addition, that 
for each i = i,..., r the following two conditions are satisfied: 

(a) ,for every (x,, t)E R”‘x [t,,, t,] the mapping w, F-+ h,(x;, \v,, t) of 
Iw”J into Iw”! is surjective; 

(b) for every (x,, M?,, t) E 5!“f x LFP x [It,, t,] \ve have rank (?~,/C?LV~(X,, 
wj, t) = n,. Then the system (1) is completely C’ path controllable on 

Cto, t, I. 

Proqc It is clear that conditions (a) and (b) for i= l,..., r imply that the 
right-hand side of the aggregrate system (21) (i.e., the decomposed form of 
(1)) satisfies conditions (a) and (b) of Theorem 2.9, whence the result. [ 

Observe that no special assumptions (other than continuous differen- 
tiability) are required for the mappings g; in (21). 

We close this paper by stating a result analogous to Theorem 2.10 for 
autonomous systems. 

THEOREM 2.11. Let the autonomous control system (2) admit the serial 
decomposition 

-i-, =f‘,b,, u,(t)), 

i2 = fib, 3 ,y2, u,(t), U?(t)), 

and suppose that for each i= I,..., r and for each 

(x, )...) Xi) E IR”’ x . . x w, (w I,...) W,~,)Elw~X ‘.’ xEP-‘, 

(22) 
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there exists w, E KY’” such that 

.f$K I,...) .K,, H’,,...) w,)=O, 

i: f; 
rank A (x, ,..., x,, H*, ,..., ~3,) = n,. 

(?w, 

Then ,j;lr every C’ curue 4: [0, T] + R” there exists u constunt i. > 0 .cuch 
that the repcrrumetrked curce 

$(t) = d(itL 

cun he realixd 0s u response of (2). 

0 d t d T/i, 

Proof: The assumptions on the mappings ,f, in the decomposition (22) 
imply that the mapping,f’: R” x R”’ + R” defining the right-hand side of (2) 
has the following property: for every I E R” there exists a M’ E R” such that 
,f‘(.r, 11,) = 0 and rank D?,f’(r, 11’) =n. The assertion of the theorem then 
follows by a minor variation of the argument used in [2, Theorem 21. 1 
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