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Cyanobacterial bloom detection from flow-through optical sensors on ships-of-opportunity (‘ferryboxes’) is
challenging in periods of strong stratification and due to varying cell physiology and phytoplankton community
composition. Wavelet coherence analysis between ferrybox parameters (chlorophyll-a fluorescence, phycocyanin
fluorescence, turbidity) was used to delineate blooms in a dataset of ten ferrybox transects, recorded during the
2005 cyanobacterial bloom season in the Baltic Sea. Independent wind speed and sea-surface temperature data
were used to classify areas of cyanobacterial dominance as mixed, stratified, or surfacing bloom. These classified
subsets of ferrybox observations were compared against remotely sensed chlorophyll-a concentrations, which re-
sulted in a scheme for the interpretation of surface water phytoplankton biomass frommulti-source observations.
Ferrybox optical signals were significantly coherent from the onset until the end of the cyanobacterial bloom period
under both stratified andmixed conditions. This suggests that the coherence analysis is sensitive to high-level com-
munity composition. Strongly stratified and suspected surfacing bloomwas associated with unrealistically high re-
motely sensed chlorophyll-a estimates, indicating the need to flag stratified bloom areas when interpreting remote
sensing imagery. The ferryboxfluorescence and turbidity signals at the 5-msampling depthwere, paradoxically, low
under these conditions, suggesting that direct comparison between remote sensing and flow-through observations
is not useful for stratified blooms. Correlations between ferrybox measurements and remotely sensed observations
improved consistently when stratified or surfacing cyanobacterial bloom was excluded from the regression.
It is discussed how coherence analysis of ferrybox observations can aid the interpretation of remotely senseddata
in situations where meteorological observations suggest incomplete vertical mixing.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Detection and quantification of phytoplankton blooms are essential
to understand their role in biogeochemical cycling and to manage the
economical and health impacts of harmful species (Anderson, 1997;
Carstensen et al., 2004). Increase in bloom duration and intensity can
indicate eutrophication (Anderson et al., 2002; Hallegraeff, 1993;
Heisler et al., 2008) and is increasingly used in the context of climate
change research (e.g. Gnanadesikan and Anderson, 2009; Paerl and
Huisman, 2009). Bloomsare target formonitoringdue to potential accu-
mulation of toxin-producing species and their ecosystem-destabilizing
effects (Hansson and Hakansson, 2007). Reliable observations of
phytoplankton blooms with high spatiotemporal coverage are prereq-
uisite to produce bloom metrics. Remote sensing techniques have
been successfully applied in this context in the open oceans, whereas
eg 22, 6709 PG Wageningen,

. This is an open access article under
the optical complexity of coastal waters calls for a combined use of
remote sensing and in situ observation techniques. The high spatial
and temporal resolution of in situ measurements with flow-through
optical sensors on ships-of-opportunity (‘ferryboxes’) theoretically
supports assimilation with optical remote sensing measurements. The
resulting synoptic information is essential for coastal management
and risk assessment (Pulliainen et al., 2004; Vepsäläinen et al., 2005).

Fluorescence from the main photosynthetic pigment chlorophyll-a
(CHLa) is the most common biological parameter measured from
ferryboxes and is used as a proxy for phytoplankton biomass (Campbell
and Hurry, 1998; Kiefer, 1973). Fluorescence observations are non-ideal
proxies of surface water phytoplankton biomass, due to cell physiological
variability (nutrient and light adaptation, including diurnal cycles), as
well as variable phytoplankton group composition (Campbell and
Hurry, 1998). Ferrybox parameters may be calibrated against bottle sam-
ples analyzed in the laboratory, to overcome some of this variability. Such
procedures may or may not reconcile the fundamentally different optical
signals measured with fluorescence sensors at the ferrybox intake depth
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Route of M/S Finnpartner from Travemünde (Germany) to Helsinki (Finland). Black
bar-markers are drawn every 100 km along the transect.
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(3–5 m) and remotely sensed reflectance (representing the first optical
depth, Gordon andMcCluney, 1974). As long as themixing depth exceeds
the first optical depth both, remotely sensed and ferrybox observations
of phytoplankton biomass, can be seen as representative of surface layer
processes. However, the variable response between remote and in situ
optical sensors of choice must be taken into account in monitoring
practices, particularly in situations where steep vertical gradients in
light and nutrient availability are expected, such as is the case during
phytoplankton bloom.

Some of the clearest examples of discrepancies between in situ
and remotely sensed observations are for blooms of motile or
buoyant cyanobacterial species (Walsby et al., 1997) under preva-
lent calm wind conditions (Kanoshina et al., 2003; Wynne et al.,
2010). Ship-induced mixing may or may not break such stratified
layers (Kanoshina et al., 2003), whereas remote sensing observa-
tions will always represent the first optical depth. Optical remote
sensing does not provide information about the degree of vertical
mixing, hence algorithms for the retrieval of water constituent
concentrations from remote sensing imagery assume vertically
mixed water columns. Kutser et al. (2008) simulated remote sens-
ing reflectance for various concentration-depth profiles found
under bloom conditions, concluding that large errors in the con-
centration retrieval can result from the wrong assumption of
mixing depth. Therefore, neither remote sensing nor ferrybox
observations are expected to yield consistently reliable estimates
of cyanobacterial biomass in highly stratified situations. Conse-
quently, unknown mixing conditions are accepted as a source of
uncertainty in most approaches for the assimilation of ferrybox
and remote sensing data (e.g. Pulliainen et al., 2004).

In this study, we explore the spatial variability of high-frequency
ferrybox optical signals as a means to identify cyanobacteria-
dominated sections of ferrybox transects. We hypothesize that
coherence between signals will be less sensitive to stratification
compared to the interpretation of signal magnitude as an indicator
for bloom conditions. Including signal coherence and stratification
in the interpretation and assimilation of multi-source observation
data can then lead to more robust monitoring practices.

In the last decade, Baltic Sea ferrybox systems have been increasing-
ly equipped with phycocyanin (PC) fluorescence sensors to record reg-
ularly occurring cyanobacterial summer blooms (Kahru et al., 2007).
PC is the major phycobilipigment in the filamentous cyanobacteria
that frequently dominate these blooms. Seppälä et al. (2007)
observed that a combination of PC and CHLa fluorescence serves as
a better proxy of extracted CHLa than CHLa fluorescence alone, due
to the different expression of CHLa fluorescence in cyanobacteria
compared to algae (Johnsen and Sakshaug, 1996). Hence, CHLa fluo-
rescence and PC fluorescence are expected to vary coherently in
cyanobacterial blooms. Bloom-forming cyanobacteria are often efficient
light scatterers (colony formation, gas vesicles), so signal coherence be-
tween turbidity (a light scattering measurement) and PC fluorescence
may also be expected under bloom conditions.

To determine spatial coherence in transect data we must look
beyond analytical techniques that determine the correlation between
two stationary signals whose statistical parameters such as mean or
variance do not change in time or space. Here, we select wavelet coher-
ence analysis to overcome this restriction and to simultaneously resolve
changes in the coherence between signals in the spatial dimension.
Wavelet coherence is based on continuous wavelet transform (CWT),
an analytical technique that resolves changes in the frequency distribu-
tion of a given signal. In a wavelet coherence analysis, two wavelet-
transformed signals are compared, exposing locations and scales of
coherent variation. In contrast to short-time Fourier transform or
windowed cross-correlation, CWT and wavelet coherence require no
arbitrary choice for window sizes and associated spatial/temporal
resolution. CWT has been used independently and in conjunction
with wavelet coherence analysis to examine frequency and scaling
properties of non-stationary data in various disciplines, including phy-
toplankton ecology (Blauw et al., 2012) and water remote sensing
(Ampe et al., 2013).

The present study applies wavelet coherence analysis to ferrybox data
from the summer bloom period of 2005 in the Baltic Sea, when frequent
surfacing of cyanobacteria biomass was observed. Ferrybox fluorescence
of CHLa and PC, as well as turbidity is submitted to wavelet coherence
analysis. Sea-surface temperature (SST) and wind speed are used as
independent indicators of potentially stratified conditions. Kahru et al.
(1993) previously demonstrated that elevated SST can be associated
with surface-accumulated cyanobacteria, while George and Edwards
(1976), Hunter et al. (2008) and Wynne et al. (2010) found that wind-
induced mixing dissipates stratified surface layers for wind speeds
exceeding 4–7.7 ms−1.

Following the wavelet coherence interpretation of ferrybox tran-
sect data, we asses whether the method provides a consistent delin-
eation of the cyanobacterial bloom. Automated platforms on ships-
of-opportunity do not provide the means for independent validation
of mixing depth, and offer only sparse documentation of community
composition. Hence, we focus on a corroborating interpretation of
the seasonal succession of the phytoplankton from ferrybox and
meteorological observations. Further evidence of an improved inter-
pretation is sought by comparing the bloom-delineated transects
against CHLa interpreted from remote sensing imagery of the area,
treating stratified and surfacing bloom areas separately from well-
mixed situations.

The presented scheme is intended to improve exploitation of remote
and in situ observation sources to provide better estimates of column
biomass for models of primary production, (surface) bloom occurrence
for risk assessment, as well as mixing depth for the interpretation of
spatiotemporal trends in observed biomass.
2. Materials and methods

2.1. Input data

Average wind speed (longitudinal and latitudinal components) and
sea surface temperature were extracted from the ECMWF Interim Re-
analysis archives (Dee et al., 2011) for the period of 20 June until 31
July 2005, along the ferrybox transect in Fig. 1 and plotted in Fig. 2.
These data were stored on a reduced Gaussian grid with a spatial reso-
lution of 0.75°(≈83 km) and a temporal resolution of six hours
(12 am, 6 am, 12 pm and 6 pm UTC). Spatio-temporal interpolation
was carried out to match the resolution of the in situ data and to avoid
discontinuities when extracting the variables along the ferry transect.



Fig. 2. ECMWF Interim reanalysis full resolution absolute wind speed (top panel) and sea surface temperature (bottom panel) along the transect in Fig. 1. The distance is measured from
Travemünde, Germany (0 km) to Helsinki, Finland (1091 km) and the dates (MM-DD) refer to 2005. The vertical black and gray lines mark the remote sensing scene date/time and the
tilted black and gray lines indicate the ship transects. Black line color indicates an in situ-remote sensing match-up.
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For both spatial and temporal interpolation a bivariate 5th-order spline
was used. Absolute wind speeds were calculated from the longitudinal
and latitudinal components.

The in situ data used in this study were collected from the Alg@line
network of Baltic Sea ferryboxes, from the route sailed by the cargo
vessel M/S Finnpartner, which commuted between Travemünde
(Germany) andHelsinki (Finland) as depicted in Fig. 1. Twelve transects
were recorded on that transect in the period of 23 June to 27 July 2005,
two of whichwere omitted due to failure of one of the instruments. The
system recorded in vivo fluorescence of CHLa and PC pigments as well
as turbidity, salinity and temperature. Details about the instrumentation
of the the Alg@line systems are given in (Leppänen et al., 1994;
Rantajärvi et al., 2003; Ruokanen et al., 2003; Seppälä et al., 2007). A
sampling interval of 20 s resulted in a nominal spatial resolution of
200 m, depending on ship speed. Uncalibrated fluorescence values
were used for the analysis because the calibration against laboratory
extracts (e.g. multiplication by a constant and adding an offset) would
not influence the variability of the signal and therefore the wavelet
coherence results.

MediumResolution Imaging Spectrometer (MERIS) FR L1b data (3rd
reprocessing, IPF6.0,MEGS8)with a nominal spatial resolution of 300m
were processed to CHLa concentrations using the WeW/FUB algorithm
(Schroeder and Behnert, 2007; Schroeder et al., 2007), which is inte-
grated in VISAT BEAM (V. 4.11). This algorithm is commonly used for
operational monitoring of cyanobacteria in the Baltic Sea region and
was validated with Baltic Sea data sets (Kratzer et al., 2008; Stelzer
et al., 2008). WeW/FUB relies on a neural network, which regards the
atmosphere and thewater columnas one physical system and therefore
solves the atmospheric correction and water constituent retrieval si-
multaneously. CHLa concentrations along the transect in Fig. 1 were ex-
tracted from the satellite image (data shown in the last panel of Fig. 4).
Gaussian blur (σ = 0.5) was applied to the image prior to the transect
extraction to avoid aliasing effects and the flags provided by the
WeW/FUB algorithm were used to mask invalid pixels. The ferrybox
data sets covered the transect with typically 6000–7000 observations.
These, and the extracted remote sensing observations were linearly in-
terpolated to a common length of 10,000 data points to facilitate data
handling and comparison efforts.

2.2. Wavelet analysis

Continuous wavelet transform (CWT) translates temporal or spatial
data into the wavelet domain. Conceptually CWT is similar to a Fourier
series where a signal is decomposed into sines and cosines. However,
in thewavelet domain the signal is expressedwith scaled and translated
versions of a mother-wavelet. Other than sine and cosine, mother-
wavelets are localized functions and thus changes in scaling properties
within a data set can be resolved (Torrence and Compo, 1998). We used
the Morlet mother-wavelet because its resolution of scale and location
are approximately equal (Maraun and Kurths, 2004). Here, CWT is ap-
plied to spatial data and thus we refer to the wavelet domain as resolved
both in scale and location. After the transformation, we applied an exten-
sion of wavelet analysis – wavelet coherence transform (WCT) (Maraun
et al., 2007; Torrence and Webster, 1999) – to pairs of ferrybox data
(CHLa fluorescence, PC fluorescence, turbidity) to resolve locations and
scales of coherent variation.

Convolution of the signals with scaled and translated versions of the
mother-waveletwas carried out in Fourier space, using discrete fast Fou-
rier transform (DFFT). The finite length of the data sets would have
caused edge effects when calculating the DFFT, which was mitigated
by zero-padding the signal to a length of the next power of two. The ef-
fect of this procedure to the wavelet transform can be noticed within
the cone of influence (COI). Outside the COI, discontinuities at the
edges are contributing to the wavelet-transformed signal by less than
a factor e−2 (two e-folding length), and can be considered negligible
(Torrence and Compo, 1998). For the Morlet mother-wavelet, the two
e-folding length at wavelet-scale s is

ffiffiffi

2
p

s. Wavelet coherence was as-
sumed significant if the coherence was higher, on the 95% significance
level, than that between two random data sets with the same statistical
properties. These red-noise data sets were calculated with Monte Carlo
simulations, using an autoregressive AR1 model (Torrence and Compo,
1998).

All calculations were carried out according to the recommendations
by Torrence and Compo (1998), with the routines described byGrinsted
(2004), who also implemented the functionality as a freely available
(non-profit use) Matlab (The Mathworks) module. The open-source
package ‘PiWavelet’ (Pereira, 2014) offers an easy-to-use implementa-
tion of these routines for Python and is used here. For a full theoretical
treatment of wavelet analysis we refer to Daubechies (1992).

2.3. Bloom detection and classification scheme

Wavelet coherence transforms (WCT) between all ferrybox parame-
ter combinations (PC fluorescence and CHLa fluorescence: ‘PC-CHLa co-
herence’, CHLa fluorescence and turbidity: ‘CHLa-turbidity coherence’,
PCfluorescence and turbidity: ‘PC-turbidity coherence’)were calculated
and averaged over wavelet scales 40 to 60, which corresponds to dis-
tances of 20.2 to 64.0 km with a COI ranging from 57 to 85 km. For
our data set, smaller scales tend to be affected by noise, whereas larger
scales are spatially not sufficiently resolved to be useful in the context
of bloom delineation. We note that the optimal range for the wave-
let scale lies in the range where signal coherence can be detected,
which needs not to bear relevance to the spatial extent of phyto-
plankton bloom. The bloom detection scheme is based only on
the parameter combinations that include PC fluorescence, to
ensure that cyanobacterial blooms rather than blooms of highly
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scattering algae are detected. Significant PC-CHLa and PC-turbidity
coherence, on the 95% significance level and at wavelet scales of
40–60 outside the COI, classify a potentially cyanobacteria dominated sec-
tion (‘cyano’). Wind speed and SST are used to delineate conditions that
could lead to or indicate near-surface stratification along the ferrybox
transects. Wind speeds≥6ms-1 are assumed to lead tomixed conditions
(‘mixed’) even when strongly buoyant cells are present. Situations with
wind speed ≤6 ms-1 are considered potentially stratified (‘stratified’). If,
in addition, SST exceeds the transect average by more than 0.75 °C,
surface accumulations are likely (‘floating’). In Section 4, we further
elaborate on these specific choices and thresholds.

3. Results

We first present the temporal and spatial trends in the ferrybox,
remote sensing and weather observations, followed by the results of
the cyanobacterial bloom detection and stratification classification. In
Section 3.3 we compare in situ and matching remote sensing observa-
tions for stratified and mixed bloom conditions.

3.1. Temporal and spatial trends

Relatively high averagewind speedswere observed in the beginning
and at the end of the study period, while low wind speed prevailed
during the weeks in between (Fig. 2, top panel). SST increased from
15–18 °C at the start of the study period to 19–21 °C during mid-July,
then decreased to 17–19 °C towards the end of July (Fig. 2, bottom
panel).

Transect averages of ferrybox (IS) and remotely sensed (RS) vari-
ables are plotted for the study period in Fig. 3. PC peaked in early July,
whereas CHLa (IS) shows relatively low values from early July through
mid-July. An approximately inverse temporal relationship observed
between CHLa (IS) and PC suggests that the community composition
changed towards cyanobacterial dominance during July. CHLa (RS)
and turbidity peaked mid-July. Water samples were collected
along several transects and analyzed for CHLa concentration. These
ranged from 2 ± 1 mg/m3 during end of June to 6 ± 3 mg/m3 early
July and 5 ± 2 mg/m3 during the second half of July.

The spatial distributions of the recorded CHLa fluorescence, PC
fluorescence, turbidity and remotely sensed CHLa concentration are
shown in Fig. 4. CHLa fluorescence was high in the area 800–950 km
for the four transects sailed from 23 June to 1 July, henceforth referred
to as ‘late-June CHLa peak’. This peak is not apparent from PC
fluorescence, turbidity or remotely sensed CHLa concentrations. The
Fig. 3. Normalized transect averages of ferrybox in situ (IS) observations (CHLa fluores-
cence, PC fluorescence, turbidity) and CHLa concentrations from remote sensing (RS),
plotted as a function of time.
later transects do not show similar consecutive sections of high CHLa
fluorescence, although the 13 and 25 July transects contain short sec-
tions of high fluorescence around 450–600 and 700–900 km from
TravemÃ¼nde, respectively. PC fluorescence exhibited a very different
distribution. The transects on 1 and 5 July show high PC fluorescence
signals over the entire northern part, but infrequent high fluorescence
in transects 11 until 17 July. Turbidity resembled the patterns observed
in the PC fluorescence measurements. The highest remotely sensed
CHLa concentrations (N115 mg/m3) were observed in scenes 10, 11,
14 and 19 July.

3.2. Cyanobacterial bloom detection and classification

Fig. 5 shows the results of the wavelet coherence analysis for the
in situ observations of CHLa fluorescence, PC fluorescence and turbidity
along the transect in Fig. 1. All WCT plots show consecutive stretches
of high coherence in the period of 5–25 July between approximately
350 and 950 km, with isolated sections of high coherence outside this
area. Coherence close the edges of the transect, and therefore within
the cone of influence (COI, ranging from 57 to 85 km from the edges),
should be interpreted with care. For example, close to the harbor of
Helsinki coherences are generally high, which might be caused by
edge effects. In this particular case, however, CHLa (IS) and turbidity
were both elevated, indicating high biomass. The COI areas are conserva-
tively excluded from the bloom classification scheme in our analysis. In
the supplement to this paper, the full scale information is given for
each coherence product, which also includes the COI at each scale.

Fig. 6 depicts the result of the bloom classification scheme (see
Section 2.3), applied to the coherence transforms from all transects out-
side of the COI. Transects from 5 to 25 July were classified as ‘cyano’
from approximately 350 to 950 km distance and predominantly flagged
as ‘stratified’ or ‘floating’. Outside this area, very few and short sections
were classified as cyanobacteria dominated. Transect 13 July was flagged
as ‘mixed’ from approximately 350 to 600 kmwith a subsequent stretch
of floating cyanobacteria from approximately 650 to 800 km. Transect 11
July was also marked as floating from approximately 675 to 850 km.

3.3. Correlation between in situ and remote sensing observations

Multiple linear (generalized least squares) regression of remotely
sensed CHLa concentrations against in situ observations (CHLa fluores-
cence, PC fluorescence, turbidity) was carried out for various subsets
(Table 1). Only data sets collected when the satellite overpass was con-
current with ferrybox observations were evaluated. Four matching data
sets are indicated with black lines in Fig. 2. M/S Finnpartner sailed the
distance of 1091 km in typically 30 h, resulting in amaximal time differ-
ence of 22 h between the observations. The correlations for unmasked
transects (‘all’) were stronger for the pre-bloom scenes 6 and 28 June
than for the bloom scenes 6 and 14 July. Subsets characterized as
‘mixed’ consistently yielded higher coefficients of determination (R2)
than stratified subsets. Similarly, sections characterized as ‘non-cyano’
show stronger correlations than cyanobacteria-dominated sections. By
excluding stratified (including floating) cyanobacteria dominated sec-
tions from the analysis (‘non-(cyano + strat)’), R2 for all match-ups ei-
ther remained constant or improved by up to 0.32 (14 July).

The match-up of transect 13 July with the remote sensing scene 14
July stands out in the result set because this scene captured the bloom
peak and allows comparison of mixed and stratified conditions. A sum-
mary of all available information for this match-up is given in Fig. 7. In
sections marked as ‘mixed’, increased remote sensing concentrations
are resembled by elevated in situ observations at 5m depth. In contrast,
the stratified section between approximately 650 and 750 km exhibited
exceptionally high remotely sensed concentrations, which are not evi-
dent from in situ observations. This is reflected by stronger correlations
for mixed (Table 1, R2 = 0.66, N = 2668) than for stratified observa-
tions (R2 = 0.37, N = 4751), suggesting that ship-induced mixing



Fig. 4.Measurements of ferrybox (IS) CHLa fluorescence, PC fluorescence, turbidity and remote sensing (RS) CHLa concentration. All measurements were collected along the transect in
Fig. 1. See Fig. 2 for further information on distance and dates.
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was not able to overcome stratification. However, regardless of the strat-
ification situation, all wavelet coherence products indicate cyanobacteria
dominated observations. The subset marked as cyanobacteria dominated
is weakly correlated (R2 = 0.09, N = 2930), which is explained by a
weak correlation in the subset of stratified observations (R2 = 0.08,
N = 1257), whereas the wind-mixed subset renders an R2 of 0.55
(N= 1673). Consequently, when the stratified cyanobacteria dominated
subset is excluded, the overall correlation increases from R2 = 0.36 to
R2 = 0.68. An exclusion of all cyanobacteria dominated observations
increases R2 only to 0.61.

4. Discussion

4.1. Contradicting ferrybox and remote sensing observations

In situfluorescence of CHLa and PC aswell as remote sensing derived
CHLa concentrations are widely used for bloom detection and trend
analysis (Fleming and Kaitala, 2006; Frank et al., 2010) (Kutser, 2009;
Matthews et al., 2010). All these parameters are expected to be positive-
ly correlated with bloom development. However, each of the trends in
Fig. 3 leads to a different conclusion about bloom development status.
Two factors hamper a consistent evaluation: 1) PC fluorescence in-
creased with the bloom development, while CHLa fluorescence
decreased, and 2) PC fluorescence and remotely sensed CHLa concen-
trations did not reach their peak values at the same time.

An explanation for 1) may be the different sources of pigment fluo-
rescence between algae and cyanobacteria. In cyanobacteria, a signifi-
cantly lower fraction of cellular CHLa is connected to the fluorescing
photosystem II compared to algae (Johnsen and Sakshaug, 1996). This
leads to a lower fluorescence response from the CHLa fluoroprobe
when cyanobacteria become dominant. At the same time, PC fluores-
cence will increase with increasing cyanobacteria dominance, at least
under nutrient replete conditions (i.e., during bloom development).
Consistently, Seppälä et al. (2007) found that the variability in extracted
CHLa pigment concentration is better explained by PC andCHLa fluores-
cence trends than CHLa fluorescence alone when cyanobacterial domi-
nance increases.

We interpret 2), the time-delay between ferrybox and remote sens-
ing observations, as the time that the cyanobacterial bloom needs from
its initiation until formation of large-scale stratified patches or even
floating layers, when weather conditions allow. This supports the con-
clusion of Kanoshina et al. (2003) that first bloom phases are well cap-
tured by ferrybox systems at the sampling depth of 5 m, whereas
later, potentially stratified phases are better resolved by remote sensing.

Despite the contrasting trends in the optical signals recorded from
ferryboxes and remote sensing platforms, the approach presented in



Fig. 5.Wavelet coherence between PC fluorescence and CHLa fluorescence (top panel), PC fluorescence and turbidity (middle panel) and CHLa fluorescence and turbidity (bottom panel)
for all analyzed transects. Coherence onwavelet scales from 40 to 60 (corresponds to distances of 20.2 to 64.0 km)were averaged. The 95% significance level varies between 0.70 and 0.72
for all of these scales. See Fig. 2 for further information on distance and dates.
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this paper allows for a corroborative interpretation of these observa-
tions with complementary meteorological data.

4.2. Cyanobacterial bloom detection and classification

Our classification of bloom sections asmixed, stratified, or floating de-
pends on thresholds for wind speed and SST. Wind velocities varying
from4 to 7.7ms−1, have been reported to cause sufficient verticalmixing
of the water column in various studies (George and Edwards, 1976;
Hunter et al., 2008;Wynne et al., 2010). For the purpose of our classifica-
tion, mixing down to the measurement depth of the ferrybox system is
sufficient. For SST, Kahru et al. (1993) explain that cyanobacteria can
contribute to heating of the sea surface up to 1.5 °C. Suitable thresholds
for wind speed and SST were selected based on these published observa-
tions and visual inspection of the classification results. We adopted the
threshold of 6 ms−1 from Hunter et al. (2008) forMicrocystis aeruginosa
in a eutrophic shallow lake, considered appropriate for buoyant filamen-
tous cyanobacteria in the thermally stratified Baltic Sea. The threshold for
Fig. 6. Bloom classification. Stratification conditions are marked as: mixed (light blue), stratifie
omitted. See Fig. 2 for further information on distance and dates.
SST leading to a classification as ‘floating’was set at 0.75 °C elevation over
the transect average. In some cases, a threshold definition based on a
global transect mean is problematic, for example in mid-July transects
when SST was high throughout the transect (see Fig. 2). Operationally, a
dynamic threshold could be determined from multi-year climatologies
or sufficiently resolved hydrodynamic models. SST anomalies (difference
between day- and night-time SSTs) could also be derived from geosta-
tionary satellites, as recently demonstrated for the Baltic Sea by Karagali
et al. (2012).

The resolution of the SST and wind speed data was relatively
coarse compared to the ferrybox and satellite data. Meteorological
data of higher spatial and temporal resolution could offer more de-
tailed insights into bloom structure and development. The global,
near-real-time and free-of-charge availability of ECMWF proved
sufficiently resolved for the purpose of interpreting multi-source
optical data in this study. A ‘pixel-wise’ classification of floating
vegetation using spectral reflectance properties (e.g. Matthews
et al., 2012) could complement this method.
d (yellow) and floating (red). Flags within the cone of influence (COI, see Section 2.2) are



Table 1
Coefficients of determination (R2) from a multiple regression (generalized least squares)
of remotely sensed CHLa against in situ observations (CHLa fluorescence, PC fluorescence,
turbidity) for all match-ups. Thefirst row indicates the dates of satellite overpass (MM-DD
in 2005). Fig. 2 shows match-up times and locations. Different masks were applied: ‘all’
(no mask), ‘mixed’ (only vertically mixed water columns), ‘strat’ (only stratified or float-
ing conditions), ‘cyano’ (only sections classified as cyanobacteria dominated), and combi-
nations thereof. In parentheses, thenumber of observations for eachmask is indicated. The
p-value of the F-statistics for all correlations is b0.05.

06-24 06-28 07-06 07-14

All 0.63 (8066) 0.55 (7365) 0.48 (6891) 0.36 (7419)
Mixed 0.79 (3458) 0.70 (3691) – 0.66 (2668)
Strat 0.66 (4608) 0.38 (3674) 0.48 (6891) 0.37 (4751)
Cyano 0.44 (127) 0.53 (32) 0.17 (1403) 0.09 (2930)
Non-cyano 0.81 (7939) 0.55 (7333) 0.48 (5488) 0.61 (4489)
Cyano + mixed – 0.53 (32) – 0.55 (1673)
Cyano + strat 0.44 (127) – 0.17 (1403) 0.08 (1257)
Non-(cyano + strat) 0.81 (7939) 0.55 (7365) 0.48 (5488) 0.68 (6162)
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The spatial resolution of the current analysis is determined by the
coherence analysis. Coherence at very small scales, and thus distances,
tends to be erratic (see full coherence graphs provided in the supple-
ment). We were not able to find consistent coherent variation at very
small scales (e.g. b 20 km). We can speculate about the causes for this
distinct scaling behavior. One possible reason might be that at very
small scales instrument noise plays a dominant role. It might also be
the case that small-scale structures are masked by ship-induced mixing
and water transport from the intake to the instruments. Consequently,
we excluded coherence at wavelet scales corresponding to distances
smaller than 20 km. Coherence on very large scales (e.g. N 64 km), in
turn,were excluded because they do not allow to delineate cyanobacteria
dominated subsections. However, it is very likely that coherence on other
scales and ratios thereof can offer additional information about underly-
ing biogeochemical processes, such as typical bloom structure sizes or
phytoplankton group composition.

Conventional bloom metrics are based on regionally established
threshold values (e.g. Metsamaa et al., 2006), which can lead to mis-
leading interpretations at highly stratified conditions. We introduce
the concept of significant coherence between independent in situ opti-
cal transect measurements as a different criterion for cyanobacterial
blooms. Each coherence product comes with its own interpretation:
1) PC-CHLa coherence implies that sample-to-sample variation in phy-
toplankton biomass (CHLa fluorescence) corresponds to the variation in
cyanobacterial accessory photosynthetic pigment (PC fluorescence),
which is increasingly likely with increasing cyanobacteria dominance.
Similar to the previous, 2) PC-turbidity coherence indicates that a dom-
inant cyanobacteria presence exists. This is provided that the particle
population does not include significantly variable, highly scattering,
non-cyanobacterial components. Positively buoyant cyanobacteria
Fig. 7. Combined graph of all data sources (IS: in situ, RS: remote sensing) for transect 07-13 and
minimum andmaximum values. For the ‘Stratification Flag’, stratification conditions are marke
ification conditions are marked as: mixed (light blue), stratified (yellow) and floating (red). Se
are frequently considered efficient light scatterers either due to
the presence of gas vacuoles or colony formation. Based on this, PC-
turbidity coherence is likely to indicate bloom-forming cyanobacteria. Fi-
nally, 3) CHLa-turbidity coherence should be interpreted as the dominant
presence of phytoplankton in the particle population. For turbidity sen-
sorswith limited signal resolution, this product ismore likely to be signif-
icant when the dominant phytoplankton is an efficient light scatterer.

Seppälä et al. (2007) reported the presence of Anabaena spp.,
Aphanizomenon flos-aquae and N. spumigena in the studied period, all
of which were found to be efficient light scatterers (Metsamaa et al.,
2006). This suggests that high coherence in all three products was
caused by abundant cyanobacteria. Turbidity originating from other
scattering substances, e.g. suspended matter and sea water, is not
expected to be coherent with the fluorescence signals. Variability
induced by e.g. suspended matter might however decrease the level of
coherence between turbidity and fluorescence measurements to below
the applied 95% significance threshold for wavelet coherence. In our
data set, PC-turbidity coherence and CHLa-turbidity coherencewere sim-
ilar or even stronger than PC-CHLa coherence, suggesting that scattering
was indeed dominated by cyanobacteria.

Elevated CHLa fluorescence (Fig. 4) in the northern parts of the late
June transects (‘late-June CHLa peak’) coincided with high wind-forced
mixing (Fig. 2). Fluorescence measured at 5 m depth should therefore
be representative of the remotely sensed concentration in the first opti-
cal depth during this period. Surprisingly, the remote sensing derived
CHLa concentrationswere not elevated despite the suggestion of phyto-
plankton bloom from the CHLa fluorescence in this area. The late-June
CHLa peak is also not apparent from the ferrybox turbidity measure-
ments, suggesting that the source of the CHLa fluorescence peak was a
weak light scatterer.

Low light scattering efficiency in visible wavebands by small flagel-
lates is consistent with results from Steen (2004) on Chrysochromulina
ericina. This explanation, and the general correspondence between the
WeW/FUB CHLa concentrations and turbidity measurements at 5 m
depth, suggest that the WeW/FUB CHLa algorithm is more sensitive
to increased scattering by certain phytoplankton species than to
the specific absorption features of the CHLa pigment. The late-June
CHLa peak is also not visible in any of the coherence products. This
supports our conclusion that PC-turbidity and PC-CHLa coherence
are not sensitive to algal blooms but specifically to cyanobacterial
blooms. However, our data set does not allow us to verify whether
CHLa-turbidity coherence is also sensitive to non-cyanobacterial, strongly
scattering phytoplankton. We recommend to test the approach on
additional data sets that would capture the occurrence of such species,
e.g. from Baltic Sea spring blooms. Similarly, phycocyanin-poor
cyanobacteria such as marine Synechococcus sp. or the phycocyanin-
lacking prochlorophytes may not be distinguished with the same set
of fluorescence parameters.
thematching remote sensing scene 07-14. Each parameter is normalized to its respective
d as: mixed (blue), stratified (green) and floating (red). For the ‘Cyanobacteria Flag’, strat-
e Fig. 2 for further information on distance and dates.
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Based on the 2005 bloom description given by Seppälä et al.
(2007) we conclude that wavelet coherence successfully delineates
the spatial and temporal extent of the analyzed cyanobacterial
bloom. We observed significant coherence in mixed, stratified and
even surface bloom subsections (e.g. 11 July, ≈700–850 km and
13 July, ≈650–800 km)—independent of the corresponding fluo-
rescence or turbidity signal strength. Within the resolution limits
of the stratification classification, we conclude that wavelet coherence
between ferrybox measurements appears to be largely independent of
concentration and thus stratification. Further research is however nec-
essary to quantify the relationship between the level of coherence and
absolute pigment concentrations, community composition, and the
presence of other particulate matter.

4.3. Correlation between ferrybox and remote sensing observations

Fig. 7 illustrates a situation where remote sensing and in situ obser-
vations do not match. The subsection of the 13 July transect marked as
floating bloom (≈650–800 km) could not be detected using only mag-
nitudes of the measured in situ signals. Exceptionally high remotely
sensed CHLa concentrations, low wind speed and high SST make the
presence of surfacing cyanobacteria patches very likely. Several remote-
ly sensed pixels within that patch are indeed flagged as ‘floating vegeta-
tion’, according to the definition of Matthews et al. (2012) (results not
shown). This interpretation is reflected by the automatically produced
‘Cyanobacteria Flag’ in Figs. 6 and 7. By excluding stratified and floating
cyanobacteria dominated sections, the correlation between in situ and
remotely sensed observations could be increased significantly (from
R2 = 0.36 to 0.68 for scene 14 July, Table 1). In this case, only 17% of
the observations had to be masked to achieve this result. The difference
in correlation between stratified and mixed cyanobacteria dominated
sections (R2 = 0.08 and 0.55) indicates that only the latter are suitable
for comparison with remotely sensed concentration estimates. The cor-
relation for the remaining match-up scenes is also either unaffected or
improved by the masking.

It may be argued that large cargo ships and passenger ferriesmix the
water column sufficiently to avoid effects from stratification in ferrybox
measurements (Rantajärvi et al., 1998). Our findings suggest that in
highly stratified conditions up to surfacing blooms, ship-inducedmixing
might not be sufficient to avoid discrepancies between remote sensing
and in situ observations. Such discrepancies may be caused by incom-
plete mixing or lingering cell physiological effects of light exposure on
pigment production and fluorescence. We recommend to exclude ob-
servations of stratified or floating cyanobacterial blooms in the direct
comparison of ferrybox and optical remote sensing data. Mixed bloom
sections should be explicitly included, as they represent the upper
reliably observable concentration limits. If data assimilation is desired,
we recommend to anticipate and interpret deviations between the ob-
servation sources according to the presented scheme.

4.4. Implications for the Baltic Sea

In the Baltic Sea in situ observations are carried out routinely
from ships-of-opportunity, buoys, research vessels, and increasingly
by citizens. It is challenging to combine these observations into a com-
prehensive monitoring network. This problem born out of luxury
makes automatic interpretation of data from operational sensor
networks essential: near real-time data access is reduced to a technical
detail if interpretation and evaluation cannot be carried out at the same
pace. Decision making processes, e.g. harmful-algae early warning
systems, require near real-time interpretation and harmonization of
the diverse data sources. The approach presented in this study is one an-
swer to this requirement. It is particularly useful in the context of Baltic
Sea ferryboxes, because these systems resolve three independent mea-
sures of cyanobacterial presence: fluorescence of CHLa and PC aswell as
turbidity. We found coherence between these observations to be high
throughout cyanobacteria dominated water bodies, independent of
the actual cell abundance at themeasurement depth. Thismakes thede-
tection less sensitive to wind mixing or cell migration. The presented
method assimilates these coherences, along with wind speed and SST,
to a synoptic product of cyanobacterial bloom presence and stratifica-
tion status, and can be readily applied in near real-time data analysis.

5. Conclusion

Using ferrybox instruments and weather data, a harmonized
cyanobacterial bloom presence and qualificationmethodwas developed.
Coherent in situ measurements are interpreted as driven by the same
source—cyanobacterial cells. Wavelet coherence analysis was applied to
spatially resolve this coherence. Combinations of PC fluorescence, CHLa
fluorescence, and turbidity vary coherently in a cyanobacteria dominated
bloom in the Central Baltic Sea. Coherence was found to be significant at
all encountered levels of stratification. In highly stratified conditions, e.g.
at low wind speed and elevated sea surface temperature, coherent
observations indicate where surface accumulations will highly affect
remote sensing measurements while ferrybox-derived concentrations
of PC and especially CHLa can be rather low. In well-mixed cyanobacteria
dominated blooms, concentrations derived from space and in situ can be
compared directly. Both conditions can automatically be identified with
the developed approach, which is a precursor to near-real time process-
ing efforts and further data assimilation.We demonstrated that resolving
coherence between independent ferrybox measurements supports
corroborative interpretation of multi-platform cyanobacterial bloom
observations. Thus we recommend that ferrybox systems operated in re-
gions of abundant cyanobacteria be equippedwith CHLa and PC fluorom-
eters as well as turbidity sensors. Also wind speed should be among the
recorded parametersin ferrybox systems to facilitate near real-time pro-
cessing. The approach might be particularly valuable for automated
cyanobacteria monitoring and early warning systems.
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