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Abstract

A combined analysis is reported of 3π0, π0η andπ0η′ data in the mass range 1960 to 2410 MeV. This analysis is made
consistent also withηηπ0 data, reported separately. The analysis requiress-channel resonances with a spectrum close to that
published earlier forC = +1 states withI = 0; masses forI = 1 states are lower on average by 20 MeV. Two alternative
solutions are found, differing only forJP = 2+ and 4+ states by small amounts in masses and widths. Both 3π0 andηπ0 data
prefer one of these two solutions. For this preferred solution, observed states haveJPC, masses and widths (M,Γ ) in MeV as
follows: 4−+: (2250± 15, 215± 25), 4++: (2255± 40, 330+110

−50 ) and (2005+25
−45, 180± 30), 3++: (2275± 35, 350+100

−50 ) and

(2031±12, 150±18), 2−+: (2245±60, 320+100
−40 ) and (2005±15, 200±40), 2++: (2255±20, 230±15), (2175±40, 310+90

−45)

and (2030± 20, 205± 30), and 1++: (2270+55
−40, 305+70

−35). There are indications of further 2−+, 2++ and 1++ contributions

just below the available mass range, and also a 0++ state at∼ 2025 MeV.

 2001 Elsevier Science B.V.

Data for p̄p→ 3π0 have been reported earlier [1]
from the Crystal Barrel experiment at LEAR in the
momentum range 600 to 1940 MeV/c. Data from
channelsp̄p → π0η and π0η′ have also been pre-
sented [2]. There is evidence for a number ofs-
channel resonances with similar masses and widths in
the two analyses. The objective here is to report a com-
bined analysis with consistent resonance parameters in
all three sets of data.
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A related analysis of̄pp→ ηηπ0 in reported sep-
arately [3]. Those data provide evidence for two 0−
resonances which are less conspicuous in the 3π0 data
discussed here. The present analysis uses the parame-
ters of those resonances. Conversely, the analysis of
ηηπ0 uses parameters of resonances reported here. It
is useful to examine the sensitivity of each set of data
to individual resonances.

A second objective is to compare resonance masses
and widths with a combined analysis reported earlier
[4] of I = 0,C = +1 channelsπ0π0, ηη, ηη′, ηπ0π0

and π+π−. There, a complete spectrum of theqq̄
states expected in this mass range was found, as well
as some additional states. If mass differences between
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u andd quarks are small, as is generally believed, the
spectra forI = 1 and 0 should be similar. This is what
we find.

We outline first the considerations going into the
partial wave analysis. The earlier study of 3π0 data
fitted magnitudes and phases of amplitudes separately
to data at individual momenta. Those results were then
interpreted in terms ofs-channel resonances forJP =
4+, 3+, 2+ and 1+. For π0η andπ0η′, magnitudes
and phases ofπ0η andπ0η′ amplitudes were close to
SU(3) relations [2]. The composition ofη andη′ are
well known from a study of many branching ratios [5]
to be

(1)|η〉 = cosθ

∣∣∣∣uū+ dd̄√
2

〉
− sinθ

∣∣ss̄〉,

(2)
∣∣η′〉 = sinθ

∣∣∣∣uū+ dd̄√
2

〉
+ cosθ

∣∣ss̄〉,
with cosθ � 0.8 and sinθ � 0.6. The same SU(3)
constraints are applied here.

Partial wave amplitudes are expressed as sums ofs-
channel resonances plus backgrounds. Each resonance
is fitted to a Breit–Wigner amplitude of constant width
with real coupling constantg and phase angleφ:

(3)f =
√
ρp̄p(p)

k

g exp(iφ)B(p)B(q)

M2 − s − iMΓ .

Backgrounds are parametrised as constants or linear
functions ofs, or as resonances below thep̄p thresh-
old. These assumptions impose the important con-
straint of analyticity. Blatt–Weisskopf centrifugal bar-
rier factorsB are included explicitly for coupling to
p̄p (momentump in the overall centre of mass frame)
and coupling to the decay channel (momentumq); the
radius of the centrifugal barrier is set to 0.83 fm from
Ref. [4]. The factor 1/kallows for the flux in thep̄p
entrance channel, andρp̄p is the phase space in thep̄p
channel.

Partial waves withJP = 2+ and 4+ may couple
to � = J ± 1 in the p̄p channel, e.g.,3F2 and 3P2.
Multiple scattering through the resonance is expected
to lead to approximately the same phaseφ for both
� values. ForI = 0, C = +1, phases are accurately
determined; all phase differences between� = J ± 1
lie in the range 0± 15◦. For present data, they are
less accurately determined (because of the lack of
polarisation data) but are consistent with zero. We

therefore fit the ratio of coupling constantsgJ+1/gJ−1
to a real ratiorJ . Most states turn out to be dominantly
L = J − 1 orL = J + 1, and the larger partial wave
governs the determination of resonance masses and
widths.

The amplitude analysis turns out to be much less
secure than forI = 0, C = +1 for several reasons.
The fundamental reason is that no data are available
from a polarised target, as was the case forI = 0
in the π−π+ channel. Polarisation data play two
fundamental roles. Firstly, they separate amplitudes
with helicities 0 and 1 in the initial state, hence� =
J ± 1. In the present analysis, separation between
3P2 and 3F2 amplitudes and between3F4 and 3H4
is hampered by the absence of such polarisation
information. The second role of polarisation data is
that they are phase sensitive. Polarisation measures
the imaginary part of interferences between partial
waves, while differential cross sections are sensitive
to the real parts of interferences. ForI = 0, C = +1,
the availability of both differential cross sections and
polarisations puts tight constraints on all phases. For
the presentI = 1, C = +1 channels, relative phases
are poorly determined when the phase angle between
partial waves is close to 0 orπ , because of the lack of
polarisation data. This leads to larger errors for several
resonances.

A second problem is as follows. Dalitz plots for
3π0 data are shown at four representative momenta in
Fig. 1. There is just one dominant signal,f2(1270)π,
from which to search for resonances. Underneath the
f2(1270)bands is a broad physics background. This
is fitted asσπ , where σ stands for theππ S-wave
amplitude as parametrised in Ref. [6]. Because of the
sixfold symmetry of the Dalitz plot, it is hard to sep-
arate contributions from low and high masses inππ .
Theσ amplitude varies slowly withs and its coupling
constant is likely to have somes-dependence. We as-
sume the coupling constant may vary linearly withs.
There must also be contributions from so-called trian-
gle diagrams [7]. One of the pions from the decay of
f2(1270)may rescatter from the spectator pion, pro-
ducing a new resonance. In principle such processes
are calculable. They lead to a logarithmic variation of
the amplitude withs. Such processes cannot in prac-
tice be separated from theππ S-wave amplitude. In
summary, there is an intrinsic uncertainty about how
to parametrise the background. Different parametri-
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Fig. 1. Representative Dalitz plots for 3π0 data; numbers in each panel indicate beam momenta in MeV/c.

sations lead to somewhat different interferences with
f2(1270)bands. Since the broad background appears
dominantly in theJP = 0− channel, these differences
introduce uncertainties mostly into the determination
of singlet partial waves withJP = 0−, 2− and 4−.

The fit to angular distributions in Fig. 2 at 1200 and
1350 MeV/c is not perfect. The problem is associated
with the crossing of threef2(1270)bands, visible on
Fig. 1. A possible explanation is that triangle effects
of Ref. [7] will have maximum effect at this triple
intersection.

A third problem, purely experimental, is that the
production angular distribution forf2(1270) shows
an extremely rapid change between the two lowest
momenta, 600 and 900 MeV/c. It is illustrated in
the first two panels of Fig. 2. This makes it hard to
determine resonance parameters for the lower group
of s-channel resonances which cluster in this range.
The analysis ofI = 0,C = +1 was on firmer ground,
because of the availability of data for̄pp → π−π+
at 100 MeV/c steps from 360 to 900 MeV/c, both

differential cross sections and polarisations; those data
extend down to a mass of 1910 MeV.

A defect in our earlier analyses in Refs. [1] and
[2] was that 3π0 data were fitted with only two 2+
resonances, while those forπ0η andπ0η′ were fitted
with three. They also used different values of the ratios
r2 between3F2 and3P2 amplitudes and likewise forr4
between3H4 and3F4. These defects are rectified here.
It turns out to be quite difficult to find a combined fit to
all data with consistent values ofr2 andr4. A good fit
requires thatr2 varies rapidly over the available mass
range. Four 2+ states are required. This agrees with
I = 0,C = +1, where two dominantly3P2 states were
found at 1934 and 2210 MeV and two dominantly
3F2 states at 2010 and 2293 MeV. A similar pattern
emerges here. As a result, fits to data have changed
significantly from the earlier publications for partial
waves withJP = 2+ and 4+.

This change is particularly large for 3π0 data at
the lowest two momenta. The fit shown in Ref. [1]
had a large3P1 intensity there. However, we now
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Fig. 2. Angular distributions for production off2(1270)π for events with at least one value ofM(ππ) in the range 1175–1375 MeV. Histograms
show the partial wave fit. Numbers in each panel indicate the beam momentum in MeV/c.

find that adding further3P2 states at∼ 1950 and
2175 MeV produces a very large improvement in
the fit, by ∼ 10500 in log likelihood. There is large
cross-talk at low momenta between3P2 and3P1 and,
to a lesser extent, with3F3; these partial waves all
producef2(1270)π amplitudes withL = 1 and 3 in
the final state and differ only by Clebsch–Gordan
coefficients for different helicities. In the new fit, the
3P1 amplitudes shrink to quite small values, and3P2
and3F3 amplitudes grow to large values. This change
is a direct consequence of the simultaneous fit to three
channels of data.

We now deal with some technicalities. Small con-
tributions due tof0(980), f0(1500)andf2(1565)are

visible in mass projections of Fig. 3. The structure
at s = 2–2.5 GeV2 in the first panel (600 MeV/c) is
largely due tof2(1565), notf0(1500). This contribu-
tion dies away rapidly at higher momenta. It is para-
metrised by the form given in Ref. [8]. Contributions
from f0(1370)may be separated reliably from those
due tof2(1270) but are small. The fit toηηπ0 re-
quires contributions also fromf0(1770),f2(1980)and
f0(2105).

No significant physics can be extracted from these
small amplitudes. If they are fitted freely to all par-
tial waves, there is the danger that they drift to size-
able magnitudes with large destructive interferences
between them. This is a well known form of instability.
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Fig. 3. Projections on toM2(ππ). Histograms show the fit. Numbers in each panel indicate beam momenta in MeV/c.

To avoid it, a penalty function is introduced for mag-
nitudesΛ of amplitudes. This penalty function takes
the form of contributions toχ2:

χ2
i =

[
Λ−Λ0

δΛ

]2

i

.

HereΛ0 is a target value, zero forf0(980), f0(1370),
f2(1565). The denominatorδΛ is adjusted so that
the magnitude of each partial wave contributes up
to χ2 = 9 (i.e., 3σ ) to the penalty function. Those
amplitudes which are really needed feel little influence
from the penalty function compared with very large
contributions to log likelihood from individual data
points; amplitudes which are not needed settle close

to zero. In practice this simple procedure stabilises
the small partial waves very effectively. It contributes
∼ 650 to χ2 compared with∼ 650,000 for log
likelihood.

Thef0(1500)→ ηη is clearly visible inηηπ0 data
and is well determined there. A first pass through the
present analysis determines the branching ratio

(4)
BR[f0(1500)→ ηη]

BR[f0(1500)→ π0π0] = 0.52± 0.16.

With this branching ratio, the magnitudes off0(1500)π
amplitudes fitted to 3π0 agree naturally for all partial
waves with those fitted toηηπ0. In the final fit, values
of Λ0 are set to magnitudes predicted fromηηπ0 and
Eq. (4).
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Fig. 4. Intensities of 0+, 2+, 4+ and 6+ partial waves inp̄p→ π0η for solution 2 (upper row) and solution 1 (lower row). Dashed curves
show intensities for3P2 and3F4, dotted curves for3F2 and3H4, full curves their sum.

Contributions from f0(1770), f2(1980) and
f0(2105) cannot be determined reliably from 3π0

data, because of the intrinsic systematic uncertainty
in how to treat the broad background. Branching ra-
tios forf0(2105)andf2(1980)betweenηη andπ0π0

have been determined well in Ref. [4] from a com-
bined fit top̄p→ ηη andπ0π0. These branching ra-
tios are used to determineΛ0 in the penalty functions
from ηηπ0 data. The branching fraction off0(1770)
toπ0π0 is fitted freely. Masses and widths ofπ(2070)
andπ(2360)are fixed at the more reliable values fit-
ted toηηπ0 data; free fits to 3π0 data are consistent
with those values but with larger errors of±60 MeV.

We begin the physics discussion withπ0η andπ0η′.
In Ref. [2], two solutions were found. That remains
the case now. They are shown forπ0η in Fig. 4.
These solutions are quite distinct. There is no smooth
transition from one solution to the other. Instead, it is
necessary to change the signs of coupling constants
of at least two resonances in order to jump from
one solution to the other. Extensive searches of this
type have not located any further solutions compatible
with a simultaneous fit to 3π0. As one variesr
parameters, the two previously published solutions

deform continuously to those given here. The quality
of the fits is indistinguishable by eye from those shown
in Ref. [2]. The fit toπ0η andπ0η′ is now better for
the new solution 2:χ2 = 607 for 432 points, compared
with 720 for solution 1.

The essential difference between these two solu-
tions is that the upper of two 4+ resonances requires
r4 = 0.87± 0.27 for solution 2 butr4 = 0.30± 0.31
for solution 1. This difference is accompanied by large
changes of coupling constants toπ0η andπ0η′ for 2+
and 4+ states. The 4+ intensity is much larger in solu-
tion 1 and smaller for 2+.

In both solutions a large 0+ amplitude is required.
Much of it may be fitted as background from a pole
in the region 1450–1750 MeV. However, a resonance
at 2005± 30 MeV with Γ = 300± 35 MeV is also
required and gives a significant improvement inχ2

of 290. There is further evidence for this state from
p̄p → ηπ0π0π0 data [9]. One expects a further 0+
state around 2250–2360 MeV. However, adding it to
either solution 1 or 2 changesχ2 by< 73, which is not
enough to establish the presence of another state. The
addition of this second 0+ state increases the errors
for the lower one. In the final fit, we therefore fix the
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Table 1
Masses and widths of fitted resonances for the preferred solution 2. Values in parentheses are fixed from other data. Entries in the lower half
of the table are below the available mass range and may not be determined reliably. Column 6 shows changes&S in log likelihood when each
resonance is removed from the fit to 3π0 data and all remaining parameters are re-optimised. The last column shows masses forI = 0,C = +1
resonances from Ref. [4] for comparison

Name JP M (MeV) Γ (MeV) r &S M(I = 0) (MeV)

π4 4− 2250± 15 215± 25 11108 2328± 38

a4 4+ 2255± 40 330+110
−50 0.87± 0.27 2455 2283± 17

a4 4+ 2005+25
−45 180± 30 0.0± 0.2 2447 2018± 6

a3 3+ 2275± 35 350+100
−50 3154 2303± 15

a3 3+ 2031± 12 150± 18 18410 2048± 8

a2 2+ 2255± 20 230± 15 −2.13± 0.20 2289 2293± 13

a2 2+ 2175± 40 310+90
−45 −0.05± 0.31 1059 2240± 15

a2 2+ 2030± 20 205± 30 2.65± 0.56 1308 2001± 10

π2 2− 2245± 60 320+100
−40 2298 2267± 14

π2 2− 2005± 15 200± 40 1633 2030± 15

a1 1+ 2270+55
−40 305+70

−35 2571 2310± 60

π 0− 2360± 25 300+100
−50 1955 2285± 20

π 0− 2070± 35 310+100
−50 1656 2010+35

−60

a0 0+ (2025) (320) 21374 2040± 38

a2 2+ 1950+30
−70 180+30

−70 −0.05± 0.30 2638 1934± 20

π2 2− (1880) (255) 7315 1860± 15

a1 1+ 1930+30
−70 155± 45 2609 1971± 15

a1 1+ (1640) (300) 232

π 0− (1801) (210) 2402

mass and width of the lower state toM = 2025 MeV,
Γ = 320 MeV from Ref. [9].

Fits to the 3π0 data are almost identical for solu-
tions 1 and 2 for all partial waves except 2+, 4+ and
6+, and even there the main differences are for3H4
and3H6. The fit to 3π0 data again favours solution 2
by 1182 in log likelihood. We show in Tables 1 and
2 that removing any resonance from the fit changes
log likelihoodS by amounts which are typically 2000.
Removing any small amplitude forf0(980), f0(1300),
f0(1500), etc. introduces changes in log likelihood up
to 250.

Table 1 shows masses and widths of resonances in
the preferred solution 2. These results supersede those
of Refs. [1] and [2]. Statistical errors are very small,

typically 5 MeV for masses. Errors in the Tables 1
and 2 cover systematic variations in a large number of
alternative fits (e.g., omittingf0(980)π, f0(1500)πor
f2(1565)πfinal states). The parameters of the 6+ state
are set to those ofa6(2450)of the Particle Data Group,
but there is little sensitivity to this choice. For solution
1, masses and widths of all states except 2+ and 4+
show changes from solution 2 no larger than statistical
errors, i.e.,∼ 5 MeV. Table 2 shows masses and widths
for 2+ and 4+ states in this alternative solution.

The essential change in going from solution 2 to
solution 1 is that the upper 4+ state moves down
in mass from 2255 to 2220 MeV. There is a small
increase in the mass of the lower 4+ state from
2005 to 2030 MeV. What is happening is that the
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Table 2
Masses and width of resonances in the alternative solution 1. The last column shows changes&S in log likelihood when each resonance is
removed from the fit and all remaining parameters are re-optimised

Name JP (MeV) M (MeV) Γ r &S

a4 4+ 2220± 20 345± 65 0.30± 0.31 2852

a4 4+ 2035± 20 135± 45 0.0± 0.2 2063

a2 2+ 2235± 35 200± 25 −1.74± 0.36 3658

a2 2+ 2135± 45 305+90
−45 −0.56± 0.53 1097

two 4+ states, which have similar values ofr4, are
tending to merge. We have observed elsewhere that
such merging of resonances of the sameJP tends to
give small improvements in log likelihood through
interference effects. Generally it should be regarded
with suspicion.

There are two physics reasons for preferring solu-
tion 2. The first is that the upper 2+ and 4+ states are
closer to those observed forI = 0,C = +1, shown in
the final column of Table 1 for comparison. Although
one state might shift significantly in mass, for example
because of the opening of a nearby threshold, system-
atic differences of 60–105 MeV betweenI = 0 and
I = 1 states seems unlikely. The second indication is
that the fit toI = 0, C = +1 found a large positive
value ofr4 for the upper resonance of 2.7±0.5, closer
to the present solution 1. Values ofr2 are similar for
I = 0 and 1.

Despite differences of detail between solutions 1
and 2, the general pattern of masses and widths for
I = 0 andI = 1 is similar. It is surprising that most
I = 1 masses tend to lie 20 MeV lower than for
I = 0. Since solution 1 tends to drag the masses of the
upper 2+ and 4+ states down, there is the possibility
that this ambiguity is everywhere having the effect of
lowering masses, through correlations between partial
waves. We have tried increasing all masses forI = 1
systematically by 20 MeV and refitting. This does not
solve the problem: log likelihood increases by 820, but
when masses are released, they drift down again to the
solution of Table 1. The shift in mass betweenI = 1
and 0 is dictated largely by good determinations for
a3(2031)anda2(2255).

Figs. 5 and 6 show intensities and phases of the
dominant partial waves as a function of mass for
the preferred solution 2. The figures also show in-

tensities from fits to individual energies as squares
(or triangles for 4−[f2π]L=5). In those fits,r val-
ues of 2+ and 4+ states are fixed at each momen-
tum to values from the full fit. This is the ori-
gin of differences from Figs. 3 and 4 of Ref. [1].
Only magnitudes and phases off2(1270)π ampli-
tudes are set free in single-energy fits. The high par-
tial waves are set free only at high momenta, where
they are well determined. The scatter of points about
the smooth curves indicates the uncertainties, mostly
in phases.

We now comment on individual resonances. The
low mass of the 4− (1G4) state at 2250 MeV compared
with ρ5(2350)is surprising but appears reliable. There
is excellent agreement for this 4− state with fits to
ηηπ0, where it also appears strongly ina0(980)η at
2255± 30 MeV withΓ = 185± 60 MeV.

The 4+ states are not accurately defined, because
of the lack of polarisation information to determine
values ofr4. For the lower state,r4 is consistent with
zero. At this mass, it would be surprising if3H4 made
any significant contribution, because of thep̄p � = 5
centrifugal barrier.

The lower 3+ state at 2031 MeV is by far the
dominant partial wave at low mass. It is particularly
narrow,Γ = 150± 18 MeV. This narrow width is
essential in order to reproduce the rapid change in
angular distributions shown on Fig. 2 from 600 to
900 MeV/c. The lower 4+ state must also be quite
narrow,Γ = 180± 30 MeV (like f4(2050)), for the
same reason. The upper 3+ state does not appear as a
peak in Fig. 5g because it is overwhelmed by the large
amplitude from the lower resonance. It is required
to explain the phase variation at high mass. There is
also evidence for it from a small peak observed in the
analysis ofηηπ0 data [3].
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Fig. 5. Intensities of individual partial waves (preferred solution 2). Squares and triangles show free fits at single energies. Full curves are for
f2(1270)πfinal states. Dotted and chain curves in (a) show respectively the 4− f2π amplitudes withL= 5 (triangles) and theσπ contribution.
Dotted curves in (c) and (p) showσπ contributions. In (p), points and the full curve show the integrated cross section for 3π0.

Two dominantly3F2 states are required at 2255
and 2030 MeV and two dominantly3P2 states at
2175 MeV and∼ 1950 MeV. This pattern is close
to that observed forI = 0. The strong 1950 MeV
state is at the bottom of the available mass range,
and its mass and width are strongly correlated. If its
parameters could be determined accurately elsewhere,
this would stabilise the present analysis considerably.
The a2(2175)gives the smallest improvement in log
likelihood, namely 1059. It may be simulated to some
extent by changes to mass, width andr value of
a2(2255); its contribution may also be simulated to

a limited extent by a possible contribution from the
missing 0+ state in the mass range 2280–2360 MeV.

For JP = 2−, the behaviour ofL = 2 andL = 0
intensities off2(1270)π partial waves at low masses
are interesting. There is a requirement for a very
strongL = 2 amplitude at the lowest momentum; it
is required specifically to fit the detailed structure
of the mass projection of Fig. 3 at 600 MeV/c. It
fits naturally toπ2(1880), reported in an analysis of
ηηπ0π0 data [10]. Despite the fact that this resonance
is below the available mass range, omitting it changes
log likelihood by a particularly large amount, 7315.
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Fig. 6. Phases of individualf2π partial waves, relative to 2−(L= 0) for singlet states and relative to 3+ for triplet partial waves.

A strong 2− → [f2(1270)π]L=2 partial wave in this
mass range was reported by Daum et al., [11]. Next,
there is a large peak around 2030 MeV in Fig. 5b for
[f2π]L=0. The rapid variation in these two amplitudes
with L = 0 and 2 can be accommodated only by
adding a secondπ2(2005). Without this extra state, log
likelihood is worse by 1633. There is further evidence
for this secondπ2 in the analysis ofηηπ0 data [3].

For 2− at high masses, there is evidence for some-
thing around 2245 MeV. Without it, log likelihood is
worse by 2298, a highly significant amount. However,
the mass and width are poorly determined. This is be-
cause it couples weakly tof2π , and is observed mostly
in decays toσπ , shown by the dotted curve of Fig. 5c.
Ambiguities in the treatment of the broadσ make the
systematic errors for mass and width large.

The amplitudes forJP = 1+ are the most difficult
to determine, because of low multiplicity(2J + 1)
and because of cross-talk with3P2 and 3F3 decays
to f2π . There is a definite resonance at 2270 MeV,
Fig. 5m, but with sizeable errors for mass and width.
The mass has decreased somewhat from that reported
in the analysis of 3π0 data in Ref. [1]. In that previous
analysis, a lower 1+ state was reported at 2100 MeV.
That claim is now withdrawn. The addition of the
stronga2(1950)state has improved the fit by a very
large amount and has reduced the3P1 amplitudes to
small values peaking near threshold. Some low mass
1+ contribution is still required, but it optimises at
1930 MeV, below the available mass range, which
begins at 1960 MeV. It cannot be regarded as well
defined from present data.
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Fig. 7. Plots ofM2 vs. radial excitation numbern. Straight line trajectories are drawn in all cases with a slope of 1.143 GeV−2 from Ref. [4].
Numbers indicate masses in MeV.

In summary, the mass spectrum forI = 1 is simi-
lar to that forI = 0. However, theπ2(2245)has large
errors; alsoa2(1950)and a1(1930)are not securely
identified in mass and width, though some such con-
tributions are definitely required. Fig. 7 shows a com-
parison ofM2 against radial excitation number with
straight line trajectories with a slope of 1.143 GeV−2.
This is the average slope fitted toI = 0 states in
Ref. [4]. The pion is not shown on the1S0 trajec-
tory, because its mass is pulled strongly downwards
by the instanton interaction. That may affectπ(1300)
by an unknown amount. Around 1800 MeV, the VES
group reports bothπ(1800)and a 0− peak inρω at
1750 MeV [12]. If they are distinct, the former is a
strong hybrid candidate. Fig. 7 shows the mean mass
with an error covering both possibilities.

Two possible slopes 1.143 GeV−2 and 1.38 GeV−2

were discussed in Ref. [13] and trajectories of T-

matrix and K-matrix poles were considered. The K-
matrix poles are not discussed here, but T-matrix
pole trajectories may be investigated fully. The best
solution corresponds much better to the first slope. To
make an explicit check, we make a set of fits restricting
resonance masses to straight-line trajectories.

That for the 0++ sector is constructed starting
from a0(1450). As discussed above, when two 0+
resonances are introduced in the mass range 1900–
2410 MeV, the 0++ sector becomes weakly defined
and such readjustment causes only very marginal
loss in log likelihood. The3P2 trajectory starts from
a2(1320)with a2(1680)as the radial excitation. For
a slope of 1.143 GeV−2, this requires the mass of
the next state to be 1980–1990 MeV, one standard
deviation abovea2(1950). The next state is predicted
at ∼ 2250 MeV. Although the mass shift required
for a2(2175) is two standard deviations, we stress
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that this resonance gives the smallest contribution
to the likelihood value. The resulting fit with slope
1.143 GeV2 for all resonances gives log likelihood
only 350 worse than the best fit. There are no visible
discrepancies in fits to data and this solution may be
considered acceptable under the restrictions imposed.
The fit with slope 1.38 GeV−2 produces a solution
with log likelihood worse by 2200 than the best
solution. We conclude that resonance masses for the
I = 1,C = +1 sector correspond approximately to the
slope of 1.143 GeV2, but not to the slope 1.38 GeV−2

for T-matrix poles.
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