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a  b  s  t  r  a  c  t

Denitrification  bioreactors  have  served  as  effective  artificial  N sinks  by stimulating  denitrification  and
remediating  excessive  nitrate.  Predictions  on  bioreactor  performance  will  be improved  by  quantifying
the  relationship  between  denitrification  rates  and causal  factors  which  vary  by geography  (tempera-
ture),  land-use  intensity  (NO3 concentration)  and  media  type (carbon  quality,  quantity,  and  surface  area).
Experimental  mesocosms  filled  with  different  wood  media  types  (oak,  pine),  particle  sizes  and  wood–sand
volume  ratios  were  exposed  to  flowing  high-nitrate  groundwater  across  a range  of  seasonal  groundwater
temperatures  (8–24 ◦C) to  determine  the influence  of these  coarse  but  utilitarian  parameters  on  bioreactor
performance.  To  increase  the  transferability  and  specificity  of  findings,  a  multivariate  analysis  was used
to  quantify  relationships  between  denitrification  rates,  microbial  biomass,  temperature,  media  surface
area  to  volume  ratio  and  metrics  of  C  quality  to guide  de  novo  media  selection  and  performance  predic-
tions.  There  were  no  strong  differences  in  hydraulic  conductivity,  media  consumption  rates,  and  TKN  flux
between  different  treatments  although  increasing  the  wood–sand  volume  ratio alone  produced  signifi-
arbon quality
cant  increases  in  denitrification  rates  and  undesirable  DOC  leaching.  Fluxes  of  DOC  and  TKN  also  increased
with  higher  hydraulic  loading  rates.  Denitrification  rates  were  unresponsive  to nitrate  concentration  and
most  strongly  influenced  by groundwater  temperature  (Q10 = 4.7),  although  carbon  bioavailability  and
media  surface  area  were  uniquely  predictive  of denitrification  rates.  Bioreactor  performance  will  there-
fore  be  most  strongly  influenced  by  geographical  variations  in  temperature,  although  within  a  specific
location,  bioreactor  media  selection  will influence  denitrification  rates.
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. Introduction

The use of N-based fertilizer will need to increase to meet
uture demands for agricultural crops (Tenkorang and Lowenberg-

eBoer, 2009), yet existing N application rates have been

mplicated as the main source of coastal eutrophication (Howarth
nd Marino, 2006) and a significant contributor to the growth of

Abbreviations: CPS, coarse pine sawdust treatment; FPS, fine pine sawdust treat-
ent; OS, oak sawdust treatment; LCI, lignocellulose index; LOI, loss on ignition;
BC, microbial biomass carbon; NDF, neutral detergent fiber; PRB, permeable reac-

ive barrier; ShrP, shredded pine treatment; TKN, total Kjeldahl nitrogen; DOC,
issolved organic carbon.
∗ Corresponding author. Tel.: +1 775 673 7464; fax: +1 775 673 7363.

E-mail addresses: casey.schmidt@dri.edu (C.A. Schmidt), clarkmw@ifas.ufl.edu
M.W.  Clark).
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arge hypoxic dead zones in regions such as the Gulf of Mexico
Goolsby and Battaglin, 2000) and Chesapeake Bay (Hagy et al.,
004). Producing sufficient crops to feed a growing planet will
equire efficient food production in combination with innovative
nd sustainable practices to protect aquatic ecosystems. The long-
erm success of carbon-based denitrification bioreactors (Long
t al., 2010; Moorman et al., 2010; Robertson et al., 2008) to create
otspots of biological denitrification (Warneke et al., 2011a), and
ost-effectively and efficiently remove nitrate (NO3) from ground-
ater with limited maintenance, indicates this technology is a

easible treatment option. Denitrification bioreactors have gener-
lly taken the form of; lined beds filled with woodchips used to
reat point sources of agricultural effluent, and denitrification walls
here wood chips or sawdust were mixed with the soil in a per-
eable reactive barrier (PRB) to treat non-point sources (Schipper

t al., 2010). To supplement the application of denitrification walls

Open access under CC BY-NC-ND license.
here non-point N is the concern (Schmidt and Clark, 2012a,b),
actors affecting denitrification wall performance were examined.

Bioreactor denitrification rates are influenced by a variety of
actors including the relatively immutable site specific factors
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uch as the groundwater temperature and influent nitrate concen-
ration and the type and properties of media. Previous research
as indicated that wood media sustains adequate denitrification
ates over longer time spans and has fewer adverse effects (N2O
missions, TKN, DOC export) as compared to more labile media
maize cobs, wheat straw, green waste) (Cameron and Schipper,
010; Long et al., 2010; Schipper and Vojvodic-Vukovic, 2001;
arneke et al., 2011c). As a result, wood has been the most

ommon media used. Denitrification wall media has included;
ardwood (Robertson et al., 2000) and softwood sawdust (Schipper
nd Vojvodic-Vukovic, 1998; Schmidt and Clark, 2012a,b) wood
hips (Jaynes et al., 2008) and with volume mix  ratios of wood to
and (vwood/vtotal media; wood volume ratio) of 0.20 (Robertson and
herry, 1995; Schipper et al., 2004), 0.50 (Schipper and Vojvodic-
ukovic, 1998) and 1.0 (Fahrner, 2002). Predictions on bioreactor
erformance and denitrification rates within a specific site can be

mproved by assessing and quantifying influential media properties
hich affect nitrate removal rate, microbial biomass and denitrifi-

ation enzyme activity. Additionally, some bioreactors have been
ampered by the occurrence of unintended negative consequences
hat may  be correlated to media properties such as undesirable
ariations in hydraulic conductivity (Schipper et al., 2004), as well
s excess dissolved organic C (DOC) and total Kjeldahl N (TKN)
xport (Cameron and Schipper, 2010; Schmidt and Clark, 2012a,b).
etermining the impacts resulting from variations in commonly
vailable wood types (oak, pine), sizes (sawdust, chips, etc.) and
ood volume ratio will improve predictions on groundwater deni-

rification rates and the potential occurrence of adverse effects in
enitrification walls.

Bioreactor guidelines based on wood type, particle size and
ood volume ratios may  have a pragmatic, albeit limited utility

ecause general wood properties which could affect denitri-
cation rate and microbial populations (C availability, surface
rea/porosity) can vary due to differences in species, age
Robertson, 2010), plant components, preparation methods, and
limate of the growing region (Kilpelainen et al., 2003). The profuse
pplication of bioreactors can be facilitated by predictions based
olely on measurable physicochemical drivers of microbial prop-
rties and nitrate reduction rates. Previous researchers have made
nferences on the influence of wood surface area and C bioavailabil-
ty on denitrification rates in bioreactors utilizing metrics of wood
rain size (Cameron and Schipper, 2010), respirable C (Schipper
nd Vojvodic-Vukovic, 2001; Warneke et al., 2011b,c) and C:N
atio (Greenan et al., 2006). Warneke et al. (2011c) showed that
espirable C was positively correlated with denitrification rate,
lthough the specific properties of the media that influence C res-
iration weren’t determined. Guiding de novo media selection
equires determining the proximate causal wood media proper-
ies which influence denitrification rate and microbial activity.
reenan et al. (2006) observed that media which had a lower
:N ratio and presumably lower lignin content tended to have
igher denitrification rates, although this relationship wasn’t quan-
ified. Quantifying and interpreting foundational C bioavailability

etrics which are uniquely correlated with denitrification rate will
mprove our understanding of microbial processes and facilitate
redictions of bioreactor performance.

The influence of media surface area on denitrification rates has
lso been examined. The surface area in a given volume (surface
rea to volume ratio) of wood media could plausibly influence deni-
rification rates due to an increased area for extracellular enzyme
xposure and bacterial colonization. Because the surface area to

olume ratio is inherently related to grain size, researchers have
ompared media of differing grain sizes and they have found a weak
o non-detectable influence on denitrification rates (Cameron and
chipper, 2010; Robertson et al., 2000). Grain size is not always

w
t
(
i
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 strong determinant of the surface area due to variations in the
ffective porosity of the wood, therefore surface area alone needs
o be quantified to accurately decipher this relationship.

Predictions on bioreactor performance based on wood media
roperties alone will need to incorporate the variability in
roundwater temperature and influent nitrate concentrations at
nstallation sites, which both affect denitrification reaction kinet-
cs (Cameron and Schipper, 2010; Elgood et al., 2010; Robertson
t al., 2008; Robertson, 2010; van Driel et al., 2006a,b; Warneke
t al., 2011b,c). The correlation between temperature and denitri-
cation rates has been hypothesized as an exponential relationship
ith a doubling of denitrification rates every 10 ◦C (Q10 = 2.0),

lthough Q10 values for denitrification rates have varied by an
rder of magnitude (0.16–4.95) (Cameron and Schipper, 2010;
lgood et al., 2010; Robertson et al., 2008; Warneke et al., 2011c).
imilarly, the relationship between nitrate concentration and deni-
rification rate has been hypothesized to be non-linear following

ichaelis–Mentin kinetics. Some studies have failed to confirm
his (Robertson, 2010; Warneke et al., 2011b), while another study
ound a strong influence of nitrate concentration on denitrification
ates (Christianson et al., 2012). Further controlled studies will be
equired to quantify these relationships.

In the following study, nitrate-N removal rates were evalu-
ted in experimental mesocosms filled with different wood media
ypes, sizes and wood volume ratios for 246 days. Water sam-
les were collected at several locations within the mesocosm
o assess the influence of declining nitrate-N concentrations on
he kinetics of the denitrification reaction. Groundwater tempera-
ure was  measured during each sampling event to determine the
ovariance of temperature and each treatment. The differences
n nitrate-N removal rates and the occurrence of adverse effects
low hydraulic conductivity, DOC and TKN export) were evalu-
ted between treatments (type, size, and volume ratio) to provide
ragmatic guidelines on bioreactor implementation utilizing com-
only available wood media. Empirical relationships between

redictive metrics of bioreactor media (total C, C:N ratio, sur-
ace area and fiber quality) were quantified to determine whether

 quality and/or quantity significantly increases TKN and DOC
roduction, microbial biomass and experimental and laboratory
easures of denitrification rates. Because metrics of surface area,

 quality and quantity may  be cross-correlated, a step-wise mul-
ivariate analysis was  utilized to filter cross-correlated variables
nd construe the parameters which had discrete and strong con-
ributions to measured nitrate-N removal rates and estimates of

icrobial biomass. From these results a statistical model was
eveloped to provide transferable predictions on bioreactor per-
ormance from measurable predictor variables.

. Materials and methods

.1. Experimental design

Groundwater from underneath an agricultural property
escribed in Schmidt and Clark (2012a,b), with an average nitrate-

 concentration of 7.5 ± 0.73 mg  L−1 continuously flowed vertically
hrough PVC mesocosms (diameter 15.2 cm,  length 152 cm)  filled
ith different wood types, particle sizes and volume ratios

vwood/vtotal media) for 246 days (Fig. 1). The groundwater was
umped from a well to a sealed bladder contained within a

ater bath, protected from atmospheric exposure, and discharged

hrough the treatments via precisely controlled head gradients
Fig. 1). The experimental unit was covered with a tent and each
ndividual external component was wrapped with reflective and
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Fig. 1. A diagram of the experimental design. Groundwater from underneath an
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gricultural property continuously flowed through 30 mesocosms filled with differ-
nt wood types, sizes and volume ratios for 246 days. Groundwater was  protected
rom exposure to oxygen and temperature fluctuations.

nsulated material to reduce temperature changes. Temperature of
nfluent and effluent water was measured at each sampling event.

Treatments were prepared by thoroughly mixing the wood with
 washed and sieved quartz sand (particle size = 0.106–0.15 mm),
dding the media to the mesocosm and tamping down with a con-
istent pressure every 0.3 m.  Subsamples of media were collected
n duplicate at the beginning of the study for quality control and for
omparison to media collected at the end of the study. Ten different
reatments were analyzed in triplicate (Table 1) including four dif-
erent sizes of commonly available wood media, two  wood types
oak, pine) and four different wood volume ratios (0, 0.10, 0.25,
nd 0.50) (Table 1). Wood mass ratios averaged 4.3 ± 1.4, 11 ± 6.3,
nd 19 ± 4.2% for the 0.10, 0.25, and 0.50 treatments, respectively.
ariations in wood amount, size and type allowed for qualitative
omparisons of the treatments, while also producing quantitative
ariability in the physicochemical parameters (total C, C quality
etrics and surface area) which were potentially correlated with

enitrification rates and microbial biomass.

.2. Bioreactor media hydraulic properties
The pore volume which transmits groundwater (effective poros-
ty), was determined as the volume of water that drained due to
ravity from previously saturated mesocosms (Ahuja et al., 1984;

C

I
t

able 1
 summary of the bioreactor media treatments. The particle diameter range is described
nd  75% of the media was  finer by mass.

Wood type Wood vol.
ratio
(vwood/vtotal)

Diameter (D25,
D50, D75) (mm)

Species 

Fine pine sawdust 0.10

Pinustaeda, elliott
Fine  pine sawdust 0.25 (0.35, 0.53, 0.55) 

Fine  pine sawdust 0.50 

Coarse  pine sawdust 0.10 

Coarse  pine sawdust 0.25 (1.4, 2.5, 4) 

Coarse  pine sawdust 0.50

Quercusnigra, virg
Shredded pine 0.25 (3.5, 6.3, 7.8) 

Oak  sawdust 0.25 (0.17, 0.41, 0.79) 

Oak  sawdust 0.50 

Control  sand 0.00 (0.11–0.22) 
ngineering 60 (2013) 276– 288

arkle et al., 2007; Fetter, 2001; Timlin et al., 1999). Saturated
ydraulic conductivity (Ksat) was  measured over time (n = 11) using
he constant head method (ASTM, 2006) and quantified with a

odified form of Darcy’s equation.

.3. Water sampling and analysis

Fluxes of nitrate, TKN and DOC were evaluated by collecting
ater samples nine times (days 0, 9, 36, 59, 86, 141, 176, 183,

nd 246) every 38 cm within the mesocosm through water samp-
ing ports that were covered with a 0.155 mm nylon fabric to
revent the fluidized reactor media from mobilizing. For quality
ssurance, six duplicate samples were collected at each samp-
ing event and to determine if there was  horizontal variability
esulting from short-circuiting, nine randomly distributed samp-
ing ports were duplicated. Each sample was collected as both an
nfiltered, acidified sample and a sample that was  passed through

 0.45 �m membrane filter (Pall Corporation, Port Washington,
Y), then acidified. Samples were immediately stored on wet ice,

ransported to the laboratory and placed in a refrigerator at 4 ◦C
ntil analysis within 28 days. Unfiltered samples were processed
sing a block digestion and analyzed colorimetrically for TKN (EPA
ethod 351.2) and filtered samples were analyzed colorimetrically

EPA Method 353.2) after cadmium reduction, both using an auto-
nalyzer (Seal Analytical, West Sussex, UK). Total organic C was
uantified on filtered samples using EPA Method 415.1, after com-
ustion as non-purgable organic C with an infrared gas analyzer
Shimadzu Corp, Kyoto, Japan).

Changes in nitrate-N, DOC and TKN within the treatments were
etermined as the difference in, mass flux rates between the samp-

ing ports and normalized per volume of reactor media using Eq.
1):

r, DOCe, TKNe = Q�[N], [DOC], [TKN]
Vs

(1)

n this equation, Nr, DOCe, and TKNe are the reduction in nitrate-
, and increase in DOC and TKN mass flux rates in effluent water
er volume of reactor media [M-NO3-N/DOC/TKN L−3 T−1], Q is the
esocosm discharge [L3 T−1], �[N], [DOC][TKN] are the change in

nalyte concentration between sampling ports [M L−3] and Vs is the
esocosm volume the groundwater travels through [L3].
DOC export rates had a declining trend over time. Therefore to

stimate total DOC export, measured values were fit to an expo-
ential decay model in JMP® 8.0 (SAS Institute Inc., Cary, NC) with
q. (2):
t = Co e−rt + � (2)

n this equation, Ct is the DOC export rate per volume of media at
ime t [M L−3 T−1], Co is the initial DOC export rate at t = 0,r  is the

 as the D25, D50 and D75, which is the particle diameter below which 25, 50 (mean)

Porosity (%) Bulk dens.
(g cm−3)

%C %N C:N

ii

52 1.6 1.63 0.011 148
60 1.1 3.37 0.013 259
52 0.8 7.42 0.032 232
47 1.6 2.38 0.011 216
50 1.6 3.96 0.021 189

iniana

61 1.3 10.4 0.054 193
71 1.3 9.41 0.018 523
66 1.2 3.55 0.022 161
77 0.9 8.59 0.057 151
38 1.8 0.247 0.000
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xponential rate constant and � is the asymptote rate. The variable
 was manually fit as the average DOC export rate in the final two
ampling events.

.4. Bioreactor media sampling

Bulk density was quantified as the dry weight divided by the
esocosm volume. Subsamples of the reactor media were collected

rom each treatment in duplicate at day 0 before groundwater
xposure and at day 246 at five locations (0, 10, 38, 76 and 114 cm)
n each mesocosm. Media samples were collected in bags, imme-
iately placed in wet ice and brought back to the laboratory to
e stored at 4 ◦C until analysis. Samples collected at the beginning
f the study were evaluated for total C, N, fiber components and
icropore and macropore surface area and their predictive capac-

ty on bioreactor performance was evaluated. Samples collected
t the end of the study were analyzed for microbial biomass C,
nd potential denitrification rate to infer biological activity; and
otal C, N and fiber components were quantified to assess tempo-
al changes to the media. The matrix of sand and shredded pine
as too heterogeneous to collect a representative sample at the

nd of the study with a coring device, therefore this treatment was
xcluded from the temporal media change analysis.

.5. Carbon quality analysis

The gravimetric moisture content was quantified by weighing
 fresh subsample in a forced air drying oven at 105 ◦C for 48 h.
ven-dried samples were homogenized and processed with a plant
rinder for fiber analysis (Thomas Scientific, Swedesboro, NJ) and
ubsamples of dried and ground media were further grinded with

 ball-mill. Neutral detergent fiber (NDF), hemicellulose, cellulose
nd lignin were quantified as mass loss after a sequential neutral
etergent-acid digestion (Van Soest et al., 1991) in a fiber analyzer
ANKOM, Fairport, NY). Mineral content was calculated after 4 h in

 550 ◦C muffle furnace as the mass remaining after ignition. Total C
nd total N were quantified using a thermal conductivity detector
fter dynamic flash combustion (Flash EA® 1112, Thermo Fisher
cientific, Miami, OK).

.6. Microbial biomass carbon

Moist media samples were analyzed for microbial biomass
 (MBC) by the 24 h chloroform fumigation-extraction method
ithin 4 days (Vance et al., 1987). Samples were extracted with

5 mL  of 0.5 M K2SO4, filtered through 2.5 �m filter paper (What-
an, Maidstone, UK), measured for total organic C (TOC), and

alculated as the difference between untreated and chloroform-
umigated media with an extraction efficiency (kEC) factor of 0.37
pplied based on previous determinations (Sparling et al., 1990).

.7. Media potential denitrification rate

Potential denitrification rate was quantified in triplicate
ithin each mesocosm using methods described previously

Schmidt and Clark, 2012a). Homogenized soil slurries were
nundated with influent groundwater only (NO3 = 7.9, TKN = 0.35,
OC = 0.83 mg  L−1) that was purged with 99.99% O2-free N2 gas,
pproximately 15% of the headspace was replaced with acetylene
as (C2H2) and samples were shaken on a longitudinal shaker and

ept consistently at 22 ◦C. Headspace gas was sampled after 4 h,
hen hourly for 5 h and rates were quantified by fitting a regression
ine to cumulative N2O production and normalized as a rate per

edia volume.

e
b
t
t
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N2O production in headspace gas was  quantified with a gas
hromatograph, equipped with a 3.7 × 108 (10 mCi) 63NI electron
apture detector (300C) (Shimadzu GC-14A, Kyoto, Japan), a stain-
ess steel column (1.8 m long by 2 mm i.d.) packed with PoropakTM

 (0.177–0.149 mm;  80–100 mesh) (Supelco, Bellefonte, PA) with
perating temperatures of 120, 30 and 230 ◦C for the injector, col-
mn  and detector, respectively. All values were modified to account
or N2O dissolution into the aqueous phase employing Bunsen
bsorption coefficients (Tiedje, 1982).

.8. Media surface area

Media surface area was quantified on an autosorb® (Quanta-
hrome, Boynton Beach, Florida) with N2 and CO2 sorptometry
sing methodology described extensively in Mukherjee et al.
2011). A surface area including only nanopores (>2 nm diame-
er) was quantified with the probe gas N2 at 77 K and the surface
rea including nanopores and micropores (<2 nm diameter) was
easured at 273 K with CO2 as the probe gas.

.9. Statistical and data analysis

Media C and fiber consumption rates between day 0 and day 246
ere discerned between treatments on a pool of differences within

ndividual mesocosms (matched pair analysis). Nitrate-N reduc-
ion rates between treatments (wood size, type, and volume ratio)
ere modeled as an analysis of covariance (ANCOVA), control-

ing for a covarying temperature interaction using the PROC GLM
rocedure (SAS® 9.2, SAS Institute Inc., Cary, NC). Relationships
etween numeric continuous predictor variables (e.g. fiber compo-
ition, total C, C:N ratio, and surface area) and response variables
nitrate-N reduction rates and microbial biomass C) were analyzed
sing bivariate correlations and multiple regression. Because many
redictor variables were inherently cross-correlated, a bidirec-
ional stepwise regression was  used to screen and select strong and
niquely predictive variables. Using multiple regression, results
ere analyzed as a linear combination of screened predictor vari-

bles to create a model of nitrate-N removal rates based on a
inimal number of discrete predictors. Predictor variables which

ad non-linear relationships (e.g. temperature, surface area) were
odeled using the fit model platform. Prior to model construction,

wo mesocosm treatments were randomly chosen from each samp-
ing day (n = 12), removed from model construction and used as a
erification dataset by analyzing as a linear regression between
easured and predicted responses. All analyses were done at an

lpha level of 0.05 and pairwise t-tests were analyzed with a Bon-
erroni correction to the alpha level. Except where mentioned, all
nalyses were done using the software JMP® 8.0 (SAS Institute Inc.,
ary, NC).

. Results and discussion

.1. Hydraulic conductivity

All bioreactor treatments including the control increased in
sat over time (Table 2). While it is possible that over long
urations, Ksat would decrease as a result of wood degradation-

nduced compaction and biomass growth, in this study the fact
hat the sand-only treatment (control) also increased indicated
hat changes in hydraulic conductivity over the short-term may  be
riven by the formation of preferential flow channels. Robertson

t al. (2009) found no evidence of Ksat decline in a sawdust-only
ioreactor over 7 years. In a mesocosm experiment modeling deni-
rification beds (wood-only), Cameron and Schipper (2010) found
hat the hydraulic conductivity increased over the short-term in
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Table 2
A statistical analysis of the mean and rate of change inhydraulic conductivity from varying the wood volume and particle size. Means ± 1 S.D. for the 246 days duration of
the  study are presented. ANOVA results indicate a significant difference within the treatment. Treatments with different letters are significantly different from each other at
p  < 0.05.

Wood volume treatment Wood size treatment

Vol (%) Mean ANOVA Wood size Mean ANOVA

Saturated hydraulic conductivity (Ksat) by treatment (cm min−1)
0  1.9 ± 0.7

F(3,17) = 0.6, p < 0.651

A Shred 2.06 ± 0.6

F(3,8) = 4.3, p < 0.043

A
10  1.55 ± 0.5 A Coarse 0.62 ± 0.3 B
25  1.38 ± 1.0 A Fine 2.14 ± 0.7 A
50  1.86 ± 0.8 A Control 1.91 ± 0.7 A

Rate  of change of saturated hydraulic conductivity by treatment (�Ksat yr−1)
0  2.5 ± 0.2

F(3,20) = 0.3, p < 0.799

A Shred 2.04 ± 1.1

F(3,8) = 5.0, p < 0.029

AB
10  1.7 ± 1.2 A Coarse 0.55 ± 0.5 B
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time and was  not significant in the final two sampling events, which
possibly indicated a change in source from physical leaching to
biologically-driven processes.
25  2.3 ± 2.1 A 

50  2.6 ± 1.8 A 

ne wood media in the range of the particles used in the present
tudy, although they noted a marked decline in Ksat in coarser wood
edia that was attributed to the influence of differences in particle

eometry and sorting on the trapping of gas bubbles.
Increasing the volume of all wood types (0%, 10%, 25% and 50% by

olume) had no consistent effect on the mean hydraulic conductiv-
ty (Table 2). The hydraulic conductivity increased at a greater rate

ith higher wood volumes although the differences were not sig-
ificant. Similarly there was no consistent trend in the mean or rate
f change within the particle size treatment. The intermediate-size
oarse sawdust had a lower mean and rate of change in hydraulic
onductivity than the finer sawdust and the larger shredded pine.
his study indicates the difficulty in predicting the influence of
ifferent mixtures of sand and wood particles with diverse geom-
try and sorting behavior on hydraulic connectivity trends that are
nfluenced by complex factors including pore size distribution, and
as bubble transport.

.2. Dissolved organic C and TKN export

The DOC export rate was calculated for each of the eight samp-
ing events as the mass flux of DOC per volume of reactor media
M L−3 T−1] and modeled over time to calculate a normalized total

ass flux. The DOC export rate was initially high for all treat-
ents and rapidly declined to a much lower asymptotic rate after

pproximately 50–150 days following an exponential decay curve
Fig. 2). Generally the total DOC export rate increased with increas-
ng wood volume ratio, although the oak sawdust treatments were
n exception (Table 3). The oak volume ratio increased from 0.25
o 0.50, although the DOC export rate was slightly lower in the
atter treatment. This discrepancy could be explained by differ-
nces in hydraulic properties between the two  oak treatments.
imilarly to any mass flux, the DOC export rate is the product of
he concentration of the analyte and the hydraulic loading rate
nd the correlation between Ksat and DOC export rate was  sig-
ificant in this study (r2 = 0.56, p < 0.03) The Ksat of the 0.50 oak
olume ratio treatment was lower than the 0.25 wood volume
atio treatment by 33% on average, which explained the incon-
ruity. It should be noted that the long-term or asymptotic mass
ux rate of the 0.50 oak volume ratio treatment was over 1.5 times
reater than the 0.25 oak volume ratio treatment, which indicated
hat more leachable C remained at the end of the study (Table 3).
imilarly, the coarse pine sawdust had lower DOC exports rates

ver time than the other treatments that likely resulted from a
ower Ksat (Table 2). This indicates that denitrification bioreac-
ors with high hydraulic loading rates will have higher DOC export
ates.

F
b
a
m
c

Fine 4.36 ± 2.1 A
Control 2.52 ± 0.2 AB

There were no significant differences in TKN export between
reatments (F(8,567) = 1.2, p < 0.28). Similarly to DOC  concentra-
ion and mass flux, the TKN concentration declined exponentially
ver time (Fig. 3). A strong correlation between TKN and DOC con-
entration in effluent waters (r2 = 0.80) indicates that a majority
f the TKN was present as organic-N associated with leaching DOC.
his correlation between DOC and TKN concentration declined over
ig. 2. Graphs of the change in dissolved organic C (DOC) flux rate per volume of
ioreactor media over time for all treatments. Shown in the figure are (A) actual
nd  modeled data of the coarse pine sawdust treatment as an example and (B)
odeled data and root mean squared error (RMSE) for all the treatments. Regression

oefficients for the modeled data are shown in Table 2 following Eq. (2).
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Table 3
Actual and modeled values of average dissolved organic C (DOC) flux. The max  DOC concentration, modeled total and long-term asymptotic DOC fluxrates per volume of
media are displayed. The equation parameters (Co, r, �) for the DOC loading rate over time (Eq. (2)) as well as the root mean squared error (RMSE) of the model fit are
reported.

Wood type (wood vol. density) Max  DOC conc.
(mg  L−1)

DOC flux rate
(g m−3-media d−1)

Asymptotic rate
(g m−3-media d−1)

Co r � RMSE

Fine pine sawdust (0.10) 429 942 0.49 134 0.18 0.49 12.5
Fine  pine sawdust (0.25) 600 1220 1.00 197 0.22 1.00 29.1
Fine  pine sawdust (0.50) 755 2109 0.53 314 0.17 0.53 64.9
Coarse  pine sawdust (0.10) 27 268 0.40 2.70 0.01 0.06 1.6
Coarse  pine sawdust (0.25) 124 394 0.43 14.9 0.05 0.43 0.7
Coarse  pine sawdust (0.50) 272 748 0.67 15.3 0.03 0.62 2.2
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with the exception of the oak sawdust (Table 4). The lignin propor-
tion of the oak sawdust significantly decreased over time, while
this fraction increased as a proportion of total media in all the
other treatments (F(2,12) = 9.8; p < 0.003). While anaerobic lignin
Oak  sawdust (0.25) 442 914 

Oak  sawdust (0.50) 392 820 

Shredded pine (0.25) 531 725 

.3. Media carbon quality transformation

Total C concentration and fiber composition were quantified
n the bioreactor media at the beginning and end of the study
o determine differences in media quality degradation rates as a
esult of DOC leaching and microbial decomposition. Throughout
he duration of the study (246 days), total C and non-lignin fiber
ontent significantly declined by 31 ± 21% and 12 ± 29%, respec-
ively (Fig. 4). The proportion of the total C loss attributed to
issolved organic C export (Table 3) only ranged from 2 to 30%
average = 13 ± 12%) amongst the different treatments, which indi-
ated that a majority of the C was lost as gaseous emissions
CO2 or CH4) from microbial decomposition. Statistically significant
eductions in NDF (−0.57 ± 0.37%, n = 27, p < 0.001), hemicellu-
ose (−0.56 ± 0.54%, n = 27, p < 0.001) and cellulose (−0.58 ± 1.59%,

 = 27, p < 0.035) as a percentage of total media were observed,
hile the recalcitrant ash and lignin proportions significantly

ncreased (1.1 ± 1.9%, n = 27, p < 0.025). There were no significant
ifferences in the loss rate between the non-lignin fiber com-
onents (NDF, cellulose, and hemicellulose), which indicated a
elatively even consumption and export rate of all non-lignin frac-
ions over the duration of the study.

In addition to the proportion of lignin and ash in the media,
he lignocellulose index (LCI) (lignin/lignin + cellulose) is an indi-
ator of organic matter bioavailability particularly under anaerobic
onditions (DeBusk and Reddy, 1998). Organic matter in wetland
oils stabilizes at an LCI of 0.8, after which the organic matter is
ighly recalcitrant under continued anaerobic conditions (DeBusk

nd Reddy, 1998). Within the treatments, the LCI was initially
.25 ± 0.10 and increased to 0.44 ± 0.13 in the 246 day duration
f the study, indicating that the media is still bioavailable but

ig. 3. The average of the TKN concentration ± 1 standard deviation in effluent
ater over the duration of the study.

F
t
fi

0.95 147 0.24 0.95 5.6
1.47 87.4 0.20 1.47 17.6
0.32 141 0.24 0.32 27.5

ecoming more recalcitrant. These LCI values are very similar to
he differences observed in a longer term denitrification wall study
etween day 0 (0.24) and day 540 (0.4 ± 0.04) (Schmidt and Clark,
012a). Longer term studies are necessary to determine the utility
f utilizing fiber components and the LCI index as an indicator of
enitrification wall lifespan.

There were no significant differences in total C consumption
etween treatments (Table 4). Generally, there were no significant
ifferences in the percent consumption of individual fiber com-
onents between wood type and wood volume ratio treatments,
ig. 4. Changes in C quantity and quality of the bioreactor media treatments over
he  duration of the study. Values shown are (A) percent total C and (B) percent total
ber  proportions at the beginning and end of the study.
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Table 4
A statistical comparison of the media carbon quality transformations between different treatments over the duration of the study. The change in % is the change relative to
the  total bioreactor mass (initial fiber or C mass-final fiber or C mass)/total bioreactor mass. ANOVA results indicate a significant treatment effect. Treatments with different
letters in the Group column are significantly different from each other at p < 0.05.

Fiber type Fiber change by wood volume ratio Fiber change by wood type

Vol. Change in % ANOVA Group Type Change in % ANOVA Group

NDF

0 +0.18 ± 0.1
F(3,17) = 5.0
p < 0.011

B Ctrl +0.18 ± 0.2
F(2,12) = 11
p < 0.002

B
0.1  −0.43 ± 0.3 A Soft −0.43 ± 0.1 A
0.25 −0.33  ± 0.3 AB Hard −0.74 ± 0.4 A
0.5  −0.62 ± 0.4 A

Hemicell.

0  −0.08 ± 0.2
F(3,17) = 4.5
p < 0.017

B Ctrl −0.08 ± 0.1
F(2,10) = 4.6
p < 0.04

B
0.1  −0.10 ± 0.3 B Soft −0.46 ± 0.1 AB
0.25  −0.32 ± 0.2 AB Hard −0.56 ± 0.1 A
0.5  −0.78 ± 0.6 A

Cellulose

0  −0.36 ± 0.1
F(3,17) = 0.2
p < 0.862

A Ctrl −0.36 ± 0.1
F(2,12) = 8.4
p < 0.005

AB
0.1  −0.54 ± 0.3 A Soft −1.39 ± 1.1 A
0.25  −0.81 ± 0.8 A Hard +0.82 ± 1.0 B
0.5 −0.78  ± 1.4 A

Lignin

0  +0.31 ± 0.5
F(3,17) = 0.9
p < 0.448

A Ctrl +0.31 ± 0.5
F(2,12) = 9.8
p < 0.003

B
0.1  +0.58 ± 0.6 A Soft +0.66 ± 0.4 B
0.25  +0.50 ± 0.2 A Hard −2.0 ± 2 A
0.5  +0.69 ± 0.7 A

0  0 Ctrl 0
A 
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%C
F(2,15) = 0.5
p < 0.601

0.1  −0.99 ± 0.3 

0.25  −0.67 ± 0.9 

0.5  −1.0 ± 0.7 

ecomposition in the oak media was not likely, the effluent from
he oak treatments was much darker in color than the other treat-

ents. Oak wood leachate has been found to have higher tannin,
ignin, phenols and chemical oxygen demand than pine leachate
Svensson et al., 2013) and these properties have been found to
ncrease the toxicity of wood leachate to aquatic organisms (Tao
t al., 2005), which may  be a concern when bioreactors are installed
n close proximity to surface waters.

.4. Denitrification reaction kinetics

If the denitrification rate was dependent on variations in nitrate
oncentration (first order reaction kinetics), then nitrate-reduction
ates should have varied as groundwater flowed through the
ioreactor and nitrate was  depleted. Predictions and models of
ioreactor performance will need to incorporate this non-linearity

n denitrification rate. Contrastingly, if the nitrate reduction rate
as independent of nitrate (zero order) then the reaction was
ependent on other parameters such as enzyme kinetics, available

 or inhibitory factors such as the presence of dissolved oxygen.
In this study, nitrate-N reduction rates appeared to be zero

rder with respect to nitrate-N. Even though nitrate-N concen-
rations declined as groundwater flowed through the mesocosms,
here was no significant difference and no significant trend in
itrate-N reduction rates when compared between sampling ports
ithin any groundwater temperature (Fig. 5a). Similarly, corre-

ations between nitrate-N concentration and nitrate-N reduction
ates were not significant and highly variable within each temper-
ture. This is consistent with the experimental results of others
ho found zero order reaction kinetics with respect to nitrate-N

Robertson, 2010; Warneke et al., 2011b), although in a study of
our field-scale denitrification beds, Christianson et al. (2012) found
onvincing evidence of first-order reaction kinetics. In this study, it
s plausible that at very low nitrate-N concentrations, reaction rates

eclined as would be predicted by Michaelis–Mentin kinetics, but
ue to the distances between sampling locations this was  unde-
ected in the present study. Finer spatial-scale experiments are
ecessary to determine the kinetics of denitrification in bioreactors

n
i
c
w

F(1,10) = 0.5
p < 0.507

Soft −0.62 ± 0.8 A
Hard −1.02 ± 1.2 A

t low nitrate-N concentrations, although for practical application
 linear zero order model appeared to be sufficient.

There was  no observed lag in nitrate-reduction rates near the
nfluent (0–38 cm)  of the mesocosm, which indicated that C was
ufficiently available and influent dissolved oxygen concentrations
2.7 ± 1.3 mg  L−1) were not present at inhibitory concentrations
ithin the first 38 cm (∼0.6 days). There were no consistent spatial

ariations in fiber consumption, although total C was signifi-
antly lower near the influent possibly indicating an increased
onsumption rate as a result of aerobic decomposition (data not
hown). Although these experimental systems were not limited
y nitrate, there was  a variable but significant positive relationship
etween nitrate-N reduction rates and DOC flux (mass × discharge)
r2 = 0.30, p < 0.0001) but not DOC concentration (r2 = 0.02, p < 0.10),
ndicating that in flow-through systems, bacterial responses to
utrient limitation may  be more strongly related to the rate of
utrient flux rather than concentration alone.

.5. Denitrification rates of bioreactor media treatments

The average nitrate concentration in the influent was
.5 ± 0.73 mg  L−1 and the average effluent concentration from all
reatments over all temperatures was  4.6 ± 3.6 mg  L−1. Some of the
itrate-N entering the mesocosm could have been transformed to
ther N forms or stored within the media, although TKN mass
ux and bioreactor media N increases were only a small frac-
ion (0.48 ± 0.003% and 2.1 ± 6.0% respectively) of influent nitrate
oncentration, which indicates that the majority of the influent
itrate-N was  lost in gaseous form. This conclusion is strengthened
hen you consider that some of the TKN increases and media N

nrichment may  not result from transformations of influent nitrate,
nstead resulting from wood leaching and the preferential decom-
osition of carbon, respectively.

During the first three sampling periods (days 0, 9 and 36), the

itrate-N reduction rate was  sufficient that no nitrate was present

n even the first sampling port. Although this nitrate limitation pre-
luded an exact determination of nitrate-N reduction rates, rates
ould necessarily be higher than 38 g m−3 d−1 in one mesocosm
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Fig. 5. Figures demonstrating the relationship between denitrification rate and nitrate-N concentration stratified by groundwater temperature. Shown in the figures are
t ne an
c ayed.
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he  (A) average NO3-N reduction rate vs. distance from the inflow with best fit li
oncentration with best fit line. The significance values of the best fit lines are displ

nd averaging greater than 9.3 ± 6.2 g m−3 d−1 over all the meso-
osms. These exceptionally elevated nitrate-N removal rates were
ikely due to the high availability of labile dissolved organic C in
resh media at day 0, day 9 and day 36 (194 ± 173, 66 ± 70 and
8 ± 26 mg  L−1, respectively) (Fig. 2) and high groundwater tem-
eratures (26.0 ± 0.28 ◦C). To minimize nitrate-N limitation and
rovide enduring measurements of nitrate-N reduction rates, the
ata from the first 60 days was excluded from this analysis and
he flow-rate was increased for the duration of the study so that
itrate-N was still present in all the sampling ports. The average
ydraulic residence time within the mesocosms for the duration of
he study was 1.4 ± 3.0 days and the average pore water velocity

as 291 ± 274 cm d−1.

Temperature influenced the denitrification rate of all the treat-
ents. For the duration of the study, the average temperature

f influent groundwater ranged from 7.9 to 24.1 ◦C and the

4
r
t
p

d 95% confidence interval and (B) NO3-N reduction rates as a function of NO3-N

bsolute value of the average change in temperature between
nfluent and effluent of the mesocosms averaged 3.3 ± 2.1 ◦C. The
ffect of temperature on the denitrification reaction for all treat-
ents was quite strong (r2 = 0.87) and described effectively by an

xponential model (Fig. 6). The Q10 value across the temperature
ange of measurement (7.9–24.1 ◦C) was 4.7. The Q10 of many other
enitrification bioreactor studies ranged from 0.16 to 3.5 (Cameron
nd Schipper, 2010; Elgood et al., 2010; van Driel et al., 2006a,b;
arneke et al., 2011b,c). Other studies examined over a compara-

ively wide range of temperatures as the present study have found
10 values as high as 5.7 (Christianson et al., 2012) in denitrifi-
ation beds, and Robertson et al. (2008) reported a Q10 value of

.95 (r2 = 0.96) in a denitrification wall over a similar temperature
ange as the present study (6–22 ◦C). Additionally the exponen-
ial rate constant (0.16) of the Robertson et al. (2008) study and the
resent work are equivalent. The Q10 value of biological reactions is
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ig. 6. The nitrate-N reduction rate as a function of groundwater temperature aver-
ged  for all the treatments.

ommonly estimated with a value of 2.0, the higher Q10 val-
es reported possibly indicated a synergistic response between

ncreasing denitrification rates and other reactions that increased
 availability with increasing temperatures.

The nitrate-N reduction rates of the different qualitative treat-
ents were pooled and compared in three separate analyses

o determine differences in denitrification rates among differing
ood types, sizes and amounts alone. Because denitrification rates

or a given treatment are not static and vary strongly with tem-
erature, an analysis of covariance was used controlling for the
ovariate temperature. For all three comparisons (wood type, size
nd volume ratio), the treatment effect and temperature interac-
ion were significant F(3,156) = 6.8, p < 0.001; F(2,68) = 5.8, p < 0.005
nd F(3,60) = 12, p < 0.0001, respectively (Table 5). Although the
verall temperature interaction was significant, some of the
ndividual treatment-temperature interactions were variable as
esignated by p-values in Fig. 8. The whole model was  relatively
omoscedastic, significant for all three comparisons (p < 0.0001),
nd explained 52, 59 and 73% of the variability for the wood vol-
me  ratio, type and particle size treatments, respectively (Fig. 7).
he relationship between temperature and nitrate-N removal rates
ithin a given treatment for this statistical model could be calcu-

ated based on Eq. (3):

2

r =  ̨ + bx + cx (3)

n this equation, Nr is the nitrate-N reduction rate per volume of
eactor media [g-N m−3 of media d−1], x is the temperature, ˛,

ig. 7. Figure detailing the goodness of fit between the actual and predicted nitrate-
 reduction rates of the ANCOVA statistical model for the wood volume ratio, type
nd particle size treatments.

Fig. 8. The results of the ANCOVA model comparing nitrate-N reduction rates across
a  range of temperatures. Comparisons shown include the (A) wood type (B) size and
(
a
o

b
t

r
f

C)  volume ratio treatments respectively. The rates measured in the field (Schmidt
nd Clark, 2012a) for the comparable treatment (0.50 Wood volume) are designated
n the figure. p-Values for the temperature-treatment interaction are displayed.

 and c are the intercept, temperature regression coefficient and

emperature quadratic term as shown in Table 5.

The oak treatment had slightly higher nitrate-N reduction
ates particularly at low temperatures, although the differences
rom pine sawdust were not significant overall (Table 5; Fig. 8a).
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Table 5
A statistical analysis of the effects on nitrate-N reduction rate from varying the wood type, size and volume ratio. The wood treatments (type, size and volume ratio) were
pooled  to discern statistical differences. Least squares means ± 1 S.D. of nitrate-N reduction rate are presented as rate mass loss per volume of reactor media. The equation
coefficients for the ANCOVA model (Eq. (3)) are also displayed. The coefficients ˛, b, and c listed underneath each pooled treatment were used to create the correlations with
temperature in Fig. 8.

Wood volume ratio treatment Wood type treatment Wood size treatment

Wood vol.
ratio

NO3-N
removal
rate
(g m−3 d−1)

ANOVA Wood type NO3-N
removal
rate
(g m−3 d−1)

ANOVA Pine size NO3-N
removal
rate
(g m−3 d−1)

ANOVA

0 −0.14 ± 2.0 A Control −0.08 ± 1.9 A Control −0.07 ± 1.4 A
0.1  1.24 ± 2.1 AB Soft 3.00 ± 2.0 B Shred 1.86 ± 1.4 B
0.25  2.32 ± 2.0 BC Hard 3.61 ± 2.1 B Coarse 1.64 ± 1.5 B
0.5  3.68 ± 2.1 D Fine 2.47 ± 1.5 B

Model  r2 = 0.52 F(8,157) = 21 Model r2 = 0.56 F(6,69) = 15 Model r2 = 0.73 F(8,157) = 21
p  < 0.001 p < 0.0001 p < 0.0001

�  b c � b c � b c

0.10 4.33 −0.58 0.021 Soft −0.76 0.06 0.009 Shred 0.42 −0.25 0.018
0.25 1.37 −0.34 Hard 1.53 −0.04 Coarse 2.05 −0.36
0.5  3.84 −0.41 Fine −0.09 −0.19
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NOVA results indicate a significant difference within the treatment. Treatments 

 < 0.05.

imilarly, although the fine pine sawdust had higher measured
itrate-N reduction rates than coarse pine sawdust and shredded
ine across the majority of the temperature range, the differences
etween all the particle sizes were not significant (Table 5; Fig. 8b).
his indicates that when considering the design of denitrification
alls, variations in wood type (oak, pine) and wood grain size

hould not produce considerable differences in nitrate-N reduction
ates, which confirms the results of others (Cameron and Schipper,
010). Grouping all the various wood types in to the wood volume
atio treatment did produce significant differences in nitrate-N
emoval rates (Table 5; Fig. 8c). All the treatments were signifi-
antly different from the control with the exception of the 0.10
ood volume ratio and the nitrate-N reduction rates of the 0.25

nd 0.50 wood volume ratio treatments were significantly differ-
nt from each other and the 0.10 treatment (Table 5). The results
rom the denitrification wall (wood volume ratio = 0.50) receiving
he same groundwater as the present study (Schmidt and Clark,
012a,b) were within the realm of the model, although the model
nderpredicted actual field rates (Fig. 8c).
Because differences in wood type and size had no significant
nfluence on nitrate-N reduction rates, the design of denitrifica-
ion walls to achieve a desired nitrate reduction can be focused
n the amount of wood alone. Relating the ANCOVA statistical

a
r
t
s

able 6
orrelations between initial measured predictors and nitrate-N reduction rate (g m−3 d−1

orrelation coefficients indicate the strength and the direction of the regression, while th

Nitrate-N reduction rate (g m3 d−1) 

Denitrification rate predictor Pearson correlation
coefficient

p-Value 

Neut. deterg. fiber (%) 0.75 <0.001 

Surface  area (m2 g−1) 0.73 <0.001 

Hemicellulose (%) 0.70 <0.001 

Microbial biomass C 0.56 0.004 

C  (%) 0.48 0.013 

Loss  on ignition (%) 0.47 0.016 

Cellulose (%) 0.45 0.021 

Potential DN ratea 0.35 0.089 

C:N  ratio −0.18 0.377 

a Potential denitrification (DN) rate and the actual average NO3 reduction rate have un
ifferent letters in the group column are significantly different from each other at

odels for nitrate-N reduction rates from variations in wood vol-
me  and groundwater temperature alone has great utility for
roviding design guidelines as shown in Fig. 9. If the influent N
oncentration and groundwater temperature are known, a deten-
ion time for complete nitrate removal can be quantified using
hese figures (Fig. 9). Based on the groundwater velocity and the
esired detention time from Fig. 9, the appropriate denitrification
all flow-length can be determined.

.6. Multivariate assessment of denitrification rate controls

Relationships between predictors measured at the beginning
f the study and response variables were analyzed using bivari-
te correlations and multiple regression. Many of the metrics of C
uality had significant bivariate correlations with average nitrate-N
eduction rates and microbial biomass C (Table 6). The fiber analysis
as an incremental procedure which extracted fiber components

n order of liability from neutral detergent fiber (NDF), hemicellu-
ose, cellulose and lignin. The two  most labile fiber components NDF

nd hemicellulose were stronger predictors of nitrate-N reduction
ates than measurements of C quantity alone (%C and %loss on igni-
ion) (Fig. 10; Table 6). In contrast, microbial biomass C was less
trongly correlated with labile fiber components and the microbial

) and microbial biomass C (mg-C kg−1)averaged over all temperatures. The Pearson
e p-value determines the significance of the relationship.

Microbial biomass carbon (mg kg−1)

Microbial biomass
predictor

Pearson correlation
coefficient

p-Value

Cellulose (%) 0.74 <0.001
Loss on ignition (%) 0.71 0.001
C (%) 0.70 0.001
Hemicellulose (%) 0.59 0.003
Neut. deterg. fiber
(%)

0.56 0.004

Surface area
(m2 g−1)

0.52 0.010

Ave. NO3reduct.
ratea

0.46 0.023

Potential DN ratea 0.09 0.686
C:N ratio −0.03 0.883

its of g-N m−3 d−1.
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Fig. 9. Design guidelines relating the detention time required to completely remove
influent NO3 concentrations as a function of groundwater temperature for denitri-
fication walls with wood to sand volumetric ratios of (A) 50%, (B) 25%, and (C) 10%.
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respectively. The final equation of this multiple regression model
ased on the groundwater velocity and the desired detention time from this figure,
he  appropriate denitrification wall flow-length can be determined.

opulation size was driven more strongly by total C quantity
Table 6). This indicates that there are differences in carbon and
esource utilization between the bulk microbial population and the
ubset of this population which includes the denitrifiers. The C:N
atio, another metric of C quality was not strongly correlated with
icrobial biomass C or denitrification rate. In nitrogen rich aquatic
ystems, microbial populations may  have less difficulty assimi-
ating nitrogen and the C:N ratio may  not be a strong indicator
f microbial processes. Media micropore surface area was a very

t

N

ioreactor media C quality (neutral detergent fiber, hemicellulose and total C) and
B) linear relationship between nitrate-N reduction rate (g-N m−3 d−1) and media
urface area (m2 g−1) and microbial biomass C (mg-C kg−1).

trong predictor (r = 0.73) of nitrate-N reduction rates, while less
trongly predicting (r = 0.52) microbial biomass C (Fig. 10; Table 6).
his discrepancy could result from the presence of chemolithoau-
orophic bacteria (methanogens, sulfur oxidizers, and anammox
acteria) which are not reliant on extracellular enzyme exposure
o organic carbon as an electron donor or for cell biosynthesis like
enitrifying bacteria. A large-scale colonization of a sulfur oxidizing
acteria of the Beggiatoa genus was previously described resulting
rom a denitrification wall installation and it is conceivable that

ethanogenic and anammox bacteria are present in these biore-
ctors. There was no significant relationship between potential
enitrification rate and actual nitrate-N reduction rate. This indi-
ates the utility of in situ studies as opposed to laboratory analyses
or accurately quantifying relatively small differences in denitrifi-
ation rate.

Using multiple regression, results were analyzed as a lin-
ar combination of predictor variables. Predictor variables were
nitially screened using a bidirectional stepwise multiple linear
egression, which yielded neutral detergent fiber, micropore sur-
ace area, temperature and cellulose as predictor variables of
ignificance. Temperature and surface area relationships were
odified as non-linear exponential and logarithmic relationships,
akes the form of Eq. (4):

r = b1X1 + b2X2 + b3 ln X3 + b4 eeX4 + a (4)
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Table 7
Parameters of the multiple regression model predicting nitrate-N removal rates as a function of temperature and media physicochemical properties. Nonstandardized
coefficients (b coefficient), the standardized coefficient (beta wt.) and uniqueness index of the predictor variables are reported. The exponential constant (r) and intercept
term  (a) of the nonstandardized Eq. (4) are also shown.

Predictor b coeffic. SE b coeffic. Beta weight. t Uniqueness index r a

Temp 0.127 0.07 0.71 13** 0.50 0.167 −3.7
Surface  area 1.14 0.32 0.35 3.4** 0.032
NDF 1.28 0.52 0.25 2.5* 0.017
Cellulose −0.194 0.099 −0.17 −2.0* 0.011

* p<0.05.
** p<0.001.

Table 8
A comparison of actual field rates from a denitrification wall (Schmidt and Clark, 2012a) and the multivariate model predicted rates of the same media.

Temperature Model predicted nitrate-N
reduction rate

Average field nitrate-N
reduction ratea

Max field nitrate-N
reduction ratea

I
r
m
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o
r

p
(
n
e
c
t
T
w
a
i
t
w
t
f
c
w

F
n
c

T
r
p
m
p
(
f
t
a
p
p
o
w
w

d
m
m
r

19 3.45
21  4.6 

a Values are from Schmidt and Clark (2012a).

n this equation, Nr is the nitrate-N reduction rate per volume of
eactor media [g m−3 d−1] described in Eq. (1), X1–X4 are the actual
easurements of NDF [%], Cellulose [%], surface area [L2 M],  and

emperature [◦C], respectively, b1–b4 are the constant coefficients
f the respective predictors and  ̨ is the constant intercept term as
eported in Table 7.

The results of the whole model were significant F(5,133) = 36.3,
 < 0.0001, and explained approximately 67% of the variability
Fig. 11). The prediction accuracy was more variable at high
itrate-N reduction rates, with a tendency for the model to under-
stimate high rates. Beta weights (standardized multiple regression
oefficients) and uniqueness indices were evaluated to determine
he proportionate significance of each predictor variable (Table 7).
he beta weight is a standardized estimate between −1 and 1,
hich indicated the direction and magnitude of the predictor vari-

bles influence on nitrate-N reduction rates and the uniqueness
ndex is the percentage of variance accounted for by that predic-
or alone. Each of the predictor variables displays significant beta
eights and uniqueness indices. The beta weights indicated that
emperature was the strongest predictor of denitrification rate,
ollowed by surface area, NDF and cellulose. The beta weight for
ellulose was negative. Cellulose acted as a suppressor variable,
hich minimized irrelevant variability of other predictor variables.

ig. 11. Figure detailing the goodness of fit between the actual and predicted
itrate-N reduction rates of the multiple regression statistical model with a 95%
onfidence interval.

i
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n
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h
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h
c
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c

3.35 5.46
2.95 4.91

emperature alone explained 50% of the variance in nitrate-N
eduction rates, beyond the variance accounted for by the media
roperties (NDF, cellulose, surface area). This is similar to the
ultiple regression results from denitrification beds, where tem-

erature was found to be the strongest driver of load reductions
Christianson et al., 2012). The other predictor variables accounted
or 1–2% of the variability in this model each. It is possible that over
ime NDF will decline in importance for predicting N reduction rate
s this bioavailable component is depleted. Although as discussed
reviously, over the short duration of this study all fiber com-
onents (NDF, hemicellulose, and cellulose) had equivalent rates
f degradation and leaching. Additionally, bioreactor performance
as only analyzed after the media had been leached for 60 days,
hich would exclude many temporarily labile C sources.

As described in the methods, two treatments were ran-
omly chosen from each sampling day (n = 12), removed from
odel construction and compared as a linear regression to the
odel predicted values. Additionally the model was compared to

ates measured in the field (Schmidt and Clark, 2012a) to ver-
fy the results. The relationship between model predicted and
ctual values for the verification dataset were strongly signifi-
ant F(1,10) = 145, p < 0.0001, r2 of 0.94. Although this is a limited
ataset, the predicted rates from the model were relatively simi-

ar to average and maximum nitrate-N reduction rates measured
n the field (Table 8). Further research is necessary to confirm the
esults of this model for accurately measuring field rates.

. Conclusions

Modifications to wood particle size and type (oak, pine) did
ot markedly influence nitrate-N reduction rates, DOC  leaching,
r carbon degradation rates. Increasing the amount of wood used
wood volume ratio) and groundwater temperature significantly
ncreased nitrate-N reduction rates and these factors alone can be
sed to design denitrification walls (Fig. 9). DOC mass flux rates
enerally increased with larger wood volume ratios and increased
ydraulic loading rates. When a denitrification wall is to be located
djacent to sensitive surface waters, the wood volume ratio should
e decreased and media hydraulic conductivity should be con-
idered in addition to the desired nitrate removal (Fig. 9). The

ydraulic properties of a given bioreactor media depend on the
omplex sorting of the range of wood particle sizes in to varying
ore sizes, which precluded the development of normative con-
lusions in this study. Prior to denitrification wall construction it
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ill be important to quantify the hydraulic properties of each spe-
ific media using standard methods to minimize risk and assure
he conductivity is higher than surrounding soils. Compounds in
ood leachate have been found at levels which can be toxic to

quatic organisms. More research emphasis is necessary to assess
he physicochemical properties and toxicity of different wood types
nd to determine the loss rates and sorption mechanisms of wood
eachate DOC, in order to remediate these impacts and prescribe
urface water buffer widths.

Utilizing a multivariate model, the relative influence of C quality,
 quantity, temperature, and media surface area on denitrifica-
ion rates was determined. Temperature alone was  a dominant
redictor variable that will most predominantly shape the dimen-
ions of denitrification bioreactors and limit their geographical
xtent. Groundwater temperature is a relatively ungovernable
roperty of a proposed bioreactor site. Within a given groundwa-
er temperature range, the C quality and surface area of a chosen
ioreactor media will influence denitrification rates. The C qual-

ty as measured by standard fiber composition analyses may  be a
seful metric for predicting denitrification rates, although longer-
erm research is necessary on the relationship between increases
n soluble/bioavailable fiber components and denitrification wall
ongevity. Wood surface area was uniquely, positively correlated

ith nitrate-N removal rates, but increasing the wood size had no
ignificant effect. This indicates that surface area measurements
rom gas sorptometry may  be a more sensitive indicator of a bio-
ogically relevant surface area than grain size alone. The difficulty of

easuring surface area and the limited relationship between sur-
ace area and particle size, will likely preclude the consideration of
his variable in the design of denitrification walls.
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