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The purpose of this study is to present and analyze previously unpublished quantitative
agricultural data for the area on the shores of Lake Chad in Chad, and explore its relations
to hydro-climatic factors (lake levels, rainfall and temperature). This is a rural area with
livelihoods based on agropastoral and fishing activities, which are directly dependent on
the region's high-varying hydro-climate. By using regression analysis on data from 1988 to
2012 this study was able to establish correlations between the latter and agricultural
output. These correlations were used to build multivariate models to explore the pre-
dictive capacities of hydro-climatic factors with regards to the agricultural data. The se-
lected models were able to account for considerable proportions of the agricultural dy-
namics. Some 5 of the 10 multivariate models tested had cross-validated R2s of 0.50 or
more. Thus, there were still noteworthy unexplained variations in the agricultural data,
which likely stem from technological, behavioral, economic and pest factors that were not
explored in this study due do data limitations. Additional studies are called for to build on
results presented here and further examine these relationships.
& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The Sustainable Development Goals (SDGs) adopted in 2015 by the United Nations General Assembly will see im-
plementation in the coming years. The ultimate purpose of the SDGs is to bolster well-being globally across 17 goals until
2030 (UN, 2015). The goals are diverse and include to “End poverty in all its forms everywhere” (Goal 1) as well as to “Ensure
availability and sustainable management of water and sanitation for all” (Goal 6). Each goal is accompanied by targets, 169 in
total, which should specify the goals in more detail. For example, for Goal 1, target 1.1. states that “by 2030, eradicate
extreme poverty for all people everywhere, currently measured as people living on less than $1.25 a day”. However, there
are also less specific targets, e.g. “by 2020, protect and restore water-related ecosystems, including mountains, forests,
wetlands, rivers, aquifers and lakes”. A detailed review of targets can be found in ICSU and ISSC (2015) but what all targets
have in common is the recommendation to set up and develop baselines where they do not exist, to “address this gap in
data collection so as to better inform the measurement of progress” (SDG point 57). Furthermore, as stated in the SDG, the
“targets […] are integrated and indivisible” and therefore essentially have to be seen within a systems perspective for
complex relationships to be disentangled and concrete actions identified. This is also in line with the Sendai Framework for
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Disaster Risk Reduction (UN, 2015) with its emphasis on the need to collect and share data for monitoring and evaluation of
risk reduction strategies.

The Lake Chad region, the case study analyzed in this paper, is a good example of the complex challenges which lie ahead
in regards to data gathering and disentanglement of relationships in extremely poor and insecure areas. However, it also
shows the benefits of such an analysis, by empirically tackling issues of agricultural production risk in regards to hydro-
climatic variability and identifying approaches to reduce poverty or the risk of hunger. In fact, the Lake Chad Basin is unique
in many respects. It stretches over Central and Western Africa and has gone through extensive hydro-climatic changes since
the 1960s. In this period, the annual maximum flooded area of the endorheic Lake Chad has varied from 25,000 km2 to a
minimum of 1800 km2 in the 1980s, after which it increased to its current level of around 10,000 km2 (Bader et al., 2011;
Lemoalle et al., 2012; WMO and LCBC, 2005). The communities around the lake are mostly based on traditional small-scale
agropastoral and fishing livelihoods, and are thus highly dependent onwater availability from the lake and local rainfall. Due
to the fluctuating hydro-climatic conditions over the recent decades, inhabitants have been forced to develop flexible li-
velihood strategies. However, given the population increase, ongoing armed conflicts in adjacent areas, low economic de-
velopment, and expected further hydrological variations due to global climate change, these communities are facing an
increasingly difficult situation. There is an urgent need to confront these issues, and one front on which this can be done is
to better understand the relationships between the hydro-climatic variability and the rural economy, thereby supporting the
early detection of agricultural production shortfall and food insecurity, and by identifying adaptation measures. If well
established, such relationships can also be used for food security outlooks based on seasonal weather forecasts and long
term climate projections, thereby creating opportunities for long term planning and climate change impact assessments (see
e.g. Dasgupta et al., 2013; Tachie-Obeng et al., 2013). Seasonal outlooks have particularly high potential for the Sahel which
experiences a positive skew in seasonal weather forecast accuracy for both rainfall and temperature (Barnston et al., 2010).
Despite its importance for rural development, this field of research is generally poorly developed (UNEP, 2012), and certainly
so for this region. Some explanations for this are that it is a context specific, transdisciplinary, dynamic and complex topic,
where groups and households can display wide differences in vulnerabilities and coping strategies (Adeniji-Oloukoi et al.,
2013; Adimassu et al., 2014; Rajesh et al., 2014). Added to this, the overall data availability in this region is low, especially
regarding its socio-economical aspects.

Development organizations and various government bodies have been addressing this data shortage by conducting
assessments and carrying out data collection projects on food security, demographics and vulnerabilities (e.g. FEWS NET,
2011, 2005; RdT, 2009; INSEED, 2012, 1993; WFP, 2013, 2009, 2005). Hydrological analyses have received considerable
attention due the drastic changes experienced by Lake Chad. Models have been developed to analyze past and future
scenarios and inter-basin water transfers, (e.g. Bader et al., 2011; Bastola and Francois, 2012; ). More transdisciplinary topics
have been investigated recently, e.g.: climate change impacts on fishing communities (De Young et al., 2011), social conflicts
due to competition over land and water on the Chadian side (Ndadoum, 2010), structures of traditional fishing management
systems on the Nigerian side (Neiland et al., 2005), and adaptations to altered lake levels by Nigerian and Nigerien small-
scale fishers (Kiari Fougou, 2014; Luxereau et al., 2012; Sarch and Charon, 2000). Some studies have also engaged with more
general assessments of the area's socio-environmental conditions, e.g. an overview of the lake's ecosystem services and
their economic values (Eberschweiler, 2011) and three comprehensive syntheses of hydrological, socio-economic and po-
litical developments around the lake (EU and BMZ, 2015; Lemoalle and Magrin, 2014; Magrin et al., 2015). While these
previous studies provide a wide coverage of the area, none of them include quantitative agricultural data for the Chadian
side of the lake presented for the first time in this study, due to local collaborations and archival research. This analysis
therefore complements previous studies by presenting these new datasets and exploring their relationships to hydro-cli-
matic variability on the Chadian side of Lake Chad. A unique feature of this case study is the inclusion of two separate
hydrological systems, lake levels and rainfall. More specifically, the study investigates the correlations and predictive ca-
pacities of lake, rainfall and temperature variability to inter-annual variations in the harvested area and the yield for the two
main crops in the region, maize and millet. It does so by using multivariate regression analysis of time series for 1988–2012
on a sub-regional level. By coupling and analyzing these datasets, this study is able to improve the data availability and
knowledge on their dynamics for this area and time period. As indicated, this data could be used to set up baseline estimates
of agricultural production risk and possible monitoring of SDG targets over time.

1.1. Agricultural climate vulnerability and time series analysis

Statistical time series analysis, which this study employs, is commonly used to establish relationships between climatic
and agricultural systems, compared to process based crop models which usually require experimental trials and extensive
datasets (Lobell and Burke, 2010). The analysis is based on regression equations of historical data for specific areas and thus
covers all dynamics of the agricultural system, not just the direct crop responses. Besides possible issues regarding data
quality, one drawback is that it uses historical relationships to infer future outcomes, thereby assuming a certain stationarity
to these relationships over time. Extrapolation beyond the historical data therefore needs to be done with sensitivity to any
relevant factors external to the analysis. Another issue concerns choice of climate variables to include in the regression
analysis. This is on the one hand limited by data availability, however inclusion of more variables increases the risk of over-
fitting (Lobell, 2010). Models with a high variable-to-observations ratio necessarily need to address this by validation using
independent datasets. However, where there are a small number of observations, it might not be feasible to leave some
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observations for validation, in which case a leave-one-out cross-validation might be more useful, as it is a robust method for
validating predictability in models with few observations (Michaelsen, 1987). Finally, climate variables for the same area
often tend to covary, which reduces the possibility of distinguishing the effects of different variables included in a model.
However, covariance among variables will not affect overall model performance and need to be approached differently
depending on the purpose of the analysis.

Several studies on historic statistical relationships between agricultural output and hydro-climatic variables have been
carried out in the Sahel on both national and multinational levels, while regional (sub-national) and sub-regional levels of
analysis are generally scarce. They usually focus on yield, and do not include harvested area unlike this study. A unique
aspect of this case study is that it includes two separate hydrological systems (lake levels and rainfall), while most other
studies only include rainfall. Summaries from five studies in nearby areas using time series and multivariate regression
analysis, of both maize and millet, with average temperature and monthly rains as climate variables, give adjusted coeffi-
cients of determination (adjusted R2) in the span of 0.1–0.6 (Akinseye et al., 2013; Lobell and Burke, 2008). As most of these
studies are on a multinational level it is expected that the more detailed analysis which this study brings should have at
least the R2s in this range by finding further local dynamics. One of them is however of a Nigerian case which is comparable
both in terms of scale, and geographical and socio-economic conditions, however the results have not been verified with
independent datasets which raises the possibility of over fitting (adjusted R2¼0.6).
2. Case study area

The area around the Chadian part of Lake Chad is administratively covered by the ‘Lake region’ which is one of Chad's 22
regions. It has around 430,000 inhabitants (INSEED, 2012) and agriculture is the biggest sector in terms of source of revenue
(25%) and rate of active population (41%), followed by fishing, pastoralism and smaller commercial activities (RdT, 2009).
One recent study found food insecurity to be at 33%, defined by the Food and Agriculture Organization of the United Nations
(FAO) as people not having access to 1.715 kcals per day (RdT, 2009). Both rainfed and lake recession farming are practiced,
and most farming systems are family-based, small-scale and with low irrigation and infrastructure usage (RdT, 2009). Water
availability for agriculture is thus mainly dependent on the lake levels and local rainfall. The lake levels are not distinctly
affected by the local rainfall but are rather determined by the inflow through the Chari-Logone River which originates in the
Central African Republic. Water availability in this sense relies on two quite independent hydrological systems: lake levels
and local rainfall. A detailed map of land use in the region is given in Fig. 1 (P-SIDRAT, 2013). According to this map, lake
recession farming (shown in orange) is mostly located in the eastern and western archipelagos. Other sources have in-
dicated that the extent of lake recession farming varies with the lake levels, but that it is practiced in most of the archi-
pelagos around the region capital Bol and towards the eastern and south-eastern shores (Magrin et al., 2015; Yahmed and
Fig. 1. Land use in Lake region (authors' translation to English and editing for readability) (P-SIDRAT, 2013). (For interpretation of the references to color in
this figure, the reader is referred to the web version of this article.)
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Houstin, 2012). The only distinguishable irrigation areas on the map (purple) are those surrounding Bol, while other sources
report irrigation along the shore between Baga Sola and Bol (Magrin et al., 2015). Rainfed farming (shown in light purple) is
scattered in areas next to settlements and villages (black dots), further away from the lake. The agricultural year is divided
into a rainy (Jun-Sep) and a dry season (Oct-May) (FEWS NET, 2011). Each season is used for different crops and strategies,
with maize and millet as the main rainy season crops which together make up 80–90% of the total annual production
(SODELAC, 2014). Production from the dry season, even though small on an annual comparison, still provides important
contributions to the stability of the livelihoods over an annual cycle. Maize is mostly grown on the receding lake beds, with
or without irrigation, while millet is more rainfall dependent (SODELAC, 2014). One reason for this division is that maize
requires more water than millet (Critchley and Siegert, 1991). Throughout the year, people generally engage in different
kinds of livelihoods, but due to data limitations, this study will only focus on the agricultural sector, where data have been
collected routinely by the local development organization Société de Développement du Lac (SODELAC).
3. Methodology

The main aim of this study was to empirically explore the predictive capacities of hydro-climatic variability on agri-
cultural production in three sub-regions of the Lake region in Chad using the newly developed dataset. The quantitative data
used were; seasonal crops (harvested area and yield), monthly rainfall, daily lake levels and daily temperature for each of
the sub-regions. Qualitative socio-economic assessments were used to inform the selection of relevant hydro-climatic
variables, as well as to interpret the statistical outputs. Data was collected from development organizations and government
institutions during field studies in Chad in 2014. SODELAC works specifically with development in the Lake region and
provided the most detailed agricultural data through their annual reports of 1988–2012 (SODELAC, 2014). Further in-
formation on livelihoods was collected from the Chadian offices of the FAO, the World Food Programme (WFP) and the
Famine Early Warnings Systems Network (FEWS NET).

The correlations between agriculture and hydro-climatic variability were explored by bi- and multivariate regression
analyses in MatLab. The purpose of this methodology was to find combinations of hydro-climatic variables that were able to
explain variations in the agricultural data, and to find potential causalities behind those relationships based on other sources
from the area.

3.1. Data overview and selection of hydro-climatic variables

3.1.1. Agriculture
Agricultural data from the SODELAC reports covered all crops and all three growing seasons per year (one rainy season

and two off-seasons) for each village in the region. This study looked at maize and millet production from the rainy season,
as these accounted for the majority of total annual production (80–90%) (SODELAC, 2014). Villages were put into three sub-
regions according to the SODELAC reports: Bol, Ngouri and Doum-Doum. Bol also covered Liwa, as data for Liwa was
sometimes reported separately and sometimes together with Bol (see Fig. 1 for village locations within the region). Maize
and millet were grown in two sub-regions (Bol and Doum-Doum), while only millet was grown in Ngouri, resulting in five
different crop datasets. The different sub-regions were expected to have different relationships with the hydro-climatic
variables. For instance, Bol and Doum-Doum are both in the direct vicinity of the lake, while Ngouri is located around 20 km
east of the eastern shores of the lake. This also explains why Ngouri does not have any maize production, as maize is mostly
grown on lake beds in the other areas. Besides crop data, the SODELAC reports also analyzed the agricultural performance of
each year and identified difficulties. Together with the quantitative crop data, this provided valuable insights into the
agricultural sector in the Lake region.

An issue with this dataset was the potential discrepancy between actual and reported production. The data obtained
were gathered by local officers of SODELAC in the region for each growing season over the period 1988–2012. These were in
turn based on estimates from local farmers and farmers' associations (SODELAC, 2014). However, as the production systems
are small-scale, dispersed throughout the region, and without much centralized monitoring, these estimates were likely to
contain errors. To verify the SODELAC data, data were aggregated for the whole region and compared with official agri-
cultural data provided by the Chadian Ministry of Agriculture (ONDR) for the period 1989–2012 (DPSA, 2014, 1996; DSEED,
1999). However, the two organizations usually share data between them, which reduces the potency of such a verification,
but also gives credibility to the SODELAC data. Pearson correlation coefficients between these two datasets were 0.96 for
maize and 0.83 for millet (student's t-test p-value r0.01), indicating near perfect linear correlations. The small dis-
crepancies between themwere probably due to the use of different estimation sources for some years, different post-harvest
loss estimations, or data entry errors. As the SODELAC data were in agreement with the official ONDR data, they were
assumed to be accurate.

The agricultural data were broken down by harvested area and yield, and are presented in Section 4.1. In the SODELAC
reports, some years had data on planted area, but this was not consistently reported throughout the time period and could
not be used in the analysis. With five different crop datasets and two agricultural variables per crop (harvested area and
yield), 10 agricultural variables were used. As the harvested area and the yield were expected to have distinct relationships
with the hydro-climatic conditions, they were analyzed separately and together explain the production, (which was not



Fig. 2. Monthly rain boxplot (region average).
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analyzed on its own). The harvested area is, for instance, initially affected by the farmers’ decisions as to where and when to
plant their crops. Part of these decisions will be related to hydro-climatic variables, such as the lake levels and the rainfall
before and during the planting period, and other parts will be related to socio-economic conditions, e.g.; available seeds,
land rights, economic and human resources, and political decisions, which due to data limitations were not included in this
study. Furthermore, the harvested area is dependent both on the amount of crops planted and on the crop survival rate over
the growing season, which is affected by the hydro-climate, management and pests. Yield on the other hand has a greater
dependency on such conditions throughout the growing stages.

3.1.2. Rainfall
Observed rainfall data fromweather stations in each of the sub-regions had been collected by SODELAC for monthly total

amounts and number of rainy days (SODELAC, 2014). This enabled an analysis of both the monthly amounts of rainfall and
their distribution, unlike most studies which only look at total seasonal amount (Lodoun et al., 2013). Daily data would have
allowed even more precise dynamics to be analyzed. However, such observations were not available. Daily rainfall data were
however available from re-analysis datasets but these were deemed to be less accurate than the observed monthly ones.
Fig. 2 gives an overview of the monthly and seasonal distribution of rainfall in the region for the studied time period (1988–
2012). The rainy season for this period averaged 300 mm, spanned May to October, peaked in July/August, and had only
occasional rains in April. Rainfall in July, August and September had the highest variations between the years. Agricultural
output was thus expected to be more sensitive to variations during these months than in the others. As this is a semi-arid
zone with low levels of irrigation and low ground water usage, rainfall was generally expected to have a positive relationship
to both the harvested area and the yield. There were however reports of flooding in the area (SODELAC, 2014), indicating
that there were periods of intense rainfall and unusually high lake levels. Both the timing and distribution of rainfall over
the growing season were relevant to both how farmers take decisions and how crops are affected directly. In order to discern
all such potential relationships, the rainfall variables outlined in Table 1 were created for the regression analysis. With a
rainy season spanning from May to October (6 months), this resulted in 22 rainfall variables for each sub region.

3.1.3. Lake levels
Daily data on lake levels in one of the villages (Bol) were collected from the Chadian National Meteorological and Hy-

drological Department (DREM, 2014) and complemented with data from SODELAC (2014); and LACBO (2013). The re-
lationship between water depth and water surface area had been previously established by Bader et al. (2011) as being as
fairly linear. In this study, only water depth was analyzed and was, as such, taken as a proxy for both the surface area and the
soil moisture of the lake beds. As mentioned previously, lake area has changed considerably in the recent past with annual
maximum area decreasing from around 25,000 km2 to its current extension of around 10,000 km2. Fig. 3 presents the daily
lake levels for 1986–2012 at Bol on the eastern shores of the lake. Both inter- and intra-annual variations can be seen in
Fig. 3. It is worth noting that the intra-annual variations can reach 250 cm, which considerably alters the lake recession
farming potential. Planting is carried out at different stages in areas where the lake is receding, and harvesting is done at
Table 1
Rainfall variables.

Rainfall variable Relationship to crops

Monthly total amounts Positive with potential peak
Monthly number of rainy days ''
Dual and triple combinations of monthly amounts (e.g.
Mayþ June)

''

Total seasonal amount ''
Coefficient of variation for the season (of monthly amounts) Even distribution (low variation) expected to have positive relationship
Standard deviation for the season (of monthly amounts) ''
Total seasonal amount/standard deviation Positive, as both high total amount and an even distribution (low std) are expected to

be beneficial for yield



Fig. 3. Lake Chad water depth measured at Bol 1988–2012 (daily).
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crop maturity or before the lake starts increasing again. Depending on the location, this planting-to-harvest cycle over the
rainy season usually takes place between June-October (SODELAC, 2014). The lake recession farming is also done with
different intensities throughout the year, but this study only looked at the rainy season as this accounted for the majority of
the annual production. The lake levels affect the lake recession farming most directly through land availability and soil
moisture, where higher lake levels up until the planting dates will decrease the land availability but at the same time
increase the soil moisture. To capture such dynamics, the lake variables presented in Table 2 were created.
3.1.4. Temperature
Temperature was expected to primarily affect the yield but also the harvested area through its effect on the survival rates

of the crops. There was no complete dataset of observed temperature from the region, and the closest observations were
from the capital N'Djamena approximately 200 km to the south, and then only on a monthly basis. As the relationships
between crop development and temperature were expected to be sensitive to sub-monthly variations, reanalysis data with
daily coverage were used instead of the observed monthly data. The ERA-interim dataset, which is a global atmospheric
reanalysis dataset from 1979 available down to 0.1° resolution (ECMWF, 2015) was chosen. Minimum, mean and maximum
temperatures at 6 h intervals were used on the nearest 0.5° to the center of each of the three selected sub-regions. Fig. 4
gives an overview of the distribution of the rainy seasons' monthly and seasonal averages based on daily averages for Bol, as
given by the ERA-interim dataset. As the three sub-regions were located within 40–50 km of each other, they had only slight
temperature differences. June had the highest daily averages and August and September had the widest distribution.
Seasonal averages varied between 28 and 32 °C. The temperature variables were created from this data based on the
temperature preferences of maize and millet in the Sahel. USAID (2014) specify six different development stages for the two
crops with varying temperature preferences, which were assumed to overlap with the six months of the rainy season in the
region. Monthly temperature variables were thus created. Both average monthly temperatures and days, and degree days
beyond the given temperature preferences (above maximum and below minimum) calculated from daily averages, mini-
mums, and maximums of each month were used. The same temperature preferences were used for all growing stages to
simplify the analysis. For maize the temperature preferences were set to 21–35 °C and for millet 21–36 °C (USAID, 2014).
Table 3 summarizes the temperature variables created. The variables of days and degree days beyond the set preferences
were created based on howmany consecutive days the minimum, average and maximum temperatures were beyond the set
preferences. These variables were calculated with thresholds of 1–6 consecutive days. This was done to include the effects of
longer periods beyond the set temperature preferences. With variables based on minimum, average and maximum tem-
peratures for each of the six months of the rainy season, a total of 150 temperature variables were created for each sub-
region, totaling 191 variables together with the lake and the rainfall variables.
Table 2
Lake variables.

Lake variable Relationship to crops

Peak during previous year's season Higher levels during the previous year are expected to increase current year's soil moisture
Lowest level during previous harvest ''
Annual average during the previous season ''
Peak during current year Higher levels during planting are expected to decrease land availability, increase flooding and

increase soil moisture
Lowest level during current harvest ''
Peak during current yearþ lowest level during cur-
rent harvest

''

Time of peak before planting Earlier peaks before planting could make farmers anticipate lower levels, and alter the land
availability/soil moisture relationship

Time when lake starts increasing after previous
harvest

''

Rate of pre-peak increase Farmers might make planting decisions as they start noticing changes to the lake



Fig. 4. Distribution of monthly average temperatures in Bol.

Table 3
Temperature variables.

Temperature variable Relationship to crops

Monthly and seasonal averages for the
rainy season (June to October)

Positive within the set
thresholds, negative
beyond

Degree days & number of days beyond
set minimum and maximum thresh-
olds per month and season

''

Degree days & number of days in periods
of 1–6 consecutive days beyond set
minimum and maximum thresholds
per month and season

''
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3.2. Regression analysis

The hydro-climatic variables were first tested in bivariate regressions against the agricultural data (harvested area and
yield for each crop and sub-region). Long term linear trends in the agricultural data were de-trended using first-order
differences, i.e. each data point was given as the difference from the previous year, which is commonly used in time-series
analysis (Lobell, 2010). To assess a wide range of potential correlations, the equations presented in Table 4 were used.
Quadratic was the highest polynomial order included, as higher orders were deemed superfluous for these relationships. For
each variable, the regression with the highest adjusted R2 was selected. If the p-value of the f-statistics of the selected
regression was below 0.05, it was included in the multivariate model selection. But as this was essentially a data mining
process with a large number of independent variables (191) and a small number of observations (25 years), there was a risk
that some variables would have significant correlations by chance only, without any notable relationships outside the
analyzed time period. To take this into account, only variables that were significant and complied with the local dynamics as
described by other sources and studies of the area were included (e.g. FEWS NET, 2011; Magrin et al., 2015; SODELAC, 2014).
A limitation of such an approach was that some variables with real but seemingly implausible relationships might have been
wrongfully excluded, thus reducing the explanatory power of the models, or that relationships without real relationships
were included, thus overfitting the models.

For the multivariate model selection, only linear multivariate models were evaluated, as higher polynomials had already
been incorporated in the bivariate selection process. To avoid overfitting, the selection of variables was limited by only
accepting variables with positive coefficients in the multivariate model (negative coefficients would mean that the selected
variable had an opposite relationship to that found in the bivariate analysis). Also, as for the bivariate selection, only
coefficients and combinations of variables which corresponded to descriptions by other studies were included. Interaction
terms between variables were examined but were excluded due to their low significance, which substantially reduced the
number of potential combinations and also reduced the risk of over fitting. Collinearity among selected variables was ne-
glected as this only affects coefficient accuracy within a model and not the overall model performance. The purpose of this
analysis was to find multivariate models with the highest predictive capacity, and not necessarily to explore the effect of
each included variable. Lastly, the adjusted R2s of multivariate regression models tend to overestimate the predictive
Table 4
Regression equations.

Type Regression equation Relationship

Linear β β= +y x0 1 Linear

Exponential β β β= + ( )y xexp0 1 2 Increasing intensity

Logarithmic β β= + ( )y xlog0 1 Decreasing intensity

Quadratic β β β= + +y x x0 1 2
2 Threshold



Fig. 5. Production, harvested area and yield for maize & millet per rainy season and sub-region.
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capacity, and especially so if based on few observations. To improve the predictive capacity, ‘leave-one-out’ cross-validation
was applied. The significance of the R2 from the cross-validation was calculated based on a bootstrap pairwise sampling
methodology of 1000 random selections.
4. Analysis

4.1. Agricultural data analysis

Fig. 5 presents the agricultural production, the harvested area and the yield for maize and millet for each of the three
sub-regions (Bol, Doum-Doum, Ngouri) for the rainy seasons of 1988–2012, as compiled from the SODELAC reports (SO-
DELAC, 2014). No substantial amount of maize was reported for Ngouri and it was therefore not included in the analysis.
Both maize and millet production showed high inter-annual variations, with especially high similarities for the millet sub-
regions. After the late 1990s, maize production had a positive trend with Bol having a noteworthy jump from 1998, which
was partly explained by increases in harvested area. This was explained in the SODELAC reports by the newly constructed
dams around the Bol, which held water from the receding lake levels and made more land available for maize farming
(SODELAC, 2014). This dam construction was taken into account in the regression analysis by using a dummy variable. The
harvested area for the other crops seemed to vary around the same levels throughout the whole time period, showing high
inter-annual variations but no apparent trends. The yields also showed high inter-annual variations with high similarities
between the sub-regions. Maize consistently had higher yields than millet and there was a strong positive trend in the
maize yield after the early 2000s, and a weaker one for millet from around the same time. Investments in modern maize
polders since the early 2000s was one factor behind this increase in the yield (Magrin et al., 2015), and other factors could be
general farming inputs such as new seeds, fertilizers and farm machinery. There were unfortunately not much data on these
input and technological factors. To be able to discern the influence of the inter-annual hydro-climatic variability on the yield,
linear trends were removed using first-order differences, as described previously. The yield datasets for all sub-regions
showed some long-term trends and were de-trended using this method.



Fig. 6. Bol maize harvested area bivariate correlation.
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4.2. Regression analysis

This section presents the hydro-climatic variables included in the multivariate models, both by bivariate regression fits
and causality analysis, for each sub-region and agricultural variable. Only hydro-climatic variables selected for the multi-
variate models are presented. It should be noted that several other hydro-climatic variables had significant (f-test p-value
r0.05) bivariate correlations to the agricultural data. Summaries of the statistical outputs with fitted regression equations
can be found in the appendix.

4.2.1. Bol
For the harvested area of maize, a dummy variable was included to account for the previously mentioned dam con-

struction in the area. Besides this, the variable “Lake Harvest Low Y-1” (the lowest lake level during the previous year's
harvest) was selected for the multivariate model. Its relationship to harvested area is presented in Fig. 6. A quadratic re-
lationship had the highest correlations. This could be interpreted as that an increased lowest lake level during the previous
year's harvest had a decreasingly positive relationship on the harvested area of the upcoming year. The physical component
behind this is related to increased soil moisture due to increased lake levels. This might be directly related to the lowest lake
level or through its correlation with other lake dynamics. For instance, it had significant negative Pearson correlations
(student's t-test p-value r0.05) both to when the lake started increasing before the current season (�0.54, indicating an
earlier increase of lake levels) and the rate of that increase (�0.55, indicating lower daily increases), while it had a positive
Pearson correlation to the lowest level of the current harvest season (0.59, indicating higher lake levels). Taken together,
these correlations suggest which factors could be involved in this relationship. The bivariate regression analysis of the
dummy variable for the dam construction showed that there was a highly significant (f-test pr0.01) increase (18,000 ha) in
the average harvested area after dam construction. As no other persistent area increasing changes were mentioned in the
SODELAC reports for that year, this increase could be attributed to the dam construction. The multivariate model with these
two variables had a cross-validated R2 of 0.63 (bootstrap significance r0.01), thereby accounting for the majority of var-
iation in harvested area over this time period.

For maize yield the variables selected were “Lake Harvest Low” (lowest lake level during the harvest) together with two
temperature variables: “Temp SepMaxDays3” (number of days in September included in periods with daily maximum
temperatures above the set threshold for at least 3 consecutive days) and “Temp JulMaxDays4”, as seen in Fig. 7. It should
first be noted that the correlations presented here are of the first-order differences as the yield data had a long-term linear
trend. “Lake Harvest Low” had a rather flat relationship up until 0, after which it was increasingly negative. This can be
interpreted as follows; reductions compared to the previous years did not have any influence on yield, but increases cor-
related with decreased yields. One possible explanation for this is that increased lowest lake levels either flooded already
planted crops, or that it decreased the land available for planting. “Temp SepMaxDays3” had a decreasingly positive re-
lationship to yield. September coincided with the later stages of the crop development, which generally had temperature
preferences of 21–33 °C (USAID, 2014). It is surprising that an increase in the no. of days with beyond threshold maximum
temperatures would be positively correlated with the yield. There are however at least two other possible explanations for
this relationship. First, September had a wide distribution of temperatures (Fig. 4), and temperatures in the upper span of
this spread could be beneficial to yield. Secondly, the variable had significant (student's t-test p-value r0.05) linear
Fig. 7. Bol maize yield bivariate correlations (1st-order difference).



Fig. 8. Bol millet harvested area bivariate correlations.
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correlations to both higher September daily average averages (Pearson correlation ¼0.65) and September daily minimum
averages (0.51). A further factor could be that it covaried with September rainfall, but no significant correlations were found
when checking for this. “Temp JulMaxDays4” had a negative linear relationship to the yield, which is explained by how
higher July temperatures had negative impacts on the early growing stages of maize. The multivariate cross-validated R2

was 0.50 (bootstrap significance r0.01), slightly lower than 0.63 for harvested area.
For the harvested area of millet, “Rain Season” and “Temp SepMax5” (degree days in September included in periods with

daily maximum temperatures above the set threshold for at least 5 consecutive days) were selected, both with quadratic
relationships (Fig. 8). “Rain Season” had a decreasingly positive relationship but with a large scatter of the observation
points. Underlying factors could be that the amount of rainfall over the season increased both planting by the farmers, as
they considered the rainfall to be favorable, and crop survival rate, but that too much rainfall caused flooding. “Temp
SepMax5” had an initially horizontal relationship up until around 40° days, after which it became increasingly positive,
probably due to the same reasons as given above for the temperature variable in the Bol maize yield section. The cross-
validated multivariate R2 was 0.36 (bootstrap significance r0.01) which was lower than for the previous models and
indicated a higher influence of non-hydro-climatic factors.

For the millet yield, combined rainfall in August and September was selected together with “Temp JunMax5”, both with
quadratic relationships as displayed in Fig. 9. The slight decrease in the upper ends of the rain variable can be explained by
flooding at elevated rainfall amounts. “Temp JunMax5” had a decreasingly negative relationship which would be explained
by crops being stressed by increased temperatures, but with increases after a certain threshold having no apparent addi-
tional effect. The multivariate model had a cross-validated R2 of 0.50 (bootstrap significance r0.01), same as for Bol's maize
yield.

4.2.2. Doum-Doum
“Rain Oct” and “Temp OctMaxDays3” were selected for the harvested area of maize. Both these relationships were

however fairly weak due to the concentration of data around a few values. Even though there were high and significant
adjusted R2s in these relationships, they should not be relied upon as established and should be interpreted and used
carefully. The multivariate model with these relationships had a cross-validated R2 of 0.39 (bootstrap significance r0.03).

For the maize yield, four bivariate correlations were selected and are presented in Fig. 10. The August rainfall variable had
an increasingly positive correlation with yield, which can be explained in the same way as for the previous rainfall variables.
“Rain Season/Rain Season Std” (seasonal amount divided by seasonal standard deviation, the latter measuring spread from
the mean and indicating instability) generally had a positive correlation with yield but is described here with a quadratic
curve, which seems to be explained by two outliers in the bottom right corner. Presumably a high seasonal rainfall and a low
standard deviation would be beneficial to the yield, and a positive correlation would thus be expected. The two outliers
could be due to flooding, or other factors that were not accounted for, e.g. pests. Delayed onset of the increase of lake levels
compared to last year (“Lake Time Increase”40) generally had a positive correlation to yield. One explanation for this is that
a later increase also means a later first planting data, which could be beneficial for farmers as it might clash less with other
livelihoods activities. Another possible effect could be seen in the correlation between a delayed onset of the lake increase
Fig. 9. Bol millet yield bivariate correlations (1st-order difference).



Fig. 10. Doum-Doum maize yield bivariate correlations (1st difference).
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with lower lake levels in general, both through peaks (Pearson correlation ¼�0.63) and levels during harvest (�0.64), both
increasing land availability and decreasing flooding. Finally the average temperature in October had a positive linear cor-
relation but with a low adjusted R2 and quite dispersed data point. It was probably relevant for the yield due to how it
increased otherwise relatively low temperatures in October. With a multivariate cross-validated R2 of 0.45 (bootstrap sig-
nificance r0.01) this model was also thought of as reliable.

For the harvested area of millet, three rainfall variables and one lake variable were selected (Fig. 11). The “Rain May Days”
variable had a slightly lower correlation than the other variables, and its correlations seemed to be undermined by the
gathering of data at a few points. A negative relationship suggested that issues such as flooding or an unusually high amount
of rainy days disrupted planting procedures. The August rainfall variable, with its increasingly positive correlation in its
upper span, was mostly explained by one outlier and is also weak. Some positive trends could still be seen after the 150 mm
mark if neglecting this outlier. The other two variables (“Rain Mayþ Jun” and “Lake Harvest Low”) had better supported
correlations and both indicated relationships that have been explained previously. The multivariate cross-validated R2 was
0.67 (bootstrap significance r0.01) and was thus able to explain a large proportion of the variation in the agricultural data.

The millet yield also included four variables, all with well-supported correlations, as seen in Fig. 12. April to July rainfall
was increasingly positive. Higher seasonal rainfall standard deviation (“Rain Season Std”) would presumably be detrimental
to the yield as it indicates instability, contrary to the correlation given in this figure. This positive correlation most likely
Fig. 11. Doum-Doum millet harvested area bivariate correlations.



Fig. 12. Doum-Doum millet yield bivariate correlations (1st-order difference).
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occurred due to its significant correlations (student's t-test p-value r0.05) with several other rainfall variables, such as
“Rain August” (Pearson correlation ¼0.91), “Rain JulyþAug” (0.89), “Rain AugþSep” (0.76) and “Rain Season” (0.63). In this
sense, a higher standard deviation also meant higher overall rainfall. The June temperature variable was negatively cor-
related up to a certain point after which it became positive. The negative correlation could be related to temperature stress,
and the positive turn at the upper end of the data span is probably explained by exogenous factors or covariance with other
variables with a more direct relationship. The last September temperature variable had a decreasingly positive correlation as
for maize yield in Bol. The multivariate performance was similar to that of harvested area with a cross-validated R2 of 0.66
(bootstrap significance r0.01).

4.2.3. Ngouri
Ngouri is located in the eastern part of the region, further away from the lake shores than the other two sub-regions and

therefore did not have any significant production of maize. Fig. 13 shows the selected variables for the harvested area of
millet. Both “Rain Season Days” and “Rain Season” had straight positive correlations, which is due to increased water
availability. The average temperature in June had a negative correlation for the first half of the value span, which then
flattened out, as did several previous agricultural variables. Put together, they had a cross-validated R2 of 0.43 (bootstrap
significance r0.01). Lastly, the millet yield had three variables selected, as outlined in Fig. 14. The “Rain Season” variable
had a strong positive correlation with yield. “Temp JulMax2” was decreasingly negatively correlated, which could be ex-
plained by July already having high temperatures and increased maximum temperatures stressing the crops. “Temp Sep-
MaxDays2” on the other hand had a positive correlation, as did the other September temperature variables. The cross-
validated R2 for this model was 0.49 and was similar to both the Bol maize and millet yield (bootstrap significance r0.01).
5. Discussion

The relationships established here are relevant to risk management in the region both as observed hydro-climatic in-
dicators of agricultural performance and as input for outlooks based on seasonal weather forecasts. It must first be noted
Fig. 13. Ngouri millet harvested area bivariate correlations.



Fig. 14. Ngouri millet yield bivariate correlations (1st-order difference).

Table 5
Hydro-climatic risk management framework.

* Green¼positive correlation, red¼negative correlation. Dual colors in the same box indicate shifts in correlations with increasing values. The vertical size
of the boxes are proportionate to their share of the multivariate correlation. The equations behind each relationship can be found in the appendix. All
multivariate R2s have bootstrap significances r0.01.
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that when using these relationships to infer outcomes in agricultural seasons which are outside of the time period studied
(1988–2012), the effects of other major changes to the agricultural system must be assessed, e.g. armed conflicts which have
struck the region in the past two years. By adding updated data to these results, opportunities for such analyses are now
opened up. This would also enable improved assessments of the impacts of such conflicts. One way of applying these results
to risk management is by categorizing the variables based on their correlations and time of observation in relation to the



E. Nilsson et al. / Environmental Development 20 (2016) 15–3028
crop harvest. Table 5 shows how such a framework could be presented based on the results of this study. The cross-validated
R2s of the 10 multivariate models are between 0.36–0.66, with 5 of them above 0.50, which is probably the level of use-
fulness for management purposes in the area. For the five agricultural variables with values below 0.50, more factors need to
be included to be able to account for larger amounts of the variations. With Table 5, one can see that most of the established
relationships hinge on observations close to the harvest, which limits their potential as indicators for early planning for the
harvest outcome, unless they are incorporated into seasonal weather forecasts.

The selected rainfall variables generally had positive relationships except for a few examples of potential flooding, while
lake levels and temperature had both positive and negative relationships. Temperature variables were also marked by dif-
ferences across the season, where earlier variables were negatively related and later ones positively. The mixed relationships
found for lake levels are noteworthy as lake dynamics are rarely incorporated in food security outlooks for the region, which
usually focus on rainfall forecasts and also assume a straightforward relationship between increased water resources and
agricultural production. Issues of flooding from both rainfall and lake levels indicate that water storage infrastructure has the
potential to even out water availability across the season. The different sub-regions also showed some noteworthy differences.
For maize in Bol, only lake and temperature variables were selected, indicating higher dependence on lake levels than rainfall
for crop water demands and planting strategies. The relationship established for the harvested area of maize is especially
relevant as the “Lake Harvest Low Y-1” is based on the previous year's lake levels and can be accurately measured well before
the upcoming agricultural season, contrary to the yield which needs later observations. Millet in Bol on the other hand seems
to be more dependent on rainfall than on lake levels, as expected given the distance of millet areas from the lakeshores.
Doum-Doum had variables selected from all three hydro-climatic categories, not including the harvested area of maize which
was discarded due to poorly established correlations. Finally, in similarity with Bol, millet in Ngouri had only rainfall and
temperature variables selected, once again affirming millet's dependence on rainfall. These results are relevant to the Sus-
tainable Development Goals as they enable baseline assessments of agricultural production in the Lake region of Chad and
they outline the hydro-climatic relationships with the agricultural sector on a sub-regional level. By building on these datasets
and results, sustainable management of hydrological resources can be advanced through early indications of agricultural
output and seasonal outlooks, which can guide adaptation strategies to respond to production shortfalls, and stabilize and
increase agricultural production, thereby improving food security and economic development in the region.
6. Conclusion

This study investigated the role of hydro-climatic variability in relation to the agricultural system around Lake Chad in
Chad by using regression analysis on sub-regional datasets. Given that this is a rural region with traditional farming systems,
low technological development and high hydro-climatic variability, it was assumed that this variability would have sig-
nificant impacts on the agricultural system. The methodology focused on finding the highest cross-validated multivariate
correlations, and there were therefore many relevant hydro-climatic variables that were not included in the multivariate
models. However, the selected multivariate models were the combinations of variables that had the highest explanatory
power, making them the most relevant when it came to infer agricultural performance based on hydro-climatic variability.
The cross-validated R2s of the 10 multivariate models were between 0.36–0.66, with five of them above 0.50, which is
probably the level of usefulness for predictive management purposes in the area. A major constraint was that, due to data
limitations, only hydro-climatic variables were included in the regression analysis. Other qualitative data sources were
however used to create the relevant variables and to assess the reliability of their correlations. The agricultural system in
this region is certainly dependent on other factors, such as socio-economic conditions, management practices, pests and
policy. But as this methodology focused on exploring the agricultural system's inter-annual variations, the relevance of
factors with more stability over time (such as economic development and population growth) was reduced. The occurrence
of pests and the impacts of certain development projects, factors with high inter-annual influence, were omitted. Con-
sideration of these factors would probably enhance the analysis.
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See Table A1–A3.



Table A1
Bol results summary.

Agricultural
variable

Hydro-climatic
variable

Relationship (best fit) Adj. R2 Multivariate model equation Cross
val. R2

Bol maize har-
vested area

Lake harvest low
Y-1

Y1¼5.8821e3þ211.39�X�0.7329�X2 0.45* Ym¼0.36�Y1þ0.79�Y2�1.9434e3 0.63þ

Bol dam dummy Y2¼1.7661e4�X 0.70*

Bol maize yield Lake harvest low Y1¼0.22�0.0083�X�8.69e�5�X2 0.17** Ym¼0.67�Y1þ0.88�Y2þ0.52�Y3�0.08 0.50þ

Temp
SepMaxDays3

Y2¼0.1736�0.1133X�0.0073�X2 0.50*

Temp
JulMaxDays4

Y3¼0.0765�0.0235�X 0.16**

Bol millet har-
vested area

Rain season Y1¼�1.2481e4þ145.8�X�0.1915�X2 0.23** Ym¼0.76�Y1þ0.87�Y2�7.1976e3 0.36þ

Temp SepMax5 Y2¼8.9407e3�348.2�Xþ12.185�X2 0.42*

Bol millet yield Rain AugþSep Y1¼0.044þ0.0016�X�4.e�6�X2 0.38* Ym¼1.11�Y1þ1.03�Y2 0.50þ

Temp JunMax5 Y2¼�0.0760�0.0073�Xþ1e�4�X2 0.21**

* f-test significance level r0.01.
** f-test significance level r0.05.
þ Bootstrap significance level r0.01.

Table A2
Doum-Doum results summary.

Agricultural
variable

Hydro-cli-
matic variable

Relationship (best fit) Adj. R2 Multivariate model equation Cross
val. R2

Doum-Doum
maize harvested
area

Rain Oct Y1¼9.8869e3�197.6�Xþ11.27�X2 0.30* Ym¼0.77�Y1þ0.78�Y2�5.7419e3 0.39þ þ

Temp
OctMaxDays3

Y2¼�2.8167e5þ2.0741e4�X�365.08�X2 0.31*

Doum-Doum
maize yield

Rain Aug Y1¼0.0157þ0.0052�Xþ1.33e�5�X2 0.32* Ym¼0.69�Y1þ0.58�Y2þ0.49�Y3

þ0.68�Y4�0.13
0.45þ

Rain season/
Rain season Std

Y2¼0.3239þ0.0448�X�0.0260�X2 0.23**

Lake time
increase

Y3¼�0.0851þ0.0067�Xþ1.505e�4�X2 0.28**

Temp OctAve Y4¼0.0678þ0.1769�X 0.12**

Doum-Doum
millet harvested
area

Rain May Days Y1¼1.5033e4�1.0980e3�X 0.14** Ym¼1.32�Y1þ0.47�Y2þ0.52�Y3þ0.95
�Y4�3.1212e4

0.66þ

Rain Aug Y2¼1.9648e4�105.79�Xþ0.3918�X2 0.25**

Rain Mayþ Jun Y3¼1.0130e4þ187.98�X�1.43�X2 0.22**

Lake harvest
low

Y4¼�34.2þ1.6372e4� exp (�0.0042�X) 0.30*

Doum-Doum
millet yield

Rain Apr to Jul Y1¼�0.1168þ0.0020�Xþ9.8155e�6�X2 0.27** Ym¼0.31�Y1þ0.76�Y2þ0.57�Y3þ0.57
�Y4�0.01

0.66þ

Rain season Std Y2¼0.0292þ0.0104�X 0.52*

Temp JunMax2 Y3¼�0.1969�0.0120�Xþ4.5e�4�X 0.21**

Temp SepMax5 Y4¼0.0620þ0.0117�X�2.74e�4�X 0.19**

* f-test significance level r0.01.
** f-test significance level r0.05.
þ Bootstrap significance level r0.01.
þ þ Bootstrap significance level r0.03.

Table A3
Ngouri results summary.

Agricultural
variable

Hydro-climatic
variable

Relationship Adj. R2 Multivariate model equation Cross
val. R2

Ngouri millet
harvested
area

Rain season
days

Y1¼239þ5.469e3� exp (0.05�X) 0.15** Ym¼0.61�Y1þ0.75�Y2þ0.65�Y3�1.9313e4 0.43þ

Rain season Y2¼�1.2892e4þ109�X 0.50*

Temp JunAve Y3¼7.0189e6�4.330e5�Xþ7.1037e3�X2 0.18**

Ngouri millet
yield

Rain season Y1¼0.0574þ0.0024�X�5e�6�X2 0.50* Ym¼0.77�Y1þ0.50�Y2þ0.50�Y3 0.49þ

Temp JulMax2 Y2¼�0.0566�0.0330�Xþ0.0028�X2 0.18**

Temp
SepMaxDays2

Y3¼�0.0254þ0.0304�X2 0.23*

* f-test significance level r0.01.
** f-test significance level r0.05.
þ Bootstrap significance level r0.01.
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