# Generalized stable shape and the Whitehead theorem 

Takahisa Miyata ${ }^{1}$, Jack Segal *<br>Department of Mathematics, University of Washington, Seattle, WA 98195, USA

Received 25 August 1993; revised 7 July 1994


#### Abstract

In this paper we define a stable shape category based on the category of CW -spectra. Then we formulate and prove a Whitehead-type theorem in this category.


Keywords: Shape; Shape dimension; Stable homotopy; Spectra; Whitehead theorem

AMS (MOS) Subj. Class.: 54B35, 54C56, 54F43, 55P42, 55P55, 55Q10

## 0. Introduction

Lima [6] constructed the Čech stable homotopy theory for compacta. This construction gives the stable shape theory on the category of metric compacta. Dold and Puppe [4] and Henn [5] defined a stable shape category for compacta, which is based on the Spanier-Whitehead category and studied a duality in this stable shape category. More results on duality and complements were obtained in Nowak [12,13] and Mrozik [10].

In this paper we define a stable shape category for arbitrary spaces, which is based on the category of CW-spectra and show that the earlier stable shape category embeds in our stable shape category. This approach allows us to work on cells of CW -spectra. We then formulate and give a proof of a stable shape version of a Whitehead-type theorem (see Theorems 6.1 and 6.2).

In the next section we recall the stable categories and in Section 2 we define our stable shape category. In Section 3 we prove a finite-dimensional version of a

[^0]Whitehead-type theorem for CW-spectra, and in Section 4 we generalize the statement in Section 3 over the pro-CW-spectra. In Section 5 we introduce a notion of dimension in our stable shape category, and finally in Section 6 we obtain a stable shape version of a Whitehead-type theorem.

For CW-spectra, we refer to Switzer [14, Chapter 8] and Adams [2, Part III], and for this shape theory, we refer to Mardešić and Segal [9]. All spaces dealt with in paper are assumed to be based.

## 1. Stable categories

Let Top denote the category of all spaces and pointed (continuous) maps, and let CG, Cpt, CW, and $\mathbf{f C W}$ denote the full subcategories of Top consisting of all compactly generated spaces, all compacta, all CW complexes, and all finite CW complexes, respectively. Let HTop, HCG, HCpt, HCW and HfCW denote the homotopy categories of the corresponding categories. If $\mathscr{E}$ is a category, then $O b \mathscr{E}$ denotes the set of objects and for objects $X$ and $Y$ of $\mathscr{C}, \mathscr{E}(X, Y)$ denotes the set of all morphisms from $X$ to $Y$ in $\mathscr{E}$.

The Spanier-Whitehead category $\mathbf{H C G}_{\mathrm{sw}}$ is defined by $\mathrm{ObHCG}_{\mathrm{sw}}=O b \mathbf{C G}$ and for any two compactly generated spaces $X$ and $Y, \mathbf{H C G}_{\mathrm{sw}}(X, Y)=$ $\{X, Y\}\left(=\operatorname{colim}_{k}\left[S^{k} X, S^{k} Y\right]\right)$, where $S^{k} X=S^{k} \wedge X$ for $k \geqslant 0$ and $S^{1} X=S X$. Then $\mathbf{H C p t}_{\mathrm{sw}}, \mathbf{H C W}_{\mathrm{sw}}, \mathbf{H f C W}_{\mathrm{sw}}$ denote the full subcategories of $\mathbf{H C G}_{\mathrm{sw}}$ whose objects are all compacta, all CW complexes, all finite CW complexes, respectively.

The category of $C W$-spectra $\mathbf{C W}_{\text {spec }}$ is the category whose objects are all CW-spectra and whose morphisms are all maps of CW-spectra. Let $\mathrm{fCW}_{\text {spec }}$ denote the full subcategory of $\mathbf{C W}_{\text {spec }}$ whose objects are all finite CW-spectra. The suspension spectrum $E(X)$ of a space $X$ is the spectrum defined by

$$
(E(X))_{n}= \begin{cases}S^{n} X, & n \geqslant 0 \\ *, & n<0\end{cases}
$$

and if $X$ is a CW complex, $E(X)$ is called the suspension $C W$-spectrum. Let $\mathrm{CW}_{\mathrm{spec}}^{\mathrm{s}}$ denote the full subcategory of $\mathbf{C W}_{\text {spcc }}$ whose objects are all suspension CW -spectra. Let $\mathbf{H C W}_{\text {spec }}$ denote the homotopy category of $\mathbf{C W}_{\text {spec }}$. That is, $O b \mathbf{H C W}$ set of all CW-spectra, and for any two CW-spectra $E$ and $F, \mathbf{H C W}_{\text {spec }}(E, F)$ is the set of homotopy classes $[E, F]$. Let $H_{C W}^{s}$ spec denote the full subcategory of $\mathbf{H C W}_{\text {spec }}$ whose objects are the suspension CW-spectra.

There is functor $F_{\mathrm{sw}}: \mathbf{H C W} \rightarrow \mathbf{H C W}_{\mathrm{sw}}$ defined by $X \mapsto X$ for each $X \in O b \mathbf{H C W}$ and $[f] \mapsto\{f\}$ for each $[f] \in[X, Y]$ where $\{f\} \in \operatorname{colim}_{k}\left[S^{k} X, S^{k} Y\right]$ is the element represented by $[f] \in[X, Y]$. Also, there is a functor $F_{\text {spec }}: \mathbf{H C W} \rightarrow \mathbf{H C W}_{\text {spec }}$ defined by $X \mapsto E(X)$ for each CW complex $X$ and $[f] \mapsto[E(f)]$ for each [ $f] \in$ [ $X, Y$ ] where $E(f): E(X) \rightarrow E(Y)$ is the map defined as

$$
(E(f))_{n}= \begin{cases}S^{n} f: S^{n} X \rightarrow S^{n} Y, & n \geqslant 0 \\ *: * \rightarrow *, & n<0\end{cases}
$$

For each $[f] \in[X, Y]$, we write $E([f])$ for the unique class $[E(f)]$. Moreover, there is an embedding of a category $R: \mathbf{H f C W}_{\text {sw }} \rightarrow \mathbf{H C W}_{\text {spec }}$ defined by $X \rightarrow E(X)$ for each finite CW complex $X$ and

$$
(R f)_{n}= \begin{cases}*, & n<k, \\ S^{n-k} f_{k}, & n \geqslant k,\end{cases}
$$

if an element $f \in\{X, Y\}$ is represented by a map $f_{k}: S^{k} X \rightarrow S^{k} Y$. Then we have the commutativity of functors $R \circ F_{\mathrm{sw}}\left|\mathbf{H f C W}=F_{\text {spec }}\right| \mathrm{HfCW}$.

## 2. Generalized stable shape categories

The stable shape category based on the Spanier-Whitehead category which is defined by Dold and Puppe [4] and Henn [5] is essentially the abstract shape theory (in the sense of Mardešić and Segal [9, I, §2]) for the pair of categories $\left(\mathbf{H C p t}_{\mathrm{sw}}, \mathbf{H f C W}_{\mathrm{sw}}\right)$ as shown in the following theorem.

Theorem 2.1. $\mathrm{HfCW}_{\mathrm{sw}}$ is a dense subcategory of $\mathbf{H C p t}{ }_{\mathrm{sw}}$.
Proof. Let $X$ be a compactum. Then there exists an HCW-expansion $\boldsymbol{p}=\left(p_{\lambda}\right)$ : $X$ $\vec{X}=\left(X_{\lambda}, p_{\lambda \lambda^{\prime}}, \Lambda\right)$ of $X$ with each $X_{\lambda}$ being a finite polyhedron. Then $S(p)=$ $\left(S p_{\lambda}\right): S X \rightarrow S X=\left(S X_{\lambda}, S p_{\lambda \lambda}, \Lambda\right)$ is an HPol-expansion of $S X$ (see Ungar [15, Theorem 1.3]). On the other hand $p$ induces a morphism $\bar{p}=\left(\bar{p}_{\lambda}\right): X \rightarrow \bar{X}=$ $\left(X_{\lambda}, \bar{p}_{\lambda \lambda^{\prime}}, \Lambda\right)$ in pro-HCpt ${ }_{\mathrm{sw}}$, where $\bar{p}_{\lambda}=F_{\mathrm{sw}}\left(p_{\lambda}\right)$ and $\bar{p}_{\lambda \lambda^{\prime}}=F_{\mathrm{sw}}\left(p_{\lambda \lambda^{\prime}}\right)$. We claim that this is an $\mathrm{HCW}_{\mathrm{sw}}$-expansion of $X$. First note that each $X_{\lambda}$ is a finite CW complex. Let $h: X \rightarrow P$ be a stable map (an S-map) to any CW complex, and let $h$ be represented by an H-map $h_{k}: S^{k} X \rightarrow S^{k} P$. Then since $S^{k} P$ is a CW complex, by Ungar's result, there exist $\lambda \in \Lambda$ and an H-map $g_{k}: S^{k} X_{\lambda} \rightarrow S^{k} P$ such that $h_{k}=g_{k}\left(S^{k} p_{\lambda}\right)$. Let $g: X_{\lambda} \rightarrow P$ be the S-map represented by $g_{k}$. Then $h=g \bar{p}_{\lambda}$ in $\mathbf{H C G}_{\mathrm{sw}}$. Moreover, let $g, h: X_{\lambda} \rightarrow P$ be two S-maps to any CW complex such that $g \bar{p}_{\lambda}=h \bar{p}_{\lambda}$ in $\mathbf{H C G}_{\mathrm{sw}}$. Then there exists $k \geqslant 0$ such that $g_{k}\left(S^{k} p_{\lambda}\right)=h_{k}\left(S^{k} p_{\lambda}\right)$ where $g_{k}: S^{k} X_{\lambda} \rightarrow S^{k} P$ and $h_{k}: S^{k} X_{\lambda} \rightarrow S^{k} P$ are H-maps representing $g$ and $h$, respectively. Again by Ungar's result, there exists $\lambda^{\prime} \geqslant \lambda$ such that $g_{k}\left(S^{k} p_{\lambda x}\right)=h_{k}\left(S^{k} p_{\lambda \lambda^{\prime}}\right)$. Thus $g \bar{p}_{\lambda \lambda^{\prime}}=h \bar{p}_{\lambda^{\prime}}$ in $\mathbf{H C W}_{\mathrm{sw}}$ as required. Hence this proves our claim and completes the proof.

We denote by $\mathbf{S h}_{\mathrm{sw}}$ the abstract shape category for the pair ( $\mathbf{H C p t} \mathrm{s}_{\mathrm{sw}}, \mathbf{H f C W}_{\mathrm{sw}}$ ) and call it the stable shape category (or Spanier-Whitehead stable shape category or $S W$-shape category) for compacta.

Now we wish to define a generalized shape theory for the suspension spectra $E(X)$ of any space $X$, using the suspension CW-spectra. Here we should note there is no map defined between spectra unless the domain is a CW-spectrum. Thus such a shape theory will not be an abstract shape theory for a pair of
categories in the sense of Mardešić and Segal but an "extension" of the homotopy theory on the category $\mathbf{H C W}_{\text {spec }}$.

Let $\boldsymbol{p}=\left(p_{\lambda}\right): X \rightarrow \boldsymbol{X}=\left(X_{\lambda}, p_{\lambda \lambda}, \Lambda\right)$ be an HCW-expansion of a space $X$, and let $E(X)=\left(E\left(X_{\lambda}\right), E\left(p_{\lambda \lambda^{\prime}}\right), \Lambda\right)$ be the inverse system in $\mathbf{H C W}_{\text {spec }}$ induced from the inverse system $X$ in $\mathbf{H C W}$ by the functor $F_{\text {spec }}$. A morphism $\boldsymbol{e}: E(\boldsymbol{X}) \rightarrow \boldsymbol{E}=$ ( $E_{a}, e_{a a^{\prime}}, A$ ) in pro- $\mathrm{HCW}_{\text {spec }}$ is said to be a generalized expansion of $X$ in $\mathbf{H C W}_{\text {spec }}$ provided the following universal property is satisfied:
(U) if $f: E(X) \rightarrow F$ is a morphism in pro- $\mathrm{HCW}_{\text {spec }}$ then there exists a unique morphism $\boldsymbol{g}: \boldsymbol{E} \rightarrow \boldsymbol{F}$ in pro- $\mathrm{HCW}_{\text {spec }}$ such that $\boldsymbol{f}=\boldsymbol{g e}$.


One should note here that the definition of a generalized expansion does not depend on the choice of the HCW-expansion $p=\left(p_{\lambda}\right): X \rightarrow X=\left(X_{\lambda}, p_{\lambda^{\prime}}, \Lambda\right)$. Also note that for any two generalized expansions $\boldsymbol{e}: E(\boldsymbol{X}) \rightarrow \boldsymbol{E}$ and $\boldsymbol{e}^{\prime}: E(\boldsymbol{X}) \rightarrow \boldsymbol{E}^{\prime}$ in $\mathbf{H C W}_{\text {spec }}$ there exists a unique isomorphism $\boldsymbol{i}: \boldsymbol{E} \rightarrow \boldsymbol{E}^{\prime}$ in pro- $\mathbf{H C W}_{\text {spec }}$ (which we call the natural isomorphism) such that $\boldsymbol{i e}=\boldsymbol{e}^{\prime}$. It is easy to see that the identity induced morphism $E(X) \rightarrow E(X)$ is a generalized expansion of $X$ in $\mathbf{H C W}_{\text {spec }}$.

The following theorem gives a characterization of generalized expansions in $\mathbf{H C W}_{\text {spec }}$.

Theorem 2.2. Let $\boldsymbol{e}: E(\boldsymbol{X}) \rightarrow \boldsymbol{E}=\left(E_{a}, e_{a a^{\prime}}, A\right)$ be a morphism in pro- $\mathrm{HCW}_{\text {spec }}$ which is represented by a morphism ( $e_{a}, \varphi$ ) of inverse systems where $p=\left(p_{\lambda}\right): X \rightarrow X$ $=\left(X_{\lambda}, p_{\lambda \lambda}, \Lambda\right)$ is an HCW-expansion of any space $X$. Then $\boldsymbol{e}$ is a generalized expansion in $\mathbf{H C W}_{\text {spec }}$ if and only if the following two conditions are satisfied:
(GE1) Every morphism $h: E\left(X_{\lambda}\right) \rightarrow F$ in $\mathbf{H C W}_{\text {spec }}$ admits $a \in A$ and a morphism $g_{a}: E_{a} \rightarrow F$ in $\mathbf{H C W}_{\text {spec }}$ such that $h E\left(p_{\lambda \lambda^{\prime}}\right)=g_{a} e_{a} E\left(p_{\varphi(a) \lambda^{\prime}}\right)$ for some $\lambda^{\prime} \geqslant \lambda, \varphi(a)$.
(GE2) If $g_{a}, h_{a}: E_{a} \rightarrow F$ are two morphisms in $\mathbf{H C W}_{\text {spec }}$ such that $g_{a} e_{a} E\left(p_{\varphi(a) \lambda}\right)$ $-h_{a} e_{a} E\left(p_{\varphi(a) \lambda}\right)$ for some $\lambda \geqslant \varphi(a)$, then there cxists $a^{\prime} \geqslant a$ such that $g_{a} c_{a a^{\prime}}=h_{a} c_{a a^{\prime}}$.

Proof. Suppose $e$ is a generalized expansion, and let $h: E\left(X_{\lambda}\right) \rightarrow F$ be a morphism in $\mathbf{H C W}_{\text {spec. }}$. Then $h$ represents a morphism $h: E(X) \rightarrow(F)$ in pro- $\mathbf{H C W}_{\text {spec }}$, and there exists a morphism $\boldsymbol{g}: \boldsymbol{E} \rightarrow(F)$ in pro- $\mathbf{H C W}_{\text {spec }}$ such that $\mathbf{h}=\boldsymbol{g e}$. If $\boldsymbol{g}$ is represented by a morphism $g_{a}: E_{a} \rightarrow F$ in $\mathbf{H C W}_{\text {spec }}$, then $h=g e$ implies the assertion in (GE1). For (GE2), let $g_{a}, h_{a}: E_{a} \rightarrow F$ be as in the hypothesis. Let $g_{a}$, $\boldsymbol{h}_{\mathrm{a}}$ represent morphisms in pro- $\mathrm{HCW}_{\text {spec }}, \boldsymbol{g}, \boldsymbol{h}: \boldsymbol{E} \rightarrow(F)$, respectively. Then $\boldsymbol{g e} \boldsymbol{e}=\boldsymbol{h e}$. By the uniqueness in the definition of a generalized expansion, $\boldsymbol{g}=\boldsymbol{h}$, which implies $g_{a} e_{a a^{\prime}}=h_{a} e_{a a^{\prime}}$ for some $a^{\prime} \geqslant a$.

Conversely, assume that the assertions in (GE1) and (GE2) hold. Let $e$ be represented by ( $e_{a}, \varphi$ ), and let $f: E(X) \rightarrow F=\left(F_{b}, f_{b b^{\prime}}, B\right)$ be a morphism in
pro- $\mathbf{H C W}_{\text {spec }}$, which is represented by $\left(f_{b}, \psi\right)$. Then by (GE1) for each $b \in B$ there exist $\eta(b) \in A$ and a morphism $g_{b}: E_{\eta(b)} \rightarrow F_{b}$ such that

$$
\begin{equation*}
f_{b} E\left(p_{\psi(b) \lambda}\right)=g_{b} e_{\eta(b)} E\left(p_{\varphi(\eta(b)) \lambda}\right) \quad \text { for some } \lambda \geqslant \psi(b), \eta(b) . \tag{1}
\end{equation*}
$$

We claim that $\left(g_{b}, \eta\right)$ defines a morphism $g: E \rightarrow \boldsymbol{F}$ in pro-HCW ${ }_{\text {spec }}$ such that $f=g e$. Indeed, let $b \leqslant b^{\prime}$ in $B$. Then

$$
\begin{equation*}
f_{b^{\prime}} E\left(p_{\psi\left(b^{\prime}\right) x^{\prime}}\right)=g_{b^{\prime}} e_{\eta\left(b^{\prime}\right)} E\left(p_{\varphi\left(\eta\left(b^{\prime}\right)\right) \lambda^{\prime}}\right) \quad \text { for some } \lambda^{\prime} \geqslant \psi\left(b^{\prime}\right), \eta\left(b^{\prime}\right) . \tag{2}
\end{equation*}
$$

Choose $a \in A$ such that $a \geqslant \eta(b), \eta\left(b^{\prime}\right)$, and then take $\lambda^{\prime \prime} \geqslant \lambda, \lambda^{\prime}, \varphi(a)$ in $\Lambda$ such that the following three equalities hold:

$$
\begin{align*}
& f_{b b^{\prime}} f_{b^{\prime}} E\left(p_{\psi\left(b^{\prime}\right) \lambda^{\prime \prime}}\right)=f_{b} E\left(p_{\psi(b) \lambda^{\prime \prime}}\right)  \tag{3}\\
& e_{\eta\left(b^{\prime}\right) a} e_{a} E\left(p_{\varphi(a) x^{\prime}}\right)=e_{\eta\left(b^{\prime}\right)} E\left(p_{\left.\varphi\left(\eta\left(b^{\prime}\right)\right){x^{\prime \prime}}\right)},\right.  \tag{4}\\
& e_{\eta(b) a} e_{a} E\left(p_{\varphi(a) \lambda^{\prime \prime}}\right)=e_{\eta(b)} E\left(p_{\varphi(\eta(b)) \lambda^{\prime \prime}}\right) \tag{5}
\end{align*}
$$

Then (2), (3) and (1) imply

$$
\begin{equation*}
f_{b b^{\prime}} g_{b^{\prime}} e_{\eta\left(b^{\prime}\right)} E\left(p_{\varphi\left(\eta\left(b^{\prime}\right)\right) \lambda^{\prime \prime}}\right)=f_{b} E\left(p_{\psi(b) \lambda^{\prime \prime}}\right) \tag{6}
\end{equation*}
$$

On the other hand (4) and (5) imply

$$
\begin{equation*}
f_{b b^{\prime}} g_{b^{\prime}} e_{\eta\left(b^{\prime}\right) a} e_{a} E\left(p_{\varphi(a) x^{\prime \prime}}\right)=f_{b b^{\prime}} g_{b^{\prime}} e_{\eta\left(b^{\prime}\right)} E\left(p_{\varphi\left(\eta\left(b^{\prime}\right)\right) x^{\prime \prime}}\right) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{b} e_{\eta(b) a} e_{a} E\left(p_{\varphi(a) \lambda^{\prime \prime}}\right)=g_{b} e_{\eta(b)} E\left(p_{\varphi(\eta(b)) \lambda^{\prime \prime}}\right) \tag{8}
\end{equation*}
$$

Then (6), (7), (8) and (GE2) imply

$$
\begin{equation*}
f_{b b^{\prime}} g_{b^{\prime}} e_{\eta\left(b^{\prime}\right) a^{\prime}}=g_{b} e_{\eta(b) a^{\prime}} \text { for some } a^{\prime} \geqslant a \tag{9}
\end{equation*}
$$

This shows that $\left(g_{b}, \eta\right)$ represents a morphism $g$ in pro- $\mathbf{H C W}_{\text {spec }}$, and (1) implies $f=g e$.

It remains to show the uniqueness of $g$. Suppose that $\boldsymbol{h}: \boldsymbol{E} \rightarrow \boldsymbol{F}$ is a morphism in pro- $\mathbf{H C W}_{\text {spec }}$ such that $\boldsymbol{g e}=\boldsymbol{h e}$, and let $\left(g_{b}, \eta\right)$ and $\left(h_{b}, \boldsymbol{\xi}\right)$ represent $\boldsymbol{g}$ and $\boldsymbol{h}$, respectively. Now, fix $b \in B$. Then $g e=h e$ implies

$$
\begin{equation*}
g_{b} e_{\eta(b)} E\left(p_{\varphi(\eta(b)) \lambda}\right)=h_{b} e_{\xi(b)} E\left(p_{\varphi(\xi(b)) \lambda}\right) \quad \text { for some } \lambda \geqslant \varphi(b), \xi(b) \tag{10}
\end{equation*}
$$

Choose $a \geqslant \eta(b), \xi(b)$ in $A$, and then take $\lambda^{\prime} \geqslant \lambda, \varphi(a)$ in $\Lambda$ such that

$$
\begin{equation*}
e_{\eta(b) a} e_{a} E\left(p_{\varphi(a) \Lambda^{\prime}}\right)=e_{\eta(b)} E\left(p_{\varphi(\eta(b)) X^{\prime}}\right) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
e_{\xi(b) a} e_{a} E\left(p_{\varphi(a) X^{\prime}}\right)=e_{\xi(b)} E\left(p_{\varphi(\eta(b)) X^{\prime}}\right) \tag{12}
\end{equation*}
$$

Put $g_{a}^{\prime}=g_{b} e_{\eta(b) a}$ and $h_{a}^{\prime}=h_{b} e_{\xi(b) a}$. Then by (11), (10), and (12),

$$
\begin{aligned}
g_{a}^{\prime} e_{a} E\left(p_{\varphi(\eta(b)) \lambda^{\prime}}\right) & =g_{b} e_{\eta(b)} E\left(p_{\varphi(\eta(b)) \lambda}\right) E\left(p_{\lambda \lambda^{\prime}}\right) h_{b} e_{\xi(b)} E\left(p_{\varphi(\xi(b)) \lambda}\right) E\left(p_{\lambda \lambda^{\prime}}\right) \\
& =h_{a}^{\prime} e_{a} E\left(p_{\varphi(a) \lambda^{\prime}}\right) .
\end{aligned}
$$

This and (GE2) imply $g_{a}^{\prime} e_{a a^{\prime}}=h_{a}^{\prime} e_{a a^{\prime}}$ for some $a^{\prime} \geqslant a$. Thus $g_{b} e_{\eta(b) a^{\prime}}=h_{b} e_{\xi(b) a^{\prime}}$, so that $\boldsymbol{g}=\boldsymbol{h}$.

Theorem 2.3. $A$ morphism in pro-HCW ${ }_{\text {spec }}, e: E(X) \rightarrow E=\left(E_{a}, e_{a a^{\prime}}, A\right)$, where $p=\left(p_{\lambda}\right): X \rightarrow X=\left(X_{\lambda}, p_{\lambda X^{\prime}}, \Lambda\right)$ is an HCW-expansion of any space $X$, is a generalized expansion in $\mathbf{H C W}_{\text {spec }}$ if and only if $e$ is an isomorphism in pro- $\mathbf{H C W}_{\text {spec }}$.

Proof. Suppose that $e$ is a generalized expansion in $\mathbf{H C W}_{\text {spec }}$. Then the identity induced morphism $i: E(X) \rightarrow E(X)$ is a generalized morphism in $H_{C W}$ spec , so that $\boldsymbol{e}$ is a natural isomorphism. The converse is obvious.

Theorem 2.4. Every HfCW sw $_{\text {-expansion }} q=\left(q_{\mu}\right): X \rightarrow Z=\left(Z_{\mu}, q_{\mu \mu^{\prime}}, M\right)$ of a compactum $X$ induces a generalized expansion $e: E(X) \rightarrow R Z=\left(E\left(Z_{\mu}\right), R q_{\mu \mu^{\prime}}, M\right)$ in $\mathbf{H C W}_{\text {spec }}$ where $\boldsymbol{p}=\left(p_{\lambda}\right): X \rightarrow X=\left(X_{\lambda}, p_{\lambda \lambda^{\prime}}, \Lambda\right)$ is any HCW-expansion of $X$.

Proof. Without loss of generality we can assume that each $X_{\lambda}$ is finite. Since $\boldsymbol{p}: X \rightarrow \boldsymbol{X}$ is an HCW-expansion of $X$, it induces an $\mathbf{H f C W}_{\text {sw }}$-expansion $\overline{\boldsymbol{p}}=\left(\bar{p}_{\lambda}\right): X$ $\rightarrow \bar{X}=\left(X_{\lambda}, \bar{p}_{\lambda \lambda^{\prime}}, \Lambda\right)$ (see the proof of Theorem 2.1), so that there is a natural isomorphism $e: \bar{X} \rightarrow Z$ in pro- $\mathbf{H f C W}_{\text {sw }}$. Thus it induces a natural isomorphism $E(X) \rightarrow E(Z)$ in pro-HCW ${ }_{\text {spec }}$. Hence by Theorem 2.3 this is a generalized expansion in $\mathbf{H C W}_{\text {spec }}$.

Using generalized expansions, we define the generalized stable shape category $\mathbf{S h}_{\text {spec }}$ for spaces as follows: First let $O b \mathbf{S h}_{\text {spec }}$ be the set of all spaces. For any two spaces $X$ and $Y$, let $\mathscr{E}_{(X, Y)}$ be the set of all morphisms $g: E \rightarrow F$ in pro-HCW ${ }_{\text {spec }}$ where $e: E(X) \rightarrow \boldsymbol{E}=\left(E_{a}, e_{a a^{\prime}}, A\right)$ and $f: E(X) \rightarrow F=\left(F_{b}, f_{b b^{\prime}}, B\right)$ are generalized morphisms in $\mathbf{H C W}$ spec . Then we define an equivalence relation $\sim$ on $\mathscr{E}_{(X, Y)}$ as follows: for $\boldsymbol{g}: \boldsymbol{E} \rightarrow \boldsymbol{F}$ and $\boldsymbol{g}^{\prime}: \boldsymbol{E}^{\prime} \rightarrow \boldsymbol{F}^{\prime}$ in $\mathscr{E}_{(X, Y)}, \boldsymbol{g} \sim \boldsymbol{g}^{\prime}$ if and only if the following diagram commutes in pro- $\mathbf{H C W}_{\text {spec }}$ :

where $t$ and $j$ are the natural isomorphisms. It is easy to verify that $\sim$ is an equivalence relation on $\mathscr{E}_{(X, Y)}$. We define a morphism from $X$ to $Y$ as each equivalence class of $\mathscr{E}_{(X, Y)}$. Thus $\mathbf{S h}_{\text {spec }}(X, Y)=\mathscr{E}_{(X, Y)} / \sim$. We write $S h_{\text {spec }}(X) \leqslant$ $S h_{\text {spec }}(Y)$ (respectively, $S h_{\text {sw }}(X) \leqslant S h_{\text {sw }}(Y)$ ) provided $X$ is dominated by $Y$ in $\mathbf{S h}_{\text {spec }}$ (respectively, in $\mathbf{S h}_{\text {sw }}$ ). Also we write $S h_{\text {spec }}(X)=S h_{\text {spec }}(Y)$ (respectively, $S h_{\mathrm{sw}}(X)=S h_{\mathrm{sw}}(Y)$ ) provided $X$ is equivalent to $Y$ in $\mathbf{S h}_{\text {spec }}$ (respectively, in $\mathbf{S h}_{\mathrm{sw}}$ ).

Theorem 2.5. There exists an embedding of categories $\Theta: \mathbf{S h}_{\mathrm{sw}} \rightarrow \mathbf{S h}_{\mathrm{spec}}$ -

Proof. For each compactum $X$, we define $\Theta: X \mapsto X$. Let $G: X \rightarrow Y$ be a morphism in $\mathbf{S h}_{\mathrm{sw}}$. Let $p=\left(p_{\lambda}\right): X \rightarrow X=\left(X_{\lambda}, p_{\lambda \lambda^{\prime}}, \Lambda\right)$ and $\boldsymbol{q}=\left(q_{\mu}\right): Y \rightarrow Y=$ $\left(Y_{\mu}, q_{\mu \mu^{\prime}}, M\right.$ ) be HCW-expansions of $X$ and $Y$, respectively, such that $X_{\lambda}$ and $Y_{\mu}$
are finite polyhedra. By the proof of Theorem 2.1 these induce $\mathbf{H C W}_{\text {sw }}$-expansions $\overline{\boldsymbol{p}}=\left(\bar{p}_{\lambda}\right): X \rightarrow \overline{\boldsymbol{X}}=\left(X_{\lambda}, \bar{p}_{\lambda \Lambda^{\prime}}, \Lambda\right)$ and $\overline{\boldsymbol{q}}=\left(\bar{q}_{\mu}\right): Y \rightarrow \overline{\boldsymbol{Y}}=\left(Y_{\mu}, \bar{q}_{\mu \mu^{\prime}}, M\right)$. So, $G$ is represented by a morphism $g: \bar{X} \rightarrow \bar{Y}$ of pro- $\mathbf{H C W}_{\mathrm{sw}}$. But then $g$ induces a morphism $R g: R \bar{X}=\left(E\left(X_{\lambda}\right), R \bar{p}_{\lambda \lambda^{\prime}}, \Lambda\right) \rightarrow R \bar{Y}=\left(E\left(Y_{\lambda}\right), R \bar{q}_{\mu \mu^{\prime}}, M\right)$. Since the $X_{\lambda}$ and $Y_{\mu}$ are finite, $R \bar{X}=E(X)$ and $R \bar{Y}=E(Y)$. Since the identity induced morphisms $E(X) \rightarrow$ $E(X)$ and $E(Y) \rightarrow E(Y)$ are generalized expansions in $\mathbf{H C W}_{\text {spec }}$ of $X$ and $Y$, respectively, $g$ represents a morphism $\Theta(G)$ in $\mathbf{S h}_{\text {spec }}$. It is easy to see that the function $\Theta: G \mapsto \Theta(G)$ is well defined. That is, $\Theta(G)$ does not depend on the choice of the representative $g$. It is a routine to check $\Theta$ defines a functor. To see this is an embedding, we define a functor $\Theta^{\prime}: \mathbf{S h}_{\text {spec }} \mid \mathbf{C p t} \rightarrow \mathbf{S h}_{\text {sw }}$ as follows, where $\mathbf{S h}_{\text {spec }} \mid$ Cpt denotes the full subcategory of $\mathbf{S h}_{\text {spec }}$ whose objects are all compacta: First for each compactum $X$, definc $\Theta^{\prime}: X \mapsto X$. Let $G: X \rightarrow Y$ be a morphism in $\mathbf{S h}_{\text {spec }}$ represented by a morphism in pro-HCW ${ }_{\text {spec }}, \boldsymbol{g}: E(X) \rightarrow E(Y)$. Since $X_{\lambda}$ and $Y_{\mu}$ are finite, $g$ induces a morphism $\bar{X} \rightarrow \overline{\boldsymbol{Y}}$ in pro- $\mathbf{H f C W}_{\text {sw }}$, so that it represents a morphism $\Theta^{\prime}(G)$ in $\mathbf{S h}_{\mathrm{sw}}$. Note that $\Theta^{\prime}(G)$ does not depend on the choice of such $g$. Thus $\Theta^{\prime}: G \mapsto \Theta^{\prime}(G)$ is well defined, and it is again a routine to check $\Theta^{\prime}$ is a functor and that $\Theta \circ \Theta^{\prime}$ and $\Theta^{\prime} \circ \Theta$ are the identities on $\mathbf{S h}_{\text {spec }} \mid \mathbf{C p t}$ and $\mathbf{S h}_{\text {sw }}$, respectively.

Let Sh denote the pointed shape category for spaces in the sense of Mardešić and Segal [9].

Theorem 2.6. There exists a functor $\Xi: \mathbf{S h} \rightarrow \mathbf{S h}_{\text {spec }}$ such that the restriction of $\Xi$ on $\mathbf{S h} \mid \mathbf{C p t}$ factors through the embedding $\Theta: \mathbf{S h}_{\mathrm{sw}} \rightarrow \mathbf{S h}_{\text {spec }}$ in Theorem 2.5.

Proof. For each space $X$, we define $\Xi: X \mapsto X$. Let $G: X \rightarrow Y$ be a morphism in Sh represented by a morphism in pro-HCW, $g: X=\left(X_{\lambda}, p_{\lambda \Lambda^{\prime}}, \Lambda\right) \rightarrow Y=$ $\left(Y_{\mu}, q_{\mu \mu^{\prime}}, M\right)$ where $p: X \rightarrow X$ and $q: Y \rightarrow Y$ are HCW-expansions of $X$ and $Y$, respectively. Then $g$ induces a morphism in pro- $\mathbf{H C W}_{\text {spec }}, E(g): E(X) \rightarrow E(Y)$ where if $g$ is represented by a morphism $\left(g_{\mu}, \varphi\right)$ of inverse systems then $E(g)$ is the unique morphism represented by $\left(E\left(g_{\mu}\right), \varphi\right)$. Thus $g$ represents a morphism $\Xi(G)$ in $\mathbf{S h}_{\text {spec }}$. It is a routine to check that $\Xi$ is a functor, and it is easy to see that $\Xi$ is the desired functor.

Theorem 2.7. For any spaces $X$ and $Y, \mathbf{S h}_{\text {spec }}(X, Y)$ has the structure of an Abelian group.

Proof. Let $e: E(X) \rightarrow E=\left(E_{a}, E_{a a^{\prime}}, A\right)$ and $f: E(Y) \rightarrow \boldsymbol{F}=\left(F_{b}, f_{b b^{\prime}}, B\right)$ be generalized expansions in $\mathbf{H C W}_{\text {spec }}$ of $X$ and $Y$, respectively. Then there is a one-to-one correspondence between $\mathbf{S h}_{\text {spec }}(X, Y)$ and pro-HCW ${ }_{\text {spec }}(\boldsymbol{E}, \boldsymbol{F})=\lim _{a} \operatorname{colim}_{b}\left[E_{a}\right.$, $F_{b}$ ]. Since the [ $E_{a}, F_{b}$ ] are Abelian groups and the bonding maps $e_{a a^{\prime}}$ and $f_{b b^{\prime}}$ induce group homomorphisms, pro- $\mathrm{HCW}_{\text {spec }}(\boldsymbol{E}, \boldsymbol{F})$ has an Abelian group structure.

Theorem 2.8. For any spaces $X$ and $Y$, if $\operatorname{Sh}\left(S^{k} X\right)=\operatorname{Sh}\left(S^{k} Y\right)$ for some $k \geqslant 0$ then $S h_{\text {spec }}(X)=S h_{\text {spec }}(Y)$.

Proof. Let $\boldsymbol{p}=\left(p_{\lambda}\right): X \rightarrow \boldsymbol{X}=\left(X_{\lambda}, p_{\lambda \lambda^{\prime}}, \Lambda\right)$ and $\boldsymbol{q}=\left(q_{\mu}\right): Y \rightarrow \boldsymbol{Y}=\left(Y_{\mu}, q_{\mu \mu^{\prime}}, M\right)$ be HCW-expansions. Then there exists an isomorphism $f_{k}: S^{k} X \rightarrow S^{k} Y$ of pro-HCW which represents the isomorphism of $\mathbf{S h}, S^{k} X \rightarrow S^{k} Y$. Without loss of generality, we can assume that $\Lambda=M$ and that $f_{k}$ is represented by a level morphism $\left(f_{k, \lambda}\right): S^{k} \boldsymbol{X}=\left(S^{k} X_{\lambda}, S^{k} p_{\lambda \lambda^{\prime}}, \Lambda\right) \rightarrow S^{k} \boldsymbol{Y}=\left(S^{k} Y_{\lambda}, S^{k} q_{\lambda \lambda^{\prime}}, \Lambda\right)$. We define a level morphism $\left(f_{\lambda}\right): E(X) \rightarrow E(Y)$ by

$$
\left(f_{\lambda}\right)_{q}= \begin{cases}S^{q-k} f_{k, \lambda}, & q \geqslant k \\ *, & q<k\end{cases}
$$

This induces a morphism in pro- $\mathrm{HCW}_{\text {spec }}, f: E(X) \rightarrow E(Y)$. Let $\lambda \in \Lambda$. Then there exist $\lambda^{\prime} \geqslant \lambda$ and a morphism of HCW $g_{k, \lambda}: Y_{\lambda^{\prime}} \rightarrow X_{\lambda}$ such that the following diagram commutes in HCW:


We define a morphism of $\mathbf{H C W}_{\text {spec }}, g_{\lambda}: Y_{\lambda^{\prime}} \rightarrow X_{\lambda}$ by

$$
\left(g_{\lambda}\right)_{q}= \begin{cases}S^{q-k} g_{k, \lambda}, & q \geqslant k \\ *, & q<k\end{cases}
$$

Then we obtain a commutative diagram in $\mathbf{H C W}$ spec

so that the morphism $f: E(X) \rightarrow E(Y)$ is an isomorphism. Hence $X$ and $Y$ are equivalent in $\mathbf{S h}_{\text {spec }}$.

Let sd denote the shape dimension for pointed spaces (see Mardešić and Segal [9, II, §1]).

Theorem 2.9. Let $X$ and $Y$ be compacta such that $\operatorname{sd} X=n$ and sd $Y=m$ are finite. Then $S h_{\text {spec }}(X)=S h_{\text {spec }}(Y)$ implies $\operatorname{Sh}\left(S^{k} X\right)=\operatorname{Sh}\left(S^{k} Y\right)$ for some $k \geqslant 0$.

Proof. Let $\boldsymbol{p}=\left(p_{\lambda}\right): X \rightarrow X=\left(X_{\lambda}, p_{\lambda \lambda^{\prime}}, \Lambda\right)$ and $\boldsymbol{q}=\left(q_{\mu}\right): Y \rightarrow \boldsymbol{Y}=\left(Y_{\mu}, q_{\mu \mu^{\prime}}, M\right)$ be HCW-expansions such that the $X_{\lambda}$ and $Y_{\mu}$ are finite polyhedra of dimension at most $n$ and $m$, respectively. Suppose that $f: E(X) \rightarrow E(Y)$ is an isomorphism in
pro-HCW which represents the isomorphism in $\mathbf{S h}_{\text {spec }}$. Without loss of generality, we can assume that $\Lambda=M$ and that $f$ is represented by a level morphism $\left(f_{\lambda}\right): E(X) \rightarrow E(Y)$ Let $\lambda \in \Lambda$. Then there exists $\lambda^{\prime} \geqslant \lambda$ and a morphism $g_{\lambda}: E\left(Y_{\lambda^{\prime}}\right)$ $\rightarrow E\left(X_{\lambda}\right)$ such that the following diagram commutes in $\mathbf{H C W}_{\text {spec }}$ :


Since all $X_{\lambda}$ and $Y_{\lambda}$ are finite, there exist $k \geqslant 0$ and maps $f_{\lambda, k}: S^{k} X_{\lambda} \rightarrow S^{k} Y_{\lambda}$, $f_{\lambda^{\prime}, k}: S^{k} X_{\lambda^{\prime}} \rightarrow S^{k} Y_{\lambda^{\prime}}$, and $g_{\lambda, k}: S^{k} Y_{\lambda^{\prime}} \rightarrow S^{k} X_{\lambda}$ representing $f_{\lambda}, f_{\lambda^{\prime}}$ and $g_{\lambda}$, respectively, such that the following diagram commutes in HCW:


By the Freudenthal suspension theorem, we can assume that $k$ is independent of the choice of $\lambda$. Thus the morphism $f_{k}: S^{k} X \rightarrow S^{k} \boldsymbol{Y}$ represented by the level morphism $\left(f_{\lambda, k}\right)$ is an isomorphism of pro-HCW, so that $\operatorname{Sh}\left(S^{k} X\right)=\operatorname{Sh}\left(S^{k} Y\right)$ as $S^{k} p: S^{k} X \rightarrow S^{k} X$ and $S^{k} q: S^{k} Y \rightarrow S^{k} \boldsymbol{Y}$ are HCW-expansions.

Example 2.10. Let $X$ be the 1 -dimensional acyclic continuum ("figure-eight"-like continuum) described by Case and Chamberlin [3]. Mardešić and Segal [8] showed that $X$ is nonmovable, so that $\operatorname{Sh}(X) \neq \operatorname{Sh}(*)$. However, its suspension $S X$ is of trivial shape, i.e., $\operatorname{Sh}(S X)=S h(*)$ (see Mardešić [7]). Hence by Theorem 2.8 we conclude that $S h_{\text {spec }}(X)=S h_{\text {spec }}(*)$.

## 3. Whitehead theorem for CW-spectra

The nth homotopy group $\pi_{n}(E)$ of CW -spectrum $E$ is defined as the group [ $\left.\Sigma^{n} S^{0}, E\right] \approx \operatorname{dirlim}_{k} \pi_{n+k}\left(E_{k}\right)$. Here for all $n \in \mathbb{Z}, \Sigma^{n}$ denote the suspension functors on $\mathbf{H C W}_{\text {spec }}$, and $S^{0}$ denotes the suspension spectrum $E\left(S^{0}\right)$. Now we recall the well-known Whitehead-type theorem for CW-spectra.

Theorem 3.1. Let $f: E \rightarrow F$ be a map of $C W$-spectra such that $\pi_{q}(f): \pi_{q}(E) \rightarrow \pi_{q}(F)$ is an isomorphism for all $q \in \mathbb{Z}$. Then $f$ is a homotopy equivalence of $C W$-spectra.

Proof. See Adams [2, Corollary 3.5, p. 150] or Switzer [14, Theorem 8.25, p. 144].

Note that every CW-spectrum $E$ consists of cells $e=\left\{e_{n}^{d}, S e_{n}^{d}, S^{2} e_{n}^{d}, \ldots\right\}$ where $e_{n}^{d}$ is a $d$-cell in the CW complex $E_{n}$ and is not a suspension of any cell in $E_{n-1}$. Then we define the dimension of $e$ (denoted $\operatorname{dim} e$ ) as $d-n, n \in \mathbb{Z}$, and the dimension of the CW-spectrum $E$ (denoted $\operatorname{dim} E$ ) is defined as sup $\{\operatorname{dim} e: e$ is a cell of $E$. Similarly, if ( $E, F$ ) is a pair of CW-spectra, then the dimension of $(E, F)(\operatorname{denoted} \operatorname{dim}(E, F))$ is defined as $\sup \{\operatorname{dim} e: e$ is a cell of $(E, F)\}$. For the base point spectrum *, we define $\operatorname{dim} *=-\infty$. If $E$ is a CW-spectrum, we write $E^{(i)}$ for the $i$ th skeleton of $E$.

In this section we prove a variation of Theorem 3.1 below (see Theorem 3.2). A map of CW-spectra $f: E \rightarrow F$ is an $n$-equivalence provided $\pi_{q}(f): \pi_{q}(E) \rightarrow \pi_{q}(F)$ is an isomorphism for $q \leqslant n-1$ and an epimorphism of $q=n$. A pair of CW-spec$\operatorname{tra}(E, F)$ is said to be $n$-connected provided $\pi_{q}(E, F)=0$ for $q \leqslant n$.

Theorem 3.2. Let $n \in \mathbb{Z} \cup\{\infty\}$, let $f: E \rightarrow F$ be a map of $C W$-spectra, which is an $n$-quivalence, and suppose $\operatorname{dim} E \leqslant n-1$ and $\operatorname{dim} F \leqslant n$. Then $f$ is a homotopy equivalence of CW-spectra.

The proof follows that for Theorem 3.1. in Adams [2, III.3].
The $n$th homotopy group $\pi_{n}(E, F)$ of a pair of CW-spectra $(E, F)$ is defined as the group $\left[\Sigma^{n-1}\left(D^{1}, S^{0}\right),(E, F)\right]$ where the pair of CW-spectra $\left(D^{1}, S^{0}\right)$ is defined by

$$
\left(D^{1}, S^{0}\right)_{n}= \begin{cases}*, & n<0, \\ \left(D^{n+1}, S^{n}\right), & n \geqslant 0 .\end{cases}
$$

Then $\pi_{n}(E, F) \approx \operatorname{dirlim}_{k}\left[\left(D^{n+k}, S^{n+k-1}\right),\left(E_{k}, F_{k}\right)\right]=\operatorname{dirlim}_{k} \pi_{n+k}\left(E_{k}, F_{k}\right)$.
Lemma 3.3. For any pair of $C W$-spectra ( $E, F$ ) there is a natural exact sequence

$$
\cdots \rightarrow \pi_{n}(F) \rightarrow \pi_{n}(E) \rightarrow \pi_{n}(E, F) \rightarrow \pi_{n-1}(F) \rightarrow \cdots .
$$

Lemma 3.3 immediately implies the following.
Lemma 3.4. A pair of $C W$-spectra ( $E, F$ ) is n-connected if and only if the inclusion induced map of $C W$-spectra $i: E \rightarrow F$ is an $n$-equivalence.

Lemma 3.5. Let $(E, F)$ be a pair of $C W$-spectra with $\operatorname{dim}(E, F) \leqslant n$, and let $(G, H)$ be an $n$-connected pair of CW-spectra. Suppose that there are a map of $C W$-spectra $f: E \rightarrow G$ and a homotopy $h: F \wedge I^{+} \rightarrow G$ from $f \backslash F$ to a map $g: F \rightarrow H \subseteq G$. Then $h$ extends to a homotopy $k: E \wedge I^{+} \rightarrow G$ such that $k_{0}=f$ and $k_{1}$ is a map of $E$ into $H$.

Proof. Let $f: E \rightarrow G$ and $h: F \wedge I^{+} \rightarrow G$ be represented by functions $f^{\prime}: E^{\prime} \rightarrow G$ and $h^{\prime}: F^{\prime} \wedge I^{+} \rightarrow G$ where $F^{\prime}$ and $E^{\prime}$ are cofinal subspectra of $F$ and $E$, respectively, such that $F^{\prime}$ is a $C W$-subspectrum of $E^{\prime}$.

First of all, let $\mathscr{E}$ be the set of all the pairs $\left(U, k^{\prime}\right)$ such that $U$ is a CW-spectrum with $F^{\prime} \subseteq U \subseteq E^{\prime}$ and $k^{\prime}: U \wedge I^{+} \rightarrow G$ is a function with $k_{0}^{\prime}=f^{\prime} \mid U$
and $k_{1}^{\prime}(U) \subseteq H$. Define an order $<$ on $\mathscr{C}$ by $\left(U_{1}, k_{1}^{\prime}\right)<\left(U_{2}, k_{2}^{\prime}\right)$ if and only if $U_{1} \subseteq U_{2}$ and $k_{2}^{\prime} \mid U_{1}=k_{1}^{\prime}$. Then $\left(F^{\prime}, h^{\prime}\right) \in \mathscr{C}$, so that $\mathscr{E} \neq \emptyset$. Suppose that $\left\{\left(U_{\alpha}, k_{\alpha}^{\prime}\right)\right\}$ is a chain in $\mathscr{E}$. Then $\left(\cup U_{\alpha}, k^{\prime}\right)$ where $k^{\prime}:\left(\cup U_{\alpha}\right) \wedge I^{+} \rightarrow G$ is defined by $k^{\prime} \mid U_{\alpha} \wedge$ $I^{+}=k_{\alpha}^{\prime}$, belongs to $\mathscr{E}$ and is an upper bound of the chain. Thus, Zorn's lemma implies the existence of a maximal element $\left(U, k^{\prime}\right) \in \mathscr{C}$. We claim that $U$ is cofinal in $E^{\prime}$. Suppose to the contrary this is not the case. Then there is a subspectrum $V$ such that $U \subseteq V \subseteq E^{\prime}$ where $V$ consists of $U$ and just one more cell-spectrum, say

$$
V_{q}= \begin{cases}U_{q}, & q<p \\ U_{q} \cup S^{q-p} e_{p}^{m}, & q \geqslant p\end{cases}
$$

where $e_{p}^{m}$ is an $m$-cell in $E_{p}^{\prime}$. Then the restricted maps

$$
\left\{\begin{array}{l}
f_{p}^{\prime} \mid e_{p}^{m} \wedge\{0\}^{+}: e_{p}^{m} \wedge\{0\}^{+} \rightarrow G_{p} \\
k_{p}^{\prime} \mid \partial e_{p}^{m} \wedge I^{+}:\left(\partial e_{p}^{m} \wedge I^{+}, \partial e_{p}^{m} \wedge\{1\}^{+}\right) \rightarrow\left(G_{p}, H_{p}\right)
\end{array}\right.
$$

define an element of $\pi_{m}\left(G_{p}, H_{p}\right)$ hence an element of $\pi_{m-p}(G, H) \approx$ $\operatorname{dirlim}_{\mathrm{q}} \pi_{m-p+q}\left(G_{q}, H_{q}\right)$. But since $m-p=\operatorname{dim} e_{p}^{m} \leqslant \operatorname{dim}(E, F) \leqslant n$, by the $n$-connectedness of $(G, H)$, we have $\pi_{m-p}(G, H)=0$. Thus there exists $r \geqslant 0$ such that the maps

$$
\left\{\begin{array}{l}
f_{p+r}^{\prime} \mid S^{r} e_{p}^{m} \wedge\{0\}^{+}: S^{r} e_{p}^{m} \wedge 0^{+} \rightarrow G_{p+r} \\
k_{p+r}^{\prime} \mid \partial\left(S^{r} e_{p}^{m}\right) \wedge I^{+}:\left(\partial\left(S^{r} e_{p}^{m}\right) \wedge I^{+}, \partial\left(S^{r} e_{p}^{m}\right) \wedge 1^{+}\right) \rightarrow\left(G_{p+r}, H_{p+r}\right)
\end{array}\right.
$$

represent the trivial element in $\pi_{m+r}\left(\mathrm{G}_{p+r}, H_{p+r}\right)$. So this extends to a map $l_{p+r}^{\prime}:\left(S^{r} e_{p}^{m} \wedge I^{+}, S^{r} e_{p}^{m} \wedge\{1\}^{+}\right) \rightarrow\left(G_{p+r}, H_{p+r}\right)$. Now we define a map $k_{p+r}^{\prime \prime}: V_{p+r}$ $\wedge I^{+} \rightarrow G_{p+r}$ by

$$
\left\{\begin{array}{l}
k_{p+r}^{\prime \prime} \mid U_{p+r} \wedge I^{+}=k_{p+r}^{\prime} \\
k_{p+r}^{\prime \prime} \mid S^{r} e_{p}^{m} \wedge I^{+}=l_{p+r}^{\prime}
\end{array}\right.
$$

Then $\left(k_{p+r}^{\prime \prime}\right)_{0}=f_{p+r}^{\prime} \mid V_{p+r}$ and $\left(k_{p+r}^{\prime \prime}\right)_{1}\left(V_{p+r}\right) \subseteq H_{p+r}$. Define a CW-spectrum $V^{\prime \prime}$ by

$$
V_{q}^{\prime \prime}= \begin{cases}U_{q}, & q<p+r \\ V_{q}, & q \geqslant p+r\end{cases}
$$

and a function $k^{\prime \prime}: V^{\prime \prime} \wedge I^{+} \rightarrow G$ by

$$
k_{q}^{\prime \prime}= \begin{cases}k_{q}^{\prime}, & q<p+r \\ S^{q-p-r} k_{q}^{\prime \prime}, & q \geqslant p+r\end{cases}
$$

Then $\left(V^{\prime \prime}, k^{\prime \prime}\right) \in \mathscr{C}$ and $\left(U, k^{\prime}\right)<\left(V^{\prime \prime}, k^{\prime \prime}\right)$, contradicting the maximality of $\left(U, k^{\prime}\right)$. Thus $U$ must be a cofinal subspectrum of $E^{\prime}$. So, the function $k^{\prime}: U \wedge I^{+} \rightarrow G$ defines a map of CW-spectra $k: E \wedge I^{+} \rightarrow G$ which extends $h: F \wedge I^{+} \rightarrow G$.

Let $f: G \rightarrow H$ be a function of CW -spectra. Then we define a CW-spectrum $M_{f}$ called the mapping cylinder of the function $f$ by $\left(M_{f}\right)_{n}=M_{f n}$ ( $=$ the usual mapping cylinder of $f_{n}$ ).

Lemma 3.6. Let $f: G \rightarrow H$ be a function of $C W$-spectra, and let $i: G \rightarrow M_{f}$ and $j: H \rightarrow M_{f}$ be the functions such that $i_{n}: G_{n} \rightarrow M_{f_{n}}$ and $j_{n}: H_{n} \rightarrow M_{f_{n}}$ are the natural embeddings of $C W$ complexes. Moreover, let $r: M_{f} \rightarrow H$ be the function such that $r_{n}: M_{f_{n}} \rightarrow H_{n}$ are the usual retractions. Then we have $r i=f, j f \simeq i, r j=1_{H}$, and $j r \simeq 1_{M_{f}}$.


Lemma 3.7. Let $f: G \rightarrow H$ be a function of $C W$-spectra. Then there is an exact sequence

$$
\cdots \rightarrow \pi_{n}(G) \rightarrow \pi_{n}(H) \rightarrow \pi_{n}\left(M_{f}, H\right) \rightarrow \pi_{n-1}(G) \rightarrow \cdots
$$

Theorem 3.8. Let $f: G \rightarrow H$ be a function of $C W$-spectra, which is an n-equivalence. Then for every $C W$-spectrum $E$ the induced function $f_{*}:[E, G] \rightarrow[E, H]$ is a bijection if $\operatorname{dim} E \leqslant n-1$, and a surjection if $\operatorname{dim} E \leqslant n$.

Proof. In view of Lemmas 3.6 and 3.7, we can assume that $f: G \rightarrow H$ is an inclusion function and $(H, G)$ is an $n$-connected pair. First, let $\operatorname{dim} E \leqslant n$. Take any map $g: E \rightarrow H$ of spectra. Consider $g$ as a map of pairs of CW-spectra $g:(E$, $*) \rightarrow(H, G)$ where $*$ is the base point spectrum. Then since $\operatorname{dim}(E, *) \leqslant n$ and ( $H, G$ ) is $n$-connected, by Lemma 3.4, there exists a map of CW-spectra $g^{\prime}: E \rightarrow$ $G \subseteq H$ such that $g^{\prime} \simeq g$ as maps of $C W$-spectra $E \rightarrow H$. This shows the surjectivity.

On the other hand, let $\operatorname{dim} E \leqslant n-1$. Then $\operatorname{dim} E \wedge I^{+} \leqslant n$. Suppose that $g_{1}$, $g_{2}: E \rightarrow G$ are two maps of CW-spectra such that $f g_{1} \simeq f g_{2}$ as maps into $H$. We define a map of pairs of CW-spectra

$$
h:\left(E \wedge I^{+}, E \wedge\{0\}^{+} \cup * \wedge I^{+} \cup E \wedge\{1\}^{+}\right) \rightarrow(H, G)
$$

as the homotopy from $f g_{1}$ to $f g_{2}$. Then since $\operatorname{dim} E \wedge I^{+} \leqslant n$ and $(H, G)$ is $n$-connected, by Lemma 3.5, there exists a map of CW-spectra $h^{\prime}: E \wedge \mathrm{I}^{+} \rightarrow G$ such that

$$
h^{\prime}\left|E \wedge\{0\}^{+} \cup * \wedge I^{+} \cup E \wedge\{1\}^{+}=h\right| E \wedge\{0\}^{+} \cup * \wedge I^{+} \cup E \wedge\{1\}^{+}
$$

This shows that $g_{1} \simeq g_{2}$ as maps of $E$ into $G$, so $f_{*}$ is a monomorphism.
Now Theorem 3.2 easily follows from Theorem 3.8.

## 4. Whitehead theorem for pro-CW-spectra

A morphism $f: E=\left(E_{a}, e_{e e^{\prime}}, A\right) \rightarrow F=\left(F_{b}, f_{b b^{\prime}}, B\right)$ in pro-HCW ${ }_{\text {spec }}$ is an n-equivalence provided the induced morphism in pro-groups $\pi_{q}(f): \pi_{q}(E)=$
$\left(\pi_{q}\left(E_{a}\right), \pi_{q}\left(e_{e e^{\prime}}\right), A\right) \rightarrow \pi_{q}(F)=\left(\pi_{q}\left(F_{b}\right), \pi_{q}\left(f_{b b^{\prime}}\right), B\right)$ is an isomorphism for $q \leqslant n$
-1 and an epimorphism for $q=n$.
Now we state a Whitehead-type theorem for pro-CW-spectra.
Theorem 4.1. Let $k, n \in \mathbb{Z}$ with $k \leqslant n$, let $f: E=\left(E_{a}, e_{e e^{\prime}}, A\right) \rightarrow \boldsymbol{F}=\left(F_{b}, f_{b b^{\prime}}, B\right)$ be a morphism of pro- $\mathbf{H C W}_{\text {spec }}$ such that $\operatorname{dim} E_{a} \leqslant n-1$ and $\operatorname{dim} F_{b} \leqslant n$ for all $a \in A$ and $b \in B$, and suppose that for each $b \in B, \operatorname{dim} e \geqslant k$ for all cells $e \neq *$ of $F_{b}$. If $f$ is an n-equivalence, then $f$ is an isomorphism of pro- $\mathbf{H C W}_{\text {spec }}$.

Before proving the theorem we need to establish a series of lemmas.

Lemma 4.2. Let $f: E \rightarrow F$ be a map of $C W$-spectra, which is an $n$-equivalence, and let $R$ be a $C W$-spectrum. Then
(i) if $\operatorname{dim} R \leqslant n$, then every map of CW-spectra $h: R \rightarrow F$ admits a map of $C W$-spectra $k: R \rightarrow E$ such that $h \approx f k$; and
(ii) if $\operatorname{dim} R \leqslant n-1$ and $k_{1}, k_{2}: R \rightarrow E$ are maps of $C W$-spectra such that $f k_{1}=f k_{2}$, then $k_{1} \simeq k_{2}$.

Proof. There exists a cofinal subspectrum $E^{\prime}$ of $E$ and a function $f^{\prime}: E^{\prime} \rightarrow F$ which represents $f$. Then $f^{\prime}$ is an $n$-equivalence. Then the assertions for $f^{\prime}$ hold because of Theorem 3.8. Hence the assertions hold for $f$.

Lemma 4.3. Let $(\boldsymbol{E}, \boldsymbol{F})=\left(\left(E_{a}, F_{a}\right), e_{a a^{\prime}}, A\right)$ be an inverse system in pairs of $C W$-spectra. Then there is an exact sequence of pro-groups

$$
\cdots \rightarrow \pi_{n}(F) \rightarrow \pi_{n}(E) \rightarrow \pi_{n}(E, F) \rightarrow \pi_{n-1}(F) \rightarrow \cdots
$$

Proof. Lemma 3.3 implies the following commutative diagram with the row being exact for all $a \leqslant a^{\prime}$ in $A$ :

which implies the exactness of the above sequence (see Mardešić and Segal [9, Theorem 10, p. 119]).

Lemma 4.4. Suppose that there is a diagram in $\mathbf{C W}_{\text {spec }}$ which is commutative up to homotopy


Then there exist cofinal subspectra $E^{\prime}, G^{\prime}, H^{\prime}$ of $E, G, H$, respectively, and functions $f^{\prime}: E^{\prime} \rightarrow F, p^{\prime}: G^{\prime} \rightarrow E^{\prime}, q^{\prime}: H^{\prime} \rightarrow F, g^{\prime}: G^{\prime} \rightarrow H^{\prime}$ and $r^{\prime}: M_{g^{\prime}} \rightarrow M_{f^{\prime}}$ such that the following diagram commutes in $\mathbf{C W}_{\text {spec }}$ :

where $i^{\prime}, j^{\prime}, k^{\prime}$ and $l^{\prime}$ are the inclusion induced functions of $C W$-spectra.

Proof. There exist cofinal subspectra $E^{\prime}, G^{\prime}, H^{\prime}$ of $E, G, H$, respectively, and functions $f^{\prime}: E^{\prime} \rightarrow F, p^{\prime}: G^{\prime} \rightarrow E^{\prime}, q^{\prime}: H^{\prime} \rightarrow F$ such that for each $n \in \mathbb{Z}$ the following diagram is commutative up to pointed homotopy:


We choose a pointed map $r_{n}^{\prime}: M_{g_{n}^{\prime}} \rightarrow M_{f_{n}^{\prime}}$ such that the following diagram commutes in Top for each $n \in \mathbb{Z}$ as in Mardešić and Segal [9, Lemma 3, p. 145]:


Then the following diagram also commutes for each $n \in \mathbb{Z}$ :


Then $r^{\prime}=\left\{r_{n}^{\prime}\right\}: M_{g^{\prime}} \rightarrow M_{f^{\prime}}$ is a function of CW-spectra which makes the diagram (13) commutative.

Lemma 4.5. Let $k \in \mathbb{Z}$ and $n \geqslant 1$, and for $i=0,1, \ldots, n-1$, let $e_{i}:\left(E_{i}, F_{i}\right) \rightarrow\left(E_{i+1}\right.$, $F_{i+1}$ ) be maps of pairs of $C W$-spectra such that if $n \geqslant 2$, the induced homomorphisms $\left(e_{i}\right)_{\#}: \pi_{i+k}\left(E_{i}, F_{i}\right) \rightarrow \pi_{i+k}\left(E_{i+1}, F_{i+1}\right)$ are trivial for $i=1,2, \ldots, n-1$. Furthermore suppose that for every $i=0,1, \ldots, n-1, E_{i}$ contains no cells $e \neq *$ of dimension less than $k$. Then the composite of maps of $C W$-spectra $e_{n-1} \cdots e_{1} e_{0}:\left(E_{0}\right.$, $\left.F_{0}\right) \rightarrow\left(E_{n}, F_{n}\right)$ factors through an $(n+k-1)$-connected pair of $C W$-spectra.

Proof. (Special case.) First, we assume that $E_{i}, i=0,1, \ldots, n-1$, contain no cells of negative dimension. For $i=0,1, \ldots, n-1$, we put

$$
\left\{\begin{array}{l}
H_{i}=\left(F_{0} \wedge I^{+}\right) \cup\left(E_{0}^{(i)} \wedge\{1\}^{+}\right) \subseteq E_{0}^{\prime} \wedge I^{+} \\
G_{i}=\left(F_{0} \wedge I^{+}\right) \cup\left(E_{0}^{(i)} \wedge I^{+}\right) \cup\left(E_{0} \wedge\{0\}^{+}\right) \subseteq E_{0} \wedge I^{+}
\end{array}\right.
$$

We wish to define maps of pairs of CW-spectra $g_{i}:\left(G_{i}, H_{i}\right) \rightarrow\left(E_{i+1}, F_{i+1}\right)$ such that $g_{0} \mid E_{0} \wedge\{0\}^{+}=e_{0}$ and $g_{i} \mid G_{i-1}=e_{i} g_{i-1}$ (see the diagram below).


Initial step: Consider the case $i=0$. Put $g_{0} \mid E_{0} \wedge\{0\}^{+}=e_{0}$ and $g_{0} \mid F_{0} \wedge I^{+}=e_{0} q$ where $q: F_{0} \wedge I^{+} \rightarrow F_{0}$ is the map of $C W$-spectra represented by the natural projections $q_{n}:\left(F_{0} \wedge I^{+}\right)_{n}=\left(F_{0}\right)_{n} \wedge I^{+} \rightarrow\left(F_{0}\right)_{n}, n \in \mathbb{Z}$. Then we wish to extend the map

$$
g_{0} \mid E_{0} \wedge\{0\}^{+} \cup F_{0} \wedge I^{+}:\left(E_{0} \wedge\{0\}^{+} \cup F_{0} \wedge I^{+}, F_{0} \wedge I^{+}\right) \rightarrow\left(E_{1}, F_{1}\right)
$$

over $\left(G_{0}, H_{0}\right)$. Note that there exist cofinal subspectra $E_{0}^{\prime}$ and $F_{0}^{\prime}$ of $E_{0}$ and $F_{0}$, respectively, such that $F_{0}^{\prime} \subseteq E_{0}^{\prime}$ and $g_{0} \mid E_{0} \wedge[0)^{+} \cup F_{0} \wedge I^{+}$is represented by a function

$$
g_{0}^{\prime}:\left(E_{0}^{\prime} \wedge\{0\}^{+} \cup F_{0}^{\prime} \wedge I^{+}, F_{0}^{\prime} \wedge I^{+}\right) \rightarrow\left(E_{1}, F_{1}\right)
$$

Let $e_{\alpha}^{0}=\left\{e_{q_{\alpha}}^{q_{\alpha}}, S e_{q_{\alpha}}^{q_{\alpha}}, \ldots\right\}$ be a 0 -cell in $E_{0}^{\prime}$, where $e_{q_{\alpha}}^{q_{\alpha}}$ is a $q_{\alpha}$-cell in the CW complex $\left(E_{0}^{\prime}\right)_{q_{\alpha}}$. Then we define a map

$$
\varphi_{\alpha, q_{\alpha}}: e_{q_{\alpha}}^{q_{\alpha}} \wedge\{0,1\}^{+} \rightarrow\left(E_{1}\right)_{q_{\alpha}}
$$

by the formulas

$$
\left\{\begin{array}{l}
\varphi_{\alpha, q_{\alpha}} \mid e_{q_{\alpha}}^{q_{\alpha}} \wedge\{1\}^{+}=*_{q_{\alpha}}\left(=\text { the base point of }\left(E_{1}\right)_{q_{\alpha}}\right) \\
\varphi_{\alpha, q_{\alpha}}\left|e_{q_{\alpha}}^{q_{\alpha}} \wedge\{0\}^{+}=\left(g_{0}^{\prime}\right)_{q_{\alpha}}\right| e_{q_{\alpha}}^{q_{\alpha}}
\end{array}\right.
$$

We put $\varphi_{\alpha, q_{\alpha}+1}=S \varphi_{\alpha, q_{\alpha}}$. Then since $S e_{q_{\alpha}}^{q_{\alpha}} \wedge\{0,1\}^{+} \approx S\left(e_{q_{\alpha}}^{q_{\alpha}} \wedge\{0,1\}^{+}\right), \varphi_{\alpha, q_{\alpha}+1}$ is considered as a map

$$
\varphi_{\alpha, q_{\alpha}+1}: S e_{q_{\alpha}}^{q_{\alpha}} \wedge\{0,1\}^{+} \rightarrow S\left(E_{1}\right)_{q_{\alpha}} \subseteq\left(E_{1}\right)_{q_{\alpha}+1}
$$

Since $S\left(E_{1}\right)_{q_{\alpha}}$ is path-connected and $S e_{q_{\alpha}}^{q_{\alpha}} \wedge\{0,1\}^{+} \subseteq S e_{q_{\alpha}}^{q_{\alpha}} \wedge I^{+}$is a cofibration, $\varphi_{\alpha, q_{\alpha}+1}$ extends to a map

$$
\tilde{\varphi}_{\alpha, q_{\alpha}+1}: S e_{q_{\alpha}}^{q_{\alpha}} \wedge I^{+} \rightarrow S\left(E_{1}\right)_{q_{\alpha}} \subseteq\left(E_{1}\right)_{q_{\alpha}+1}
$$

We put

$$
\tilde{\varphi}_{\alpha, m}= \begin{cases}S^{m-q_{\alpha}-1} \tilde{\varphi}_{\alpha, q_{\alpha}+1}, & m \geqslant q_{\alpha}+1 \\ *, & m<q_{\alpha}+1\end{cases}
$$

Then since $S^{m-q_{\alpha}} e_{q_{\alpha}}^{q_{\alpha}} \wedge I^{+} \approx S^{m-q_{\alpha}}\left(e_{q_{\alpha}}^{q_{\alpha}} \wedge I^{+}\right), \tilde{\varphi}_{\alpha, m}$ is considered as a map

$$
\tilde{\varphi}_{\alpha, m}: S^{m-q_{\alpha}} e_{q_{\alpha}}^{q_{\alpha}} \wedge I^{+} \rightarrow S^{m-q_{\alpha}}\left(E_{1}\right)_{q_{\alpha}} \subseteq\left(E_{1}\right)_{m}
$$

We obtain CW-spectra $E_{0}^{\prime \prime}$ and $F_{0}^{\prime \prime}$ with $F_{0}^{\prime \prime} \subseteq E_{0}^{\prime \prime}$ by replacing each $j$-cell ( $j \geqslant 0$ )

$$
e_{\alpha}^{j}=\left\{e_{q_{\alpha}}^{q_{\alpha}+j}, S e_{q_{\alpha}}^{q_{\alpha}+j}, \ldots\right\}
$$

in $E_{0}^{\prime}$ by a $j$-cell

$$
\tilde{e}_{\alpha}^{j}=\left\{S e_{q_{\alpha}}^{q_{\alpha}{ }^{1 j}}, S^{2} e_{q_{\alpha}}^{q_{\alpha}{ }^{1 j}}, \ldots\right\}
$$

Then we define a function $g_{0}^{\prime \prime}:\left(G_{0}^{\prime \prime}, H_{0}^{\prime \prime}\right) \rightarrow\left(E_{1}, F_{1}\right)$ by

$$
\left\{\begin{array}{l}
g_{0}^{\prime \prime}\left|E_{0}^{\prime \prime} \wedge\{0\}^{+} \cup F_{0}^{\prime \prime} \wedge I^{+}=g_{0}^{\prime}\right| E_{0}^{\prime \prime} \wedge\{0\}^{+} \cup F_{0}^{\prime \prime} \wedge I^{+} \\
g_{0}^{\prime \prime} \mid \tilde{e}_{\alpha}^{0} \wedge I^{+}=\left(\tilde{\varphi}_{\alpha, q}: q \in \mathbb{Z}\right) \quad \text { for each } 0 \text {-cell } \tilde{e}_{\alpha}^{0} \text { of } E_{0}^{\prime \prime}
\end{array}\right.
$$

where

$$
\left\{\begin{array}{l}
G_{0}^{\prime \prime}=E_{0}^{\prime \prime} \wedge\{0\}^{+} \cup F_{0}^{\prime \prime} \wedge I^{+} \cup E_{0}^{\prime \prime(0)} \wedge I^{+} \\
H_{0}^{\prime \prime}=F_{0}^{\prime \prime} \wedge I^{+} \cup E_{0}^{\prime \prime(0)} \wedge\{1\}^{+}
\end{array}\right.
$$

Since $G_{1}^{\prime \prime}$ and $H_{0}^{\prime \prime}$ are cofinal in $G_{0}$ and $H_{0}, g_{0}^{\prime \prime}$ defines a map $g_{0}:\left(G_{0}, H_{0}\right) \rightarrow\left(E_{1}\right.$, $\left.F_{1}\right)$ such that $g_{0} \mid E_{0} \wedge\{0\}^{+}=e_{0}$.

Inductive step: Suppose $n \geqslant 2$ and suppose that a map $g_{i-1}:\left(G_{i-1}, H_{i-1}\right) \rightarrow\left(E_{i}\right.$, $\left.F_{i}\right)$ has been defined as required. We wish to define a map $g_{i}:\left(G_{i}, H_{i}\right) \rightarrow\left(E_{i+1}\right.$, $F_{i+1}$ ) such that $g_{i} \mid G_{i-1}=e_{i} g_{i-1}$. Let $e_{i}$ and $g_{i-1}$ be represented by functions $e_{i}^{\prime}:\left(E_{i}^{\prime}, F_{i}^{\prime}\right) \rightarrow\left(E_{i+1}, F_{i+1}\right)$ and $g_{i-1}^{\prime}:\left(G_{i-1}^{\prime}, H_{i-1}^{\prime}\right) \rightarrow\left(E_{i}^{\prime}, F_{i}^{\prime}\right)$ where $E_{i}^{\prime}$ and $F_{i}^{\prime}$ are cofinal subspectra of $E_{i}$ and $F_{i}$ with $F_{i}^{\prime} \subseteq E_{i}^{\prime}$, and

$$
\left\{\begin{array}{l}
H_{i-1}^{\prime}=\left(F_{0}^{\prime} \wedge I^{+}\right) \cup\left(E_{0}^{\prime(i-1)} \wedge\{1\}^{+}\right) \\
G_{i-1}^{\prime}=\left(F_{0}^{\prime} \wedge I^{+}\right) \cup\left(E_{0}^{\prime(i-1)} \wedge I^{+}\right) \cup\left(E_{0}^{\prime} \wedge\{0\}^{+}\right)
\end{array}\right.
$$

with $E_{0}^{\prime}$ and $F_{0}^{\prime}$ are cofinal subspectra of $E_{0}$ and $F_{0}$ with $F_{0}^{\prime} \subseteq E_{0}^{\prime}$. We first put $g_{i}^{\prime} \mid G_{i-1}^{\prime}=e_{i}^{\prime} g_{i-1}^{\prime}:\left(G_{i-1}^{\prime}, H_{i-1}^{\prime}\right) \rightarrow\left(E_{i+1}, F_{i+1}\right)$. Let $e_{\alpha}^{i}=\left\{e_{q_{\alpha}}^{q_{\alpha}+i}, S e_{q_{\alpha}}^{q_{\alpha}+i}, \ldots\right\}$ be an $i$-cell of $E_{0}^{\prime}$ where $e_{q_{\alpha}}^{q_{\alpha}+i}$ is a $\left(q_{\alpha}+i\right)$-cell in $\left(E_{0}^{\prime}\right)_{q_{\alpha}}$. Then the map

$$
\begin{aligned}
& \left(g_{i-1}^{\prime}\right)_{q_{\alpha}} \mid \partial e_{q_{\alpha}}^{q_{\alpha}+i} \wedge I^{+} \cup e_{q_{\alpha}}^{q_{\alpha}+i} \wedge\{0\}^{+}: \\
& \quad\left(\partial e_{q_{\alpha}}^{q_{\alpha}+i} \wedge I^{+} \cup e_{q_{\alpha}}^{q_{\alpha}+i} \wedge\{0\}^{+}, \partial e_{q_{\alpha}}^{q_{\alpha}+i} \wedge\{1\}^{+}\right) \rightarrow\left(\left(E_{i}^{\prime}\right)_{q_{\alpha}},\left(F_{i}^{\prime}\right)_{q_{\alpha}}\right)
\end{aligned}
$$

defines an element of $\pi_{q_{\alpha}+i}\left(\left(E_{i}^{\prime}\right)_{q_{\alpha}}\left(F_{i}^{\prime}\right)_{q_{\alpha}}\right)$ hence an element of

$$
\pi_{i}\left(E_{i}, F_{i}\right) \approx \underset{m}{\operatorname{dirlim}} \pi_{i+m}\left(\left(E_{i}^{\prime}\right)_{i+m},\left(F_{i}^{\prime}\right)_{i+m}\right)
$$

Note that

$$
\begin{aligned}
& \left(S\left(\partial e_{q_{\alpha}}^{q_{\alpha}+i} \wedge I^{+} \cup e_{q_{\alpha}}^{q_{\alpha}+i} \wedge\{0\}^{+}\right), S\left(\partial e_{q_{\alpha}}^{q_{\alpha}+i}\right) \wedge\{1\}^{+}\right) \\
& \quad \approx\left(\partial\left(S e_{q_{\alpha}}^{q_{\alpha}+i}\right) \wedge I^{+} \cup\left(S e_{q_{\alpha}}^{q_{\alpha}+i}\right) \wedge\{0\}^{+}, \partial\left(S e_{q_{\alpha}}^{q_{\alpha}+i}\right) \wedge\{1\}^{+}\right) \\
& \quad \approx\left(D^{q_{\alpha}+i+1}, S^{q_{\alpha}+i}\right)
\end{aligned}
$$

Thus the pair of CW-spectra ( $B, B^{\prime}$ ) defined by
$\left(B, B^{\prime}\right)_{k}$

$$
=\left\{\begin{array}{l}
\left(\partial\left(S^{k-q_{\alpha}} e_{q_{\alpha}}^{q_{\alpha}+i}\right) \wedge I^{+} \cup\left(S^{k-q_{\alpha}} e_{q_{\alpha}}^{q_{\alpha}+i}\right) \wedge\{0\}^{+}, \partial\left(S^{k-q_{\alpha}} e_{q_{\alpha}}^{q_{\alpha}+i}\right) \wedge\{1\}^{+}\right) \\
\quad k \geqslant q, \\
*, \quad k<q
\end{array}\right.
$$

is isomorphic to the pair of CW-spectra ( $\Sigma^{i} D^{1}, \Sigma^{i} S^{0}$ ). Hence, since $\left(e_{i}\right)_{\#}: \pi_{i}\left(E_{i}\right.$, $\left.F_{i}\right) \rightarrow \pi_{i}\left(E_{i+1}, F_{i+1}\right)$ is trivial, there exists $m_{\alpha} \geqslant q_{\alpha}$ such that the map

$$
\begin{aligned}
& \psi_{\alpha, m_{\alpha}}=\left(e_{i}^{\prime}\right)_{m_{\alpha}}\left(g_{i-1}^{\prime}\right)_{m_{\alpha}} \mid \partial\left(S^{m_{\alpha}-q_{\alpha}} e_{q_{\alpha}}^{q_{\alpha}+i}\right) \wedge I^{+} \cup\left(S^{m_{\alpha}-q_{\alpha}} e_{q_{\alpha}}^{q_{\alpha}+i}\right) \wedge\{0\}^{+}: \\
& \quad\left(\partial\left(S^{m_{\alpha}-q_{\alpha}} e_{q_{\alpha}}^{q_{\alpha}+i}\right) \wedge I^{+} \cup\left(S^{m_{\alpha}-q_{\alpha}} e_{q_{\alpha}}^{q_{\alpha}+i}\right) \wedge\{0\}^{+}, \partial\left(S^{m_{\alpha}-q_{\alpha}} e_{q_{\alpha}}^{q_{\alpha}+i}\right) \wedge\{1\}^{+}\right) \\
& \quad \rightarrow\left(\left(E_{i+1}\right)_{m_{\alpha}},\left(F_{i+1}\right)_{m_{\alpha}}\right)
\end{aligned}
$$

defines the trivial element of $\pi_{i+m_{\alpha}}\left(\left(E_{i+1}\right)_{i+m_{\alpha}},\left(F_{i}\right)_{i+m_{\alpha}}\right)$. Thus it extends to a map

$$
\tilde{\psi}_{\alpha, m_{\alpha}}:\left(\left(S^{m_{\alpha}-q_{\alpha}} e_{q_{\alpha}}^{q_{\alpha}+i}\right) \wedge I^{+},\left(S^{m_{\alpha}-q_{\alpha}} e_{q_{\alpha}}^{q_{\alpha}+i}\right) \wedge\{1\}^{+}\right) \rightarrow\left(\left(E_{i+1}\right)_{m_{\alpha}},\left(F_{i+1}\right)_{m_{\alpha}}\right)
$$

We put

$$
\tilde{\psi}_{\alpha, q}= \begin{cases}S^{q-m_{\alpha}} \tilde{\psi}_{\alpha, m_{\alpha}}, & q \geqslant m_{\alpha} \\ *, & q<m_{\alpha}\end{cases}
$$

We define a cofinal pair of CW-spectra ( $E_{i}^{\prime \prime}, F_{i}^{\prime \prime}$ ) of ( $E_{i}^{\prime}, F_{i}^{\prime}$ ) in the following way: First we put $\left(E_{i}^{\prime \prime}\right)^{(i-1)}=\left(E_{i}^{\prime}\right)^{(i-1)}$, and then we obtain $\left(E_{i}^{\prime \prime}\right)^{(i)}$ by replacing each $i$-cell

$$
e_{\alpha}^{i}=\left\{e_{q_{\alpha}}^{q_{\alpha}+i}, S e_{q_{\alpha}}^{q_{\alpha}+i}, \ldots\right\}
$$

of $E_{i}^{\prime}$ by the $i$-cell

$$
\left(e_{\alpha}^{i}\right)^{m_{\alpha}}=\left\{S^{m_{\alpha}-q_{\alpha}} e_{q_{\alpha}}^{q_{\alpha}+i}, S^{m_{\alpha}-q_{\alpha}+1} e_{q_{\alpha}}^{q_{\alpha}+i}, \ldots\right\} .
$$

Accordingly, using induction on dimension, we define $\left(E_{i}^{\prime \prime}\right)^{(j)}$ for $j \geqslant i$ by replacing each $j$-cell

$$
e_{\beta}^{j}=\left\{e_{q_{\beta}}^{q_{\beta}+j}, S e_{q_{\beta}}^{q_{\beta}+j}, \ldots\right\}
$$

by a $j$-cell

$$
\left(e_{\beta}^{j}\right)^{m_{\beta}}=\left\{S^{m_{\beta}-q_{\beta}} e_{q_{\beta}}^{q_{\beta}+j}, S^{m_{\beta}-q_{\beta}+1} e_{q_{\beta}}^{q_{\beta}+j}, \ldots\right\}
$$

for some appropriate $m_{\beta} \geqslant q_{\beta}$. Also a subspectrum $F_{i}^{\prime \prime}$ of $F_{i}^{\prime}$ is similarly defined, and $\left(E_{i}^{\prime \prime}, F_{i}^{\prime \prime}\right)$ is a cofinal pair of CW-spectra of ( $E_{i}^{\prime}, F_{i}^{\prime}$ ). Then we can define a function $g_{i}^{\prime \prime}:\left(G_{i}^{\prime \prime}, H_{i}^{\prime \prime}\right) \rightarrow\left(E_{i+1}, F_{i+1}\right)$ by

$$
\left\{\begin{array}{l}
g_{i}^{\prime \prime}\left|G_{i-1}^{\prime \prime}=e_{i}^{\prime} g_{i-1}^{\prime}\right| G_{i-1}^{\prime \prime} \\
g_{i}^{\prime \prime} \mid \tilde{e}_{\alpha}^{i} \wedge I^{+}=\left(\tilde{\psi}_{\alpha, q}: q \in \mathbb{Z}\right) \quad \text { for each } i \text {-cell } \tilde{e}_{\alpha}^{i} \text { of } E_{i}^{\prime \prime}
\end{array}\right.
$$

where

$$
\left\{\begin{array}{l}
G_{i-1}^{\prime \prime}=E_{0}^{\prime \prime} \wedge\{0\}^{+} \cup F_{0}^{\prime \prime} \wedge I^{+} \cup E_{0}^{\prime \prime(i-1)} \wedge I^{+} \\
G_{i}^{\prime \prime}=E_{0}^{\prime \prime} \wedge\{0\}^{+} \cup F_{0}^{\prime \prime} \wedge I^{+} \cup E_{0}^{\prime \prime(i)} \wedge I^{+} \\
H_{i}^{\prime \prime}=F_{0}^{\prime \prime} \wedge I^{+} \cup E_{0}^{\prime \prime(i)} \wedge\{1\}^{+}
\end{array}\right.
$$

Since $\left(G_{i}^{\prime \prime}, H_{i}^{\prime \prime}\right)$ is cofinal in $\left(G_{i}, H_{i}\right), g_{i}^{\prime \prime}$ defines a map $g_{i}:\left(G_{i}, H_{i}\right) \rightarrow\left(E_{i+1}, F_{i+1}\right)$ such that $g_{i} \mid G_{i-1}=e_{i} g_{i-1}$.

Now, having completed the diagram (14) for $n \geqslant 1$, we put ( $G, H$ ) $=\left(G_{n-1}\right.$, $\left.H_{n-1}\right)$. Then, since $(G, H) \approx\left(E_{0}, F_{0} \cup E_{0}^{(n-1)}\right)$ in $\mathbf{H C W}_{\text {spec }}^{2}(=$ the category of the pairs of CW-spectra),

$$
\begin{aligned}
\pi_{q}\left(G^{\prime}, H^{\prime}\right) & \approx \pi_{q}\left(E_{0}^{\prime}, F_{0}^{\prime} \cup E_{0}^{\prime(n-1)}\right) \\
& =\underset{k}{\operatorname{dirlim}}\left[\left(D^{q+k}, S^{q+k-1}\right),\left(\left(E_{0}^{\prime}\right)_{k},\left(F_{0}^{\prime} \cup E_{0}^{\prime(n-1)}\right)_{k}\right)\right] \\
& =\operatorname{dirimim}_{k}\left[\left(D^{q+k}, S^{q+k-1}\right),\left(\left(E_{0}^{\prime}\right)_{k},\left(F_{0}^{\prime}\right)_{k} \cup\left(E_{0}^{\prime}\right)_{k}^{(n+k-1)}\right)\right] .
\end{aligned}
$$

So $\pi_{q}\left(G^{\prime}, H^{\prime}\right)=0$ for $q \leqslant n-1$. Thus the map $e_{n-1} \cdots e_{1} e_{0}:\left(E_{0}, F_{0}\right) \rightarrow\left(E_{n}, F_{n}\right)$ factors through an ( $n-1$ )-connected pair of CW-spectra ( $G^{\prime}, H^{\prime}$ ) in $\mathbf{H C W}_{\text {spec }}^{2}$.
(General case.) Now we assume that $\operatorname{dim} e \geqslant k$ for all cells $e \neq *$ in $E_{i}, i=0$, $1, \ldots, n-1$. Then $\Sigma^{-k} E_{i}$ contains no cells $e \neq *$ of negative dimension for each $i=0,1, \ldots, n-1$. Consider the maps of CW-spectra $\Sigma^{-k} e_{i}:\left(\Sigma^{-k} E_{i}, \Sigma^{-k} F_{i}\right) \rightarrow$ $\left(\Sigma^{-k} E_{i+1}, \Sigma^{-k} F_{i+1}\right)$. Then $\left(\Sigma^{-k} e_{i}\right)_{\#}: \pi_{i}\left(\Sigma^{-k} E_{i}, \Sigma^{-k} F_{i}\right) \rightarrow \pi_{i}\left(\Sigma^{-k} E_{i+1}, \Sigma^{-k} F_{i+1}\right)$ are trivial. Thus by the first part of the proof, $\left(\Sigma^{-k} e_{n-1}\right) \cdots\left(\Sigma^{-k} e_{1}\right)\left(\Sigma^{-k} e_{0}\right)$ : $\left(\Sigma^{-k} E_{0}, \Sigma^{-k} F_{0}\right) \rightarrow\left(\Sigma^{-k} E_{n}, \Sigma^{-k} F_{n}\right)$ factors through an $(n-1)$-connected pair of CW-spectra ( $G, H$ ) in $\mathbf{H C W}_{\text {spec }}^{2}$. So, $e_{n-1} \cdots e_{1} e_{0}:\left(E_{0}, F_{0}\right) \rightarrow\left(E_{n}, F_{n}\right)$ factors through an ( $n+k-1$ )-connected pair of CW-spectra ( $\Sigma^{k} G, \Sigma^{k} H$ ) in $\mathbf{H C W}_{\text {spec }}^{2}$ as required.

An inverse system ( $\boldsymbol{E}, \boldsymbol{F}$ ) of CW-spectra is said to be $n$-connected if $\pi_{q}(E$, $\boldsymbol{F})=0$ for all $q \leqslant n$.

Lemma 4.6. Let $k, n \in \mathbb{Z}$ with $k \leqslant n$, and suppose that $(\boldsymbol{E}, \boldsymbol{F})=\left(\left(E_{a}, F_{a}\right), e_{a a^{\prime}}, A\right)$ be an inverse system in $\mathbf{H C W}_{\text {spec }}$, which is $n$-connected. Suppose that for every $a \in A$, $E_{a}$ contains no cells $e \neq *$ of dimension less than $k$. Then every $a \in A$ admits $a^{\prime} \geqslant a$ such that the map $e_{a a^{\prime}}:\left(E_{a^{\prime}}, F_{a^{\prime}}\right) \rightarrow\left(E_{a}, F_{a}\right)$ factors through an $n$-connected pair of $C W$-spectra $(G, H)$.

Proof. Let $a_{0}=a \in A$. Since ( $\boldsymbol{E}, \boldsymbol{F}$ ) is $n$-connected, there exists $a_{1} \geqslant a_{0}$ such that $\left(e_{a_{0} a_{1}}\right)_{\#}: \pi_{k}\left(E_{a_{1}}, F_{a_{1}}\right) \rightarrow \pi_{k}\left(E_{a_{0}}, F_{a_{0}}\right)$ is trivial. Continuing this process, we obtain $a_{0} \leqslant a_{1} \leqslant \cdots \leqslant a_{n-k+1}$ such that $\left(e_{a_{i} a_{i}+1}\right)_{\#}: \pi_{i+k}\left(E_{a_{i+1}}, F_{a_{i+1}}\right) \rightarrow \pi_{i+k}\left(E_{a_{i}}, F_{a_{i}}\right)$ are trivial for $i=0,1, \ldots, n-k$. Thus since $e_{a_{0} a_{n-k+1}}=e_{a_{n-k} a_{n-k+1}} \cdots e_{a_{0} a_{1}}$, by Lemma 4.5, $e_{a_{0} a_{n-k+1}}:\left(E_{a_{n-k+1}}, F_{a_{n-k+1}}\right) \rightarrow\left(E_{a_{0}}, F_{a_{0}}\right)$ factors through an $n$-connected pair of CW-spectra ( $G, H$ ).

Lemma 4.7. Let $n \in \mathbb{Z}$, and let $\left(f_{a}\right): \boldsymbol{E}=\left(E_{a}, e_{a a^{\prime}}, A\right) \rightarrow \boldsymbol{F}=\left(F_{a}, f_{a a^{\prime}}, A\right)$ be a level morphism of inverse systems in $\mathbf{H C W}_{\text {spec }}$ which represents an n-equivalence $f: E \rightarrow F$. Then every $a \in A$ admits an increasing subsequence $A^{\prime}=\left(a_{m}\right)$ of $A$ with $a_{1}=a$ such that the restriction $\left(f_{a_{m}}\right)$ to $A^{\prime}$ also represents an n-equivalence.

Proof. This can be proven as in Mardešić and Segal [9, Lemma 4, p. 148].
Lemma 4.8. Let $n, k \in \mathbb{Z}$ with $k \leqslant n$, and let $\left(g_{a}\right): E=\left(E_{a}, e_{u u^{\prime}}, A\right) \rightarrow F=\left(F_{a}\right.$, $\left.f_{a a^{\prime}}, A\right)$ be a level morphism of inverse systems in $\mathbf{H C W}_{\text {spec }}$. Suppose that every $F_{a}$ contains no cells $e \neq *$ of dimension less than $k$. Then $\left(g_{a}\right): E \rightarrow \boldsymbol{F}$ induces an n-equivalence $f$ if and only if every $a \in A$ admits $a^{\prime} \geqslant a$ such that $e_{a a^{\prime}}$ and $f_{a a^{\prime}}$ factor in $\mathbf{H C W}_{\text {spec }}$ through $C W$-spectra $P$ and $Q$, and there is an n-equivalence of $C W$-spectra $g: P \rightarrow Q$ which makes the following diagram commute in $\mathbf{H C W}_{\mathrm{spec}}$ :


Proof. Sufficiency is proven just as in Mardešić and Segal [9, Theorem 1, p. 145]. For necessity, it suffices to assume $A=\mathbb{N}$ by virtue of Lemma 4.7. By Lemma 4.4 there exists a commutative diagram in $\mathbf{C W}_{\text {spec }}$

where $E_{m}^{\prime}$ and $F_{m}^{\prime}$ are cofinal subspectra of $E_{m}$ and $F_{m}$, respectively, $e_{m-1, m}^{\prime}: E_{m}^{\prime}$ $\rightarrow E_{m-1}^{\prime}$ and $f_{m-1, m}^{\prime}: F_{m}^{\prime} \rightarrow F_{m-1}^{\prime}$ are functions representing maps representing the homotopy classes $e_{m-1, m}, f_{m-1, m}$, respectively, and $r_{m-1, m}^{\prime}, i_{m}^{\prime}, j_{m}^{\prime}$ are the corresponding functions in Lemma 4.4. Put $\boldsymbol{E}^{\prime}=\left(E_{m}^{\prime}, e_{m-1, m}^{\prime}, \mathbb{N}\right), \boldsymbol{Z}^{\prime}=\left(M_{f_{m}^{\prime}}, r_{m-1, m}^{\prime}, \mathbb{N}\right)$ and $\boldsymbol{F}^{\prime}=\left(F_{m}^{\prime}, f_{m-1, m}^{\prime}, \mathbb{N}\right.$ ). These are objects of pro- $\mathbf{H C W}_{\text {spec }}$. Also, $\left(\left[i_{m}^{\prime}\right]\right),\left(\left[j_{m}^{\prime}\right]\right)$, and ( $\left[f_{m}^{\prime}\right]$ ) represent morphisms of pro- $\mathbf{H C W}_{\text {spec }}, \boldsymbol{i}^{\prime}: \boldsymbol{E}^{\prime} \rightarrow \mathbf{Z}^{\prime}, \boldsymbol{j}^{\prime}: \mathbf{Z}^{\prime} \rightarrow \boldsymbol{F}^{\prime}$, and $\boldsymbol{f}^{\prime}: \boldsymbol{E}^{\prime} \rightarrow \boldsymbol{F}^{\prime}$, respectively. Then, by Lemma $3.6, \boldsymbol{i}^{\prime}=\boldsymbol{j}^{\prime} \boldsymbol{f}^{\prime}$, and $\boldsymbol{j}^{\prime}$ is an isomorphism of pro-HCW ${ }_{\text {spec }}$. So, since $f^{\prime}$ is an $n$-equivalence, $\boldsymbol{i}^{\prime}$ is also an $n$-equivalence. By Lemma 3.7 and the commutativity in diagram (13), there is an exact sequence of pro-groups

$$
\cdots \rightarrow \pi_{q}\left(E^{\prime}\right) \rightarrow \pi_{q}\left(Z^{\prime}\right) \rightarrow \pi_{q}\left(Z^{\prime}, E^{\prime}\right) \rightarrow \pi_{q-1}\left(E^{\prime}\right) \rightarrow \cdots
$$

[9, Theorem 9, p. 119] implies $\pi_{q}\left(\boldsymbol{Z}^{\prime}, \boldsymbol{E}^{\prime}\right)=0$ for $q \leqslant n$. Then, Lemma 4.6 implies that for every $m$, there is $m^{\prime} \geqslant m$ such that $r_{m m^{\prime}}^{\prime}$ factors through an $n$-connected pair of CW-spectra ( $G, H$ ) in $\mathbf{H C W}_{\text {spec }}^{2}$ since for each $m \in \mathbb{Z}, M_{f_{m}}^{\prime}$ contains no cells $e \neq *$ of dimension less than $k$. Let $i: H \rightarrow G$ be the homotopy class of the inclusion induced map of CW-spectra. Then we have the following commutative diagram in $\mathbf{H C W}_{\text {spec }}$ :


Since $(G, H)$ is $n$-connected, $i: H \rightarrow G$ is an $n$-equivalence by Lemma 3.4. Thus we put $(P, Q)=(G, H), q^{\prime}=s^{\prime}\left[j_{m^{\prime}}^{\prime}\right]$, and $q=\left[j_{m}^{\prime}\right]^{-1} s$.

Lemma 4.9. Let $n, k \in \mathbb{Z}$ with $k \leqslant n$, and $\left(g_{a}\right): E=\left(E_{a}, e_{a a^{\prime}}, A\right) \rightarrow \boldsymbol{F}=\left(F_{a}, f_{a a^{\prime}}\right.$, A) be a level morphism of inverse systems in $\mathbf{H C W}_{\text {spec }}$, which is an n-equivalence $\boldsymbol{g}: \boldsymbol{E} \rightarrow \boldsymbol{F}$. Suppose that every $F_{a}$ contains no cells $\boldsymbol{e} \neq *$ of dimension less than $k$. Then every $a \in A$ admits $a^{\prime} \geqslant a$ such that the following two statements hold:
(i) if $R$ is a $C W$-spectrum of $\operatorname{dim} R \leqslant n$, then every morphism $h: R \rightarrow F_{a^{\prime}}$ in $\mathbf{H C W}_{\text {spec }}$ admits a morphism $k: R \rightarrow E_{a}$ such that $g_{a} k=f_{a a^{\prime}} h$;
(ii) if $R$ is a $C W$-spectrum of $\operatorname{dim} R \leqslant n-1$ and $k_{1}, k_{2}: R \rightarrow E_{a^{\prime}}$ are morphisms in $\mathrm{HCW}_{\text {spec }}$ such that $g_{a^{\prime}} k_{1}=g_{a^{\prime}} k_{2}$, then $e_{a a^{\prime}} k_{1}=e_{a a^{\prime}} k_{2}$.

Proof. This immediately follows from Lemmas 4.8 and 4.2.
Now we can easily prove Theorem 4.1, following Mardešić and Segal [9, Theorem 3, p. 149].

## 5. Dimensions in stable shape categories

In order to state Whitehead theorems in $\mathbf{S h}_{\text {spec }}$ and $\mathbf{S h}_{\text {sw }}$, we need notions of dimension in these categories.

For $k, n \in \mathbb{Z}$ with $k \leqslant n$ and for every space $X$, we say the stable shape dimension $k \leqslant \mathrm{sd}_{\text {spec }} X \leqslant n$ if whenever $\boldsymbol{e}: E(\boldsymbol{X}) \rightarrow \boldsymbol{E}=\left(E_{a}, e_{a a^{\prime}}, A\right)$ is a generalized expansion in $\mathbf{H C W}_{\text {spec }}$, then every $a \in A$ admits $a^{\prime} \geqslant a$ such that $e_{a a^{\prime}}$ factors in $\mathbf{H C W}_{\text {spec }}$ through a CW-spectrum $F$ such that (i) $\operatorname{dim} F \leqslant n$ and (ii) whenever $e \neq *$ is a cell of $F, \operatorname{dim} e \geqslant k$. For $k, n \in \mathbb{Z}$, we say the stable shape dimension $k \leqslant \mathrm{sd}_{\text {spec }} X \leqslant \infty$ (respectively, $-\infty \leqslant \mathrm{sd}_{\text {spec }} X \leqslant n$ ) if whenever $\boldsymbol{e}: E(X) \rightarrow \boldsymbol{E}=\left(E_{a}\right.$, $\left.e_{a a^{\prime}}, A\right)$ is a generalized expansion in $\mathbf{H C W}_{\text {spec }}$, then every $a \in A$ admits $a^{\prime} \geqslant a$ such that $e_{a a^{\prime}}$ factors in $\mathbf{H C W}_{\text {spec }}$ through a CW-spectrum $F$ such that whenever $e \neq *$ is a cell of $F, \operatorname{dim} e \geqslant k$ (respectively, $\operatorname{dim} F \leqslant n$ ).

For $k, n \in \mathbb{Z}$ with $k \leqslant n$ and for every compactum $X$, we say the $S W$-shape dimension $k \leqslant \operatorname{sd}_{\text {sw }} X \leqslant n$ provided whenever $r=\left(r_{a}\right): X \rightarrow Z=\left(Z_{a}, r_{a a^{\prime}}, A\right)$ is an $\mathbf{H C W}_{\text {sw }}$-expansion of $X$, then every $a \in A$ admits $a^{\prime} \geqslant a, m \in[-n,-k]$ and a CW complex $P$ of $\operatorname{dim} P \leqslant m+n$ such that for some $l \geqslant-m$ and H-map $\left(r_{a a^{\prime}}\right)_{m+1}: S^{m+l} Z_{a^{\prime}} \rightarrow S^{m+l} Z_{a}$ representing $r_{a a^{\prime}}$ factors in HCW through $S^{l} P$. For $k$, $n \in \mathbb{Z}$ and for every compactum $X$, we say the $S W$-shape dimension $k \leqslant \mathrm{sd}_{\mathrm{sw}} X \leqslant \infty$ (respectively, $-\infty \leqslant \mathrm{sd}_{\mathrm{sw}} X \leqslant n$ ) provided whenever $\boldsymbol{r}=\left(r_{a}\right): X \rightarrow \mathbf{Z}=\left(Z_{a}, r_{a a^{\prime}}, A\right)$ is an $\mathbf{H C W}_{\text {sw }}$-expansion of $X$, then every $a \in A$ admits $a^{\prime} \geqslant a, m \in(-\infty,-k]$ (respectively, $m \in[-n, \infty$ )) and a CW complex $P$ (respectively, a CW complex $P$ of $\operatorname{dim} P \leqslant m+n$ ) such that for some $l \geqslant-m$ an H-map $\left(r_{a a^{\prime}}\right)_{m+l}: S^{m+l} Z_{a^{\prime}} \rightarrow$ $S^{m+l} Z_{a}$ representing $r_{a a^{\prime}}$ factors in HCW through $S^{t} P$.

For $-\infty<k \leqslant n<\infty$, it is obvious that $k \leqslant \operatorname{sd}_{\text {spec }} X \leqslant n$ implies $k \leqslant \operatorname{sd}_{\text {spec }} X \leqslant n$ +1 and $k-1 \leqslant \mathrm{sd}_{\text {spec }} X \leqslant n$, and that $k \leqslant \operatorname{sd}_{\text {spec }} X \leqslant n$ implies $k \leqslant \operatorname{sd}_{\text {spec }} X \leqslant \infty$ and $-\infty \leqslant \operatorname{sd}_{\text {spec }} X \leqslant n$. Analogous facts also hold for $\mathrm{sd}_{\mathrm{sw}}$.

For convenience we assume that for any space (respectively, compactum) $X$, $-\infty \leqslant \mathrm{sd}_{\text {spec }} X \leqslant \infty$ (respectively, $-\infty \leqslant \mathrm{sd}_{\mathrm{sw}} X \leqslant \infty$ ) is a true statement.

Proposition 5.1. For any $k, n \in \mathbb{Z}$ with $k \leqslant n$ and for every space $X$, the following are equivalent:
(i) $k \leqslant \operatorname{sd}_{\text {spec }} X \leqslant n$;
(ii) there exists a generalized expansion in $\mathbf{H C W}_{\text {spec }}, e: E(X) \rightarrow E=\left(E_{a}, e_{a a^{\prime}}, A\right)$ with the property that every $a \in A$ admits $a^{\prime} \geqslant a$ such that $e_{a a^{\prime}}$ factors in $\mathbf{H C W}_{\text {spec }}$ through a $C W$-spectrum $F$ of $\operatorname{dim} F \leqslant n$ with $\operatorname{dim} e \geqslant k$ for all cells $e \neq *$ of $F$;
(iii) there exists a generalized expansion in $\mathrm{HCW}_{\text {spec }}, e: E(X) \rightarrow E=\left(E_{a}, e_{a a^{\prime}}, A\right)$ such that for each $a \in A, \operatorname{dim} E_{a} \leqslant n$ and $\operatorname{dim} e \geqslant k$ for all cells $e \neq *$ of $E_{a}$.

Proof. (i) $\Rightarrow$ (ii) is trivial. We show the implication (ii) $\Rightarrow$ (iii). For each $a \in A$ we take $a^{\prime} \geqslant a$ as in (ii). Let $\Omega$ be the set of pairs ( $a, a^{\prime}$ ), $a \in A$, and define an order $\leqslant^{*}$ on $\Omega$ by $\left(a, a^{\prime}\right) \leqslant{ }^{*}\left(b, b^{\prime}\right)$ if $\left(a, a^{\prime}\right)=\left(b, b^{\prime}\right)$ or $a^{\prime} \leqslant b$ in $A$. Then it is easy to see that $\left(\Omega, \leqslant{ }^{*}\right)$ forms a directed set. For each $\alpha=\left(a, a^{\prime}\right) \in \Omega$, there exist a

CW-spectrum $F_{\alpha}$ and morphisms $p_{\alpha}: E_{a^{\prime}} \rightarrow F_{\alpha}$ and $q_{a}: F_{\alpha} \rightarrow E_{a}$ in HCW ${ }_{\text {spec }}$ such that $e_{a a^{\prime}}=q_{a} p_{a}$ and $\operatorname{dim} F_{\alpha} \leqslant n$ and $\operatorname{dim} e \geqslant k$ for all cells $e \neq *$ of $F_{\alpha}$. For $\alpha=\left(a, a^{\prime}\right) \leqslant{ }^{*} \beta=\left(b, b^{\prime}\right)$ in $\Omega$, we define $f_{\alpha \beta}=p_{a} e_{a^{\prime} b} q_{b}: F_{\beta} \rightarrow F_{\alpha}$. Then $\boldsymbol{F}=\left(F_{\alpha}\right.$, $\left.f_{\alpha \beta}, \Omega\right)$ forms an inverse system in $\mathbf{H C W}_{\text {spec }}$. Let $e: E(X) \rightarrow \boldsymbol{E}=\left(E_{a}, e_{a a^{\prime}}, A\right)$ be represented by a morphism ( $e_{a}, \varphi$ ) of inverse systems. Then we define a function $\psi: \Omega \rightarrow \Lambda$ by $\psi(\alpha)=\varphi\left(a^{\prime}\right)$ for each $\alpha=\left(a, a^{\prime}\right) \in \Omega$ and a morphism $f_{\alpha}=$ $p_{a} e_{a}: E\left(X_{\psi(\alpha)}\right) \rightarrow E_{a}$ for each $\alpha=\left(a, a^{\prime}\right)$. Then $\left(f_{\alpha}, \psi\right)$ forms a morphism of inverse systems in $\mathbf{H C W}_{\text {spec }}$ and hence represents a morphism in pro-HCW ${ }_{\text {spec }}$, $f: E(X) \rightarrow F$. It is a routine to check that $f$ satisfies the conditions (GE1) and (GE2) in Theorem 2.2. Hence $f$ is a desired generalized expansion.

It remains to show the implication (iii) $\Rightarrow$ (i). Let $e: E(X) \rightarrow E=\left(E_{a}, e_{a a^{\prime}}, A\right)$ bc a generalized expansion in $\mathbf{H C W}_{\text {spec }}$ as in the condition (iii), and lct $f: E(X) \rightarrow$ $\boldsymbol{F}=\left(F_{b}, f_{b b^{\prime}}, B\right)$ be any generalized expansion in $\mathbf{H C W}_{\text {spec }}$. Fix $b \in B$. There is a natural isomorphism $\boldsymbol{g}: \boldsymbol{F} \rightarrow \boldsymbol{E}$ and let $\boldsymbol{h}: \boldsymbol{E} \rightarrow \boldsymbol{F}$ be its inverse morphism. Also let $\boldsymbol{g}$ and $\boldsymbol{h}$ be represented by $\left(g_{\alpha}, \varphi\right)$ and $\left(h_{b}, \psi\right)$, respectively. Then there is $b^{\prime} \geqslant b$, $\varphi(\psi(b))$ such that $f_{b b^{\prime}}=h_{b} g_{\psi(b)} p_{\varphi(\psi(b)) b^{\prime}}$. Thus $f_{b b^{\prime}}: F_{b^{\prime}} \rightarrow F_{b}$ factors through $E_{a}$ as desired.

Proposition 5.2. For every $k, n \in \mathbb{Z}$ with $k \leqslant n$ and for every compactum $X$, the following are equivalent:
(i) $k \leqslant \operatorname{sd}_{\mathrm{sw}} \mathrm{X} \leqslant n$;
(ii) there exists an $\mathrm{HCW}_{\mathrm{sw}}$-expansion $r=\left(r_{a}\right): X \rightarrow \mathbf{Z}=\left(Z_{a}, r_{a a^{\prime}}\right.$, A) with the property that every $a \in A$ admits $a^{\prime} \geqslant a, m \in[-n,-k]$ and $a C W$ complex $p$ of $\operatorname{dim} P \leqslant m+n$ such that for some $l \geqslant-m$, the H-map $\left(r_{a a^{\prime}}\right)_{m+l}: S^{m+l} Z_{a^{\prime}} \rightarrow S^{m+l} Z_{a}$ representing $r_{a a^{\prime}}$ factors in HCW through $S^{l} P$.

Proof. (i) $\Rightarrow$ (ii) is trivial, and (ii) $\Rightarrow$ (i) is proven just as the implication (iii) $\Rightarrow$ (i) of Proposition 5.1.

Theorem 5.3. For every compactum $X$ and for each $k, n \in \mathbb{Z} \cup\{\infty\}$ with $k \leqslant n$, $k \leqslant \mathrm{sd}_{\text {spec }} X \leqslant n$ if and only if $k \leqslant \mathrm{sd}_{\mathrm{sw}} X \leqslant n$.

Proof. First, we assume $k, n \in \mathbb{Z}$ with $k \leqslant n$. Suppose that $k \leqslant \mathrm{sd}_{\mathrm{sw}} X \leqslant n$, and let $p=\left(p_{a}\right): X \rightarrow X=\left(X_{a}, p_{a a^{\prime}}, A\right)$ be an HCW-expansion of $X$ such that the $X_{a}$ are finite CW complexes. Fix $a \in A$. Choose $a^{\prime} \geqslant a, m \in[-n,-k]$ and a CW complex $P$ of $\operatorname{dim} P \leqslant n+m$ such that $\left(r_{a a^{\prime}}\right)_{m+l}=h_{m+l} g_{m+l}$ for some $l \geqslant-m$ and H-maps $g_{m+l}: S^{m+l} X_{a^{\prime}} \rightarrow S^{l} P$ and $h_{m+l}: S^{l} P \rightarrow S^{m+l} X_{a}$ are H-maps. Since $X_{a^{\prime}}$ is finite, we can choose $P$ so that $P$ is a finite CW complex. Let $F$ be the CW-spectrum defined by

$$
F_{i}= \begin{cases}S^{i-m} P, & i \geqslant m+l \\ *, & i<m+l\end{cases}
$$

Then $\operatorname{dim} F \leqslant n$ and $\operatorname{dim} e \geqslant k$ for all cells $e \neq *$ of $F$, and the map $E\left(p_{a a^{\prime}}\right): E\left(X_{a^{\prime}}\right) \rightarrow E\left(X_{a}\right)$ factors in $\mathrm{HCW}_{\text {spec }}$ through the CW-spectrum $F$. Hence $k \leqslant \operatorname{sd}_{\text {spec }} X \leqslant n$.

Conversely, suppose that $k \leqslant \mathrm{sd}_{\mathrm{spec}} X \leqslant n$. Let $p=\left(p_{a}\right): X \rightarrow X=\left(X_{a}, p_{a a^{\prime}}, A\right)$ be as above, and fix $a \in A$. Then there exists $a^{\prime} \geqslant a$ such that $E\left(p_{\mathrm{aa}^{\prime}}\right)=h g$ where $g: E\left(X_{\mathbf{a}^{\prime}}\right) \rightarrow F$ and $h: F \rightarrow E\left(X_{a}\right)$ are morphisms in $\mathbf{H C W}_{\text {spec }}$, and $F$ is a CW-spectrum of $\operatorname{dim} F \leqslant n$ and $\operatorname{dim} e \geqslant k$ for all cells $e \neq *$ of $F$. Again, since $X_{a^{\prime}}$ is a finite CW complex, we can assume $F$ to be a finite CW-spectrum. Let $m=$ $-\inf \{\operatorname{dim} e: e$ is a cell of $F\}$ and let $P$ be the CW complex $F_{m}$. Then $m \leqslant-k$. Since $F_{m}$ and $X_{a^{\prime}}$ are finite CW complexes, there exists $l \geqslant-m$ such that $S^{m+l} p_{a a^{\prime}}=h_{m+l} g_{m+l}$ where $g_{m+l}: S^{m+l} X_{a^{\prime}} \rightarrow S^{l} F_{m}$ and $h_{m+l}: S^{l} F_{m} \rightarrow S^{m+l} X_{a}$ are H-maps representing $g$ and $h$, respectively. Also $\operatorname{dim} F_{m} \leqslant n+m$ since $\operatorname{dim} F \leqslant n$. Hence $k \leqslant \operatorname{sd}_{\text {spec }} X \leqslant n$. The cases where $k=-\infty$ or $n=\infty$ can be proven similarly.

Theorem 5.4. Suppose that $X$ and $Y$ are two spaces (compacta) with $S h_{\text {spec }}(X)=$ $S h_{\text {spec }} Y\left(S h_{\text {sw }}(X)=S h_{\text {sw }}(Y)\right)$. Then for $k, n \in \mathbb{Z} \cup\{\infty\}$ with $k \leqslant n, k \leqslant \operatorname{sd}_{\text {spec }} X \leqslant n$ $\left(k \leqslant \mathrm{sd}_{\mathrm{sw}} X \leqslant n\right)$ if and only if $k \leqslant \mathrm{sd}_{\mathrm{spec}} Y \leqslant n\left(k \leqslant \mathrm{sd}_{\mathrm{sw}} Y \leqslant n\right)$.

Proof. Let $X$ and $Y$ be spaces, and $S h_{\text {spec }}(X) \leqslant S h_{\text {spec }}(Y)$. We wish to show $k \leqslant \operatorname{sd}_{\text {spec }} Y \leqslant n$ implies $k \leqslant \operatorname{sd}_{\text {spec }} X \leqslant n$. We assume $k, n \in \mathbb{Z}$, and the case where $k=-\infty$ or $n=\infty$ is proven similarly. Suppose $k \leqslant \operatorname{sd}_{\text {spec }} Y \leqslant n$. Suppose that $G: X \rightarrow Y$ and $G^{\prime}: Y \rightarrow X$ be morphisms in $\mathbf{S h}_{\text {spec }}$ such that $G^{\prime} G=1$, and let $G$ and $G^{\prime}$ be represented by morphisms in pro- $\mathbf{H C W}_{\text {spec }}, \boldsymbol{g}: \boldsymbol{E}=\left(E_{a}, e_{e e^{\prime}}, A\right) \rightarrow \boldsymbol{F}=$ $\left(F_{b}, f_{b b^{\prime}}, B\right)$ and $\boldsymbol{g}^{\prime}: \boldsymbol{F} \rightarrow \boldsymbol{E}$ where $\boldsymbol{e}: E(\boldsymbol{X}) \rightarrow \boldsymbol{E}$ is any generalized expansion in $\mathbf{H C W}_{\text {spec }}$ and $f: E(\boldsymbol{X}) \rightarrow \boldsymbol{F}$ is a generalized expansion in $\mathbf{H C W}_{\text {spec }}$ such that for each $b \in B, \operatorname{dim} F_{b} \leqslant n$ and $\operatorname{dim} e \geqslant k$ for all cells $e \neq *$ of $F_{b}$. Fix $a \in A$. Also let $g$ and $g^{\prime}$ be represented by $\left(g_{b}, \varphi\right)$ and ( $\left.g_{a}^{\prime}, \psi\right)$, respectively. Then choose $a^{\prime} \geqslant a$, $\varphi(\psi(a))$. Then $e_{a a^{\prime}}=g_{a}^{\prime} g_{\psi(a)} e_{\varphi(\psi(a)) a^{\prime}}$, so that $e_{a a^{\prime}}: E_{a^{\prime}} \rightarrow E_{a}$ factors through a CW-spectrum $F_{\psi(a)}$ of dimension at most $n$ and $\operatorname{dim} e \geqslant k$ for all cells $e \neq *$ of $F_{\psi(a)}$. Thus $k \leqslant \operatorname{sd}_{\text {spec }} X \leqslant n$. This implies that $\mathrm{sd}_{\text {spec }}$ is invariant in $\mathbf{S h}_{\text {spec }}$. That $\mathrm{sd}_{\mathrm{sw}}$ is invariant in $\mathbf{S h}_{\mathrm{sw}}$ follows from the first part of the proof, Theorem 5.3, and Theorem 2.5.

Theorem 5.5. For every space $X$ of $\operatorname{sd} X<\infty, 0 \leqslant \operatorname{sd}_{\text {spec }} X \leqslant \operatorname{sd} X$.

Proof. Suppose that sd $X \leqslant n$. Then $X$ admits an HCW-expansion $p=\left(p_{\lambda}\right): X \rightarrow$ $X=\left(X_{\lambda}, p_{\lambda \lambda^{\prime}}, \Lambda\right)$ such that $\operatorname{dim} X_{\lambda} \leqslant n$, which induces a generalized $\mathbf{H C W}_{\text {spec }}$-expansion of $X, e: E(X) \rightarrow E(X)$.

Example 5.6. Let $X$ be the 1 -dimensional acyclic continuum of Case and Chamberlin [3]. Then sd $X=1$, but $0 \leqslant \operatorname{sd}_{\text {spec }} X \leqslant 0$ as $S h_{\text {spec }}(X)=S h_{\text {spec }}(*)$.

Example 5.7. The referee has pointed out that there exists a compactum $X$ such that

$$
\text { sd } X=\infty \quad \text { and } \quad-\infty \leqslant \operatorname{sd}_{\text {spec }} X \leqslant n \quad \text { for some } n \in \mathbb{Z}
$$

The reader should see [11, p. 46] where a movable continuum $X$ with infinite sd such that the suspension of $X$ has trivial shape is given. More specifically, $X=\prod_{i=1}^{\infty} P_{i}$ where $P_{i}$ is the complement of an open ball in the Poincaré manifold.

## 6. Whitehead theorems in stable shape

Now we wish to Čech-extend the definition of $\pi_{n}$ on $\mathbf{H C W}_{\text {spec }}$ over $\mathbf{S h}_{\text {spec }}$. For each space $X$, the nth stable pro-homotopy group pro- $\pi_{n}^{S}(X)$ is defined as the inverse system $\pi_{n}(E(X))=\left(\pi_{n}\left(E_{a}\right), \pi_{n}\left(e_{a a^{\prime}}\right), A\right)$, where $e: E(X) \rightarrow E=\left(E_{a}, e_{a a^{\prime}}\right.$, $A$ ) is a generalized $\mathbf{H C W}$ spec -expansion of $E(X)$. This is well defined up to an isomorphism in pro-groups. Then the nth stable shape group $\check{\pi}_{n}^{S}(X)$ is defined as the limit group $\lim$ pro- $\pi_{n}(\boldsymbol{E})$.

For each morphism $G: X \rightarrow Y$ in $\mathbf{S h}_{\text {spec }}$, we define the morphism in pro-groups pro- $\pi_{n}^{S}(G): \operatorname{pro}-\pi_{n}^{S}(X) \rightarrow \operatorname{pro}-\pi_{n}^{S}(Y)$ as $p r o-\pi_{n}(g): \pi_{n}(E) \rightarrow \pi_{n}(F)$, where $e: E(X)$ $\rightarrow \boldsymbol{E}$ and $f: E(\boldsymbol{Y}) \rightarrow \boldsymbol{F}$ are $\mathbf{H C W}_{\text {spec }}$-expansions of $X$ and $Y$, respectively, and $\boldsymbol{g}: \boldsymbol{E} \rightarrow \boldsymbol{F}$ is a representative of $\boldsymbol{G}$. This is well defined up to an isomorphism in pro-groups. It is a routine to check pro- $\pi_{n}^{S}$ is a functor from $\mathbf{S h}_{\text {spec }}$ to pro-Gp and that $\check{\pi}_{n}^{S}$ is a functor from $\mathbf{S h}_{\text {spec }}$ to $\mathbf{G p}$.

A morphism $G: X \rightarrow Y$ in $\mathbf{S h}_{\text {spec }}$ is said to be an n-equivalence if the induced morphism in pro-groups pro- $\pi_{k}^{S}(G): \operatorname{pro}-\pi_{k}^{S}(X) \rightarrow \operatorname{pro}-\pi_{k}^{S}(Y)$ is an isomorphism for $k=0, \ldots, n-1$ and an epimorphism for $k=n$.

By Theorem 2.5, pro- $\pi_{n}^{S}$ and $\check{\pi}_{n}^{S}$ can also be considered as functors from $\mathbf{S h}_{\text {sw }}$ to the category of pro-groups pro-Gp and the category of groups $\mathbf{G p}$, respectively.

Now we are ready to state the Whitehead theorems in $\mathbf{S h}_{\text {spcc }}$ and $\mathbf{S h}_{\text {sw }}$.
Theorem 6.1. Let $G: X \rightarrow Y$ be a morphism in $\mathbf{S h}_{\text {spec }}$, which is an n-equivalence. Suppose that $-\infty \leqslant \operatorname{sd}_{\text {spec }} X \leqslant n-1$ and $k \leqslant \operatorname{sd}_{\text {spec }} Y \leqslant n(k, n \in \mathbb{Z})$. Then $G$ is an isomorphism in $\mathbf{S h}_{\text {spec }}$.

Proof. There is a morphism $\boldsymbol{g}: \boldsymbol{E} \rightarrow \boldsymbol{F}$ in pro-HCW ${ }_{\text {spec }}$ which represents $G$, where $\boldsymbol{e}: E(X) \rightarrow E=\left(E_{a}, e_{a a^{\prime}}, A\right)$ is a generalized expansion of $X$ in $\mathbf{H C W}_{\text {spec }}$ such that $\operatorname{dim} E_{a} \leqslant n-1$ for all $a \in A$, and $f: E(Y) \rightarrow F=\left(F_{b}, f_{b b^{\prime}}, B\right)$ is a generalized expansion of $Y$ in $\mathbf{H C W}_{\text {spec }}$ such that for each $b \in B, \operatorname{dim} F_{b} \leqslant n$ and $\operatorname{dim} e \geqslant k$ for all cells $e \neq *$ of $F_{b}$. Then the theorem follows from Theorem 4.1. ㅁ

Theorem 6.2. Let $G: X \rightarrow Y$ be a morphism in $\mathbf{S h}_{\mathrm{sw}}$, which is an n-equivalence. Suppose that $-\infty \leqslant \mathrm{sd}_{\mathrm{sw}} X \leqslant n-1$ and $k \leqslant \operatorname{sd}_{\mathrm{sw}} Y \leqslant n(k, n \in \mathbb{Z})$. Then $G$ is an isomorphism in $\mathbf{S h}_{\mathrm{sw}}$.

Proof. The theorem follows from Theorems 6.1, 5.3, and 2.5.
Example 6.3. The finite-dimensionality of Theorems 6.1 and 6.2 cannot be omitted. Recall the example in Mardešić and Segal [9, Example 1, p. 153]. Specifically, Adams [1, Theorem 1.7] constructed a finite polyhedron $Y, r \in \mathbb{N}$, and a map $a: S^{r} Y \rightarrow Y$ such that for each $m \in \mathbb{N}$, the composition

$$
a\left(S^{r} a\right)\left(S^{2 r} a\right) \cdots\left(S^{(m-1) r} a\right): S^{m r} Y \rightarrow Y
$$

is essential. Then consider the inverse sequence of finite CW complexes

$$
Y \stackrel{a}{\longleftarrow} S^{r} Y \stackrel{S^{r} a}{\longleftarrow} S^{2 r} Y \longleftarrow \cdots
$$

Let $A$ be its inverse limit. Then $A$ is a metric compactum. It is easy to see that $-\infty \leqslant \operatorname{sd}_{\text {spec }} A \leqslant n$ (equivalently, $-\infty \leqslant \mathrm{sd}_{\mathrm{sw}} A \leqslant n$ ) is false for all $n \in \mathbb{Z}$. We claim that $S h_{\text {spec }}(A) \neq S h_{\text {spec }}(*)$ but pro- $\pi_{k}^{S}(A)=0$ for all $k \in \mathbb{Z}$. Indeed, for each $m \in \mathbb{N}$, whenever $k \in \mathbb{N}$, the morphism in $\mathbf{H C W}$ spec represented by the map

$$
S^{m r} Y \stackrel{S^{(m+k-1) r} a}{\longleftarrow} S^{(m+k) r} Y
$$

is not trivial. For, for any $l \in \mathbb{N}$, the map

$$
S^{m r+l} Y \stackrel{S^{(m+k-1) r+l} a}{\leftrightarrows} S^{(m+k) r+l} Y
$$

is essential since for $N \in \mathbb{N}$ with $(m+k) r+l \leqslant(m+N) r$ the composition

$$
a\left(S^{r} a\right)\left(S^{2 r} a\right) \cdots\left(S^{(m+N-1) r} a\right): S^{(m+N) r} Y \rightarrow Y
$$

is essential. This shows the first assertion. Also, $\operatorname{pro}-\pi_{k}^{S}(A)=\left(\pi_{k}^{S}\left(S^{m r} Y\right), \pi_{k}^{S}\left(S^{m r} a\right)\right.$, $\mathbb{N}$ ) but for each $k \in \mathbb{Z}, \pi_{k}^{S}\left(S^{m r} Y\right)=\operatorname{dirlim}_{i} \pi_{k+i}\left(S^{m r+i} Y\right)=0$ for $m$ with $m r>k$, so that $\operatorname{pro}-\pi_{k}^{S}(A)=0$ for all $k \in \mathbb{Z}$.

## References

[1] J.F. Adams, On the groups $J(X)$ IV, Topology 5 (1966) 21-71.
[2] J.F. Adams, Stable Homotopy and Generalised Homology (The University of Chicago Press, Chicago, IL, 1974).
[3] J.H. Case and R.E. Chamberlin, Characterizations of tree-like continua, Pacific J. Math. 10 (1960) 73-84.
[4] A. Dold and D. Puppe, Duality, trace and transfer, in: Proceedings of the Conference on Geometric Topology, Warsaw (1978) 81-102.
[5] H.W. Henn, Duality in stable shape theory, Arch. Math. 36 (1981) 327-341.
[6] E. Lima, The Spanier-Whitehead duality in new homotopy categories, Summa Bras. Mat. 4 (1959) 91-148.
[7] S. Mardešić, A non-movable compactum with movable suspension, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 12 (1971) 1101-1103.
[8] S. Mardešić and J. Segal, Movable compacta and ANR-systems, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 11 (1970) 649-654.
[9] S. Mardešić and J. Segal, Shape Theory - The Inverse System Approach (North-Holland, Amsterdam, 1982).
[10] P. Mrozik, Finite-dimensional complement theorems in shape theory and their relation to $S$-dual ity, Fund. Math. 134 (1990) 55-72.
[11] S. Nowak, Algebraic theory of fundamental dimension, Dissertationes Math. 187 (1981) 1-59.
[12] S. Nowak, On the relationships between shape properties of subcompacta of $S^{n}$ and homotopy properties of their complements, Fund. Math. 128 (1987) 47-60.
[13] S. Nowak, On the stable homotopy types of complements of subcompacta of a manifold, Bull. Acad. Polon. Sci. Sér. Math. Astronom. Phys. 35 (1987) 359-363.
[14] R.M. Switzer, Algebraic Topology - Homotopy and Homology (Springer, Berlin, 1975).
[15] Š. Ungar, Freudenthal suspension theorem in shape theory, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976) 275-280.


[^0]:    * Corresponding author.
    ${ }^{1}$ This work was done when the first author was supported by MacFarlan Fellowship from Department of Mathematics, University of Washington.

