

Topology and its Applications 63 (1995) 139-164

TOPOLOGY AND ITS APPLICATIONS

Generalized stable shape and the Whitehead theorem

Takahisa Miyata¹, Jack Segal^{*}

Department of Mathematics, University of Washington, Seattle, WA 98195, USA

Received 25 August 1993; revised 7 July 1994

Abstract

In this paper we define a stable shape category based on the category of CW-spectra. Then we formulate and prove a Whitehead-type theorem in this category.

Keywords: Shape; Shape dimension; Stable homotopy; Spectra; Whitehead theorem

AMS (MOS) Subj. Class.: 54B35, 54C56, 54F43, 55P42, 55P55, 55Q10

0. Introduction

Lima [6] constructed the Čech stable homotopy theory for compacta. This construction gives the stable shape theory on the category of metric compacta. Dold and Puppe [4] and Henn [5] defined a stable shape category for compacta, which is based on the Spanier–Whitehead category and studied a duality in this stable shape category. More results on duality and complements were obtained in Nowak [12,13] and Mrozik [10].

In this paper we define a stable shape category for arbitrary spaces, which is based on the category of CW-spectra and show that the earlier stable shape category embeds in our stable shape category. This approach allows us to work on cells of CW-spectra. We then formulate and give a proof of a stable shape version of a Whitehead-type theorem (see Theorems 6.1 and 6.2).

In the next section we recall the stable categories and in Section 2 we define our stable shape category. In Section 3 we prove a finite-dimensional version of a

^{*} Corresponding author.

¹ This work was done when the first author was supported by MacFarlan Fellowship from Department of Mathematics, University of Washington.

Whitehead-type theorem for CW-spectra, and in Section 4 we generalize the statement in Section 3 over the pro-CW-spectra. In Section 5 we introduce a notion of dimension in our stable shape category, and finally in Section 6 we obtain a stable shape version of a Whitehead-type theorem.

For CW-spectra, we refer to Switzer [14, Chapter 8] and Adams [2, Part III], and for this shape theory, we refer to Mardešić and Segal [9]. All spaces dealt with in paper are assumed to be based.

1. Stable categories

Let **Top** denote the category of all spaces and pointed (continuous) maps, and let CG, Cpt, CW, and fCW denote the full subcategories of **Top** consisting of all compactly generated spaces, all compacta, all CW complexes, and all finite CW complexes, respectively. Let **HTop**, **HCG**, **HCpt**, **HCW** and **HfCW** denote the homotopy categories of the corresponding categories. If \mathscr{C} is a category, then Ob \mathscr{C} denotes the set of objects and for objects X and Y of \mathscr{C} , $\mathscr{C}(X, Y)$ denotes the set of all morphisms from X to Y in \mathscr{C} .

The Spanier-Whitehead category HCG_{sw} is defined by $ObHCG_{sw} = ObCG$ and for any two compactly generated spaces X and Y, $HCG_{sw}(X, Y) = \{X, Y\}(= \operatorname{colim}_{k}[S^{k}X, S^{k}Y])$, where $S^{k}X = S^{k} \wedge X$ for $k \ge 0$ and $S^{1}X = SX$. Then $HCpt_{sw}$, HCW_{sw} , $HfCW_{sw}$ denote the full subcategories of HCG_{sw} whose objects are all compacta, all CW complexes, all finite CW complexes, respectively.

The category of CW-spectra CW_{spec} is the category whose objects are all CW-spectra and whose morphisms are all maps of CW-spectra. Let fCW_{spec} denote the full subcategory of CW_{spec} whose objects are all finite CW-spectra. The suspension spectrum E(X) of a space X is the spectrum defined by

$$(E(X))_n = \begin{cases} S^n X, & n \ge 0, \\ *, & n < 0, \end{cases}$$

and if X is a CW complex, E(X) is called the suspension CW-spectrum. Let CW_{spec}^{s} denote the full subcategory of CW_{spec} whose objects are all suspension CW-spectra. Let HCW_{spec} denote the homotopy category of CW_{spec} . That is, $ObHCW_{spec}$ is the set of all CW-spectra, and for any two CW-spectra E and F, $HCW_{spec}(E, F)$ is the set of homotopy classes [E, F]. Let HCW_{spec}^{s} denote the full subcategory of HCW_{spec} whose objects are the suspension CW-spectra.

There is functor F_{sw} : **HCW** \rightarrow **HCW**_{sw} defined by $X \mapsto X$ for each $X \in Ob$ **HCW** and $[f] \mapsto \{f\}$ for each $[f] \in [X, Y]$ where $\{f\} \in \operatorname{colim}_k[S^kX, S^kY]$ is the element represented by $[f] \in [X, Y]$. Also, there is a functor F_{spec} : **HCW** \rightarrow **HCW**_{spec} defined by $X \mapsto E(X)$ for each CW complex X and $[f] \mapsto [E(f)]$ for each $[f] \in [X, Y]$ where $E(f): E(X) \rightarrow E(Y)$ is the map defined as

$$(E(f))_n = \begin{cases} S^n f : S^n X \to S^n Y, & n \ge 0, \\ * : * \to *, & n < 0. \end{cases}$$

For each $[f] \in [X, Y]$, we write E([f]) for the unique class [E(f)]. Moreover, there is an embedding of a category $R: HfCW_{sw} \to HCW_{spec}$ defined by $X \mapsto E(X)$ for each finite CW complex X and

$$(Rf)_n = \begin{cases} *, & n < k, \\ S^{n-k}f_k, & n \ge k, \end{cases}$$

if an element $f \in \{X, Y\}$ is represented by a map $f_k : S^k X \to S^k Y$. Then we have the commutativity of functors $R \circ F_{sw} | HfCW = F_{spec} | HfCW$.

2. Generalized stable shape categories

The stable shape category based on the Spanier–Whitehead category which is defined by Dold and Puppe [4] and Henn [5] is essentially the abstract shape theory (in the sense of Mardešić and Segal [9, I, [2]) for the pair of categories (**HCpt**_{sw}, **HfCW**_{sw}) as shown in the following theorem.

Theorem 2.1. HfCW_{sw} is a dense subcategory of HCpt_{sw}.

Proof. Let X be a compactum. Then there exists an HCW-expansion $p = (p_{\lambda})$: X $\rightarrow X = (X_{\lambda}, p_{\lambda\lambda'}, \Lambda)$ of X with each X_{λ} being a finite polyhedron. Then S(p) = $(Sp_{\lambda}): SX \to SX = (SX_{\lambda}, Sp_{\lambda\lambda'}, \Lambda)$ is an **HPol**-expansion of SX (see Ungar [15, Theorem 1.3]). On the other hand **p** induces a morphism $\bar{p} = (\bar{p}_{\lambda}): X \to \bar{X} =$ $(X_{\lambda}, \bar{p}_{\lambda\lambda'}, \Lambda)$ in **pro-HCpt**_{sw}, where $\bar{p}_{\lambda} = F_{sw}(p_{\lambda})$ and $\bar{p}_{\lambda\lambda'} = F_{sw}(p_{\lambda\lambda'})$. We claim that this is an HCW_{sw}-expansion of X. First note that each X_{λ} is a finite CW complex. Let $h: X \to P$ be a stable map (an S-map) to any CW complex, and let h be represented by an H-map $h_k: S^k X \to S^k P$. Then since $S^k P$ is a CW complex, by Ungar's result, there exist $\lambda \in \Lambda$ and an H-map $g_k: S^k X_{\lambda} \to S^k P$ such that $h_k = g_k(S^k p_\lambda)$. Let $g: X_\lambda \to P$ be the S-map represented by g_k . Then $h = g\bar{p}_\lambda$ in HCG_{sw} . Moreover, let $g, h: X_{\lambda} \to P$ be two S-maps to any CW complex such that $g\bar{p}_{\lambda} = h\bar{p}_{\lambda}$ in HCG_{sw}. Then there exists $k \ge 0$ such that $g_{k}(S^{k}p_{\lambda}) = h_{k}(S^{k}p_{\lambda})$ where $g_k: S^k X_\lambda \to S^k P$ and $h_k: S^k X_\lambda \to S^k P$ are H-maps representing g and h, respectively. Again by Ungar's result, there exists $\lambda' \ge \lambda$ such that $g_k(S^k p_{\lambda \lambda'}) = h_k(S^k p_{\lambda \lambda'})$. Thus $g\bar{p}_{\lambda\lambda'} = h\bar{p}_{\lambda\lambda'}$ in HCW_{sw} as required. Hence this proves our claim and completes the proof. \Box .

We denote by \mathbf{Sh}_{sw} the abstract shape category for the pair (\mathbf{HCpt}_{sw} , \mathbf{HfCW}_{sw}) and call it the stable shape category (or Spanier-Whitehead stable shape category or SW-shape category) for compacta.

Now we wish to define a generalized shape theory for the suspension spectra E(X) of any space X, using the suspension CW-spectra. Here we should note there is no map defined between spectra unless the domain is a CW-spectrum. Thus such a shape theory will not be an abstract shape theory for a pair of

categories in the sense of Mardešić and Segal but an "extension" of the homotopy theory on the category **HCW**_{spec}.

Let $p = (p_{\lambda}): X \to X = (X_{\lambda}, p_{\lambda\lambda'}, \Lambda)$ be an HCW-expansion of a space X, and let $E(X) = (E(X_{\lambda}), E(p_{\lambda\lambda'}), \Lambda)$ be the inverse system in HCW_{spec} induced from the inverse system X in HCW by the functor F_{spec} . A morphism $e: E(X) \to E =$ $(E_a, e_{aa'}, \Lambda)$ in **pro-HCW_{spec}** is said to be *a generalized expansion* of X in HCW_{spec} provided the following universal property is satisfied:

(U) if $f: E(X) \to F$ is a morphism in **pro-HCW**_{spec} then there exists a unique morphism $g: E \to F$ in **pro-HCW**_{spec} such that f = ge.

One should note here that the definition of a generalized expansion does not depend on the choice of the **HCW**-expansion $p = (p_{\lambda}): X \to X = (X_{\lambda}, p_{\lambda\lambda'}, \Lambda)$. Also note that for any two generalized expansions $e: E(X) \to E$ and $e': E(X) \to E'$ in **HCW**_{spec} there exists a unique isomorphism $i: E \to E'$ in **pro-HCW**_{spec} (which we call the *natural isomorphism*) such that ie = e'. It is easy to see that the identity induced morphism $E(X) \to E(X)$ is a generalized expansion of X in **HCW**_{spec}.

The following theorem gives a characterization of generalized expansions in HCW_{spec} .

Theorem 2.2. Let $e: E(X) \to E = (E_a, e_{aa'}, A)$ be a morphism in **pro-HCW**_{spec} which is represented by a morphism (e_a, φ) of inverse systems where $\mathbf{p} = (p_{\lambda}): X \to X$ $= (X_{\lambda}, p_{\lambda\lambda'}, A)$ is an **HCW**-expansion of any space X. Then e is a generalized expansion in **HCW**_{spec} if and only if the following two conditions are satisfied:

(GE1) Every morphism $h: E(X_{\lambda}) \to F$ in $\mathbf{HCW}_{\text{spec}}$ admits $a \in A$ and a morphism $g_a: E_a \to F$ in $\mathbf{HCW}_{\text{spec}}$ such that $hE(p_{\lambda\lambda'}) = g_a e_a E(p_{\varphi(a)\lambda'})$ for some $\lambda' \ge \lambda$, $\varphi(a)$. (GE2) If g_a , $h_a: E_a \to F$ are two morphisms in $\mathbf{HCW}_{\text{spec}}$ such that $g_a e_a E(p_{\varphi(a)\lambda})$

 $=h_a e_a E(p_{\varphi(a)\lambda}) \text{ for some } \lambda \geqslant \varphi(a), \text{ then there exists } a' \geqslant a \text{ such that } g_a e_{aa'} = h_a e_{aa'}.$

Proof. Suppose *e* is a generalized expansion, and let $h: E(X_{\lambda}) \to F$ be a morphism in HCW_{spec} . Then *h* represents a morphism $h: E(X) \to (F)$ in **pro-HCW**_{\text{spec}}, and there exists a morphism $g: E \to (F)$ in **pro-HCW**_{\text{spec}} such that $\mathbf{h} = ge$. If *g* is represented by a morphism $g_a: E_a \to F$ in HCW_{spec} , then h = ge implies the assertion in (GE1). For (GE2), let g_a , $h_a: E_a \to F$ be as in the hypothesis. Let g_a , h_a represent morphisms in **pro-HCW**_{\text{spec}}, *g*, $h: E \to (F)$, respectively. Then ge = he. By the uniqueness in the definition of a generalized expansion, g = h, which implies $g_a e_{aa'} = h_a e_{aa'}$ for some $a' \ge a$.

Conversely, assume that the assertions in (GE1) and (GE2) hold. Let e be represented by (e_a, φ) , and let $f: E(X) \to F = (F_b, f_{bb'}, B)$ be a morphism in

pro-HCW_{spec}, which is represented by (f_b, ψ) . Then by (GE1) for each $b \in B$ there exist $\eta(b) \in A$ and a morphism $g_b : E_{\eta(b)} \to F_b$ such that

$$f_b E(p_{\psi(b)\lambda}) = g_b e_{\eta(b)} E(p_{\varphi(\eta(b))\lambda}) \quad \text{for some } \lambda \ge \psi(b), \, \eta(b).$$
(1)

We claim that (g_b, η) defines a morphism $g: E \to F$ in pro-HCW_{spec} such that f = ge. Indeed, let $b \leq b'$ in B. Then

$$f_{b'}E(p_{\psi(b')\lambda'}) = g_{b'}e_{\eta(b')}E(p_{\varphi(\eta(b'))\lambda'}) \quad \text{for some } \lambda' \ge \psi(b'), \, \eta(b').$$

$$\tag{2}$$

Choose $a \in A$ such that $a \ge \eta(b)$, $\eta(b')$, and then take $\lambda'' \ge \lambda$, λ' , $\varphi(a)$ in Λ such that the following three equalities hold:

$$f_{bb'}f_{b'}E(p_{\psi(b')\lambda''}) = f_bE(p_{\psi(b)\lambda''}),$$
(3)

$$e_{\eta(b')a}e_{a}E(p_{\varphi(a)\lambda''}) = e_{\eta(b')}E(p_{\varphi(\eta(b'))\lambda''}),$$
(4)

$$e_{\eta(b)a}e_{a}E(p_{\varphi(a)\lambda''}) = e_{\eta(b)}E(p_{\varphi(\eta(b))\lambda''}).$$
(5)

Then (2), (3) and (1) imply

$$f_{bb'}g_{b'}e_{\eta(b')}E(p_{\varphi(\eta(b'))\lambda''}) = f_bE(p_{\psi(b)\lambda''}).$$
(6)

On the other hand (4) and (5) imply

$$f_{bb'}g_{b'}e_{\eta(b')a}e_{a}E(p_{\varphi(a)\lambda''}) = f_{bb'}g_{b'}e_{\eta(b')}E(p_{\varphi(\eta(b'))\lambda''})$$
(7)

and

$$g_{b}e_{\eta(b)a}e_{a}E(p_{\varphi(a)\lambda''}) = g_{b}e_{\eta(b)}E(p_{\varphi(\eta(b))\lambda''}).$$
(8)

Then (6), (7), (8) and (GE2) imply

$$f_{bb'}g_{b'}e_{\eta(b')a'} = g_b e_{\eta(b)a'} \quad \text{for some } a' \ge a.$$
(9)

This shows that (g_b, η) represents a morphism g in **pro-HCW**_{spec}, and (1) implies f = ge.

It remains to show the uniqueness of g. Suppose that $h: E \to F$ is a morphism in **pro-HCW**_{spec} such that ge = he, and let (g_b, η) and (h_b, ξ) represent g and h, respectively. Now, fix $b \in B$. Then ge = he implies

$$g_b e_{\eta(b)} E(p_{\varphi(\eta(b))\lambda}) = h_b e_{\xi(b)} E(p_{\varphi(\xi(b))\lambda}) \quad \text{for some } \lambda \ge \varphi(b), \, \xi(b). \tag{10}$$

Choose $a \ge \eta(b)$, $\xi(b)$ in A, and then take $\lambda' \ge \lambda$, $\varphi(a)$ in A such that

$$e_{\eta(b)a}e_{a}E(p_{\varphi(a)\lambda'}) = e_{\eta(b)}E(p_{\varphi(\eta(b))\lambda'})$$
(11)

and

$$e_{\xi(b)a}e_{a}E(p_{\varphi(a)\lambda'}) = e_{\xi(b)}E(p_{\varphi(\eta(b))\lambda'}).$$
(12)

Put
$$g'_{a} = g_{b}e_{\eta(b)a}$$
 and $h'_{a} = h_{b}e_{\xi(b)a}$. Then by (11), (10), and (12),
 $g'_{a}e_{a}E(p_{\varphi(\eta(b))\lambda'}) = g_{b}e_{\eta(b)}E(p_{\varphi(\eta(b))\lambda})E(p_{\lambda\lambda'})h_{b}e_{\xi(b)}E(p_{\varphi(\xi(b))\lambda})E(p_{\lambda\lambda'})$
 $= h'_{a}e_{a}E(p_{\varphi(\alpha)\lambda'}).$

This and (GE2) imply $g'_a e_{aa'} = h'_a e_{aa'}$ for some $a' \ge a$. Thus $g_b e_{\eta(b)a'} = h_b e_{\xi(b)a'}$, so that g = h. \Box .

143

Theorem 2.3. A morphism in pro-HCW_{spec}, $e: E(X) \to E = (E_a, e_{aa'}, A)$, where $p = (p_{\lambda}): X \to X = (X_{\lambda}, p_{\lambda\lambda'}, A)$ is an HCW-expansion of any space X, is a generalized expansion in HCW_{spec} if and only if e is an isomorphism in pro-HCW_{spec}.

Proof. Suppose that e is a generalized expansion in HCW_{spec} . Then the identity induced morphism $i: E(X) \to E(X)$ is a generalized morphism in HCW_{spec} , so that e is a natural isomorphism. The converse is obvious. \Box

Theorem 2.4. Every $HfCW_{sw}$ -expansion $q = (q_{\mu}): X \to Z = (Z_{\mu}, q_{\mu\mu'}, M)$ of a compactum X induces a generalized expansion $e: E(X) \to RZ = (E(Z_{\mu}), Rq_{\mu\mu'}, M)$ in HCW_{spec} where $p = (p_{\lambda}): X \to X = (X_{\lambda}, p_{\lambda\lambda'}, \Lambda)$ is any HCW-expansion of X.

Proof. Without loss of generality we can assume that each X_{λ} is finite. Since $p: X \to X$ is an HCW-expansion of X, it induces an HfCW_{sw}-expansion $\bar{p} = (\bar{p}_{\lambda}): X \to \bar{X} = (X_{\lambda}, \bar{p}_{\lambda\lambda'}, \Lambda)$ (see the proof of Theorem 2.1), so that there is a natural isomorphism $e: \bar{X} \to Z$ in pro-HfCW_{sw}. Thus it induces a natural isomorphism $E(X) \to E(Z)$ in pro-HCW_{spec}. Hence by Theorem 2.3 this is a generalized expansion in HCW_{spec}. \Box

Using generalized expansions, we define the generalized stable shape category \mathbf{Sh}_{spec} for spaces as follows: First let $Ob\mathbf{Sh}_{spec}$ be the set of all spaces. For any two spaces X and Y, let $\mathscr{C}_{(X,Y)}$ be the set of all morphisms $g: E \to F$ in **pro-HCW**_{spec} where $e: E(X) \to E = (E_a, e_{ad'}, A)$ and $f: E(X) \to F = (F_b, f_{bb'}, B)$ are generalized morphisms in **HCW**_{spec}. Then we define an equivalence relation \sim on $\mathscr{C}_{(X,Y)}$ as follows: for $g: E \to F$ and $g': E' \to F'$ in $\mathscr{C}_{(X,Y)}$, $g \sim g'$ if and only if the following diagram commutes in **pro-HCW**_{spec}:

$$E \xrightarrow{g} F$$

$$\downarrow \downarrow \downarrow j$$

$$E' \xrightarrow{g'} F'$$

where *i* and *j* are the natural isomorphisms. It is easy to verify that ~ is an equivalence relation on $\mathscr{E}_{(X,Y)}$. We define a morphism from X to Y as each equivalence class of $\mathscr{E}_{(X,Y)}$. Thus $\mathbf{Sh}_{spec}(X, Y) = \mathscr{E}_{(X,Y)}/\sim$. We write $Sh_{spec}(X) \leq Sh_{spec}(Y)$ (respectively, $Sh_{sw}(X) \leq Sh_{sw}(Y)$) provided X is dominated by Y in \mathbf{Sh}_{spec} (respectively, in \mathbf{Sh}_{sw}). Also we write $Sh_{spec}(X) = Sh_{spec}(Y)$ (respectively, $Sh_{sw}(X) = Sh_{spec}(X) = Sh_{spec}(Y)$ (respectively, $Sh_{sw}(X) = Sh_{sw}(Y)$) provided X is equivalent to Y in \mathbf{Sh}_{spec} (respectively, in \mathbf{Sh}_{sw}).

Theorem 2.5. There exists an embedding of categories Θ : $\mathbf{Sh}_{sw} \rightarrow \mathbf{Sh}_{spec}$.

Proof. For each compactum X, we define $\Theta: X \mapsto X$. Let $G: X \to Y$ be a morphism in \mathbf{Sh}_{sw} . Let $p = (p_{\lambda}): X \to X = (X_{\lambda}, p_{\lambda\lambda'}, \Lambda)$ and $q = (q_{\mu}): Y \to Y = (Y_{\mu}, q_{\mu\mu'}, M)$ be HCW-expansions of X and Y, respectively, such that X_{λ} and Y_{μ}

are finite polyhedra. By the proof of Theorem 2.1 these induce HCW_{sw}-expansions $\bar{p} = (\bar{p}_{\lambda}): X \to \bar{X} = (X_{\lambda}, \bar{p}_{\lambda\lambda'}, \Lambda) \text{ and } \bar{q} = (\bar{q}_{\mu}): Y \to \bar{Y} = (Y_{\mu}, \bar{q}_{\mu\mu'}, M).$ So, G is represented by a morphism $g: \overline{X} \to \overline{Y}$ of **pro-HCW**_{sw}. But then g induces a morphism $Rg: R\overline{X} = (E(X_{\lambda}), R\overline{p}_{\lambda\lambda'}, \Lambda) \rightarrow R\overline{Y} = (E(Y_{\lambda}), R\overline{q}_{\mu\mu'}, M).$ Since the X_{λ} and Y_{μ} are finite, $R\overline{X} = E(X)$ and $R\overline{Y} = E(Y)$. Since the identity induced morphisms $E(X) \rightarrow$ E(X) and $E(Y) \rightarrow E(Y)$ are generalized expansions in HCW_{spec} of X and Y, respectively, g represents a morphism $\Theta(G)$ in \mathbf{Sh}_{spec} . It is easy to see that the function $\Theta: G \mapsto \Theta(G)$ is well defined. That is, $\Theta(G)$ does not depend on the choice of the representative g. It is a routine to check Θ defines a functor. To see this is an embedding, we define a functor Θ' : Sh_{spec} | Cpt \rightarrow Sh_{sw} as follows, where Sh_{spec} |Cpt denotes the full subcategory of Sh_{spec} whose objects are all compacta: First for each compactum X, define $\Theta': X \mapsto X$. Let $G: X \to Y$ be a morphism in Sh_{spec} represented by a morphism in pro-HCW_{spec}, $g: E(X) \to E(Y)$. Since X_{λ} and Y_{μ} are finite, g induces a morphism $\overline{X} \to \overline{Y}$ in pro-HfCW_{sw}, so that it represents a morphism $\Theta'(G)$ in Sh_{sw}. Note that $\Theta'(G)$ does not depend on the choice of such g. Thus $\Theta': G \mapsto \Theta'(G)$ is well defined, and it is again a routine to check Θ' is a functor and that $\Theta \circ \Theta'$ and $\Theta' \circ \Theta$ are the identities on \mathbf{Sh}_{spec} |Cpt and \mathbf{Sh}_{sw} , respectively.

Let Sh denote the pointed shape category for spaces in the sense of Mardešić and Segal [9].

Theorem 2.6. There exists a functor $\Xi : \mathbf{Sh} \to \mathbf{Sh}_{spec}$ such that the restriction of Ξ on $\mathbf{Sh} | \mathbf{Cpt}$ factors through the embedding $\Theta : \mathbf{Sh}_{sw} \to \mathbf{Sh}_{spec}$ in Theorem 2.5.

Proof. For each space X, we define $\Xi: X \mapsto X$. Let $G: X \to Y$ be a morphism in Sh represented by a morphism in **pro-HCW**, $g: X = (X_{\lambda}, p_{\lambda\lambda'}, \Lambda) \to Y = (Y_{\mu}, q_{\mu\mu'}, M)$ where $p: X \to X$ and $q: Y \to Y$ are **HCW**-expansions of X and Y, respectively. Then g induces a morphism in **pro-HCW**_{spec}, $E(g): E(X) \to E(Y)$ where if g is represented by a morphism (g_{μ}, φ) of inverse systems then E(g) is the unique morphism represented by $(E(g_{\mu}), \varphi)$. Thus g represents a morphism $\Xi(G)$ in Sh_{spec}. It is a routine to check that Ξ is a functor, and it is easy to see that Ξ is the desired functor. \Box

Theorem 2.7. For any spaces X and Y, $Sh_{spec}(X, Y)$ has the structure of an Abelian group.

Proof. Let $e: E(X) \to E = (E_a, E_{aa'}, A)$ and $f: E(Y) \to F = (F_b, f_{bb'}, B)$ be generalized expansions in HCW_{spec} of X and Y, respectively. Then there is a one-to-one correspondence between $Sh_{spec}(X, Y)$ and **pro-HCW_{spec}(E, F)** = $\lim_{a} \operatorname{colim}_{b}[E_a, F_b]$. Since the $[E_a, F_b]$ are Abelian groups and the bonding maps $e_{aa'}$ and $f_{bb'}$ induce group homomorphisms, **pro-HCW_{spec}(E, F)** has an Abelian group structure. \Box

Theorem 2.8. For any spaces X and Y, if $Sh(S^kX) = Sh(S^kY)$ for some $k \ge 0$ then $Sh_{spec}(X) = Sh_{spec}(Y)$.

Proof. Let $p = (p_{\lambda}): X \to X = (X_{\lambda}, p_{\lambda\lambda'}, \Lambda)$ and $q = (q_{\mu}): Y \to Y = (Y_{\mu}, q_{\mu\mu'}, M)$ be HCW-expansions. Then there exists an isomorphism $f_k: S^k X \to S^k Y$ of **pro-HCW** which represents the isomorphism of **Sh**, $S^k X \to S^k Y$. Without loss of generality, we can assume that $\Lambda = M$ and that f_k is represented by a level morphism $(f_{k,\lambda}): S^k X = (S^k X_{\lambda}, S^k p_{\lambda\lambda'}, \Lambda) \to S^k Y = (S^k Y_{\lambda}, S^k q_{\lambda\lambda'}, \Lambda)$. We define a level morphism $(f_{\lambda}): E(X) \to E(Y)$ by

$$(f_{\lambda})_{q} = \begin{cases} S^{q-k}f_{k,\lambda}, & q \ge k, \\ *, & q < k. \end{cases}$$

This induces a morphism in **pro-HCW**_{spec}, $f : E(X) \to E(Y)$. Let $\lambda \in \Lambda$. Then there exist $\lambda' \ge \lambda$ and a morphism of **HCW** $g_{k,\lambda} : Y_{\lambda'} \to X_{\lambda}$ such that the following diagram commutes in **HCW**:

$$S^{k}X_{\lambda} \underbrace{\overbrace{f_{k,\lambda}}^{S^{k}p_{\lambda\lambda'}}}_{f_{k,\lambda}} S^{k}X_{\lambda'} \underbrace{f_{k,\lambda'}}_{S^{k}Y_{\lambda}} \underbrace{f_{k,\lambda'}}_{S^{k}q_{\lambda\lambda'}} S^{k}Y_{\lambda'}$$

We define a morphism of HCW_{spec} , $g_{\lambda}: Y_{\lambda'} \to X_{\lambda}$ by

$$(g_{\lambda})_{q} = \begin{cases} S^{q-k}g_{k,\lambda}, & q \ge k, \\ *, & q < k. \end{cases}$$

Then we obtain a commutative diagram in HCW_{spec}

so that the morphism $f: E(X) \to E(Y)$ is an isomorphism. Hence X and Y are equivalent in \mathbf{Sh}_{spec} . \Box

Let sd denote the shape dimension for pointed spaces (see Mardešić and Segal [9, II, §1]).

Theorem 2.9. Let X and Y be compact such that sd X = n and sd Y = m are finite. Then $Sh_{spec}(X) = Sh_{spec}(Y)$ implies $Sh(S^kX) = Sh(S^kY)$ for some $k \ge 0$.

Proof. Let $p = (p_{\lambda}): X \to X = (X_{\lambda}, p_{\lambda\lambda'}, \Lambda)$ and $q = (q_{\mu}): Y \to Y = (Y_{\mu}, q_{\mu\mu'}, M)$ be **HCW**-expansions such that the X_{λ} and Y_{μ} are finite polyhedra of dimension at most *n* and *m*, respectively. Suppose that $f: E(X) \to E(Y)$ is an isomorphism in

pro-HCW which represents the isomorphism in \mathbf{Sh}_{spec} . Without loss of generality, we can assume that $\Lambda = M$ and that f is represented by a level morphism $(f_{\lambda}): E(X) \to E(Y)$. Let $\lambda \in \Lambda$. Then there exists $\lambda' \ge \lambda$ and a morphism $g_{\lambda}: E(Y_{\lambda'}) \to E(X_{\lambda})$ such that the following diagram commutes in \mathbf{HCW}_{spec} :

Since all X_{λ} and Y_{λ} are finite, there exist $k \ge 0$ and maps $f_{\lambda,k}: S^{k}X_{\lambda} \to S^{k}Y_{\lambda}$, $f_{\lambda',k}: S^{k}X_{\lambda'} \to S^{k}Y_{\lambda'}$, and $g_{\lambda,k}: S^{k}Y_{\lambda'} \to S^{k}X_{\lambda}$ representing f_{λ} , $f_{\lambda'}$ and g_{λ} , respectively, such that the following diagram commutes in **HCW**:

By the Freudenthal suspension theorem, we can assume that k is independent of the choice of λ . Thus the morphism $f_k : S^k X \to S^k Y$ represented by the level morphism $(f_{\lambda,k})$ is an isomorphism of **pro-HCW**, so that $Sh(S^k X) = Sh(S^k Y)$ as $S^k p : S^k X \to S^k X$ and $S^k q : S^k Y \to S^k Y$ are **HCW**-expansions. \Box

Example 2.10. Let X be the 1-dimensional acyclic continuum ("figure-eight"-like continuum) described by Case and Chamberlin [3]. Mardešić and Segal [8] showed that X is nonmovable, so that $Sh(X) \neq Sh(*)$. However, its suspension SX is of trivial shape, i.e., Sh(SX) = Sh(*) (see Mardešić [7]). Hence by Theorem 2.8 we conclude that $Sh_{snec}(X) = Sh_{snec}(*)$.

3. Whitehead theorem for CW-spectra

The *nth homotopy group* $\pi_n(E)$ of CW-spectrum E is defined as the group $[\Sigma^n S^0, E] \approx \operatorname{dirlim}_k \pi_{n+k}(E_k)$. Here for all $n \in \mathbb{Z}$, Σ^n denote the suspension functors on $\operatorname{HCW}_{\operatorname{spec}}$, and S^0 denotes the suspension spectrum $E(S^0)$. Now we recall the well-known Whitehead-type theorem for CW-spectra.

Theorem 3.1. Let $f: E \to F$ be a map of CW-spectra such that $\pi_q(f): \pi_q(E) \to \pi_q(F)$ is an isomorphism for all $q \in \mathbb{Z}$. Then f is a homotopy equivalence of CW-spectra.

Proof. See Adams [2, Corollary 3.5, p. 150] or Switzer [14, Theorem 8.25, p. 144]. □

Note that every CW-spectrum E consists of cells $e = \{e_n^d, Se_n^d, S^2e_n^d, ...\}$ where e_n^d is a *d*-cell in the CW complex E_n and is not a suspension of any cell in E_{n-1} . Then we define the *dimension* of e (denoted dim e) as d-n, $n \in \mathbb{Z}$, and the *dimension* of the CW-spectrum E (denoted dim E) is defined as sus{dim e:e is a cell of E}. Similarly, if (E, F) is a pair of CW-spectra, then the *dimension* of (E, F) (denoted dim(E, F)) is defined as sus{dim e:e is a cell of (E, F)}. For the base point spectrum *, we define dim $* = -\infty$. If E is a CW-spectrum, we write $E^{(i)}$ for the *i*th skeleton of E.

In this section we prove a variation of Theorem 3.1 below (see Theorem 3.2). A map of CW-spectra $f: E \to F$ is an *n*-equivalence provided $\pi_q(f): \pi_q(E) \to \pi_q(F)$ is an isomorphism for $q \leq n-1$ and an epimorphism of q = n. A pair of CW-spectra (E, F) is said to be *n*-connected provided $\pi_q(E, F) = 0$ for $q \leq n$.

Theorem 3.2. Let $n \in \mathbb{Z} \cup \{\infty\}$, let $f : E \to F$ be a map of CW-spectra, which is an *n*-equivalence, and suppose dim $E \leq n-1$ and dim $F \leq n$. Then f is a homotopy equivalence of CW-spectra.

The proof follows that for Theorem 3.1. in Adams [2, III.3].

The *nth homotopy group* $\pi_n(E, F)$ of a pair of CW-spectra (E, F) is defined as the group $[\Sigma^{n-1}(D^1, S^0), (E, F)]$ where the pair of CW-spectra (D^1, S^0) is defined by

$$(D^1, S^0)_n = \begin{cases} *, & n < 0, \\ (D^{n+1}, S^n), & n \ge 0. \end{cases}$$

Then $\pi_n(E, F) \approx \operatorname{dirlim}_k[(D^{n+k}, S^{n+k-1}), (E_k, F_k)] = \operatorname{dirlim}_k \pi_{n+k}(E_k, F_k).$

Lemma 3.3. For any pair of CW-spectra (E, F) there is a natural exact sequence $\cdots \rightarrow \pi_n(F) \rightarrow \pi_n(E) \rightarrow \pi_n(E, F) \rightarrow \pi_{n-1}(F) \rightarrow \cdots$.

Lemma 3.3 immediately implies the following.

Lemma 3.4. A pair of CW-spectra (E, F) is n-connected if and only if the inclusion induced map of CW-spectra $i: E \rightarrow F$ is an n-equivalence.

Lemma 3.5. Let (E, F) be a pair of CW-spectra with dim $(E, F) \leq n$, and let (G, H) be an n-connected pair of CW-spectra. Suppose that there are a map of CW-spectra $f: E \to G$ and a homotopy $h: F \wedge I^+ \to G$ from $f \mid F$ to a map $g: F \to H \subseteq G$. Then h extends to a homotopy $k: E \wedge I^+ \to G$ such that $k_0 = f$ and k_1 is a map of E into H.

Proof. Let $f: E \to G$ and $h: F \wedge I^+ \to G$ be represented by functions $f': E' \to G$ and $h': F' \wedge I^+ \to G$ where F' and E' are cofinal subspectra of F and E, respectively, such that F' is a CW-subspectrum of E'.

First of all, let \mathscr{C} be the set of all the pairs (U, k') such that U is a CW-spectrum with $F' \subseteq U \subseteq E'$ and $k': U \wedge I^+ \to G$ is a function with $k'_0 = f' \mid U$

148

and $k'_1(U) \subseteq H$. Define an order < on \mathscr{C} by $(U_1, k'_1) < (U_2, k'_2)$ if and only if $U_1 \subseteq U_2$ and $k'_2 | U_1 = k'_1$. Then $(F', h') \in \mathscr{C}$, so that $\mathscr{C} \neq \emptyset$. Suppose that $\{(U_\alpha, k'_\alpha)\}$ is a chain in \mathscr{C} . Then $(\cup U_\alpha, k')$ where $k' : (\cup U_\alpha) \land I^+ \to G$ is defined by $k' | U_\alpha \land I^+ = k'_\alpha$, belongs to \mathscr{C} and is an upper bound of the chain. Thus, Zorn's lemma implies the existence of a maximal element $(U, k') \in \mathscr{C}$. We claim that U is cofinal in E'. Suppose to the contrary this is not the case. Then there is a subspectrum V such that $U \subseteq V \subseteq E'$ where V consists of U and just one more cell-spectrum, say

$$V_q = \begin{cases} U_q, & q < p, \\ U_q \cup S^{q-p} e_p^m, & q \geqslant p, \end{cases}$$

where e_p^m is an *m*-cell in E'_p . Then the restricted maps

$$\begin{cases} f'_{p} \mid e_{p}^{m} \wedge \{0\}^{+} : e_{p}^{m} \wedge \{0\}^{+} \to G_{p}, \\ k'_{p} \mid \partial e_{p}^{m} \wedge I^{+} : \left(\partial e_{p}^{m} \wedge I^{+}, \partial e_{p}^{m} \wedge \{1\}^{+}\right) \to \left(G_{p}, H_{p}\right) \end{cases}$$

define an element of $\pi_m(G_p, H_p)$ hence an element of $\pi_{m-p}(G, H) \approx \operatorname{dirlim}_q \pi_{m-p+q}(G_q, H_q)$. But since $m-p = \dim e_p^m \leq \dim(E, F) \leq n$, by the *n*-connectedness of (G, H), we have $\pi_{m-p}(G, H) = 0$. Thus there exists $r \geq 0$ such that the maps

$$\begin{cases} f'_{p+r} \mid S^r e_p^m \wedge \{0\}^+ : S^r e_p^m \wedge 0^+ \to G_{p+r}, \\ k'_{p+r} \mid \partial(S^r e_p^m) \wedge I^+ : (\partial(S^r e_p^m) \wedge I^+, \partial(S^r e_p^m) \wedge 1^+) \to (G_{p+r}, H_{p+r}) \end{cases}$$

represent the trivial element in $\pi_{m+r}(G_{p+r}, H_{p+r})$. So this extends to a map $l'_{p+r}: (S^r e_p^m \wedge I^+, S^r e_p^m \wedge \{1\}^+) \to (G_{p+r}, H_{p+r})$. Now we define a map $k''_{p+r}: V_{p+r} \wedge I^+ \to G_{p+r}$ by

$$\begin{cases} k''_{p+r} \mid U_{p+r} \wedge I^+ = k'_{p+r}, \\ k''_{p+r} \mid S'e_p^m \wedge I^+ = l'_{p+r}. \end{cases}$$

Then $(k''_{p+r})_0 = f'_{p+r} | V_{p+r}$ and $(k''_{p+r})_l(V_{p+r}) \subseteq H_{p+r}$. Define a CW-spectrum V" by

$$V_q'' = \begin{cases} U_q, & q$$

and a function $k'': V'' \wedge I^+ \rightarrow G$ by

$$k_q'' = \begin{cases} k_q', & q$$

Then $(V'', k'') \in \mathscr{C}$ and (U, k') < (V'', k''), contradicting the maximality of (U, k'). Thus U must be a cofinal subspectrum of E'. So, the function $k': U \wedge I^+ \to G$ defines a map of CW-spectra $k: E \wedge I^+ \to G$ which extends $h: F \wedge I^+ \to G$. \Box

Let $f: G \to H$ be a function of CW-spectra. Then we define a CW-spectrum M_f called the *mapping cylinder* of the function f by $(M_f)_n = M_{fn}$ (= the usual mapping cylinder of f_n).

Lemma 3.6. Let $f: G \to H$ be a function of CW-spectra, and let $i: G \to M_f$ and $j: H \to M_f$ be the functions such that $i_n: G_n \to M_{f_n}$ and $j_n: H_n \to M_{f_n}$ are the natural embeddings of CW complexes. Moreover, let $r: M_f \to H$ be the function such that $r_n: M_{f_n} \to H_n$ are the usual retractions. Then we have ri = f, $jf \simeq i$, $rj = 1_H$, and $jr \simeq 1_{M_c}$.

Lemma 3.7. Let $f: G \to H$ be a function of CW-spectra. Then there is an exact sequence

$$\cdots \to \pi_n(G) \to \pi_n(H) \to \pi_n(M_f, H) \to \pi_{n-1}(G) \to \cdots$$

Theorem 3.8. Let $f: G \to H$ be a function of CW-spectra, which is an n-equivalence. Then for every CW-spectrum E the induced function $f_*:[E, G] \to [E, H]$ is a bijection if dim $E \leq n-1$, and a surjection if dim $E \leq n$.

Proof. In view of Lemmas 3.6 and 3.7, we can assume that $f: G \to H$ is an inclusion function and (H, G) is an *n*-connected pair. First, let dim $E \leq n$. Take any map $g: E \to H$ of spectra. Consider g as a map of pairs of CW-spectra $g:(E, *) \to (H, G)$ where * is the base point spectrum. Then since dim $(E, *) \leq n$ and (H, G) is *n*-connected, by Lemma 3.4, there exists a map of CW-spectra $g': E \to G \subseteq H$ such that $g' \approx g$ as maps of CW-spectra $E \to H$. This shows the surjectivity.

On the other hand, let dim $E \le n-1$. Then dim $E \land I^+ \le n$. Suppose that g_1 , $g_2: E \to G$ are two maps of CW-spectra such that $fg_1 \simeq fg_2$ as maps into H. We define a map of pairs of CW-spectra

$$h: \left(E \wedge I^{+}, E \wedge \{0\}^{+} \cup * \wedge I^{+} \cup E \wedge \{1\}^{+}\right) \rightarrow (H, G)$$

as the homotopy from fg_1 to fg_2 . Then since dim $E \wedge I^+ \leq n$ and (H, G) is *n*-connected, by Lemma 3.5, there exists a map of CW-spectra $h': E \wedge I^+ \rightarrow G$ such that

$$h' | E \land \{0\}^+ \cup * \land I^+ \cup E \land \{1\}^+ = h | E \land \{0\}^+ \cup * \land I^+ \cup E \land \{1\}^+$$

This shows that $g_1 \simeq g_2$ as maps of E into G, so f_* is a monomorphism. \Box

Now Theorem 3.2 easily follows from Theorem 3.8.

4. Whitehead theorem for pro-CW-spectra

A morphism $f: E = (E_a, e_{ee'}, A) \rightarrow F = (F_b, f_{bb'}, B)$ in **pro-HCW**_{spec} is an *n*-equivalence provided the induced morphism in pro-groups $\pi_a(f): \pi_a(E) =$

 $(\pi_q(E_a), \pi_q(e_{ee'}), A) \rightarrow \pi_q(F) = (\pi_q(F_b), \pi_q(f_{bb'}), B)$ is an isomorphism for $q \le n$ -1 and an epimorphism for q = n.

Now we state a Whitehead-type theorem for pro-CW-spectra.

Theorem 4.1. Let $k, n \in \mathbb{Z}$ with $k \leq n$, let $f : E = (E_a, e_{ee'}, A) \rightarrow F = (F_b, f_{bb'}, B)$ be a morphism of **pro-HCW**_{spec} such that dim $E_a \leq n - 1$ and dim $F_b \leq n$ for all $a \in A$ and $b \in B$, and suppose that for each $b \in B$, dim $e \geq k$ for all cells $e \neq *$ of F_b . If f is an n-equivalence, then f is an isomorphism of **pro-HCW**_{spec}.

Before proving the theorem we need to establish a series of lemmas.

Lemma 4.2. Let $f: E \to F$ be a map of CW-spectra, which is an n-equivalence, and let R be a CW-spectrum. Then

(i) if dim $R \le n$, then every map of CW-spectra $h: R \to F$ admits a map of CW-spectra $k: R \to E$ such that $h \simeq fk$; and

(ii) if dim $R \le n-1$ and $k_1, k_2: R \to E$ are maps of CW-spectra such that $fk_1 = fk_2$, then $k_1 \simeq k_2$.

Proof. There exists a cofinal subspectrum E' of E and a function $f': E' \to F$ which represents f. Then f' is an *n*-equivalence. Then the assertions for f' hold because of Theorem 3.8. Hence the assertions hold for f. \Box

Lemma 4.3. Let $(E, F) = ((E_a, F_a), e_{ad'}, A)$ be an inverse system in pairs of CW-spectra. Then there is an exact sequence of pro-groups

 $\cdots \to \pi_n(F) \to \pi_n(E) \to \pi_n(E, F) \to \pi_{n-1}(F) \to \cdots$

Proof. Lemma 3.3 implies the following commutative diagram with the row being exact for all $a \leq a'$ in A:

which implies the exactness of the above sequence (see Mardešić and Segal [9, Theorem 10, p. 119]). \Box

Lemma 4.4. Suppose that there is a diagram in CW_{spec} which is commutative up to homotopy

$$E \xleftarrow{p} G$$

$$f \downarrow \qquad \qquad \downarrow g$$

$$F \xleftarrow{q} H$$

Then there exist cofinal subspectra E', G', H' of E, G, H, respectively, and functions $f': E' \to F$, $p': G' \to E'$, $q': H' \to F$, $g': G' \to H'$ and $r': M_{g'} \to M_{f'}$ such that the following diagram commutes in \mathbb{CW}_{spec} :

where i', j', k' and l' are the inclusion induced functions of CW-spectra.

Proof. There exist cofinal subspectra E', G', H' of E, G, H, respectively, and functions $f': E' \to F$, $p': G' \to E'$, $q': H' \to F$ such that for each $n \in \mathbb{Z}$ the following diagram is commutative up to pointed homotopy:

We choose a pointed map $r'_n: M_{g'_n} \to M_{f'_n}$ such that the following diagram commutes in **Top** for each $n \in \mathbb{Z}$ as in Mardešić and Segal [9, Lemma 3, p. 145]:

Then the following diagram also commutes for each $n \in \mathbb{Z}$:

Then $r' = \{r'_n\}: M_{g'} \to M_{f'}$ is a function of CW-spectra which makes the diagram (13) commutative. \Box

Lemma 4.5. Let $k \in \mathbb{Z}$ and $n \ge 1$, and for i = 0, 1, ..., n - 1, let $e_i: (E_i, F_i) \to (E_{i+1}, F_{i+1})$ be maps of pairs of CW-spectra such that if $n \ge 2$, the induced homomorphisms $(e_i)_{\#}: \pi_{i+k}(E_i, F_i) \to \pi_{i+k}(E_{i+1}, F_{i+1})$ are trivial for i = 1, 2, ..., n - 1. Furthermore suppose that for every i = 0, 1, ..., n - 1, E_i contains no cells $e \ne *$ of dimension less than k. Then the composite of maps of CW-spectra $e_{n-1} \cdots e_1 e_0: (E_0, F_0) \to (E_n, F_n)$ factors through an (n + k - 1)-connected pair of CW-spectra.

Proof. (Special case.) First, we assume that E_i , i = 0, 1, ..., n - 1, contain no cells of negative dimension. For i = 0, 1, ..., n - 1, we put

$$\begin{cases} H_{i} = (F_{0} \land I^{+}) \cup (E_{0}^{(i)} \land \{1\}^{+}) \subseteq E_{0}^{\prime} \land I^{+}, \\ G_{i} = (F_{0} \land I^{+}) \cup (E_{0}^{(i)} \land I^{+}) \cup (E_{0} \land \{0\}^{+}) \subseteq E_{0} \land I^{+}. \end{cases}$$

We wish to define maps of pairs of CW-spectra $g_i:(G_i, H_i) \to (E_{i+1}, F_{i+1})$ such that $g_0 | E_0 \land \{0\}^+ = e_0$ and $g_i | G_{i-1} = e_i g_{i-1}$ (see the diagram below).

Initial step: Consider the case i = 0. Put $g_0 | E_0 \wedge \{0\}^+ = e_0$ and $g_0 | F_0 \wedge I^+ = e_0 q$ where $q: F_0 \wedge I^+ \to F_0$ is the map of CW-spectra represented by the natural projections $q_n: (F_0 \wedge I^+)_n = (F_0)_n \wedge I^+ \to (F_0)_n$, $n \in \mathbb{Z}$. Then we wish to extend the map

$$g_0 | E_0 \wedge \{0\}^+ \cup F_0 \wedge I^+ : (E_0 \wedge \{0\}^+ \cup F_0 \wedge I^+, F_0 \wedge I^+) \to (E_1, F_1)$$

over (G_0, H_0) . Note that there exist cofinal subspectra E'_0 and F'_0 of E_0 and F_0 , respectively, such that $F'_0 \subseteq E'_0$ and $g_0 | E_0 \land \{0\}^+ \cup F_0 \land I^+$ is represented by a function

$$g'_0: (E'_0 \land \{0\}^+ \cup F'_0 \land I^+, F'_0 \land I^+) \to (E_1, F_1).$$

Let $e_{\alpha}^{0} = \{e_{q_{\alpha}}^{q_{\alpha}}, Se_{q_{\alpha}}^{q_{\alpha}}, \ldots\}$ be a 0-cell in E'_{0} , where $e_{q_{\alpha}}^{q_{\alpha}}$ is a q_{α} -cell in the CW complex $(E'_{0})_{q_{\alpha}}$. Then we define a map

$$\varphi_{\alpha,q_{\alpha}}: e_{q_{\alpha}}^{q_{\alpha}} \wedge \{0,1\}^{+} \to (E_{1})_{q_{\alpha}}$$

by the formulas

$$\begin{cases} \varphi_{\alpha,q_{\alpha}} | e_{q_{\alpha}}^{q_{\alpha}} \wedge \{1\}^{+} = *_{q_{\alpha}} (= \text{ the base point of } (E_{1})_{q_{\alpha}}), \\ \varphi_{\alpha,q_{\alpha}} | e_{q_{\alpha}}^{q_{\alpha}} \wedge \{0\}^{+} = (g_{0}')_{q_{\alpha}} | e_{q_{\alpha}}^{q_{\alpha}}. \end{cases}$$

We put $\varphi_{\alpha,q_{\alpha}+1} = S\varphi_{\alpha,q_{\alpha}}$. Then since $Se_{q_{\alpha}}^{q_{\alpha}} \wedge \{0, 1\}^{+} \approx S(e_{q_{\alpha}}^{q_{\alpha}} \wedge \{0, 1\}^{+}), \varphi_{\alpha,q_{\alpha}+1}$ is considered as a map

$$\varphi_{\alpha,q_{\alpha}+1}: Se_{q_{\alpha}}^{q_{\alpha}} \wedge \{0,1\}^{+} \to S(E_{1})_{q_{\alpha}} \subseteq (E_{1})_{q_{\alpha}+1}.$$

Since $S(E_1)_{q_{\alpha}}$ is path-connected and $Se_{q_{\alpha}}^{q_{\alpha}} \wedge \{0, 1\}^+ \subseteq Se_{q_{\alpha}}^{q_{\alpha}} \wedge I^+$ is a cofibration, $\varphi_{\alpha,q_{\alpha}+1}$ extends to a map

$$\tilde{\varphi}_{\alpha,q_{\alpha}+1}: Se_{q_{\alpha}}^{q_{\alpha}} \wedge I^{+} \to S(E_{1})_{q_{\alpha}} \subseteq (E_{1})_{q_{\alpha}+1}$$

We put

$$\tilde{\varphi}_{\alpha,m} = \begin{cases} S^{m-q_{\alpha}-1}\tilde{\varphi}_{\alpha,q_{\alpha}+1}, & m \ge q_{\alpha}+1, \\ *, & m < q_{\alpha}+1. \end{cases}$$

Then since $S^{m-q_{\alpha}}e_{q_{\alpha}}^{q_{\alpha}} \wedge I^{+} \approx S^{m-q_{\alpha}}(e_{q_{\alpha}}^{q_{\alpha}} \wedge I^{+}), \tilde{\varphi}_{\alpha,m}$ is considered as a map

$$\tilde{\varphi}_{\alpha,m}: S^{m-q_{\alpha}}e_{q_{\alpha}}^{q_{\alpha}} \wedge I^{+} \to S^{m-q_{\alpha}}(E_{1})_{q_{\alpha}} \subseteq (E_{1})_{m}.$$

We obtain CW-spectra E''_0 and F''_0 with $F''_0 \subseteq E''_0$ by replacing each *j*-cell ($j \ge 0$)

$$e_{\alpha}^{j} = \left\{ e_{q_{\alpha}}^{q_{\alpha}+j}, Se_{q_{\alpha}}^{q_{\alpha}+j}, \ldots \right\}$$

in E'_0 by a *j*-cell

$$\tilde{e}^{j}_{\alpha} = \left\{ Se^{q_{\alpha}+j}_{q_{\alpha}}, S^{2}e^{q_{\alpha}+j}_{q_{\alpha}}, \ldots \right\}.$$

Then we define a function $g''_0: (G''_0, H''_0) \rightarrow (E_1, F_1)$ by

$$\begin{cases} g_0'' \mid E_0'' \wedge \{0\}^+ \cup F_0'' \wedge I^+ = g_0' \mid E_0'' \wedge \{0\}^+ \cup F_0'' \wedge I^+, \\ g_0'' \mid \tilde{e}_{\alpha}^0 \wedge I^+ = \left(\tilde{\varphi}_{\alpha,q} : q \in \mathbb{Z}\right) & \text{for each 0-cell } \tilde{e}_{\alpha}^0 \text{ of } E_0'', \end{cases}$$

where

$$\begin{cases} G_0'' = E_0'' \wedge \{0\}^+ \cup F_0'' \wedge I^+ \cup E_0''^{(0)} \wedge I^+, \\ H_0'' = F_0'' \wedge I^+ \cup E_0''^{(0)} \wedge \{1\}^+. \end{cases}$$

Since G_1'' and H_0'' are cofinal in G_0 and H_0 , g_0'' defines a map $g_0: (G_0, H_0) \to (E_1, F_1)$ such that $g_0 | E_0 \land \{0\}^+ = e_0$.

Inductive step: Suppose $n \ge 2$ and suppose that a map $g_{i-1}: (G_{i-1}, H_{i-1}) \to (E_i, F_i)$ has been defined as required. We wish to define a map $g_i: (G_i, H_i) \to (E_{i+1}, F_{i+1})$ such that $g_i | G_{i-1} = e_i g_{i-1}$. Let e_i and g_{i-1} be represented by functions $e'_i: (E'_i, F'_i) \to (E_{i+1}, F_{i+1})$ and $g'_{i-1}: (G'_{i-1}, H'_{i-1}) \to (E'_i, F'_i)$ where E'_i and F'_i are cofinal subspectra of E_i and F_i with $F'_i \subseteq E'_i$, and

$$\begin{pmatrix} H'_{i-1} = (F'_0 \wedge I^+) \cup (E'_0^{(i-1)} \wedge \{1\}^+), \\ G'_{i-1} = (F'_0 \wedge I^+) \cup (E'_0^{(i-1)} \wedge I^+) \cup (E'_0 \wedge \{0\}^+) \end{cases}$$

154

with E'_0 and F'_0 are cofinal subspectra of E_0 and F_0 with $F'_0 \subseteq E'_0$. We first put $g'_i | G'_{i-1} = e'_i g'_{i-1} : (G'_{i-1}, H'_{i-1}) \to (E_{i+1}, F_{i+1})$. Let $e^i_{\alpha} = \{e^{q_{\alpha}+i}_{q_{\alpha}}, Se^{q_{\alpha}+i}_{q_{\alpha}}, \ldots\}$ be an *i*-cell of E'_0 where $e^{q_{\alpha}+i}_{q_{\alpha}}$ is a $(q_{\alpha}+i)$ -cell in $(E'_0)_{q_{\alpha}}$. Then the map

$$(g'_{i-1})_{q_{\alpha}} | \partial e^{q_{\alpha}+i}_{q_{\alpha}} \wedge I^{+} \cup e^{q_{\alpha}+i}_{q_{\alpha}} \wedge \{0\}^{+} : \left(\partial e^{q_{\alpha}+i}_{q_{\alpha}} \wedge I^{+} \cup e^{q_{\alpha}+i}_{q_{\alpha}} \wedge \{0\}^{+}, \partial e^{q_{\alpha}+i}_{q_{\alpha}} \wedge \{1\}^{+} \right) \rightarrow \left((E'_{i})_{q_{\alpha}}, (F'_{i})_{q_{\alpha}} \right)$$

defines an element of $\pi_{q_{\alpha}+i}((E'_{i})_{q_{\alpha}}, (F'_{i})_{q_{\alpha}})$ hence an element of

 $\pi_i(E_i, F_i) \approx \operatorname{dirlim}_m \pi_{i+m}((E'_i)_{i+m}, (F'_i)_{i+m}).$

Note that

$$\begin{split} & \left(S \Big(\partial e_{q_{\alpha}}^{q_{\alpha}+i} \wedge I^{+} \cup e_{q_{\alpha}}^{q_{\alpha}+i} \wedge \{0\}^{+} \Big), \, S \Big(\partial e_{q_{\alpha}}^{q_{\alpha}+i} \Big) \wedge \{1\}^{+} \Big) \\ & \approx \Big(\partial \Big(S e_{q_{\alpha}}^{q_{\alpha}+i} \Big) \wedge I^{+} \cup \Big(S e_{q_{\alpha}}^{q_{\alpha}+i} \Big) \wedge \{0\}^{+}, \, \partial \Big(S e_{q_{\alpha}}^{q_{\alpha}+i} \Big) \wedge \{1\}^{+} \Big) \\ & \approx \big(D^{q_{\alpha}+i+1}, \, S^{q_{\alpha}+i} \big). \end{split}$$

Thus the pair of CW-spectra (B, B') defined by

$$(B, B')_{k} = \begin{cases} \left(\partial \left(S^{k-q_{\alpha}} e_{q_{\alpha}}^{q_{\alpha}+i}\right) \wedge I^{+} \cup \left(S^{k-q_{\alpha}} e_{q_{\alpha}}^{q_{\alpha}+i}\right) \wedge \left\{0\right\}^{+}, \left(S^{k-q_{\alpha}} e_{q_{\alpha}}^{q_{\alpha}+i}\right) \wedge \left\{1\right\}^{+}\right), \\ k \ge q, \\ *, \quad k < q \end{cases}$$

is isomorphic to the pair of CW-spectra $(\Sigma^i D^1, \Sigma^i S^0)$. Hence, since $(e_i)_{\#} : \pi_i(E_i, F_i) \to \pi_i(E_{i+1}, F_{i+1})$ is trivial, there exists $m_{\alpha} \ge q_{\alpha}$ such that the map

$$\begin{split} \psi_{\alpha,m_{\alpha}} &= (e_{i}')_{m_{\alpha}}(g_{i-1}')_{m_{\alpha}} | \partial \left(S^{m_{\alpha}-q_{\alpha}} e_{q_{\alpha}}^{q_{\alpha}+i} \right) \wedge I^{+} \cup \left(S^{m_{\alpha}-q_{\alpha}} e_{q_{\alpha}}^{q_{\alpha}+i} \right) \wedge \left\{ 0 \right\}^{+} : \\ & \left(\partial \left(S^{m_{\alpha}-q_{\alpha}} e_{q_{\alpha}}^{q_{\alpha}+i} \right) \wedge I^{+} \cup \left(S^{m_{\alpha}-q_{\alpha}} e_{q_{\alpha}}^{q_{\alpha}+i} \right) \wedge \left\{ 0 \right\}^{+}, \partial \left(S^{m_{\alpha}-q_{\alpha}} e_{q_{\alpha}}^{q_{\alpha}+i} \right) \wedge \left\{ 1 \right\}^{+} \right) \\ & \rightarrow \left((E_{i+1})_{m_{\alpha}}, (F_{i+1})_{m_{\alpha}} \right) \end{split}$$

defines the trivial element of $\pi_{i+m_c}((E_{i+1})_{i+m_c}, (F_i)_{i+m_c})$. Thus it extends to a map

$$\tilde{\psi}_{\alpha,m_{\alpha}}:\left(\left(S^{m_{\alpha}-q_{\alpha}}e_{q_{\alpha}}^{q_{\alpha}+i}\right)\wedge I^{+},\left(S^{m_{\alpha}-q_{\alpha}}e_{q_{\alpha}}^{q_{\alpha}+i}\right)\wedge\left\{1\right\}^{+}\right)\rightarrow\left(\left(E_{i+1}\right)_{m_{\alpha}},\left(F_{i+1}\right)_{m_{\alpha}}\right)$$

We put

$$\tilde{\psi}_{\alpha,q} = \begin{cases} S^{q-m_{\alpha}}\tilde{\psi}_{\alpha,m_{\alpha}}, & q \ge m_{\alpha}, \\ *, & q < m_{\alpha}. \end{cases}$$

We define a cofinal pair of CW-spectra (E''_i, F''_i) of (E'_i, F'_i) in the following way: First we put $(E''_i)^{(i-1)} = (E'_i)^{(i-1)}$, and then we obtain $(E''_i)^{(i)}$ by replacing each *i*-cell

$$e^{i}_{\alpha} = \left\{ e^{q_{\alpha}+i}_{q_{\alpha}}, Se^{q_{\alpha}+i}_{q_{\alpha}}, \dots \right\}$$

of E'_i by the *i*-cell

$$\left(e_{\alpha}^{i}\right)^{m_{\alpha}}=\left\{S^{m_{\alpha}-q_{\alpha}}e_{q_{\alpha}}^{q_{\alpha}+i}, S^{m_{\alpha}-q_{\alpha}+1}e_{q_{\alpha}}^{q_{\alpha}+i},\ldots\right\}.$$

Accordingly, using induction on dimension, we define $(E''_i)^{(j)}$ for $j \ge i$ by replacing each *j*-cell

$$e_{\beta}^{j} = \left\{ e_{q_{\beta}}^{q_{\beta}+j}, Se_{q_{\beta}}^{q_{\beta}+j}, \dots \right\}$$

by a *j*-cell

$$\left(e_{\beta}^{j}\right)^{m_{\beta}} = \left\{S^{m_{\beta}-q_{\beta}}e_{q_{\beta}}^{q_{\beta}+j}, S^{m_{\beta}-q_{\beta}+1}e_{q_{\beta}}^{q_{\beta}+j}, \ldots\right\}$$

for some appropriate $m_{\beta} \ge q_{\beta}$. Also a subspectrum F''_i of F'_i is similarly defined, and (E''_i, F''_i) is a cofinal pair of CW-spectra of (E'_i, F'_i) . Then we can define a function $g''_i: (G''_i, H''_i) \to (E_{i+1}, F_{i+1})$ by

$$\begin{cases} g_i'' \mid G_{i-1}'' = e_i'g_{i-1}' \mid G_{i-1}'', \\ g_i'' \mid \tilde{e}_{\alpha}^i \wedge I^+ = \left(\tilde{\psi}_{\alpha,q} \colon q \in \mathbb{Z}\right) & \text{for each } i\text{-cell } \tilde{e}_{\alpha}^i \text{ of } E_i'', \end{cases}$$

where

$$\begin{cases} G_{i-1}'' = E_0'' \land \{0\}^+ \cup F_0'' \land I^+ \cup E_0''^{(i-1)} \land I^+, \\ G_i'' = E_0'' \land \{0\}^+ \cup F_0'' \land I^+ \cup E_0''^{(i)} \land I^+, \\ H_i'' = F_0'' \land I^+ \cup E_0''^{(i)} \land \{1\}^+. \end{cases}$$

Since (G''_i, H''_i) is cofinal in (G_i, H_i) , g''_i defines a map $g_i: (G_i, H_i) \to (E_{i+1}, F_{i+1})$ such that $g_i | G_{i-1} = e_i g_{i-1}$.

Now, having completed the diagram (14) for $n \ge 1$, we put $(G, H) = (G_{n-1}, H_{n-1})$. Then, since $(G, H) \approx (E_0, F_0 \cup E_0^{(n-1)})$ in $\text{HCW}_{\text{spec}}^2$ (= the category of the pairs of CW-spectra),

$$\begin{aligned} \pi_q(G', H') &\approx \pi_q(E'_0, F'_0 \cup E'^{(n-1)}_0) \\ &= \underset{k}{\operatorname{dirlin}} \Big[(D^{q+k}, S^{q+k-1}), ((E'_0)_k, (F'_0 \cup E'^{(n-1)}_0)_k) \Big] \\ &= \underset{k}{\operatorname{dirlin}} \Big[(D^{q+k}, S^{q+k-1}), ((E'_0)_k, (F'_0)_k \cup (E'_0)^{(n+k-1)}_k) \Big]. \end{aligned}$$

So $\pi_q(G', H') = 0$ for $q \le n-1$. Thus the map $e_{n-1} \cdots e_1 e_0 : (E_0, F_0) \to (E_n, F_n)$ factors through an (n-1)-connected pair of CW-spectra (G', H') in $\operatorname{HCW}^2_{\operatorname{spec}}$.

(General case.) Now we assume that dim $e \ge k$ for all cells $e \ne *$ in E_i , i = 0, 1,..., n - 1. Then $\Sigma^{-k}E_i$ contains no cells $e \ne *$ of negative dimension for each i = 0, 1, ..., n - 1. Consider the maps of CW-spectra $\Sigma^{-k}e_i: (\Sigma^{-k}E_i, \Sigma^{-k}F_i) \rightarrow (\Sigma^{-k}E_{i+1}, \Sigma^{-k}F_{i+1})$. Then $(\Sigma^{-k}e_i)_{\equiv}: \pi_i(\Sigma^{-k}E_i, \Sigma^{-k}F_i) \rightarrow \pi_i(\Sigma^{-k}E_{i+1}, \Sigma^{-k}F_{i+1})$ are trivial. Thus by the first part of the proof, $(\Sigma^{-k}e_{n-1})\cdots(\Sigma^{-k}e_1)(\Sigma^{-k}e_0)$: $(\Sigma^{-k}E_0, \Sigma^{-k}F_0) \rightarrow (\Sigma^{-k}E_n, \Sigma^{-k}F_n)$ factors through an (n - 1)-connected pair of CW-spectra (G, H) in $\operatorname{HCW}_{\operatorname{spec}}^2$. So, $e_{n-1}\cdots e_1e_0:(E_0, F_0) \rightarrow (E_n, F_n)$ factors through an (n + k - 1)-connected pair of CW-spectra $(\Sigma^k G, \Sigma^k H)$ in $\operatorname{HCW}_{\operatorname{spec}}^2$ as required. \Box

156

An inverse system (E, F) of CW-spectra is said to be *n*-connected if $\pi_q(E, F) = 0$ for all $q \le n$.

Lemma 4.6. Let $k, n \in \mathbb{Z}$ with $k \leq n$, and suppose that $(E, F) = ((E_a, F_a), e_{aa'}, A)$ be an inverse system in **HCW**_{spec}, which is n-connected. Suppose that for every $a \in A$, E_a contains no cells $e \neq *$ of dimension less than k. Then every $a \in A$ admits $a' \geq a$ such that the map $e_{aa'}: (E_{a'}, F_{a'}) \rightarrow (E_a, F_a)$ factors through an n-connected pair of CW-spectra (G, H).

Proof. Let $a_0 = a \in A$. Since (E, F) is *n*-connected, there exists $a_1 \ge a_0$ such that $(e_{a_0a_1})_{\#}: \pi_k(E_{a_1}, F_{a_1}) \to \pi_k(E_{a_0}, F_{a_0})$ is trivial. Continuing this process, we obtain $a_0 \le a_1 \le \cdots \le a_{n-k+1}$ such that $(e_{a_ia_i+1})_{\#}: \pi_{i+k}(E_{a_{i+1}}, F_{a_{i+1}}) \to \pi_{i+k}(E_{a_i}, F_{a_i})$ are trivial for $i = 0, 1, \ldots, n-k$. Thus since $e_{a_0a_{n-k+1}} = e_{a_{n-k}a_{n-k+1}} \cdots e_{a_0a_1}$, by Lemma 4.5, $e_{a_0a_{n-k+1}}: (E_{a_{n-k+1}}, F_{a_{n-k+1}}) \to (E_{a_0}, F_{a_0})$ factors through an *n*-connected pair of CW-spectra (G, H). \Box

Lemma 4.7. Let $n \in \mathbb{Z}$, and let $(f_a): E = (E_a, e_{aa'}, A) \rightarrow F = (F_a, f_{aa'}, A)$ be a level morphism of inverse systems in HCW_{spec} which represents an n-equivalence $f: E \rightarrow F$. Then every $a \in A$ admits an increasing subsequence $A' = (a_m)$ of A with $a_1 = a$ such that the restriction (f_{a_m}) to A' also represents an n-equivalence.

Proof. This can be proven as in Mardešić and Segal [9, Lemma 4, p. 148].

Lemma 4.8. Let $n, k \in \mathbb{Z}$ with $k \leq n$, and let $(g_a): E = (E_a, e_{aa'}, A) \rightarrow F = (F_a, f_{aa'}, A)$ be a level morphism of inverse systems in HCW_{spec} . Suppose that every F_a contains no cells $e \neq *$ of dimension less than k. Then $(g_a): E \rightarrow F$ induces an *n*-equivalence f if and only if every $a \in A$ admits $a' \geq a$ such that $e_{aa'}$ and $f_{aa'}$ factor in HCW_{spec} through CW-spectra P and Q, and there is an n-equivalence of CW-spectra g : $P \rightarrow Q$ which makes the following diagram commute in HCW_{spec} :

$$E_{a} \underbrace{\overbrace{p} P \swarrow p'}_{g_{a}} E_{a'}$$

$$g_{a} \bigvee_{F_{a}} \underbrace{Q }_{f_{a'}} \underbrace{Q}_{f_{a'}} \underbrace{Q}_{f_{a'}} \underbrace{P}_{a'}$$

$$(15)$$

Proof. Sufficiency is proven just as in Mardešić and Segal [9, Theorem 1, p. 145]. For necessity, it suffices to assume $A = \mathbb{N}$ by virtue of Lemma 4.7. By Lemma 4.4 there exists a commutative diagram in CW_{snec}

where E'_m and F'_m are cofinal subspectra of E_m and F_m , respectively, $e'_{m-1,m}: E'_m \to E'_{m-1}$ and $f'_{m-1,m}: F'_m \to F'_{m-1}$ are functions representing maps representing the homotopy classes $e_{m-1,m}$, $f_{m-1,m}$, respectively, and $r'_{m-1,m}$, i'_m , j'_m are the corresponding functions in Lemma 4.4. Put $E' = (E'_m, e'_{m-1,m}, \mathbb{N})$, $Z' = (M_{f'_m}, r'_{m-1,m}, \mathbb{N})$ and $F' = (F'_m, f'_{m-1,m}, \mathbb{N})$. These are objects of **pro-HCW**_{spec}. Also, $([i'_m])$, $([j'_m])$, and $([f'_m])$ represent morphisms of **pro-HCW**_{spec}, $i': E' \to Z'$, $j': Z' \to F'$, and $f': E' \to F'$, respectively. Then, by Lemma 3.6, i' = j'f', and j' is an isomorphism of **pro-HCW**_{spec}. So, since f' is an *n*-equivalence, i' is also an *n*-equivalence. By Lemma 3.7 and the commutativity in diagram (13), there is an exact sequence of pro-groups

$$\cdots \rightarrow \pi_q(E') \rightarrow \pi_q(Z') \rightarrow \pi_q(Z', E') \rightarrow \pi_{q-1}(E') \rightarrow \cdots$$

[9, Theorem 9, p. 119] implies $\pi_q(\mathbf{Z}', \mathbf{E}') = 0$ for $q \leq n$. Then, Lemma 4.6 implies that for every *m*, there is $m' \geq m$ such that $r'_{mm'}$ factors through an *n*-connected pair of CW-spectra (G, H) in $\mathbf{HCW}_{\text{spec}}^2$ since for each $m \in \mathbb{Z}$, M'_{f_m} contains no cells $e \neq *$ of dimension less than *k*. Let $i: H \to G$ be the homotopy class of the inclusion induced map of CW-spectra. Then we have the following commutative diagram in $\mathbf{HCW}_{\text{spec}}$:

$$\begin{bmatrix} i'_{m} \end{bmatrix} \downarrow \begin{bmatrix} e'_{mm'} & e'_{mm'} \\ p & H' p' \\ i \downarrow \\ i \downarrow \\ f'_{m'} & f'_{m'} & f'_{m''} \end{bmatrix} \begin{bmatrix} i'_{m'} \\ [i'_{m'}] \\ f'_{m'} & f'_{m'} \\ f'_{m'} & f'_{m''} \end{bmatrix} \begin{bmatrix} f'_{m'} \\ f'_{m'} \\ f'_{m''} \end{bmatrix} \begin{bmatrix} f'_{mm'} \\ f'_{m'} \\ f'_{mm'} \end{bmatrix} \begin{bmatrix} f'_{mm'} \\ f'_{m''} \\ f'_{mm'} \end{bmatrix} \begin{bmatrix} f'_{mm'} \\ f'_{m''} \\ f'_{mm'} \end{bmatrix} \begin{bmatrix} f'_{mm'} \\ f'_{mm'} \\ f'_{mm'} \end{bmatrix} \begin{bmatrix} f'_{mm'} \\ f'_{mm'} \\ f'_{mm'} \end{bmatrix} \begin{bmatrix} f'_{mm'} \\ f'_{mm'} \\ f'_{mm'} \\ f'_{mm'} \end{bmatrix} \begin{bmatrix} f'_{mm'} \\ f'_{mm'} \\ f'_{mm'} \\ f'_{mm'} \\ f'_{mm'} \end{bmatrix} \begin{bmatrix} f'_{mm'} \\ f'$$

Since (G, H) is *n*-connected, $i: H \to G$ is an *n*-equivalence by Lemma 3.4. Thus we put (P, Q) = (G, H), $q' = s'[j'_m]$, and $q = [j'_m]^{-1}s$. \Box

Lemma 4.9. Let $n, k \in \mathbb{Z}$ with $k \leq n$, and $(g_a): E = (E_a, e_{aa'}, A) \rightarrow F = (F_a, f_{aa'}, A)$ be a level morphism of inverse systems in HCW_{spec} , which is an n-equivalence $g: E \rightarrow F$. Suppose that every F_a contains no cells $e \neq *$ of dimension less than k. Then every $a \in A$ admits $a' \geq a$ such that the following two statements hold:

(i) if R is a CW-spectrum of dim $R \le n$, then every morphism $h: R \to F_{a'}$ in **HCW**_{spec} admits a morphism $k: R \to E_a$ such that $g_a k = f_{aa'} h$;

(ii) if R is a CW-spectrum of dim $R \le n-1$ and $k_1, k_2: R \to E_{a'}$ are morphisms in HCW_{spec} such that $g_{a'}k_1 = g_{a'}k_2$, then $e_{aa'}k_1 = e_{aa'}k_2$.

Proof. This immediately follows from Lemmas 4.8 and 4.2. \Box

Now we can easily prove Theorem 4.1, following Mardešić and Segal [9, Theorem 3, p. 149].

5. Dimensions in stable shape categories

In order to state Whitehead theorems in \mathbf{Sh}_{spec} and \mathbf{Sh}_{sw} , we need notions of dimension in these categories.

For k, $n \in \mathbb{Z}$ with $k \leq n$ and for every space X, we say the stable shape dimension $k \leq \operatorname{sd}_{\operatorname{spec}} X \leq n$ if whenever $e: E(X) \to E = (E_a, e_{aa'}, A)$ is a generalized expansion in $\operatorname{HCW}_{\operatorname{spec}}$, then every $a \in A$ admits $a' \geq a$ such that $e_{aa'}$ factors in $\operatorname{HCW}_{\operatorname{spec}}$ through a CW-spectrum F such that (i) dim $F \leq n$ and (ii) whenever $e \neq *$ is a cell of F, dim $e \geq k$. For $k, n \in \mathbb{Z}$, we say the stable shape dimension $k \leq \operatorname{sd}_{\operatorname{spec}} X \leq \infty$ (respectively, $-\infty \leq \operatorname{sd}_{\operatorname{spec}} X \leq n$) if whenever $e: E(X) \to E = (E_a, e_{aa'}, A)$ is a generalized expansion in $\operatorname{HCW}_{\operatorname{spec}}$, then every $a \in A$ admits $a' \geq a$ such that $e_{aa'}$ factors in $\operatorname{HCW}_{\operatorname{spec}}$ through a CW-spectrum F such that whenever $e \neq *$ is a cell of F, dim $e \geq k$ (respectively, dim $F \leq n$).

For $k, n \in \mathbb{Z}$ with $k \leq n$ and for every compactum X, we say the *SW-shape* dimension $k \leq \operatorname{sd}_{\operatorname{sw}} X \leq n$ provided whenever $\mathbf{r} = (r_a): X \to \mathbf{Z} = (Z_a, r_{aa'}, A)$ is an **HCW**_{sw}-expansion of X, then every $a \in A$ admits $a' \geq a, m \in [-n, -k]$ and a CW complex P of dim $P \leq m + n$ such that for some $l \geq -m$ and H-map $(r_{aa'})_{m+1}: S^{m+1}Z_{a'} \to S^{m+1}Z_a$ representing $r_{aa'}$ factors in **HCW** through S^lP . For $k, n \in \mathbb{Z}$ and for every compactum X, we say the *SW-shape* dimension $k \leq \operatorname{sd}_{\operatorname{sw}} X \leq \infty$ (respectively, $-\infty \leq \operatorname{sd}_{\operatorname{sw}} X \leq n$) provided whenever $\mathbf{r} = (r_a): X \to \mathbf{Z} = (Z_a, r_{aa'}, A)$ is an **HCW**_{sw}-expansion of X, then every $a \in A$ admits $a' \geq a, m \in (-\infty, -k]$ (respectively, $m \in [-n, \infty)$) and a CW complex P (respectively, a CW complex Pof dim $P \leq m + n$) such that for some $l \geq -m$ an H-map $(r_{aa'})_{m+1}: S^{m+l}Z_{a'} \to S^{m+l}Z_a$ representing $r_{aa'}$ factors in **HCW** through S^lP .

For $-\infty < k \le n < \infty$, it is obvious that $k \le \operatorname{sd}_{\operatorname{spec}} X \le n$ implies $k \le \operatorname{sd}_{\operatorname{spec}} X \le n + 1$ and $k - 1 \le \operatorname{sd}_{\operatorname{spec}} X \le n$, and that $k \le \operatorname{sd}_{\operatorname{spec}} X \le n$ implies $k \le \operatorname{sd}_{\operatorname{spec}} X \le \infty$ and $-\infty \le \operatorname{sd}_{\operatorname{spec}} X \le n$. Analogous facts also hold for $\operatorname{sd}_{\operatorname{sw}}$.

For convenience we assume that for any space (respectively, compactum) X, $-\infty \leq \mathrm{sd}_{\mathrm{spec}} X \leq \infty$ (respectively, $-\infty \leq \mathrm{sd}_{\mathrm{sw}} X \leq \infty$) is a true statement.

Proposition 5.1. For any $k, n \in \mathbb{Z}$ with $k \leq n$ and for every space X, the following are equivalent:

(i) $k \leq \operatorname{sd}_{\operatorname{spec}} X \leq n$;

(ii) there exists a generalized expansion in HCW_{spec} , $e: E(X) \to E = (E_a, e_{aa'}, A)$ with the property that every $a \in A$ admits $a' \ge a$ such that $e_{aa'}$ factors in HCW_{spec} through a CW-spectrum F of dim $F \le n$ with dim $e \ge k$ for all cells $e \ne *$ of F;

(iii) there exists a generalized expansion in HCW_{spec} , $e: E(X) \to E = (E_a, e_{aa'}, A)$ such that for each $a \in A$, dim $E_a \leq n$ and dim $e \geq k$ for all cells $e \neq *$ of E_a .

Proof. (i) \Rightarrow (ii) is trivial. We show the implication (ii) \Rightarrow (iii). For each $a \in A$ we take $a' \ge a$ as in (ii). Let Ω be the set of pairs $(a, a'), a \in A$, and define an order \le^* on Ω by $(a, a') \le^* (b, b')$ if (a, a') = (b, b') or $a' \le b$ in A. Then it is easy to see that (Ω, \le^*) forms a directed set. For each $\alpha = (a, a') \in \Omega$, there exist a

CW-spectrum F_{α} and morphisms $p_{\alpha}: E_{a'} \to F_{\alpha}$ and $q_a: F_{\alpha} \to E_a$ in HCW_{spec} such that $e_{aa'} = q_a p_a$ and dim $F_{\alpha} \leq n$ and dim $e \geq k$ for all cells $e \neq *$ of F_{α} . For $\alpha = (a, a') \leq * \beta = (b, b')$ in Ω , we define $f_{\alpha\beta} = p_a e_{a'b} q_b: F_{\beta} \to F_{\alpha}$. Then $F = (F_{\alpha}, f_{\alpha\beta}, \Omega)$ forms an inverse system in HCW_{spec}. Let $e: E(X) \to E = (E_a, e_{aa'}, A)$ be represented by a morphism (e_a, φ) of inverse systems. Then we define a function $\psi: \Omega \to \Lambda$ by $\psi(\alpha) = \varphi(a')$ for each $\alpha = (a, a') \in \Omega$ and a morphism $f_{\alpha} = p_a e_a: E(X_{\psi(\alpha)}) \to E_a$ for each $\alpha = (a, a')$. Then (f_{α}, ψ) forms a morphism of inverse systems in HCW_{spec} and hence represents a morphism in **pro-HCW_{spec}**, $f: E(X) \to F$. It is a routine to check that f satisfies the conditions (GE1) and (GE2) in Theorem 2.2. Hence f is a desired generalized expansion.

It remains to show the implication (iii) \Rightarrow (i). Let $e: E(X) \rightarrow E = (E_a, e_{aa'}, A)$ be a generalized expansion in HCW_{spec} as in the condition (iii), and let $f: E(X) \rightarrow F = (F_b, f_{bb'}, B)$ be any generalized expansion in HCW_{spec} . Fix $b \in B$. There is a natural isomorphism $g: F \rightarrow E$ and let $h: E \rightarrow F$ be its inverse morphism. Also let g and h be represented by (g_a, φ) and (h_b, ψ) , respectively. Then there is $b' \ge b$, $\varphi(\psi(b))$ such that $f_{bb'} = h_b g_{\psi(b)} p_{\varphi(\psi(b))b'}$. Thus $f_{bb'}: F_{b'} \rightarrow F_b$ factors through E_a as desired. \Box

Proposition 5.2. For every $k, n \in \mathbb{Z}$ with $k \leq n$ and for every compactum X, the following are equivalent:

(i) $k \leq \operatorname{sd}_{sw} X \leq n$;

(ii) there exists an HCW_{sw} -expansion $r = (r_a): X \to Z = (Z_a, r_{aa'}, A)$ with the property that every $a \in A$ admits $a' \ge a$, $m \in [-n, -k]$ and a CW complex p of dim $P \le m + n$ such that for some $l \ge -m$, the H-map $(r_{aa'})_{m+l}: S^{m+l}Z_{a'} \to S^{m+l}Z_a$ representing $r_{aa'}$ factors in HCW through S^lP .

Proof. (i) \Rightarrow (ii) is trivial, and (ii) \Rightarrow (i) is proven just as the implication (iii) \Rightarrow (i) of Proposition 5.1. \Box

Theorem 5.3. For every compactum X and for each k, $n \in \mathbb{Z} \cup \{\infty\}$ with $k \leq n$, $k \leq \operatorname{sd}_{\operatorname{spec}} X \leq n$ if and only if $k \leq \operatorname{sd}_{\operatorname{sw}} X \leq n$.

Proof. First, we assume $k, n \in \mathbb{Z}$ with $k \leq n$. Suppose that $k \leq sd_{sw}X \leq n$, and let $p = (p_a): X \to X = (X_a, p_{aa'}, A)$ be an **HCW**-expansion of X such that the X_a are finite CW complexes. Fix $a \in A$. Choose $a' \geq a$, $m \in [-n, -k]$ and a CW complex P of dim $P \leq n + m$ such that $(r_{aa'})_{m+1} = h_{m+1}g_{m+1}$ for some $l \geq -m$ and H-maps $g_{m+1}: S^{m+1}X_{a'} \to S^lP$ and $h_{m+1}: S^lP \to S^{m+1}X_a$ are H-maps. Since $X_{a'}$ is finite, we can choose P so that P is a finite CW complex. Let F be the CW-spectrum defined by

$$F_i = \begin{cases} S^{i-m}P, & i \ge m+l, \\ *, & i < m+l. \end{cases}$$

Then dim $F \leq n$ and dim $e \geq k$ for all cells $e \neq *$ of F, and the map $E(p_{aa'}): E(X_{a'}) \rightarrow E(X_{a})$ factors in **HCW**_{spec} through the CW-spectrum F. Hence $k \leq \operatorname{sd}_{\operatorname{spec}} X \leq n$.

Conversely, suppose that $k \leq \operatorname{sd}_{\operatorname{spec}} X \leq n$. Let $p = (p_a): X \to X = (X_a, p_{aa'}, A)$ be as above, and fix $a \in A$. Then there exists $a' \geq a$ such that $E(p_{aa'}) = hg$ where $g: E(X_{a'}) \to F$ and $h: F \to E(X_a)$ are morphisms in HCW_{spec}, and F is a CW-spectrum of dim $F \leq n$ and dim $e \geq k$ for all cells $e \neq *$ of F. Again, since $X_{a'}$ is a finite CW complex, we can assume F to be a finite CW-spectrum. Let m = $-\inf\{\dim e: e \text{ is a cell of } F\}$ and let P be the CW complex F_m . Then $m \leq -k$. Since F_m and $X_{a'}$ are finite CW complexes, there exists $l \geq -m$ such that $S^{m+l}p_{aa'} = h_{m+l}g_{m+l}$ where $g_{m+l}: S^{m+l}X_{a'} \to S^lF_m$ and $h_{m+l}: S^lF_m \to S^{m+l}X_a$ are H-maps representing g and h, respectively. Also dim $F_m \leq n + m$ since dim $F \leq n$. Hence $k \leq \operatorname{sd}_{\operatorname{spec}} X \leq n$. The cases where $k = -\infty$ or $n = \infty$ can be proven similarly. \Box

Theorem 5.4. Suppose that X and Y are two spaces (compacta) with $Sh_{spec}(X) = Sh_{spec}Y$ ($Sh_{sw}(X) = Sh_{sw}(Y)$). Then for k, $n \in \mathbb{Z} \cup \{\infty\}$ with $k \leq n$, $k \leq sd_{spec}X \leq n$ ($k \leq sd_{sw}X \leq n$) if and only if $k \leq sd_{spec}Y \leq n$ ($k \leq sd_{sw}Y \leq n$).

Proof. Let X and Y be spaces, and $Sh_{spec}(X) \leq Sh_{spec}(Y)$. We wish to show $k \leq sd_{spec}Y \leq n$ implies $k \leq sd_{spec}X \leq n$. We assume $k, n \in \mathbb{Z}$, and the case where $k = -\infty$ or $n = \infty$ is proven similarly. Suppose $k \leq sd_{spec}Y \leq n$. Suppose that $G: X \to Y$ and $G': Y \to X$ be morphisms in \mathbf{Sh}_{spec} such that G'G = 1, and let G and G' be represented by morphisms in $\mathbf{pro-HCW}_{spec}$, $g: E = (E_a, e_{ee'}, A) \to F = (F_b, f_{bb'}, B)$ and $g': F \to E$ where $e: E(X) \to E$ is any generalized expansion in \mathbf{HCW}_{spec} and $f: E(X) \to F$ is a generalized expansion in \mathbf{HCW}_{spec} such that for each $b \in B$, dim $F_b \leq n$ and dim $e \geq k$ for all cells $e \neq *$ of F_b . Fix $a \in A$. Also let g and g' be represented by (g_b, φ) and (g'_a, ψ) , respectively. Then choose $a' \geq a$, $\varphi(\psi(a))$. Then $e_{aa'} = g'_a g_{\psi(a)} e_{\varphi(\psi(a))a'}$, so that $e_{aa'}: E_{a'} \to E_a$ factors through a CW-spectrum $F_{\psi(a)}$ of dimension at most n and dim $e \geq k$ for all cells $e \neq *$ of $F_{\psi(a)}$. Thus $k \leq sd_{spec}X \leq n$. This implies that sd_{spec} is invariant in \mathbf{Sh}_{spec} . That sd_{sw} is invariant in \mathbf{Sh}_{sw} follows from the first part of the proof, Theorem 5.3, and Theorem 2.5. \Box

Theorem 5.5. For every space X of sd $X < \infty$, $0 \leq \text{sd}_{\text{spec}} X \leq \text{sd} X$.

Proof. Suppose that sd $X \le n$. Then X admits an HCW-expansion $p = (p_{\lambda}): X \to X = (X_{\lambda}, p_{\lambda X}, \Lambda)$ such that dim $X_{\lambda} \le n$, which induces a generalized HCW_{spec}-expansion of X, $e: E(X) \to E(X)$. \Box

Example 5.6. Let X be the 1-dimensional acyclic continuum of Case and Chamberlin [3]. Then sd X = 1, but $0 \leq \text{sd}_{\text{spec}} X \leq 0$ as $Sh_{\text{spec}}(X) = Sh_{\text{spec}}(*)$.

Example 5.7. The referee has pointed out that there exists a compactum X such that

sd $X = \infty$ and $-\infty \leq \operatorname{sd}_{\operatorname{spec}} X \leq n$ for some $n \in \mathbb{Z}$.

The reader should see [11, p. 46] where a movable continuum X with infinite sd such that the suspension of X has trivial shape is given. More specifically, $X = \prod_{i=1}^{\infty} P_i$ where P_i is the complement of an open ball in the Poincaré manifold.

6. Whitehead theorems in stable shape

Now we wish to Čech-extend the definition of π_n on $\operatorname{HCW}_{\operatorname{spec}}$ over $\operatorname{Sh}_{\operatorname{spec}}$. For each space X, the *nth stable pro-homotopy group pro* $-\pi_n^S(X)$ is defined as the inverse system $\pi_n(E(X)) = (\pi_n(E_a), \pi_n(e_{aa'}), A)$, where $e: E(X) \to E = (E_a, e_{aa'}, A)$ is a generalized $\operatorname{HCW}_{\operatorname{spec}}^s$ -expansion of E(X). This is well defined up to an isomorphism in pro-groups. Then the *nth stable shape group* $\check{\pi}_n^S(X)$ is defined as the limit group lim $\operatorname{pro}-\pi_n(E)$.

For each morphism $G: X \to Y$ in \mathbf{Sh}_{spec} , we define the morphism in pro-groups $pro-\pi_n^S(G): pro-\pi_n^S(X) \to pro-\pi_n^S(Y)$ as $pro-\pi_n(g): \pi_n(E) \to \pi_n(F)$, where $e: E(X) \to E$ and $f: E(Y) \to F$ are \mathbf{HCW}_{spec} -expansions of X and Y, respectively, and $g: E \to F$ is a representative of G. This is well defined up to an isomorphism in pro-groups. It is a routine to check $pro-\pi_n^S$ is a functor from \mathbf{Sh}_{spec} to $\mathbf{pro-Gp}$ and that $\check{\pi}_n^S$ is a functor from \mathbf{Sh}_{spec} to \mathbf{Gp} .

A morphism $G: X \to Y$ in \mathbf{Sh}_{spec} is said to be an *n*-equivalence if the induced morphism in pro-groups $pro-\pi_k^S(G): pro-\pi_k^S(X) \to pro-\pi_k^S(Y)$ is an isomorphism for k = 0, ..., n-1 and an epimorphism for k = n.

By Theorem 2.5, $pro-\pi_n^S$ and $\check{\pi}_n^S$ can also be considered as functors from \mathbf{Sh}_{sw} to the category of pro-groups **pro-Gp** and the category of groups **Gp**, respectively.

Now we are ready to state the Whitehead theorems in Sh_{spec} and Sh_{sw} .

Theorem 6.1. Let $G: X \to Y$ be a morphism in \mathbf{Sh}_{spec} , which is an n-equivalence. Suppose that $-\infty \leq \mathrm{sd}_{spec} X \leq n-1$ and $k \leq \mathrm{sd}_{spec} Y \leq n$ $(k, n \in \mathbb{Z})$. Then G is an isomorphism in \mathbf{Sh}_{spec} .

Proof. There is a morphism $g: E \to F$ in **pro-HCW**_{spec} which represents G, where $e: E(X) \to E = (E_a, e_{aa'}, A)$ is a generalized expansion of X in **HCW**_{spec} such that dim $E_a \leq n-1$ for all $a \in A$, and $f: E(Y) \to F = (F_b, f_{bb'}, B)$ is a generalized expansion of Y in **HCW**_{spec} such that for each $b \in B$, dim $F_b \leq n$ and dim $e \geq k$ for all cells $e \neq *$ of F_b . Then the theorem follows from Theorem 4.1. \Box

Theorem 6.2. Let $G: X \to Y$ be a morphism in \mathbf{Sh}_{sw} , which is an n-equivalence. Suppose that $-\infty \leq \mathrm{sd}_{sw} X \leq n-1$ and $k \leq \mathrm{sd}_{sw} Y \leq n$ $(k, n \in \mathbb{Z})$. Then G is an isomorphism in \mathbf{Sh}_{sw} . **Proof.** The theorem follows from Theorems 6.1, 5.3, and 2.5. \Box

Example 6.3. The finite-dimensionality of Theorems 6.1 and 6.2 cannot be omitted. Recall the example in Mardešić and Segal [9, Example 1, p. 153]. Specifically, Adams [1, Theorem 1.7] constructed a finite polyhedron $Y, r \in \mathbb{N}$, and a map $a: S'Y \to Y$ such that for each $m \in \mathbb{N}$, the composition

$$a(S^{r}a)(S^{2r}a)\cdots(S^{(m-1)r}a):S^{mr}Y\to Y$$

is essential. Then consider the inverse sequence of finite CW complexes

 $Y \xleftarrow{a} S'Y \xleftarrow{S'a} S^{2r}Y \xleftarrow{\cdots}$

Let A be its inverse limit. Then A is a metric compactum. It is easy to see that $-\infty \leq \operatorname{sd}_{\operatorname{spec}} A \leq n$ (equivalently, $-\infty \leq \operatorname{sd}_{\operatorname{sw}} A \leq n$) is false for all $n \in \mathbb{Z}$. We claim that $Sh_{\operatorname{spec}}(A) \neq Sh_{\operatorname{spec}}(*)$ but $\operatorname{pro} -\pi_k^S(A) = 0$ for all $k \in \mathbb{Z}$. Indeed, for each $m \in \mathbb{N}$, whenever $k \in \mathbb{N}$, the morphism in HCW_{spec} represented by the map

 $S^{mr}Y \xleftarrow{S^{(m+k-1)r_a}} S^{(m+k)r}Y$

is not trivial. For, for any $l \in \mathbb{N}$, the map

 $S^{mr+l}Y \xleftarrow{S^{(m+k-1)r+l}a} S^{(m+k)r+l}Y$

is essential since for $N \in \mathbb{N}$ with $(m+k)r + l \leq (m+N)r$ the composition

 $a(S^{r}a)(S^{2r}a)\cdots(S^{(m+N-1)r}a):S^{(m+N)r}Y\rightarrow Y$

is essential. This shows the first assertion. Also, $pro-\pi_k^S(A) = (\pi_k^S(S^{mr}Y), \pi_k^S(S^{mr}a), \mathbb{N})$ but for each $k \in \mathbb{Z}$, $\pi_k^S(S^{mr}Y) = \operatorname{dirlim}_i \pi_{k+i}(S^{mr+i}Y) = 0$ for *m* with mr > k, so that $pro-\pi_k^S(A) = 0$ for all $k \in \mathbb{Z}$.

References

- [1] J.F. Adams, On the groups J(X) IV, Topology 5 (1966) 21-71.
- [2] J.F. Adams, Stable Homotopy and Generalised Homology (The University of Chicago Press, Chicago, IL, 1974).
- [3] J.H. Case and R.E. Chamberlin, Characterizations of tree-like continua, Pacific J. Math. 10 (1960) 73-84.
- [4] A. Dold and D. Puppe, Duality, trace and transfer, in: Proceedings of the Conference on Geometric Topology, Warsaw (1978) 81-102.
- [5] H.W. Henn, Duality in stable shape theory, Arch. Math. 36 (1981) 327-341.
- [6] E. Lima, The Spanier-Whitehead duality in new homotopy categories, Summa Bras. Mat. 4 (1959) 91-148.
- [7] S. Mardešić, A non-movable compactum with movable suspension, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 12 (1971) 1101-1103.
- [8] S. Mardešić and J. Segal, Movable compacta and ANR-systems, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 11 (1970) 649-654.
- [9] S. Mardešić and J. Segal, Shape Theory The Inverse System Approach (North-Holland, Amsterdam, 1982).
- [10] P. Mrozik, Finite-dimensional complement theorems in shape theory and their relation to S-duality, Fund. Math. 134 (1990) 55-72.
- [11] S. Nowak, Algebraic theory of fundamental dimension, Dissertationes Math. 187 (1981) 1-59.

- [12] S. Nowak, On the relationships between shape properties of subcompacta of S^n and homotopy properties of their complements, Fund. Math. 128 (1987) 47-60.
- [13] S. Nowak, On the stable homotopy types of complements of subcompacta of a manifold, Bull. Acad. Polon. Sci. Sér. Math. Astronom. Phys. 35 (1987) 359-363.
- [14] R.M. Switzer, Algebraic Topology Homotopy and Homology (Springer, Berlin, 1975).
- [15] Š. Ungar, Freudenthal suspension theorem in shape theory, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976) 275-280.
- 164