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Abstract

In this paper we define a stable shape category based on the category of CW-spectra.
Then we formulate and prove a Whitehead-type theorem in this category.
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0. Introduction

Lima [6] constructed the Cech stable homotopy theory for compacta. This
construction gives the stable shape theory on the category of metric compacta.
Dold and Puppe [4] and Henn {5] defined a stable shape category for compacta,
which is based on the Spanier—Whitehead category and studied a duality in this
stable shape category. More results on duality and complements were obtained in
Nowak [12,13] and Mrozik [10].

In this paper we define a stable shape category for arbitrary spaces, which is
based on the category of CW-spectra and show that the earlier stable shape
category embeds in our stable shape category. This approach allows us to work on
cells of CW-spectra. We then formulate and give a proof of a stable shape version
of a Whitehead-type theorem (see Theorems 6.1 and 6.2).

In the next section we recall the stable categories and in Section 2 we define our
stable shape category. In Section 3 we prove a finite-dimensional version of a
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Whitehead-type theorem for CW-spectra, and in Section 4 we generalize the
statement in Section 3 over the pro-CW-spectra. In Section 5 we introduce a
notion of dimension in our stable shape category, and finally in Section 6 we obtain
a stable shape version of a Whitehead-type theorem.

For CW-spectra, we refer to Switzer [14, Chapter 8] and Adams [2, Part 111,
and for this shape theory, we refer to Mardesi¢ and Segal [9). All spaces dealt with
in paper are assumed to be based.

1. Stable categories

Let Top denote the category of all spaces and pointed (continuous) maps, and
let CG, Cpt, CW, and fCW denote the full subcategories of Top consisting of all
compactly generated spaces, all compacta, all CW complexes, and all finite CW
complexes, respectively. Let HTop, HCG, HCpt, HCW and HfCW denote the
homotopy categories of the corresponding categories. If ¥ is a category, then
Ob % denotes the set of objects and for objects X and Y of &, #(X, Y) denotes
the set of all morphisms from X to Y in &.

The Spanier—Whitehead category HCGg, is defined by ObHCG,, = ObCG
and for any two compactly generated spaces X and Y, HCG, (X, Y)=
{X, Y}(= colim,[S*X, S$¥Y]), where S*X =S¥ A X for k >0 and S'X = SX. Then
HCpt,, HCW_,, HFCW_, denote the full subcategories of HCG,, whose objects are
all compacta, all CW complexes, all finite CW complexes, respectively.

The category of CW-spectra CW,,.. is the category whose objects are all
CW-spectra and whose morphisms are all maps of CW-spectra. Let fCW,,.. denote
the full subcategory of CW,,.. whose objects are all finite CW-spectra. The
suspension spectrum E(X) of a space X is the spectrum defined by

S"X, n>=0,
(B, = {55 120
and if X is a CW complex, E(X) is called the suspension CW-spectrum. Let CW,,.
denote the full subcategory of CW,,,.. whose objects are all suspension CW-spectra.
Let HCW,,,.. denote the homotopy category of CW,,,... That is, ObHCW,,, is the
set of all CW-spectra, and for any two CW-spectra E and F, HCW,, (E, F) is the
set of homotopy classes [E, F]. Let HCW; . denote the full subcategory of
HCW,.. whose objects are the suspension CW-spectra.
There is functor F, : HCW —» HCW,_, defined by X — X for each X € ObHCW
and [f]- {f} for each [ f] €[ X, Y] where {f} € colim,[S*X, S*Y] s the element
represented by [f]€[X, Y]. Also, there is a functor F,..:HCW — HCW,, de-

fined by X —» E(X) for each CW complex X and [f]—[E(f)] for each [f]e
[X, Y] where E(f): E(X) — E(Y) is the map defined as

_[S7f:8"X > S"Y, n>0,
(E(f))"_{*:*—»*, n<o.
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For each [fle[X, Y], we write E([f]) for the unique class [ E(f)]. Moreover,
there is an embedding of a category R : HfCW,, > HCW,,.. defined by X — E(X)
for each finite CW complex X and

* n<k,
(Rf)n= {Sn—kfk, n>k,

if an element f€{X, Y} is represented by a map f, : S¥X — S*Y. Then we have
the commutativity of functors R < F,,, |HfCW = F,__ |HfCW.

spec

2. Generalized stable shape categories

The stable shape category based on the Spanier—Whitehead category which is
defined by Dold and Puppe [4] and Henn [5] is essentially the abstract shape
theory (in the sense of Marde$i¢ and Segal [9, I, §2]) for the pair of categories
(HCpt,,, HICW,,) as shown in the following theorem.

Theorem 2.1, HECW,,, is a dense subcategory of HCpt,.

Proof. Let X be a compactum. Then there exists an HCW-expansion p =(p,): X
- X=(X,, pyy,» A) of X with each X, being a finite polyhedron. Then S(p)=
(Sp,): SX —» SX=(8X,, Sp,y, A) is an HPol-expansion of SX (see Ungar [15,
Theorem 1.3)). On the other hand p induces a morphism p=(p,): X >X=
(X,, Prx> A) in pro-HCpt,, where p, =F,,(p,) and p,, =F,(p,,). We claim
that this is an HCW_,-expansion of X. First note that each X, is a finite CW
complex. Let &: X — P be a stable map (an S-map) to any CW complex, and let A
be represented by an H-map A, : S*X — S*P. Then since S*P is a CW complex, by
Ungar’s result, there exist A€A and an H-map g;: SkX = SkP such that
h, =g,(S*p,). Let g: X, > P be the S-map represented by g,. Then h =gp, in
HCG,, . Moreover, let g, h: X, — P be two S-maps to any CW complex such that
gD, = hp, in HCG,,. Then there exists k > 0 such that g,(S*p,) = h,(S*p,) where
g, :S*X, > S*P and h, :S*X, - S*P are H-maps representing g and k4, respec-
tively. Again by Ungar’s result, there exists X' > A such that g,(S*p,,) = h,(S*p, ).
Thus gp,, = hp,, in HCW,, as required. Hence this proves our claim and com-
pletes the proof. 0O.

We denote by Sh, the abstract shape category for the pair (HCpt,,, HICW,,)
and call it the stable shape category (or Spanier—Whitehead stable shape category or
SW-shape category) for compacta.

Now we wish to define a generalized shape theory for the suspension spectra
E(X) of any space X, using the suspension CW-spectra. Here we should note
there is no map defined between spectra unless the domain is a CW-spectrum.
Thus such a shape theory will not be an abstract shape theory for a pair of
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categories in the sense of MardeS$i¢ and Segal but an “extension” of the homotopy
theory on the category HCW.

Let p=(p,): X>X=(X,, p,y, A) be an HCW-expansion of a space X, and
let E(X)=(E(X,), E(p,y), A) be the inverse system in HCW,,.. induced from
the inverse system X in HCW by the functor F,,... A morphism e: E(X) > E =
(E,, e,y, A) in pro-HCW,,,. is said to be a generalized expansion of X in HCW,

spec
provided the following universal property is satisfied:

(U) if f:E(X)—>F is a morphism in pro-HCW,

ipec then there exists a unique
morphism g: E — F in pro-HCW.. such that f=ge.

One should note here that the definition of a generalized expansion does not
depend on the choice of the HCW-expansion p =(p,): X »X=(X,, p,y, A).
Also note that for any two generalized expansions e: E(X) > E and ¢’ : E(X) > E’
in HCW,,. there exists a unique isomorphism i: E — E’ in pro-HCW,,.. (which we
call the natural isomorphism) such that ie =¢'. It is easy to see that the identity
induced morphism E(X) — E(X) is a generalized expansion of X in HCW,,,..

The following theorem gives a characterization of generalized expansions in

HCW,

spec”
Theorem 2.2. Let e: E(X)>E=(E, e,;,, A) be a morphism in pro-HCW,,.
which is represented by a morphism (e, ¢) of inverse systems where p = (p,): X > X
=(X,, pyy, A) is an HCW-expansion of any space X. Then e is a generalized
expansion in HCW, . if and only if the following two conditions are satisfied:
(GE1) Every morphism h: E(X,) — F in HCW_,. admits a € A and a morphism
g, E, = F in HCW, such that hE(p,,) = g,e,E(p, ) for some X > A, ¢(a).
(GE2) If g,, h,: E, - F are two morphisms in HCW_,. such that g e, E(p,,)

spec
spec

=h,e,E(p) for some A > ¢(a), then there exists a' > a such that g,e,, = h e ,.

a~aa

Proof. Suppose e is a generalized expansion, and let 4 : E(X,) — F be a morphism
in HCW,,... Then h represents a morphism h: E(X) — (F) in pro-HCW,,,, and
there exists a morphism g:E — (F) in pro-HCW,,.. such that h=ge. If g is
represented by a morphism g,:E, > F in HCW,_,, then h=ge implies the
assertion in (GE1). For (GE2), let g,, h,: E, = F be as in the hypothesis. Let g,
h, represent morphisms in pro-HCW,,,., g, h: E — (F), respectively. Then ge = he.
By the uniqueness in the definition of a generalized expansion, g =h, which
implies g,e,, = h,e,, for some a' >a.

Conversely, assume that the assertions in (GE1) and (GE2) hold. Let e be

represented by (e,, ¢), and let f:E(X)— F=(F,, f,», B) be a morphism in
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pro-HCW, .., which is represented by (f,, ¢). Then by (GE1) for each b € B there
exist n(b) €4 and a morphism g, : E, ,, = F, such that

FhE( pd:(b)A) =gben(b)E( P<p(n(b))A) for some A > ¢(b), n(d). (1)

We claim that (g,, n) defines a morphism g:E — F in pro-HCW,,.. such that
f=ge. Indeed, let b <d' in B. Then

FyE(Pywyn) = 8yenwyE(Pomeryy)  for some X > 4i(b'), n(b'). (2)

Choose a € A such that a > n(b), n(b’), and then take X' > A, X, ¢(a) in A such
that the following three equalities hold:

fow frE( P.p(b’)x’) =fE( Pw(b)x'), 3)

euitaCaE(Poar) = €y E(Pocmaryn) (4)

e'r;(b)aeaE ( p¢(a)X') =e,mE ( P¢(7,(b))x')~ (5)
Then (2), (3) and (1) imply

fbb’gb’en(b’)E( Pw(n(b'))x') =frE( P¢(b)A") . (6)
On the other hand (4) and (5) imply

fbb’gb'en(b’)aeaE( P<p(a)/\") = fbb’gb’en(b')E( P¢(n(b'))A") (7)
and

8b€1a€aE(Pyaywr) = 8oy E( Poinipnn) - (&)
Then (6), (7), (8) and (GE2) imply

Fob 8 €qprra = 8p€np)e  fOT SOME @' >a. %)

This shows that (g,, n) represents a morphism g in pro-HCW, .,
f=ge.

It remains to show the uniqueness of g. Suppose that k: E — F is a morphism
in pro-HCW,,.. such that ge = he, and let (g,, 7) and (h,, £) represent g and h,
respectively, Now, fix b € B. Then ge = he implies

gben(b)E(pqp(n(b))/\) =hyeqpE( P(p(g(b)),\) for some A > ¢(b), £(b). (10)
Choose a > n(b), £(b) in A, and then take X > A, ¢(a) in A such that

ent1ala (Poay) = niy E(Pocnionr) (11)
and

eet)a€aE(Pyian) = sy E(Ppnon) - (12)
Put g, =g,e, 4, and h, = h,e.,,,. Then by (11), (10), and (12),

8a€aE(Poinionr) = 85€nir E(Pomimn) E(Pax) oy E( Pyiecona) E(Pax)

=Hh,e, E( an(a))() .

This and (GE2) imply ge,, = H,e,, for some a’ > a. Thus gye, ,)» = hpespyq» SO
that g=h. 0O.

and (1) implies
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Theorem 2.3. A morphism in pro-HCW,,.., e: E(X) > E=(E,, e, , A), where
p=(p): X->X=(X,, p,y, A) is an HCW-expansion of any space X, is a general-
ized expansion in HCW,,,.. if and only if e is an isomorphism in pro-HCW,,..
Proof. Suppose that e is a generalized expansion in HCW,,... Then the identity
induced morphism i : E(X) — E(X) is a generalized morphism in HCW,,, so that
e is a natural isomorphism. The converse is obvious. 0O

Theorem 2.4. Every HICW,_, -expansion q = (qu):X —Z= (Zw Q> M ) of a com-
pactum X induces a generalized expansion e: E(X)— RZ =(E(Z), Rq,,;, M) in
HCW,,.. where p =(p,): X > X =(X,, p,y, A) is any HCW-expansion of X.
Proof. Without loss of generality we can assume that each X, is finite. Since
p: X - X is an HCW-expansion of X, it induces an HICW,,-expansion p = (p,): X
—-X=(X,, p,y, A) (see the proof of Theorem 2.1), so that there is a natural
isomorphism e:X—Z in pro-HfCW_,. Thus it induces a natural isomorphism
E(X) — E(Z) in pro-HCW_,... Hence by Theorem 2.3 this is a generalized expan-
sion in HCW,,,.. O

Using generalized expansions, we define the generalized stable shape category
Sh,,.. for spaces as follows: First let ObShg,.. be the set of all spaces. For any two
spaces X and Y, let & xy, be the set of all morphisms g: E — F in pro-HCW,
where e: E(X)>E=(E,, e,;, A) and f:E(X) - F =(F,, f,, B) are general-
ized morphisms in HCW,,,... Then we define an equivalence relation ~ on &y,
as follows: for g:E—F and g :E'>F in &yy, g~g if and only if the
following diagram commutes in pro-HCW,,:

E—>F

: 1 lj

EV L) F’
where i and j are the natural isomorphisms. It is easy to verify that ~ is an
equivalence relation on & xy, We define a morphism from X to Y as each
equivalence class of & y,. Thus Sh, (X, Y) =&,/ ~ . We write Sh, (X) <
Shype{Y) (respectively, Sh,(X)<Sh,(Y)) provided X is dominated by Y in
Sh.. (respectively, in Shg,). Also we write Shy,.(X)=Shy,(Y) (respectively,
Shg,(X) = Sh,(Y)) provided X is equivalent to Y in Shg, (respectively, in Sh,).

spec

Theorem 2.5. There exists an embedding of categories @ :Shg, — Sh, .

Proof. For each compactum X, we define @: X— X. Let G: X—>Y be a mor-
phism in Shg,. Let p=(p): X—>X=(X,, p\y, A) and ¢=(q,):Y—> ¥=
(Y,, q,,,» M) be HCW-expansions of X and Y, respectively, such that X, and Y,
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are finite polyhedra. By the proof of Theorem 2.1 these induce HCW,,-expansions
p=(p): X>X=(X,, Pax» AVand §=(g,):Y > Y=(Y,, g, M).So, G is rep-
resented by a morphism g: X — Y of pro-HCW,,. But then g induces a morphism
Re : RX=(E(X,), Rp,,, A) - RY =(E(Y}), Rg,, M). Since the X, and Y, are
finite, RX = E(X) and RY = E(Y). Since the identity induced morphisms E(X) —
E(X) and E(Y)— E(Y) are generalized expansions in HCW,,,. of X and Y,
respectively, g represents a morphism @(G) in Shg,,.. It is easy to see that the
function @:G — O(G) is well defined. That is, @(G) does not depend on the
choice of the representative g. It is a routine to check @ defines a functor. To see
this is an embedding, we define a functor @' : Sh,,, |Cpt — Sh, as follows, where
Sh,. |Cpt denotes the full subcategory of Sh .. whose objects are all compacta:
First for each compactum X, define @ : X —» X. Let G: X - Y be a morphism in
Shg,.. represented by a morphism in pro-HCW,,.., g : E(X) - E(Y). Since X, and
Y, are finite, g induces a morphism X — Y in pro-H s> SO that it represents a
morphism @ (G) in Shg,. Note that @'(G) does not depend on the choice of such
g. Thus @' :G — @' (G) is well defined, and it is again a routine to check @ is a
functor and that ® - @' and @' -0 are the identities on Sh,. |Cpt and Sh,,,
respectively. O

Let Sh denote the pointed shape category for spaces in the sense of Mardesié
and Segal [9].

Theorem 2.6. There exists a functor 5 :Sh — Sh_ . such that the restriction of 5 on
Sh |Cpt factors through the embedding O :Sh,, — Sh . in Theorem 2.5.

Proof. For each space X, we define £: X— X. Let G: X > Y be a morphism in
Sh represented by a morphism in pro-HCW, g:X=(X,, p,y, A) > Y=
(YM, Gy M) where p: X —>X and q:Y —» Y are HCW-expansions of X and Y,
respectively. Then g induces a morphism in pro-HCW,,.., E(g): E(X)— E(Y)
where if g is represented by a morphism (g,, ¢) of inverse systems then E(g) is
the unique morphism represented by (E(g,), ¢). Thus g represents a morphism
Z(G) in Shy,. It is a routine to check that & is a functor, and it is easy to see that
E is the desired functor. 0O

Theorem 2.7. For any spaces X and Y, Sh,. (X, Y) has the structure of an Abelian
group.

Proof. Let e: E(X) > E=(E,, E,;, A) and f:E(Y)—F=(F,, f,,, B) be gen-
eralized expansions in HCW,,,.. of X and Y, respectively. Then there is a one-to-one
correspondence between Sh, (X, Y) and pro-HCW,, . (E, F)=lim, colim,[E,,
F,]. Since the [E,, F,] are Abelian groups and the bonding maps e,, and f,,
induce group homomeorphisms, pro-HCWspeC(E, F) has an Abelian group struc-
ture. O
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Theorem 2.8. For any spaces X and Y, if Sh(§*X) = Sh(S*Y) for some k > 0 then
Sh e X) = Sh . (Y).

Proof. Let p=(p,): X >X=(X,, p,y, A and ¢=1(q,):Y>Y=(Y,, q,,, M) be
HCW-expansions. Then there exists an isomorphism f, : X - S*Y of pro-HCW
which represents the isomorphism of Sh, $¥X — $*Y. Without loss of generality,
we can assume that A =M and that f, is represented by a level morphism
(fi): $*X = (S*X,, S*p,y, A) > S*Y = (§*Y,, S*q,,, A). We define a level mor-
phism (f,): E(X) — E(Y) by

Sq——kfk,/\’ q>k’
* g<k.

(fi)g= {

This induces a morphism in pro-HCW,,, f : E(X) > E(Y). Let A € A. Then there
exist A' > A and a morphism of HCW g, , : Y, — X, such that the following diagram
commutes in HCW:

Sk AN
SkX, X skx,

8k.a
f“l \lfk,x

§5Y, —— Sk,
S*qux

We define a morphism of HCW,,,.., g, : Yy = X, by

( ) _ Sq—kgk,,\y 61>k,

Ex)q * g<k.

Then we obtain a commutative diagram in HCW,,
E(P)\,\')

E(X,) 2% E(X,)

[

so that the morphism f: E(X)— E(Y) is an isomorphism. Hence X and Y are
equivalent in Sh,... O

Let sd denote the shape dimension for pointed spaces (see Mardesi¢ and Segal
[9, 11, §1).

Theorem 2.9. Let X and Y be compacta such that sd X =n and sd Y = m are finite.
Then Shy, (X) = Sh, (Y) implies Sh(S*X) = Sh(S*Y) for some k > 0.

Proof. Let p=(p,): X > X=(X,, p,y, A)and ¢=(q,):Y>Y=(Y,, q,,, M) be
HCW-expansions such that the X, and Y, are finite polyhedra of dimension at
most n and m, respectively. Suppose that f: E(X) — E(Y) is an isomorphism in
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pro-HCW which represents the isomorphism in Sh,. .. Without loss of generality,
we can assume that A =M and that f is represented by a level morphism
(f)): E(X) — E(Y). Let A € A. Then there exists X' > A and a morphism g, : E(Y,)
— E(X,) such that the following diagram commutes in HCW,

spec*

Epp0)
E(X,) =2 E(X,)

Ry

E(Y,) mE(Yr)

Since all X, and Y, are finite, there exist k >0 and maps f, ,:S*X, - S*Y,,
fox:S¥Xy — S¥Y,, and g, , :S¥Y, - S¥X, representing f,, fy and g,, respec-
tively, such that the following diagram commutes in HCW:

S“Dax
Skx, 2L skx,

8k
f/\,kl \lf}(.k

S¥Y, «— Sky,
S*qax

By the Freudenthal suspension theorem, we can assume that k is independent of
the choice of A. Thus the morphism f, : S*X — S*Y represented by the level
morphism (f, ;) is an isomorphism of pro-HCW, so that SA(S*X) = Sh(S*Y) as
Skp:S*X — S*X and S*q:S*Y — S*Y are HCW-expansions. O

Example 2.10. Let X be the 1-dimensional acyclic continuum (“figure-eight”-like
continuum) described by Case and Chamberlin [3]. Mardesi¢ and Segal {8] showed
that X is nonmovable, so that Sh(X) # Sh(*). However, its suspension SX is of
trivial shape, i.e., Sh(SX) = Sh(*) (see Mardesi¢ [7]). Hence by Theorem 2.8 we
conclude that Sk, (X)=Sh_ (*).

3. Whitehead theorem for CW-spectra

The nth homotopy group w,(E) of CW-spectrum E is defined as the group
[3"S°, E]= dirtlim,m, ., (E,). Here for all n € Z, 3" denote the suspension func-
tors on HCW, .., and S° denotes the suspension spectrum E(S?). Now we recall
the well-known Whitehead-type theorem for CW-spectra.

Theorem 3.1. Let f: E — F be a map of CW-spectra such that w,(f): m (E)— m (F)
is an isomorphism for all q € Z. Then f is a homotopy equivalence of CW-spectra.

Proof. See Adams [2, Corollary 3.5, p. 150] or Switzer [14, Theorem 8.25, p. 144].
O
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Note that every CW-spectrum E consists of cells e = {e?, Se?, S%e¢,...} where
e is a d-cell in the CW complex E, and is not a suspension of any cell in E,_,.
Then we define the dimension of e (denoted dim e) as d —n, n€ Z, and the
dimension of the CW-spectrum E (denoted dim E) is defined as sup{dim e:e is a
cell of E}. Similarly, if (E, F) is a pair of CW-spectra, then the dimension of
(E, F) (denoted dim(E, F)) is defined as sup{dim e: e is a cell of (E, F)}. For the
base point spectrum *, we define dim * = —o, If E is a CW-spectrum, we write
EY for the ith skeleton of E.

In this section we prove a variation of Theorem 3.1 below (see Theorem 3.2). A
map of CW-spectra f: E — F is an n-equivalence provided m(f): w (E) - m (F)
is an isomorphism for g <n — 1 and an epimorphism of g = n. A pair of CW-spec-
tra (E, F) is said to be n-connected provided w(E, F )=0for g <n.

Theorem 3.2. Let n€ ZU{x}, let f: E—> F be a map of CW-spectra, which is an
n-equivalence, and suppose dim E <n —1 and dim F <n. Then f is a homotopy
equivalence of CW-spectra.

The proof follows that for Theorem 3.1. in Adams [2, I11.3].

The nth homotopy group w,(E, F) of a pair of CW-spectra (E, F) is defined as
the group [Z*~ Y D!, §%), (E, F)] where the pair of CW-spectra (D!, §°) is
defined by

1 ey % n<o,
(D ,S )”—{(D"+1, Sn)’ n>=0.

Then =, (E, F) = dirlim [(D"**, §**k~1) (E,, F,)] = ditlim,m, . ,(E,, F,).

Lemma 3.3. For any pair of CW-spectra (E, F) there is a natural exact sequence
' _)Wn(F) —)Wn(E) _’Wn(E’ F) _)Trn—l(F) - o

Lemma 3.3 immediately implies the following.

Lemma 3.4. A pair of CW-spectra (E, F) is n-connected if and only if the inclusion
induced map of CW-spectra i: E — F is an n-equivalence.

Lemma 3.5. Let (E, F) be a pair of CW-spectra with dim(E, F) <n, and let (G, H)
be an n-connected pair of CW-spectra. Suppose that there are a map of CW-spectra
f:E—>Gandahomotopy h: FAI"> G fromf|Ftoamapg:F—>HCG. Then h
extends to a homotopy k : E AI"— G such that ky= f and k, is a map of E into H.

Proof. Let f: E—> G and h: F AI*— G be represented by functions f': E' - G
and W :F AIT> G where F' and E’' are cofinal subspectra of F and E,
respectively, such that F’ is a CW-subspectrum of E’.

First of all, let ¥ be the set of all the pairs (U, kK’) such that U is a
CW-spectrum with F'CUCE’ and k':UAI"— G is a function with kg =f"|U
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and k(U)c H. Define an order < on & by (U, k}) <(U,, k%) if and only if
U,cU, and k,|U, =k}. Then (F', ¥') € &, so that & + §. Suppose that {(U,, k’,)}
is a chain in €. Then (UU,, k') where k' :(UU, ) AT — G is defined by k' |U, A

=k’ , belongs to # and is an upper bound of the chain. Thus, Zorn’s lemma
implies the existence of a maximal element (U, k') € €. We claim that U is cofinal
in E’. Suppose to the contrary this is not the case. Then there is a subspectrum V
such that U C V CE’ where V consists of U and just one more cell-spectrum, say

o U,, q<p,
T \U,uST P, q=p,
where e, is an m-cell in E}. Then the restricted maps
f, Iel’,”/\{O})r :e'"/\{O}+—>G
ki, ldem AT* : (dem AT*, dem A{1} ) = (G,, H,)
define an element of (G, H,) hence an element of w, (G, H)=

dirlim j,,,_,, (G,, H,). But since m — p = dim e,’ < dim(E, F) <n, by the n-con-

nectedness of (G, H ) we have m,,_ (G, H) = 0. Thus there exists r > 0 such that
the maps
{f[jﬂ |S7em A0} :S7em AOT> G

p+r?

Ky 18(STey) ATT :(3(S7eg) AT, 3(Sef ) A1)

( ptr? p+r)

represent the trivial element in =,,,(G,,, H,. ). So this extends to a map
L, :(8ey AT, S’er AM{1}F) > (G,,,, H,,,). Now we define a map ,,,:V,,
ANt — Gp+, by

k;+r|U k’p+r’

k;#—r l Srem /\I+_ l’p+r

Then (k},,)o=fp+, |V, ., and (k; )V, , )CH, . Define a CW-spectrum V"
by

U,,
v,
and a function k" : V" AI"> G by

o ks g<p+r,
h S9TPTkL, q=p+r.

q<p+tr,
" o__
[/q_

qzp+tr,

Then (V", k") € # and (U, k') < (V", k"), contradicting the maximality of (U, k’).
Thus U must be a cofinal subspectrum of E’. So, the function K" :UATT—> G
defines a map of CW-spectra k: E AIT—> G which extends A: FAIT> G. O

Let f:G — H be a function of CW-spectra. Then we define a CW-spectrum M,
called the mapping cylinder of the function f by (M f)n =M f,,( = the usual mapping
cylinder of f,).



150 T. Miyata, J. Segal / Topology and its Applications 63 (1995) 139-164

Lemma 3.6. Let f:G — H be a function of CW-spectra, and let i:G - M, and
Jj: H — M; be the functions such that i,: G, > M; andj,:H, - M; are the natural
embeddings of CW complexes. Moreover, let r: M;— H be the function such that
r,:M; > H, are the usual retractions. Then we have ri=f, jf=i, rj= 1y, and
jr=1, x

10N

H(—_—r__—"Mf

Lemma 3.7. Let f:G — H be a function of CW-spectra. Then there is an exact
sequence

e _’wn(G)_"’Tn(H)_’wn(Mf’ H)—")T"_I(G)—) e

Theorem 3.8. Let f: G — H be a function of CW-spectra, which is an n-equivalence.
Then for every CW-spectrum E the induced function f, :[E, G]1—-|[E, H] is a
bijection if dim E <n — 1, and a surjection if dim E <n.

Proof. In view of Lemmas 3.6 and 3.7, we can assume that f:G—>H is an
inclusion function and (H, G) is an n-connected pair. First, let dim E <n. Take
any map g: E — H of spectra. Consider g as a map of pairs of CW-spectra g : (E,
*) — (H, G) where * is the base point spectrum. Then since dim(E, *) <»n and
(H, G) is n-connected, by Lemma 3.4, there exists a map of CW-spectra g’': E —
G C H such that g’ = g as maps of CW-spectra E — H. This shows the surjectivity.

On the other hand, let dim E <n — 1. Then dim E A I'*<n. Suppose that g,
g,:E - G are two maps of CW-spectra such that fg, = fg, as maps into H. We
define a map of pairs of CW-spectra

hi(EAI*, EA{0} U * AI*UEA{1}")—> (H, G)

as the homotopy from fg, to fg,. Then since dim EAI*<n and (H, G) is
n-connected, by Lemma 3.5, there exists a map of CW-spectra h': E A I*— G such
that

KIEA{0} U AI'UEA{1} "=h|EA{0} U * AT'UE A{1)".

This shows that g, =g, as maps of E into G, so f, is a monomorphism. O

Now Theorem 3.2 easily follows from Theorem 3.8.

4. Whitehead theorem for pro-CW-spectra

A morphism f:E=(E,, e,, A)—>F=(F,, f,y, B) in pro-HCW,,, is an
n-equivalence provided the induced morphism in pro-groups w,(f): 7 (E)=
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(r(E,), me,), A)— w(F)=(mw(F,), m(fy), B) is an isomorphism for g <n
— 1 and an epimorphism for g = n.
Now we state a Whitehead-type theorem for pro-CW-spectra.

Theorem 4.1. Let k, n€ Z with k <n, letf:E=(E,, e,,, A)—=F=(F,, f,,, B)

ee?

be a morphism of pro-HCW,,.. such that dim E,<n—1 and dim F, <n for all
a €A and b € B, and suppose that for each b € B, dim e > k for all cells e # * of
F,. If f is an n-equivalence, then f is an isomorphism of pro-HCW,,...

Before proving the theorem we need to establish a series of lemmas.

Lemma 4.2, Let f: E - F be a map of CW-spectra, which is an n-equivalence, and
let R be a CW-spectrum. Then

(i) if dim R <n, then every map of CW-spectra h: R — F admits a map of
CW-spectra k : R — E such that h = fk; and

(ii) if dim R<n—1 and k,, ky: R > E are maps of CW-spectra such that
fk,=fk,, then k, = k,.

Proof. There exists a cofinal subspectrum E’ of E and a function f':E' - F
which represents f. Then f’ is an n-equivalence. Then the assertions for f’ hold
because of Theorem 3.8. Hence the assertions hold for f. O

Lemma 4.3. Let (E, F)=(E,, F,), e,;,, A) be an inverse system in pairs of

aa’

CW-spectra. Then there is an exact sequence of pro-groups

: _)Trn(F) —)wn(E) —)Trn(E’ F) _)‘n-n—l(F) -
Proof. Lemma 3.3 implies the following commutative diagram with the row being
exact for all a <a’ in A:

’ _)‘n-n(Fa) _—iwn(Ea) - 77.n(E‘a’F‘a) —>7Tn—1(Fa) _—

o |

. — Wn(Fa') —_)'n'n(Ear) e 'TTn(EaI,FaI) ——)’n'n‘l(Far) _—>

which implies the exactness of the above sequence (see Mardesi¢ and Segal {9,
Theorem 10, p. 119]). O

Lemma 4.4. Suppose that there is a diagram in CW,,.. which is commutative up to
homotopy

E<2-G
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Then there exist cofinal subspectra E', G', H' of E, G, H, respectively, and functions
f'iE->F p:G—>E,q:H->F, ¢g.G->H and r':Mg,—>Mf, such that the

following diagram commutes in CW,,,:

’

E——¢ (13)

l | l"'

»
Mfl<— Mgl

j’] ]I,
.

F——H

where ', j', k' and I' are the inclusion induced functions of CW-spectra.

Proof. There exist cofinal subspectra E’, G', H' of E, G, H, respectively, and
functions f': E'—=F, p':G' = E', q¢': H' — F such that for each n € Z the follow-
ing diagram is commutative up to pointed homotopy:

’

' Pn '
E,—G,

In J/ lgi.
q,
F,—H,
We choose a pointed map r,, :Mg:, - M such that the following diagram com-

mutes in Top for each n € Z as in Marde$i¢ and Segal {9, Lemma 3, p. 145]:

A
E, —G,

of e
i

Mf’f'(_M!

&n

I
q,

E,«——H,

Then the following diagram also commutes for each n € Z:

P;:+1

! !
En+1 Gn+1

o < = ’
- SE;, ——7—5G, Koy

st sk,
Mf,’m\ Th+1 l /Mg;H
s sm,” < |

. - — ’ - ’
Jn+1 Ff" Sry, &n L

Sin Ll; ,
Fn+1 a1 l Hn+l

c c
SF, - SH,
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Then r' ={r,}: M,, > M, is a function of CW-spectra which makes the diagram
(13) commutative. O

Lemma4.5. Letk€Z andn > 1, and fori=0,1,...,n—1,lete;:(E;, F) > (E,,,,
F,, ) be maps of pairs of CW-spectra such that if n > 2, the induced homomorphisms
(e)y:m  ((E;, F)—-m (E, ., F ) are trivial for i=1, 2,...,n— 1. Further-
more suppose that for every i=0, 1,...,n—1, E; contains no cells e # * of
dimension less than k. Then the composite of maps of CW-spectra e, _, - - ee,:(E,,
Fy) > (E,, F,) factors through an (n + k — 1)-connected pair of CW-spectra.

Proof. (Special case.) First, we assume that E,, i =0, 1,...,n — 1, contain no cells
of negative dimension. For i =0, 1,...,n — 1, we put

H,=(FyAI") U(EQ A{1) ") CEy AT,

G, =(FyAI*) U(EQ AT*) U (EoA {0} ") CE AT

We wish to define maps of pairs of CW-spectra g;:(G;, H;) > (E,,,, F.,,) such
that g, EA{0}"=¢, and g;|G,_, =e;8;_, (see the diagram below).

c c c c
(Eq A {0}, Fy AO}) — (G, Hy) — (G, H) — - —(G,_y, H,_))

= 8y £ £n—1

€ € €n-1

(E,, F) ———— (E,, F}) ~5(E,, F)) —— -+ ~“5%(E_| F)
(14)
Initial step: Consider the case i = 0. Put g, | E,A {0} =€, and g,| Fy AI"=¢,q
where q:F,AI*—> F, is the map of CW-spectra represented by the natural

projections q,,:(Fy AI"), = (Fy), AI*— (F,),, n € Z. Then we wish to extend the
map

8ol Eg A0y "UFGAT* :(Eg A {0} "UF AT, FyATY) > (E,y, Fy)

over (G, H,). Note that there exist cofinal subspectra E; and F;, of E, and F,,,
respectively, such that F;CEj and go| E,A{0}TUFyAI" is represented by a
function

go:(EgA{OY UFy ATY, FyAT*) > (Ey, Fy).

Let €2 = {eg=, Sels,...} be a O-cell in Ej, where el- is a g,-cell in the CW complex
(Ejy),, - Then we define a map

+
Paq,* e;’: A0, 1} - (Ey),,
by the formulas
{%,qa led= A {1} " = *, (= the base point of (E,),,),

+ ’
Poq, €22 A {0} =(80) gl el
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We put ¢, , .1 =S¢, Then since Se=A{0, 1}"=S(ed= A {0, 1}"), ¢, , ;1 is
considered as a map

Pa,q,+1 :SeZZ A {0’ 1} T S(El)qa c (El)q,,+1'

Since S(El)qa is path-connected and Seg« A {0, 1}*tc Sed« AT * is a cofibration,
Pa,q,+1 CXtends to a map

P g, +1°5€5° N> S(E ), S (E}) g +1-
We put

SM—q.,—léa’an’ m>q,+1,
m<gq,+1.

ol —
qDa,m -

Then since ™ %eede A I*= S (el= A1), ,,, is considered as a map
Pam S g A IT— 8™ %(E,), C(E),,:
We obtain CW-spectra Ej and Fj with Fj C Ej by replacing each j-cell (j > 0)
el = {eda*), Seta*, . |
in Ej by a j-cell
&l = {Sesat), S%egat, .. ).
Then we define a function g{,:(G}, Hy) = (E,, F,) by
g ESA{0) TUF AT =gy | Ej A {0} UFS AT,
gylénTI*=(¢,,:q€Z) for each 0-cell &3 of Ef,
where
Gy=Eg A{0}) UFy ATTUESO AT,
Hy=FyAT"UE;® A {1}".

Since G| and Hj are cofinal in G and H,,, g; defines a map g, :(G,, H,) — (E,,
F)) such that g, | Ey A {0} T =e,.

Inductive step: Suppose n > 2 and suppose that amap g,_, :(G,_,, H,_,) = (E,,
F}) has been defined as required. We wish to define a map g, :(G;, H) - (E, ,,
F,,,) such that g;|G,_;=¢;g,_;. Let e¢; and g;_, be represented by functions
e;:(Ej, F)) > (E; .y, i,y and g;_, :(G]_,, H{_,) > (E|, F)) where E; and F; are

cofinal subspectra of E; and F; with F; C E], and

H_ = (FyAIT) U (ES DA {1}+),
G_i=(FyAI*Y U(E{ P AIT) U (EyA {0} ")
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with Ej and Fj are cofinal subspectra of E, and F, with FCE;. We first put
8 |1Gi_=eigi_:(Gi_y, H_)) > (E; .y, Fiip). Let e, ={ed=', Sed=*',...} be an
i-cell of Ej where el=™" is a (q, + i)-cell in (Ep), . Then the map

(8-1)q,! Be;’:” ATHUeda™ A {0} T
(dede™ AT U et A0}, de2et A {1} ) = ((ED) g (F)a,)
defines an element of 7, . (E}), , (F}), ) hence an element of
m(E;» F) =ditlim 7, ((ED s (F)) i)
m
Note that
(S(dese*i AT U et A {0} ), S(dete) A {1}7)
= (3 Sega*') AT*U(Seda*") A {0}, 3(Seta*") A {1} ")
~ (Dqﬂ+i+1’ Sq"‘+i).
Thus the pair of CW-spectra (B, B’') defined by
(B, B')
(a(sk—qaeg:+i) /\I+U(Sk—qaegz+i) A {0} +, a(Sk—qan:H) A {1}+)’

k>q,
*, k<gq

is isomorphic to the pair of CW-spectra (3'D', 3'S°). Hence, since (e,),: 7(E,,
F)-w/(E,,,, F, ) is trivial, there exists m_ > q, such that the map

Yam, = (€)m (&l—1)m, |3(S™e et ) ATHU (S 9gda* i) A {0}
(8(Se9eede ) A THU(Sma"wede 1) A {0} ", B ST wede ) A {1} ")
= ((Eee ), (Fii)m,)
defines the trivial element of ., (E, ), , (F); ., ). Thus it extends to a map
G, (ST 0eege™ ) AT, (Smeteege™) A1) = ((Eist)mys (Fie)m,)-
We put

g—my,p
(/; - S “(/]a,ma’ q >ma?
“ *, qg<m,.

We define a cofinal pair of CW-spectra (E}, F/') of (E, F!) in the following way:
First we put (E?)¢~D =(E))¢"D, and then we obtain (E/)¥ by replacing each
i-cell

— qo+i qot+i
e {eq: ,Seqa ,}
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of E;} by the i-cell
(ei)ma — {Sm“-q"eg.‘:+i, Sm"_q“+1€3:+i, L ]
Accordingly, using induction on dimension, we define (E7)" for j > i by replacing
each j-cell
e} = {eg§+f, Se;’g”,...}
by a j-cell
(eh)™ = {Sme=asegs®i, sms=ua*legsti, .}
for some appropriate mg > gg. Also a subspectrum F;” of F/ is similarly defined,
and (E}, F!') is a cofinal pair of CW-spectra of (E/, F/). Then we can define a
function g7 :(G, H!) - (E,,,, F;,,) by
8/ 1G_=€igi_11G/_,,
gllenIt= ((/;a,q: qge Z) for each i-cell €, of E!,
where
" =ESA{O)TUFIATTUEN™ D AT,
G =EjA {0} UFyATTUES AT,
H' =FyATTUE® A {1} 7.
Since (G}, H}') is cofinal in (G,, H,), g/ defines a map g;:(G,, H) > (E,,,, F,,.,)
such that g,|G,_, =¢€,;8,_;-

Now, having completed the diagram (14) for n > 1, we put (G, H)=(G,_,,
H,_,). Then, since (G, H) = (E,, F, UE§*~") in HCW.2_ (= the category of the
pairs of CW-spectra),

TG, H') = w,(E}, FyUES"™ ")
=dirlim| (D?**, §9+%~1) ((Ep),, (Fo W ES" ™D
lim ( s ((Ep)er (FsUES),)]

= ditlm[ (DT, ST, (B} (F3) L (B ).

So m(G', H)=0for g<n—1 Thusthe map e,_, - - - eje,:(Ey, Fy) > (E,, F,)
factors through an (n — 1)-connected pair of CW-spectra (G’, H') in HCst,ec.

(General case.) Now we assume that dim e > k for all cells e # * in E;, i =0,
1,...,n—1. Then 3 *E, contains no cells e # * of negative dimension for each
i=0,1,...,n— 1. Consider the maps of CW-spectra 3 *¢,:(37E,, 3 *F)—
(37E; 1, Z7*F,,)). Then (3%e), : m(Z~XE,, 3~*F) > m(S*E,,|, 37*F,, )
are trivial. Thus by the first part of the proof, (3 %e,_,) - (3 %e, X3 ~*e,):
(37*E,, 37*F,) » (37*E,, 37*F,) factors through an (n — 1)-connected pair of
CW-spectra (G, H) in HCW_... So, e, , - e,eq:(E,, Fy) - (E,, F,) factors

through an (n + k — 1)-connected pair of CW-spectra (3*G, 3*H) in HCW.2,, as
required. D
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An inverse system (E, F) of CW-spectra is said to be n-connected if ,(E,
F)=0for all g <n.

Lemma 4.6. Let k, n € Z with k <n, and suppose that (E, F)=({E,, F,), e,,,, A)
be an inverse system in HCW,,.., which is n-connected. Suppose that for every a € A,
E, contains no cells e # » of dimension less than k. Then every a € A admits a' > a
such that the map e, :(E,, F,)— (E,, F,) factors through an n-connected pair of

CW-spectra (G, H).

Proof. Let a, =a € 4. Since (E, F) is n-connected, there exists a, > a, such that

(eapa)s Tl E,, F,) > m(E,, F,) is trivial. Continuing this process, we obtain

a < a, S IR Ay—k+1 such that (ea,-a,-+l)# : 17-i+k(Ea,~,H’ FaH]) - 7Ti+k(Ea,-’ Fag) are
trivial for i =0, 1,...,n —k. Thus since e, , . =€, ., . '€ ,,by Len_lma
45, e,n i (Eu o Fa . )~ (E,, F,) factors through an n-connected pair of

CW-spectra (G, H). O
Lemma 4.7. Letn€ Z, and let (f,): E=(E,, e, A)—F=(F,, f,., A) be a level

aa’

morphism of inverse systems in HCW,,.. which represents an n-equivalence f : E — F.
Then every a € A admits an increasing subsequence A' = (a,,) of A with a, = a such

that the restriction (f, ) to A’ also represents an n-equivalence.
Proof. This can be proven as in Marde$i¢ and Segal [9, Lemma 4, p. 148]. O

Lemma 4.8. Let n, k€ Z with k <n, and let (g,):E=(E,, e,,, A)>F=(F,,
faar» A) be a level morphism of inverse systems in HCW, ... Suppose that every F,
contains no cells e # * of dimension less than k. Then (g,): E — F induces an
n-equivalence f if and only if every a € A admits @’ > a such that e, and f,, factor
in HCW,,. through CW-spectra P and Q, and there is an n-equivalence of CW-spec-

tra g : P — Q which makes the following diagram commute in HCW,

spec”

Eie— — Eu (15)

Proof. Sufficiency is proven just as in MardeS$i¢ and Segal [9, Theorem 1, p. 145].
For necessity, it suffices to assume A = N by virtue of Lemma 4.7. By Lemma 4.4
there exists a commutative diagram in CW,,.
e’2,3 e;n—l,m

!

1,2
E’I(___E'z(.____....é___E:n(__...
i’lj’ i’zl i:,,l

a2 3 Tm=1m
My — M, < - &M

f1 f2 I
J'SI f’z] j;nT
fiz _fas ™ tm

R R
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where E,, and F,, are cofinal subspectra of E, and F,, respectively, e, _, ,: E,,
—E, ,and f,_,,:F,—F,_, are functions representing maps representing the

homotopy classes e,,_; ,,; fom—1.m» r€SPECtively, and r,,_, ., i, J,, are the corre-
sponding functions in Lemma 4.4. Put E'=(E},, €,,_,,, N), Z' = (M., 1}, ,,, N)
and F' =(F,, fy._1m» N). These are objects of pro-HCW,,... Also, ((i;,], ([j;,D,
and ([f, ] represent morphisms of pro-HCW,,., i':E'—~Z2', j':Z' > F', and
f' :E' > F’, respectively. Then, by Lemma 3.6, i’ =j'f’, and j' is an isomorphism
of pro-HCW,,.. So, since f’ is an n-equivalence, i’ is also an n-equivalence. By
Lemma 3.7 and the commutativity in diagram (13), there is an exact sequence of
pro-groups
- ow(E)->7w(Z)->w(Z,E)>m_(E')—> -

[9, Theorem 9, p. 119] implies 7, (Z', E') =0 for g <n. Then, Lemma 4.6 implies
that for every m, there is m' > m such that r, ,, factors through an n-connected
pair of CW-spectra (G, H) in HCW_} _ since for each m € Z, M} contains no
cells e # * of dimension less than k. Let i: H—» G be the homotopy class of the
inclusion induced map of CW-spectra. Then we have the following commutative

diagram in HCW,

pec*

E «—"—FE,
e, T m

S H?

] il []
G

M ———M;,

m (71

([l L]

F/

m fmm'
Since (G, H) is n-connected, i: H — G is an n-equivalence by Lemma 3.4. Thus
we put (P, 0)=(G, H), ¢’ =slj,;], and ¢ =[j,]7's. O

F,

Lemma 4.9. Let n, k€ Z with k<n, and (g,): E=(E,, e,p, A= F=(F, f,.,
A) be a level morphism of inverse systems in HCW,,,.., which is an n-equivalence
g: E > F. Suppose that every F, contains no cells e # * of dimension less than k.
Then every a € A admits a’ > a such that the following two statements hold:

() if R is a CW-spectrum of dim R <n, then every morphism h:R—F, in
HCW,,.. admits a morphism k : R — E,, such that g k =f,,h;

(i) if R is a CW-spectrum of dim R<n—1 and k{, k,: R = E, are morphisms
in HCW_ .. such that gk, =g,k,, then e,k =e, k,.

spec

Preof. This immediately follows from Lemmas 4.8 and 4.2. O

Now we can easily prove Theorem 4.1, following Mardesi¢ and Segal [9,
Theorem 3, p. 149].
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5. Dimensions in stable shape categories

In order to state Whitehead theorems in Sh,.. and Shg,, we need notions of
dimension in these categories.

For k, ne Z with k<n and for every space X, we say the stable shape
dimension k <sd,.. X <n if whenever e: E(X) > E =(E,, e,,, A)is a general-
ized expansion in HCW,,,,, then every a € 4 admits @' > a such that e, factors in
HCW,,.. through a CW-spectrum F such that (i) dim F <n and (ii) whenever
e+ * is a cell of F, dim e > k. For k, n € Z, we say the stable shape dimension
k < sdg,e. X < o (respectively, —o <sdg,.. X <n) if whenever e: E(X) - E =(E,,

A) is a generalized expansion in HCW,_,, then every a € 4 admits a' > a such
that e,, factors in HCW,,.. through a CW-spectrum F such that whenever e # *
isa cell of F, dim e > k (respectively, dim F <n).

For k, ne Z with kK <n and for every compactum X, we say the SW-shape
dimension k < sdg, X <n provided whenever r=(r,): X>Z=(Z,, r,y, A) is an
HCW,_,-expansion of X, then every a €A admits a’>a, me[—n, —k] and a CW
complex P of dim P<m+n such that for some /> —m and H-map
(7o S Z, — S™*'Z  representing r,, factors in HCW through S'P. For k,
n € Z and for every compactum X, we say the SW-shape dimension k <sd X < »
(respectively, — o < sdg, X <n) provided whenever r=(r)): X>Z=(Z,, r,,, A)
is an HCW,_,-expansion of X, then every a €4 admits @' > a, me(—», —k]
(respectively, m €[ —n, »)) and a CW complex P (respectively, a CW complex P
of dim P<m +n) such that for some /> —m an H-map (r,,),,.,:S"*'Z, —
S§m*!Z representing r,, factors in HCW through S‘P.

For —o <k <n <, it is obvious that k <sd, .. X <n implies

spec

+1 and k—1<sd .. X <n, and that k <sd__. X <»n implies

spec spec
and —o <sd,.. X <n. Analogous facts also hold for sd,

spec
For convenience we assume that for any space (respectively, compactum) X,

< sdgpe. X <  (respectively, —o < sd, X <) is a true statement.

aa’

k<sd, . X<n
k<sd

S spec
<sdg X<

spec

Proposition 5.1. For any k, n € Z with k <n and for every space X, the following
are equivalent
(i) k<sdg . X<n
(ii} there exists a generalized expansion in HCW,, e: E(X) > E=(E_, ¢,,, A)
with the property that every a € A admits a' > a such that e,, factors in HCW,,.
through a CW-spectrum F of dim F < n with dim e > k for all cells e # * of F,
(iii) there exists a generalized expansion in HCW,, e : E(X) > E=(E,, e,,, A)

such that for each a € A, dim E, <n and dim e > k for all cells e + * of E,.

Proof. (i) = (ii) is trivial. We show the implication (ii) = (jii). For each a €4 we
take @' > a as in (ii). Let £2 be the set of pairs (a, @'), a € A, and define an order
<*onNby(a,a) <* (b,b)if(a,a)=(b,b)or a <b in A. Then it is easy to
see that (£2, < *) forms a directed set. For each « =(a, a') € {2, there exist a
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CW-spectrum F, and morphisms p,:E, > F, and q,: F, > E, in HCW,,. such
that e, =gq,p, and dim F,<n and dim e >k for all cells e+ x of F,. For
a=(a,d) <" B=(b,b)in Q, we define f,;=p,e,,q,: F; — F,. Then F=(F,,
fap> 2) forms an inverse system in HCW,,.. Let e: E(X) > E =(E,, e,,, A) be
represented by a morphism (e,, ¢) of inverse systems. Then we define a function
g: 02> A by ¢(a)=¢(a’) for each a=(a, )2 and a morphism f, =
p.e,: E(X,,) > E, for each a=(a, a'). Then (f,, ¢) forms a morphism of
inverse systems in HCW,,.. and hence represents a morphism in pro-HCW,,,,
f:E(X)—F. It is a routine to check that f satisfies the conditions (GE1) and
(GE2) in Theorem 2.2. Hence f is a desired generalized expansion.

It remains to show the implication (iii) = (). Let e: E(X) > E=(E,, ¢,,, A)
be a generalized expansion in HCW,,. as in the condition (i), and let f: E(X) -
F =(F,, f,y, B) be any generalized expansion in HCW,,,.. Fix b € B. There is a
natural isomorphism g : F — E and let h: E — F be its inverse morphism. Also let
g and h be represented by (g, ¢) and (h,, ), respectively. Then there is b’ > b,
@((b)) such that f,,, = h, g,y Powpyy- Thus fuy : Fy — F, factors through E, as

desired. O

Propeosition 5.2. For every k, n € Z with k <n and for every compactum X, the
following are equivalent:

@) k<sd, X <n;

(ii) there exists an HCW,,-expansion r=(r,): X >Z=(Z,, r,;,, A) with the
property that every a €A admits o’ >a, me[—n, —k] and a CW complex p of
dim P <m + n such that for some | > —m, the H-map (r ), .1: S™4'Z2, —> S™V'Z,
representing r,, factors in HCW through S'P.

Proof. (i) = (ii) is trivial, and (ii) = (i) is proven just as the implication (iii) => (i) of
Proposition 5.1. O

Theorem 5.3. For every compactum X and for each k, n € Z U{=} with k<n,
k<sd, . X<nifand only if k <sdg, X <n.

spec

Proof. First, we assume k, n € Z with k < n. Suppose that k <sd, X <n, and let
p=(p)): X->X=(X,, p,»» A) be an HCW-expansion of X such that the X, are
finite CW complexes. Fix a € A. Choose a’' > a, m €[ —n, —k] and a CW complex
P of dim P <n +m such that (r,,),, ., =h,, .8+, for some [ > —m and H-maps
8me1:S"Y'X, > 8Pand h,,,,:S'P—> S™*'X, are H-maps. Since X, is finite, we
can choose P so that P is a finite CW complex. Let F be the CW-spectrum
defined by

F=[ST"P, izm+l,
i * i<m+l.
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Then dim F<n and dim e>k for all cells e# * of F, and the map
E(p,,): E(X,) — E(X,) factors in HCW,,. through the CW-spectrum F. Hence
k<sdp X<n.

Conversely, suppose that k <sdg,.. X <n. Let p=(p,): X >X=(X,, p,,, A
be as above, and fix a € A. Then there exists @’ > a such that E(p,,) = hg where
g:E(Xy) - F and h: F - E(X,) are morphisms in HCW,,.., and F is a CW-spec-
trum of dim F <n and dim e > k for all cells e # * of F. Again, since X, is a
finite CW complex, we can assume F to be a finite CW-spectrum. Let m =
—inf{dim e:e is a cell of F} and let P be the CW complex F,. Then m < —k.
Since F,, and X, are finite CW complexes, there exists /> —m such that
S™ Doy =hpns18mss Where g,.,,:S™' X, > S'F and h,,,,:S'F, > S™"*'X, are
H-maps representing g and #, respectively. Also dim F,, < n + m since dim F <n.

Hence k < sd,.. X <n. The cases where k = —o or n = « can be proven similarly.
O

Theorem 5.4. Suppose that X and Y are two spaces (compacta) with Sh,.(X) =
ShopecY (Shoo(X) = Sho (Y)). Then for k, n € Z U{o} with k <n, k <sd, X <n

(k <sdg, X <n)if and only if k <sdg,. Y <n (k<sd,Y<n).

spec

Proof. Let X and Y be spaces, and Sh,.(X) < Shg, (Y). We wish to show
k <sdg .Y <n implies k <sdg .. X <n. We assume k, n € Z, and the case where
k= —w or n=o is proven similarly. Suppose k <sdg,..Y <n. Suppose that
G:X-Y and G':Y—>X be morphisms in Sh,, such that G'G=1, and let G
and G’ be represented by morphisms in pro-HCW,,.., g: E=(E,, e, , A) > F =
(Fy, fos» B) and g’ : F - E where e: E(X) > E is any generalized expansion in
HCW,,.. and f:E(X)—F is a generalized expansion in HCW,,.. such that for
each b € B, dim F, <n and dim e > & for all cells e # * of F,. Fix a € A. Also let
g and g’ be represented by (g,, ¢) and (g, ¥), respectively. Then choose a’ > a,
¢(Y(a)). Then e,, = 8,8 €0waps» SO that e, :E,— E, factors through a
CW-spectrum F,,,, of dimension at most » and dim e > & for all cells e # * of
Fy)- Thus k <sdg.. X <n. This implies that sd,.. is invariant in Shg, . That
sdg, is invariant in Sh, follows from the first part of the proof, Theorem 5.3, and
Theorem 2.5. O

Theorem 5.5. For every space X of sd X <, 0<sd_ . X <sd X.

spec
Proof. Suppose that sd X <n. Then X admits an HCW-expansion p =(p,): X -
X =(X), pyx» A) such that dim X, <n, which induces a generalized HCW,j, -ex-
pansion of X, e: E(X) - E(X). O

Example 5.6. Let X be the 1-dimensional acyclic continuum of Case and Cham-
berlin [3]. Then sd X =1, but 0 < sd,.. X <0 as Sk, (X)=Sh(+).
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Example 5.7. The referee has pointed out that there exists a compactum X such
that

sd X=x and —owo<gsd, X<n forsomeneZ.

spec

The reader should see [11, p. 46] where a movable continuum X with infinite sd
such that the suspension of X has trivial shape is given. More specifically,
X =TI}, P, where P, is the complement of an open ball in the Poincaré manifold.

6. Whitehead theorems in stable shape

Now we wish to Cech-extend the definition of m, on HCW .. over Sh,. . For
each space X, the nth stable pro-homotopy group pro-m3(X) is defined as the
inverse system m,(E(X)) = (m(E,), m(e,,), A), where e: E(X)>E=(E_, e,,,
A) is a generalized HCW,;_-expansion of E(X). This is well defined up to an
isomorphism in pro-groups. Then the nth stable shape group #5(X) is defined as
the limit group lim pro-w,(E).

For each morphism G: X —Y in Sh,.., we define the morphism in pro-groups
pro-w(G): pro-w3(X) - pro-w3(Y) as pro-m(g): m,(E) - m (F), where e: E(X)
—E and f:E(Y)—>F are HCW, -expansions of X and Y, respectively, and
g:E > F is a representative of G. This is well defined up to an isomorphism in
pro-groups. It is a routine to check pro-m> is a functor from Sh___ to pro-Gp and
that #,; is a functor from Sh,,,. to Gp.

A morphism G: X - Y in Shg, is said to be an n-equivalence if the induced
morphism in pro-groups pro-m(G): pro-m(X) — pro-w(Y) is an isomorphism
for k=0,...,n—1 and an epimorphism for k = n.

By Theorem 2.5, pro-w,; and ) can also be considered as functors from Sh,,
to the category of pro-groups pro-Gp and the category of groups Gp, respectively.

Now we are ready to state the Whitehead theorems in Sh. and Sh,.

spec

spec

Theorem 6.1. Let G: X - Y be a morphism in Sh,.., which is an n-equivalence.
Suppose that —© <sdg,.. X<n—1and k<sd,. Y<n (k, n€Z). Then G is an
isomorphism in Shg,..

Proof. There is a morphism g: E — F in pro-HCW,.. which represents G, where

e: E(X) > E=(E, e,,, A) is a generalized expansion of X in HCW,,. such that
dim E,<n—1 for all a€A, and f:E(Y)—>F=(F,, f,,, B) is a generalized
expansion of Y in HCW,, such that for each b € B, dim F, <n and dim e > k

for all cells e # * of F,. Then the theorem follows from Theorem 4.1. O

Theorem 6.2. Let G: X —»Y be a morphism in Shg,, which is an n-equivalence.
Suppose that —o <sd, X<n—1 and k<sd,Y<n (k, n€Z). Then G is an
isomorphism in Sh,,.
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Proof. The theorem follows from Theorems 6.1, 5.3, and 2.5. O

Example 6.3. The finite-dimensionality of Theorems 6.1 and 6.2 cannot be omitted.
Recall the example in Marde$i¢ and Segal [9, Example 1, p. 153]. Specifically,
Adams [1, Theorem 1.7] constructed a finite polyhedron Y, r €N, and a map
a:S"Y — Y such that for each m € N, the composition

a(Sa)(S*a) - (S Ya):S™Y->Y
is essential. Then consider the inverse sequence of finite CW complexes

Y STy 3L gy
Let A be its inverse limit. Then A is a metric compactum. It is easy to see that
—o < sdg,..4 <n (equivalently, —o <sd 4 <n) is false for all n € Z. We claim

that Sh, (A)# Shy, (+) but pro-mi(A)=0 for all k€ Z. Indeed, for each
m €N, whenever k € N, the morphism in HCW,,,.. represented by the map

smry &7 gemkry
is not trivial. For, for any / € N, the map
smrly
is essential since for N € N with (m + k)r + I < (m + N)r the composition
a(S’a)(8%a) - - (SmHN-Drg) . §m+Nry  y

is essential. This shows the first assertion. Also, pro-m{(A) = (w(S™Y), w (5™ a),
N) but for cach k € Z, *n',f(S'"’Y) = dirlimika(S"””Y) =0 for m with mr > k,
so that pro-mi(A)=0for all k € Z.

a

S(m +k—1)r+la
—_—

S(m+k)r+lY
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