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A new e!ective decoding algorithm is presented for arbitrary algebraic-geometric
codes on the basis of solving a generalized key equation with the majority coset
scheme of Duursma. It is an improvement of Ehrhard's algorithm, since the method
corrects up to half of the Goppa distance with complexity order O(n2.81), and with no
further assumption on the degree of the divisor G. ( 2000 Academic Press
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1. INTRODUCTION

Decoding algebraic}geometric codes (AG codes in short) in an e!ective
way can be done by solving a key equation, generalizing the ideas of the
Berlekamp}Massey algorithm for BCH codes or the Euclidean algorithm for
classical Goppa codes (see [1]). In the original version of Porter et al. (see
[12]), only one-point codes with further assumptions on the curve were
decoded, but the main ideas of the method can be extended for arbitrary
curves and AG codes with Ehrhard's version of the key equation. Neverthe-
less, this algorithm does not correct up to the Goppa distance, but the
complexity is only O (n3) (more details in [4]). Our aim is to include in this
method a majority scheme which generalizes the ideas of Feng and Rao for
one-point codes (see [6]), together with improving the complexity by using
the new methods given in [14] to solve linear equations. Thus, the algorithm
that we propose improves both the decoding capacity and the complexity
without losing the generality of its application to arbitrary AG codes. It uses
1Partially supported by DIGICYT PB94-1111-C02-01.
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208 J. I. FARRAD N
the majority coset decoding scheme, which was introduced by Duursma, with
the only further assumption that there is an extra rational point in the curve
which is not used in the construction of the codes (more details in [2]). This
hypothesis is actually a weakening of the assumptions required by Porter's
method.

In Section 2 we rewrite Ehrhard's key equation in a way that is closer to the
original ideas of Porter et al., in order to show the explicit connection
between both works. Afterwards, we summarize in Section 3 the main ideas of
Duursma's majority coset scheme, in order to give in Section 4 an algorithm
which includes the above majority coset scheme, in order to give in Section 4
an algorithm which includes the above majority scheme in the key equation,
so that one can increase the error capacity without the assumption
degG56g!2q!2, where q is the gonality of the curve, which is required in
Ehrhard's algorithm given in [5] (see also [3] for further details). In the
paper, we "x a non-singular absolutely irreducible projective algebraic curve
s de"ned over F

q
and rational points P

1
,2, P

n
of s.

2. KEY EQUATION AND DECODING

Let G be a rational divisor whose support is disjoint to D"P
1
#2#P

n
.

Assume that 2g!2(degG(n#g, and consider the code C"C) (D,G),
which is the image of the linear injective map

res
D
: )(G!D)PFn

q

g> res
P1

(g) ,2, res
Pn

(g))

with dimension k5n!degG#g!1 and minimum distance d5d*"
degG#2!2g, where g is the genus of the curve. In the sequel, we "x
a divisor G* with l (G*)"0 and G5G*. In order to decode C, we will give
a result for preparation.

LEMMA 1. ¹here exists a vector space < of di+erential forms such that
)(G!D)-< and res

D
: <PF n

q
is an isomorphism.

Proof. Since )(G!D)-)(G*!D), it su$ces to prove that res
D

is
surjective on )(G*!D), because it is injective on )(G!D). But the kernel of
res

D
considered on ) (G*!D) is )(G*); hence the rank is i (G*!D)!

i(G*)"degG*!deg(G*!D)"n, because of the Riemann}Roch formula.
j

Remark 1. In the remainder of the paper we "x an arbitrary form gO0
and write K"(g). Then for any rational divisor H consider the isomorphism

L(K!H)P)(H)
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given by

f> fg.

This map is compatible with inclusions and restrictions, and so the inclusions
)(G!D)-<-)(G*!D) give the corresponding L(K#D!G)-
;-L(K#D!G*), where the map f> res

D
( fg) is an isomorphism from

; onto Fn
q
. Denote the inverse of this last map by y>hy; i.e., hy is the unique

element in ; such that res
D

(hyg )"y.

Because of the bijection C&%L(K#D!G) given by y% hy , the decoding
problem can be obviously described as follows:

(*) Given y3F n
q
, ,nd a function hc3L(K#D!G) such that heg has

a minimal number of poles in sup (D), where he"hy!hc .

This problem will be solved by the following de"nition and results.

DEFINITION 1. Given an arbitrary divisor F, a solution of the key equation
for the received word y (related to F) is a triple ( f, q, r)3 (L(F)CM0N)]
L(K#F#D!G)]L(K#F!G*) such that f hy"q#r.

Notice that this de"nition means that hy"q/ f#r/f and h
c
"

q/f3L(K#D!G). Thus, what we need to solve the decoding problem is to
give conditions such that he"r/f has few poles in sup (D). This is done by the
following theorem.

THEOREM 1 (Decoding Theorem). ¸et y"c#e, where c3C. ¹hen:
1. If L (F!De)O0, then there exists a solution of the key equation.
2. If degF#wt(e)(d*, then any solution ( f, q, r) of the key equation

satis,es

res
D A

qg
f B"c and res

DA
rg
f B"e.

Proof.
1. Take a nonzero function f3L(F!De)-L(F). Then ( f hc)5

G!D!F!K, ( f he )5!F#De#G*!De!K"G*!F!K, and
f hy"fhc#fhe ; hence the triple ( f, f hc , f he ) is a solution of the key equation.

2. Denote by De the divisor of poles of he g in the support of D. Let
( f, q, r) be a solution of the key equation and set uGr!f he"f hc!q. One
can estimate the divisors

K#(r!f he)5min MG*!F, G*!F!DeN"G*!F!De
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and

K#( f hc!q)5G!F!D,

which means that u3L(K#F#De!G*)WL(K#F#D!G)"
L(K#F#De!G)"0, since by assumption deg(K#F#De!G)"2g
!2#deg (F)#wt(e)!deg (G)(0. Hence u"r!f he"f hc!q"0, that
yields the theorem. j

Assume from now on that L(F!De )O0 and degF#wt(e)(d* (notice
that both assumptions are satis"ed if wt(e)4l and deg(F)"l#g, where
lGx(d*!g!1)/2y , that is, when there are few errors and F is small). Thus,
for a "xed y3F n

q
de"ne the linear map

ey : L(F)

f

P

>

L(K#F#D!G* )

f hy .

Since deg (G!F)'degG!d*"2g!2, one has L(K#F#D!G)W
L(K#F!G*)"L(K#F!G)"0, and hence there exists a vector space
= such that

L(K#F#D!G* )"L(K#F#D!G) =L(K#F!G*)==.

Denoting by n
W

and n* the natural projections onto = and
L(K#F!G*), respectively, notice that the key equation means that ey ( f )
has a null projection onto=. Therefore, if there exists a codeword c satisfying
wt (y!c)4t, where 0(t4x(d*!g!1)/2y , is "xed, one can compute the
error vector with the following algorithm, where a suitable basis for every
above function space is assumed to be previously calculated. Such bases can
be computed by means of the Brill}Noether algorithm (see [9]).

ALGORITHM 1. (K
G
(F)).

1. Compute a matrix for the linear map ey .
2. Find a non-zero function f3ker (n

W 3
ey).

3. Compute r"n* (ey ( f )).
4. Compute e"res

D
(rg/ f ), checking that y!e3C and wt(e)4

x(d*!1)/2y .

Notice that most of the calculations in this algorithm are concentrated in
the "rst two steps, and thus its complexity is that of solving linear equations
(see [4]). Also notice that the algorithm may fail in the second or fourth
steps if the number of committed errors is greater than the bound
x(d*!g!1)/2y , and hence it cannot correct in general up to the half of the
Goppa distance. In order to do it, we can use a majority voting scheme, what
will be explained in the next sections.
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Remark 2. We show now how the above results generalize those of Porter
et al., and why they are stronger. Following the notations from [12], the
original algorithm works with the codes C"C) (D, E!kP), where E is the
divisor of zeros of a function h3K

=
(P) without zeros in sup(D), K

=
(P) being

the ring of those functions having poles only at P, P being a rational point
distinct from sup(D), and where k is a positive integer. In this case, we can
obviously take G*"!kP. For the sake of simplicity, assume that there
exists a di!erential form g such that (g)"(2g!2)P.

First, from the isomorphism given by Lemma 1 we obtain a basis e
1
,2 , e

n
of < such that res

D
(e
1
) ,2 , res

D
(e
n
) is the canonical basis of Fn

q
. Then, Porter

de"nes a &&syndrome function'' by

Sy ) g"
n
+
j/1

y
jA1!

h

h(P
j
)B e

j
.

Notice that Sy3K
=

(P), Sy,hy (mod h), and !v
P
(Sy)4m#2g!1,

where mG!v
P
(h). On the other hand, Porter's result to decode C can be

rewritten as follows (see [4] for further details):

If there is an integer t such that t#wt(e)(d* and functions f, q,
r3K

=
(P) satisfying !v

P
(r)4t#2g!2#k, !v

P
( f )4t, and the

polynomial key equation

f Sy"gh#r

then he"r/ f.

Such triples ( f, g, r) are called valid solutions in [12]. Thus, by taking
K"(g)"(2g!2)P and F"tP, one has f3L(F) and r3L (K#F!G*),
and hence this a particular case of our method.2 Moreover, one obtains
e"res

D
(rg/ f ) where f has few zeros for F small (because of ( f )#F50) and

thus, for a suitable choice of t and wt(e), rg/f has a minimal number of poles
in sup(D), according to the formulation (*) of the decoding problem. This is
actually the underlying idea of Porter, which was carried out by a row
reduction process in a certain resultant matrix, but of course it can be done by
simple techniques of linear algebra, as we have explained above.

Thus, the results of our paper are stronger than the original results, since
they work with an arbitrary divisor G and we do not require any special
di!erential form g or rational function h, what is actually a very strong
restriction. Moreover, one obtains a quite similar formula to compute the
error just from hy , without the need of the syndrome Sy.
2In particular, the condition of being minimal for a valid solution can be dismissed from the
results of Porter.
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3. MAJORITY COSET DECODING

This section is abstracted from [2]. Assume that these exists a rational
point P

=
Nsup(D), and let H

1
be a rational divisor whose support is disjoint to

sup(D). Set H
0
"H

1
!P

=
and H

2
"H

1
#P

=
. For i"0, 1, 2, let C

i
"

C) (D, H
i
) and d*

i
"deg(H

i
)#2!2g. One obviously has C

0
.C

1
.C

2
.

For an error vector e such that wt(e)4(d*
1
!1)/2 we want to solve the

following problem:

Given y
1

with y
1
!e3C

1
, "nd y

2
such that y

2
!e3C

2
.

This problem is called the coset decoding procedure related to the extension
C

1
.C

2
, where we obviously can assume that C

1
OC

2
.

Thus, for a given y3Fn
q

and for any rational function h without poles in
sup (D), one de"nes the syndrome Sy (h) by the expression

Sy (h)G
n
+
j/1

y
j
h(P

j
)3F

q

which is linear with respect to both y and h.
It is very easy to prove that the syndrome is a coset invariant, i.e.,

Sy(h)"Se(h) for all h3L(H
i
) if and only if y!e3C

i
, for i"0, 1, 2. Hence,

y3C
i
if and only if Sy (h)"0 for all h3L(H

i
).

On the other hand, for an arbitrary divisor F de"ned over F
q
and i"0, 1, 2,

one de"nes the kernels K
i
(F) associated to the error vector e by

K
i
(F)GM f3L (F) DSe( f ) g)"0, ∀g3L (H

i
!F)N.

All the vector spaces K
1
(F#P

=
)/K

0
(F), K

0
(F)/K

1
(F), L(H

1
!F )/L(H

1
!

F!P
=
), K

1
(F#P

=
)/K

2
(F#P

=
) and K

2
(F#P

=
)/K

1
(F) have dimension at

most one. Thus, we are interested in the conditions

(A1) K
1
(F#P

=
)OK

0
(F) (B1) K

1
(F#P

=
)"K

2
(F#P

=
)

(A2) K
0
(F)"K

1
(F) (B2) K

2
(F#P

=
)OK

1
(F)

(A3) L(H
1
!F)OL(H

1
!F!P

=
).

De"ne the conditions (A)8 (A1)?(A2)?(A3) and (B)8 (B1)?(B2).
Since one has (A1)?(B1)8(A2)?(B2), the conditions (A) and (B) together
are equivalent to (A1), (A3), and (B1).

It follows from [2, Sections II and III] that if (A) and (B) are satis"ed, then
the coset decoding procedure can be implemented by the following algorithm,
where D and P

=
are "xed.
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ALGORITHM 2 (C
H1

(F)).
Input :"y

1
.

If C
1
"C

2
then y

2
"y

1
else:

f Find c
0
3C

1
CC

2
.

f Find f3K
1
(F#P

=
)CK

0
(F).

f Find g3L(H
1
!F)CL(H

1
!F!P

=
).

f Compute j"Sy
1
( fg)/Sc

0
( f g).

f Set y
2
"y

1
!jc

0
.

Output :"y
2
.

Unfortunately we are not able in practice to check the condition (B), since
K

2
(F#P

=
) is not known from the received word y. This problem can be

solved by means of majority voting, on the basis of the following result due to
Duursma (see [2] for further details).

THEOREM 2 (Main Theorem). ¸et C
0
.C

1
.C

2
be the extension of

codes given by C
i
GC) (D,H

i
), where H

1
has disjoint support with D,

H
0
GH

1
!P

=
and H

2
GH

1
#P

=
. Assume that the genus is g51, and take

numbers t, r50 such that 2t#r#14d*
1
GdegH

1
#2!2g. ¹ake an arbit-

rary divisor F
0

of degree t, and de,ne F
i
GF

0
#iP

=
for i"1,2, 2g!1. For

an error vector e with weight wt (e)4t, de,ne

IGMr, r#1,2 , 2g!2N

¹GMi3I D (A)?(B) hold for F"F
i
N

FGMi3I D(A)?2(B) hold for F"F
i
N.

¹hen at least one of the following conditions holds:

(i) L(H
1
!F

2g~1
!De!rP

=
)O0

(ii) L (F
r
!De)O0

(iii) A¹'AF.

In the last section we will see how to apply this majority scheme in order to
improve the correction capacity of the decoding algorithm by solving the
Ehrhard's key equation up to the half of the Goppa distance. The procedure
so obtained is thus the best possible one by solving a key equation, looking at
the generality and the capacity of the algorithm.
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4. DECODING BY A KEY EQUATION WITH MAJORITY VOTING

Let C"C) (D,G) be a strongly algebraic-geometric code, i.e., such that
2g!2(deg(G)(n. For our purpose, we can assume that g'0, since
otherwise the key equation corrects C up to the half of the Goppa distance
and we do not need any majority voting.

Consider successive divisors G
r
"G#rP

=
, for r"0, 1,2 , g. Notice that

for any such divisor G
r
one has 2g!2(deg(G

r
)(n#g, and thus all these

divisors are in the situation of the "rst paragraph in Section 2. On the other
hand, take tGx(d*!1)/2y , where d*Gdeg(G)#2!2g, and assume t'0.
Take then a divisor F

0
with degree t and set F

i
GF

0
#iP

=
for

i"1,2, 2g!1.
Thus we can consider the following algorithm, which brings together the

methods of Ehrhard and Duursma. In the algorithm, the main idea is that the
conditions (i) and (ii) given by Theorem 2 allows us to get the error vector by
means of a key equation for some suitable G and F, and otherwise the
condition (iii) provides us with a majority test to solve the coset decoding
problem and decrease the size of the code. We assume that bases for the
involved function and di!erential spaces are previously calculated together
with the spaces ;, <, W as in Section 2, for all of the possible cases when
Algorithm 1 is applied.

ALGORITHM 3 (D
G
(F

0
)).

Input :"y3Fn
q
.

Set y
1
"y.

From r"0 to r"g do:
f Set H

1
"G#rP

=
f If K

G
(G!F

2g~1
) gets the error vector from y

1
, then return e and

S¹OP.
f Otherwise, if KH

1
(F

r
) gets the error vector from y

1
, then return e and

S¹OP.
f Otherwise, compute I

A
GMi"r, r#1,2 , 2g!2 D (A) holds for

F"F
i
N, apply the coset decoding procedure C

H1
(F

i
) for i3I

A
with input y

1
and

get a vector y
2

whose coset with respect to C
2
GC) (D, H

1
#P

=
) occurs most of

the time.
Set y

1
"y

2
and NEX¹ r.

Notice that Algorithm 1 is always applied to one of the divisors G
r
. Thus, if

we take a divisor G* such that l (G*)"0 and G*4G4G
r
, we can use the

same divisor G* for all the involved key equations.
Finally, since every functional code can be expressed as a di!erential code

and vice versa, we can prove the following new result, which incorporates the
Duursma version of the majority voting scheme into the Ehrhard's version of
the key equation.
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THEOREM 3. ¸et s be a nonsingular absolutely irreducible projective alge-
braic curve de,ned over the ,nite ,eld F

q
with at least n#1 rational points.

¸et C"C) (D,G) be an algebraic-geometric code with length n such that
2g!2(deg(G)(n. ¸et F

0
be any divisor with degree tGx(d*!1)/2y , where

d*Gdeg(G)#2!2g is the Goppa distance of C. ¹hen the algorithm D
G
(F

0
)

decodes C up to t errors with complexity O (n2.81).

Proof. First of all, the condition 2t#r#14d*
1
"deg (H

1
)#2!2g

is satis"ed by every divisor H
1
"G

r
from r"0 to r"g, and for

tGx(d*!1)/2y ; thus we can apply Theorem 2 in every step of the algorithm,
provided wt(e)4t.

For a "xed H
1
"G

r
, if the condition (i) L (H

1
!F

2g~1
!De!rP

=
)"

L(G!F
2g~1

!De)O0 holds together with wt(e)4t, then the key equation
K

G
(F) obtains the error vector for F"G!F

2g~1
, since degF#wt(e)(d*

and L(F!De)O0, and Theorem 1 can be applied.
In the same way, if the condition (ii) L (F

r
!De)O0 holds together with

wt(e)4t, then the key equation KG
r
(F

r
) obtains the error vector, since

degF
r
#wt(e)(deg(G

r
)#2!2g and L(F

r
!De)O0, and Theorem 1 can

also be applied.
Otherwise, the condition (iii) implies that the algorithm C

Gr
(F

i
) is correct

for most of the candidates i3I
A
, and we can carry on with the next step.

Finally, for r"g the condition L(F
r
!De)O0 is always true and the algo-

rithm stops at most in g#1 steps, if not too many errors occur,
Notice that the complexity of this algorithm is still equivalent to that of

solving a linear system of size n, since most of the computations come from
either applications of the algorithm K

G
(F) or "nding a function in K

1
(F#P

=
)CK

0
(F) (more details in [2]). Thus, the complexity is actually

O(n2.81),3 since solving linear equations can be done faster than Gaussian
elimination (see for instance [14]). j

Remark 3. Notice that the complexity O (n2.81) is even better than the
complexity of Sakatas' algorithm O(n3~2@(r`1)) if the curve s is embedded in
an a$ne r-space with r'10 (what happens in the constructions of asymp-
totically good codes given in [8]). Thus, general decoding methods which are
based on solving linear equations are not as far from fast decoding as they are
supposed to be (see [11] for a survey on decoding).

EXAMPLE 1. Consider the Klein quartic X3Y#Y3Z#Z3X"0 over F
8
.

¹his curve has genus g"3 and 24 rational points, namely, Q
0
"(1 : 0 : 0),

Q
1
"(0 : 1 : 0), and Q

2
"(0 : 0 : 1) on the coordinate lines, and all the others are

in the a.ne plane, namely, P
1
,2 , P

21
(see [10] for details). Set H

1
"

G"4(Q
0
#Q

1
#Q

2
), D"P

1
#2#P

21
and de,ne the code C

1
"C"
3Nowadays there are even some improvements of this complexity.
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C) (D, G), with parameters [21, 11,58]. Consider the vector y
1
"

(1, 0, 1, a, 0 ,2 , 0)) as a received word, where a3F
8

satis,es a3#a#1"0,
and take the divisor F

0
"3P

=
, where P

=
"Q

2
. Notice that the correction

capacity of our algorithm is t"3, whereas the key equation only corrects two
errors.

¹hus, in the step r"0 one easily checks that the conditions (i) and (ii) from
¹heorem 2 are not satis,ed, and hence the key equation cannot correct this
error. ¹hen, one computes the set I

A
"M3N and applies C

G
(F) to the only

candidate F"F
3
:

f ¹ake c"(a, a5, a3, 0, a4, a2, a6, 1, 0, 1, 1, 0,2 , 0)3C
1
)CC

2
.

f ¹ake f"a3#Z3/X2Y3K
1
(F

3
#P

=
)CK

0
(F

3
).

f ¹ake g"X/Y3L (G!F
3
)CL(G!F

3
!P

=
).

f Compute j"Sy
1
( fg)/Sc( f g)"a3.

f Return y
2
"y

1
!jc"(a5, a, a2, a, 1, a5, a2,a 3, 0, a3, a3, 0,2, 0).

In this case we have no voting since there is only one candidate, and the above
solution is the new y

1
for the next step of the algorithm, which works in a smaller

code, we go on until the key equation gets the error vector.

EXAMPLE 2. Consider now the Hermite curve Y4Z#YZ4#X5"0 over
F
16

. It has 64 a.ne rational points and only one point P
=

at in,nity. ¸et
D"P

1
#2#P

64
, G

1
"32P

=
and de,ne the code C"C) (D,G

1
), which is of

type [64, 46,513]. Consider then y
1
"(a12, a4, a7, a8, a9, a9, 0,2, 0)) as

a received word, where a3F
16

satis,es a4#a#1"0, and take the divisor
F
0
"6P

=
.

Now for r"0 again (i) and (ii) do not hold, and one computes
I
A
&M1, 2, 3, 5, 7, 8, 9N. In this case, voting actually occurs and the procedure is

equivalent to the algorithm of Feng and Rao (see [6]).
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