
The Journal of Logic and Algebraic Programming 78 (2009) 573–592

Contents lists available at ScienceDirect

The Journal of Logic and Algebraic Programming

j ourna l homepage: www.e lsev ie r .com/ loca te / j lap

Transfinite semantics in the form of greatest fixpoint

Härmel Nestra

Institute of Computer Science, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia

A R T I C L E I N F O A B S T R A C T

Article history:
Available online 5 April 2009

Keywords:

Transfinite semantics

Tree semantics

Fractional semantics

Greatest fixpoint

Transfinite semantics is a semantics according to which program executions can continue

working after an infinite number of steps. Such a view of programs can be useful in the

theory of program transformations.

So far, transfinite semantics have been successfully defined for iterative loops. This paper

provides an exhaustive definition for semantics that enable also infinitely deep recursion.

Thedefinition isactuallyaparametric schemathatdefinesa familyofdifferent transfinite

semantics. As standard semantics also match the same schema, our framework describes

both standard and transfinite semantics in a uniform way.

All semantics are expressed as greatest fixpoints of monotone operators on some com-

plete lattices. It turns out that, for transfinite semantics, the corresponding lattice operators

are cocontinuous. According to Kleene’s theorem, this shows that transfinite semantics can

be expressed as a limit of iteration which is not transfinite.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Motivation and context

It is sometimes useful to imagine program runs as if they were able to overcome non-termination. According to this

view, a computation that falls into an infinite loop or infinitely deep recursion continues after completing the infinite

subcomputation. This has applications in the theory of program transformations such as slicing.

Program slicing is a program transformation technique where the aim is to omit statements from a given program in such

a way that executing the remaining program (so-called slice) would compute some data of our special interest exactly the

same way as the original program. The interesting data is specified in the form of a list of variables that are coupled with

the program points at which their values are important. This list is called slicing criterion; for each couple in the criterion,

the sequence of values obtained by the variable at that program point during the whole execution of the original program is

required to coincide with the sequence of values obtained by the same variable at the corresponding program point of the

slice during its execution.

This transformation is used in several branches of software engineering. A well-known application is in debugging: when

one discovers awrong value of a variable at some point of execution, onemay slice the programw.r.t. the criterion containing

this variable coupled with this program point; then the error must lay inside the slice which is hopefully a much smaller

program than the original one and finding the error from a smaller program is easier. This application was one of the earliest

discovered and studied (see [14]).

Classically, slices are computed via data-flow analysis (for details, see [1] or [13]). When a loop has no influence on the

values of the interesting variables via data flow, such slicing algorithms do not keep it. But infinite loops can have another

kind of influence: they may prevent the program from reaching some assignments. If an infinite loop is sliced away, the

E-mail address: harmel.nestra@ut.ee

1567-8326/$ - see front matter © 2009 Elsevier Inc. All rights reserved.

doi:10.1016/j.jlap.2009.03.001

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81160044?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.sciencedirect.com/science/journal/15678326
http://www.elsevier.com/locate/jlap

574 H. Nestra / Journal of Logic and Algebraic Programming 78 (2009) 573–592

resulting program reaches farther in the code than the original program and thus may do assignments to the interesting

variables that the original program never does.

In order to treat this as a correct behaviour, we can say that the original program also makes these assignments but this

happens after an infinite number of steps. Program semantics that follow this view are usually called transfinite. The idea of

using transfinite semantics in program slicing theory was first proposed by Cousot [2]. This approach was followed later in

the work of Giacobazzi and Mastroeni [4] and ours [11,10].

An alternative approach that can be used is to consider this kind of simplification as an incorrect slicing and require that

the slicers kept all possibly infinite loops that lexically precede an assignment to an interesting variable. However, when

slicing, the smaller the slice is the better we have done, and keeping unnecessary loops is countermining. In the debugging

case described above, slicing that is purely based on data-flow analysis is satisfactory because if a wrong value really occurs

then this happens after a finite run already and the slice therefore finds the wrong value in the same way.

The word ‘transfinite’ actually fails to characterize the whole variety of imaginary computation processes that arise in

our approach. In the case where only iterative loops can be non-terminating, the sequence of execution steps is really

transfinite in the sense that the steps can be enumerated by ordinal numbers in their execution order. For unloading an

infinitely deep call-stack level-by-level, such an enumeration is impossible since no infinite decreasing sequences of ordinals

exist.

In [10], we showed that the sequence of steps in this case is more like a fractal structure. We proposed the idea of

enumerating steps with rational numbers and called such semantics fractional. However, we failed to give a complete

definition of fractional semantics in the presence of recursion.

1.2. About the paper

In this paper, we provide an exhaustive definition schema for semantics that enable returns from infinitely deep recursion

level-by-level. The semantics are expressed in terms of greatest fixpoints of monotone operators on complete lattices of

set-valued functions. At the statement level for example, these functions take statements to sets of semantic objects that

somehow describe the execution of the statement.

Our framework actually defines a large family of semantics in a uniformway. There is one definition schema for all seman-

tics and it refers to a small number of underlying sets and mappings as parameters. The uniform parametric representation

is somewhat similar to that in our earlier work [10]. However, the semantics specification in [10] does not include any order

relation, thus fixpoints were specified in ad-hoc manners while monotone operators together with their least and greatest

fixpoints provide a standard framework for semantics.

The purpose of doing the work parametrically for many semantics is to emphasize the closeness of transfinite semantics

to well-known semantics. We complete the definition schema for nine concrete semantics by providing values of pa-

rameters. The semantics are classified by two attributes: by the size and by the shape. By the size, a semantics can be

either finite, standard or transfinite. By the shape, we consider ordinal trace semantics, fractional trace semantics and tree

semantics.

Not all of these semantics are satisfactory. As already explained, transfinite ordinal trace semantics is not what one

desires. Although the definition via a greatest fixpoint is correct, it leads to empty semantics in the case of infinitely deep

recursion. Even for statements without recursion, the transfinite ordinal trace semantics that is given by a greatest fixpoint

can return too large trace sets that contain besides the desired traces also arbitrary other traces that include the desired

traces as segments. We provide an example on this in Section 5.3. (Semantics that assign chaotic behaviour to programs

are sometimes called demonic (for instance, in [3]). This term seems to be chosen in order to characterize the aspect that

everything bad is possible.)

Therefore, there is a need for fractional semanticswhere the index space is statically distributed between parts of program

and no space is left for garbage. Alternatively, one can use tree semantics where executions are built up in tree form similarly

to proof trees of natural semantics.

Concerning the size attribute, finite semantics can be obtained from standard semantics by omitting all infinite semantic

objects. From the transfinite point of view, standard semantics is obtained from finite semantics by adding infinite semantic

objects whose parts after the first infinity are truncated.

Finite semantics is nothing exotic; for example, classical natural semantics include only finite trees.

In our work, it turns out that the details for standard semantics are more complicated than those of transfinite semantics.

Due to this, one can even roughly specify transfinite semantics as those obtained by replacing the least fixpoint (that is

commonly used for presenting semantics of programming languages) with the greatest fixpoint and using either fractional

or tree shape.

Lastly, we prove that the monotone operators whose greatest fixpoints are taken for our non-standard semantics are

cocontinuous. This means (by Kleene’s theorem) that the semantics can be achieved by iteration which is not transfinite,

even if the semantics is transfinite. Thanks to the parametric uniform framework, proofs aremostly obtained simultaneously

for all semantics.

Inour approach, the semantics arenot apriori deterministic. This is presumablynot abigdrawback sincenon-determinism

is always introduced after non-termination.

H. Nestra / Journal of Logic and Algebraic Programming 78 (2009) 573–592 575

1.3. Examples

A toy example illustrating transfinite semantics in program slicing is the following. Suppose the code fragment

(while true do x := x + 1) ; x := 1 has to be sliced w.r.t. its final point and variable x. That means, a desirably

shorter code fragment that computes the same sequence of values for x at the corresponding (i.e. final) program point is

looked for. The assignment in the loop body can never influence the final value of x since x is yet updated after the loop;

hence slicing algorithms typically remove the loop and get the result x := 1. Here, x gets value 1. The execution trace of the

original code fragment consists of an infinite succession of states where the value of x increases continuously, followed by

states {x �→ �}, {x �→ 1} in transfinite semantics (�means that no concrete value can be associated to the variable). Hence

x gets value 1 by the end of the execution in transfinite semantics but not in standard semantics. If the latter is assumed, a

slicer should keep the loop in order to follow the notion of slice.

The example is extremely simple and impractical but one can easily generalize it and put it into a larger context (e.g., into

the body of a bigger loop) to capture real examples. As termination is undecidable, no algorithm can ever decide for all input

programs whether a loop may be sliced away or not within standard semantics.

Fractional traces were introduced by us in [10]. The execution steps of computations are indexed by rational numbers

from the interval [0; 1].
For example, the execution trace of the swap program z := x ; (x := y ; y := z) at the initial state (x �→ 1, y �→

2, z �→ 0) is

0 �→ (x �→ 1, y �→ 2, z �→ 0),
1

2
�→ (x �→ 1, y �→ 2, z �→ 1),

3

4
�→ (x �→ 2, y �→ 2, z �→ 1),

1 �→ (x �→ 2, y �→ 1, z �→ 1).

As the program is a composition of two statements, the interval [0; 1] is first divided into two equal pieces; and as the

second statement is itself a composition of two statements, the second half

[
1

2
; 1
]
is also divided into two equal pieces. The

assignments z := x, x := y and y := z are therefore run within intervals

[
0; 1

2

]
,

[
1

2
; 3

4

]
and

[
3

4
; 1
]
, respectively. This

is so independently of the initial state.

If the semantics is transfinite, the reservation of intervals would remain the same even if the three assignments were

replaced with arbitrary three statements S1, S2, S3. For example, if S1 = S2 = while true do x := x + 1 and S3 =
x := 1 then the index set of an execution trace of statement S1 ; (S2 ; S3) is depicted in the following figure.

0 1

In tree form, the execution of the swap program is

⎧⎨⎩
x �→ 1

y �→ 2

z �→ 0

⎫⎬⎭ →
⎧⎨⎩
x �→ 1

y �→ 2

z �→ 1

⎫⎬⎭

⎧⎨⎩
x �→ 1

y �→ 2

z �→ 1

⎫⎬⎭ →
⎧⎨⎩
x �→ 2

y �→ 2

z �→ 1

⎫⎬⎭
⎧⎨⎩
x �→ 2

y �→ 2

z �→ 1

⎫⎬⎭ →
⎧⎨⎩
x �→ 2

y �→ 1

z �→ 1

⎫⎬⎭
⎧⎨⎩
x �→ 1

y �→ 2

z �→ 1

⎫⎬⎭ →
⎧⎨⎩
x �→ 2

y �→ 1

z �→ 1

⎫⎬⎭
⎧⎨⎩
x �→ 1

y �→ 2

z �→ 0

⎫⎬⎭ →
⎧⎨⎩
x �→ 2

y �→ 1

z �→ 1

⎫⎬⎭

where the same initial state as above was chosen. The transfinite tree semantics of statement

(while true do x := x + 1) ; x := 1 at the initial state {x �→ 0} may be of the form

t0 {x �→ �} → {x �→ 1}
{x �→ 0} → {x �→ 1}

576 H. Nestra / Journal of Logic and Algebraic Programming 78 (2009) 573–592

where t i is equal to

{x �→ i} → {x �→ i}
{x �→ i} → {x �→ i + 1} t i+1

{x �→ i} → {x �→ �}
{x �→ i} → {x �→ �} .

In order to achieve uniformity, our trees have branches corresponding to conditional tests (in natural semantics, tests are

not reflected in the tree structure). Such branches consist of one node where the state does not change (the left branch in

tree t i is an instance).

Using the special value� is more or less a matter of choice here. In the greatest fixpoint semantics, one can naturally use

non-determinism at this point (Section 6 provides some further discussion on this).

Fractional traces share both tree and trace properties: they reflect branching of the deduction tree while keeping the

execution order evident. Fractional semantics forgets information about the depth of the nodes in trees. For example, trees

s → t
and

s → t

s → t

have the same fractional counterpart {0 �→ s, 1 �→ t}. Thus fractional traces form an intermediate representation between

trees and usual traces.

Onemay notice that our trees contain only state pairswhile, in natural semantics, proof trees include also code fragments.

Similarly, trace semantics are often expressed together with an additional “rest of code” component occurring in states. This

is so, for instance, in the textbook structural operational semantics of [12] and also in the fractional trace semantics of [10].

We have omitted code parameters in this paper in order to make the framework simpler. They can be added if needed.

For a toy example involving infinitely deep recursion, assume that the body of the definition of procedure p is

x := x + 1 ; call p () and consider the code fragment call p () ; x := 1. In principle, this example is the same

as the first example in this subsection where iteration is replaced with recursion. Hence it should be treated similarly. In the

fractional semantics of this paper, the index set of the traces of this program can be depicted as follows:

0 1

There is one accumulation point

(
namely

5

14

)
. Enumeration of states by ordinals in the order in which they occur is

impossible as this point is infinitely approximated from both sides.

1.4. Related work

The idea of using transfinite semantics in program slicing was proposed by Cousot in [2] and in the later version [3] of

the same work and developed further by Giacobazzi and Mastroeni [4].

Bothmentionedworks are deeply engaged on abstraction hierarchies of semantics. Cousot’s work shows that manywell-

known fixpoint semantics can be put into an abstraction hierarchy where every semantics can be obtained from each one

immediately preceding it via an abstraction mapping satisfying special requirements (inter alia, having a Galois adjoint).

Such a hierarchy is called Cousot hierarchy in the literature now. The work by Giacobazzi and Mastroeni adds transfinite

semantics to the hierarchy. An abstraction hierarchy involving nine semantics shows up also in this paper; we do not impose

any special requirements on abstraction functions but it is likely that a big part of our hierarchy actually can be built up as a

Cousot hierarchy.

Parts of the hierarchies in [2–4] resemble our two-dimensional classification of semantics but, contrastingly to our

approach, their systems of semantics are not given parametrically.

During the last decade, several authors have argued in favour of generalizations of natural semantics that include also

infinite trees. They enable to describe terminating and non-terminating computations uniformly like trace semantics but in

tree form. Such semantics, usually called coinductive, are achieved via greatest fixpoints like ours.

For example, Glesner [5] uses coinductive natural semantics for proving correctness of translators and type safety. She

however leaves transfinite parts of executions out of consideration, observing only what she calls “effective parts” of the

trees. In our terms, the effective parts are left-finite trees. Contrastingly to [5] where these trees are achieved via truncation,

a semantics like this (standard tree-based semantics) is defined directly in the form of greatest fixpoint in our framework.

With similar reasons, Leroy [7] and Leroy and Grall [8] propose a coinductive big-step semantics for a functional language

(the lambda-calculus with constants). Interpreted along the lines of this paper, proof trees of “coevaluations” of [7,8] give

rise to transfinite traces, but this aspect is never observed or exploited.

The non-determinism coming forth from coinductivity is restricted in no way in [7,8], the result term of an endless

reduction sequence can be arbitrary. As explained in Section 6 of this paper, some restrictions must be imposed on the

H. Nestra / Journal of Logic and Algebraic Programming 78 (2009) 573–592 577

Fig. 1. Abstract syntax of Proc.

Fig. 2. The kinds of semantics, their notation and hierarchy.

state occurring after an endless computation in order to make our transfinite semantics useful for applications. It seems

that modifying the coevaluation semantics similarly would alsomake themmore widely applicable. Including infinite terms

(expressing infinite data structures in lazy functional languages) and imposing rules for finding the limit terms of endless

reduction sequences (for example, the infinite list consisting of zeros could be the limit of a sequence of finite lists of

unboundedly growing length all consisting of zeros) would bring coevaluation semantics together with the approach of

Kennaway et al. [6].

2. Syntax of the language

We are going to work on a simple language with procedures. The syntax of the language is presented in Fig. 1. We call

this language Proc although it has several small divergences from the language that was used in our earlier work [10] and

that was also called Proc.

One divergence from the earlier paper is that, for keeping fractional semantics and tree semantics simpler, we omitted

empty statements here. This means that every execution makes at least one computation step. The other divergence is

concerning procedures: here, we distinguish between declarations and modules (modules are possibly empty finite lists of

declarations) while, in [10], any sequence of procedure definitions was called a declaration. None of the divergences is very

conceptual.

As in [10], the inner structure of expressions is not important and hence not explained in the grammar.

3. Semantics of statements

3.1. Classification of semantics

Fig. 2 presents the classification of semantics explained in Section 1. Finite, standard and transfinite size are denoted by

+,ω and∝, respectively; ordinal trace, fractional trace and tree shape are denoted by−→· , ·̃ and ·̂ , respectively. Notation of

each semantics is obtained by composing the notations of classes where the semantics belongs to.

Fig. 2 also presents a hierarchy of these semantics that is based on an abstraction relationship. A semantics being more

abstract than another means that it can be obtained from the other by forgetting some details (or, technically, by applying a

surjectivemapping). Themore abstract a semantics is, the higher it is situated in the picture. Arrows lead frommore concrete

to more abstract semantics. The arrow from transfinite ordinal trace semantics to standard trace semantics is dotted since it

is valid for statements only (as explained in Section 1, transfinite ordinal semantics does not work for procedures).

578 H. Nestra / Journal of Logic and Algebraic Programming 78 (2009) 573–592

Fig. 3. Semantic domains.

This hierachy resembles the Cousot hierarchy of semantics [2–4] but, in this paper, we are not concerned in the question

whether or to what extent it really is a Cousot hierarchy. This is the subject of future work.

3.2. Uniform framework

Figs. 3 and 4 present our semantics definition schema; κ denotes the kind of semantics (it can be any of the nine).

Sets and operators whose meaning is not specified are mostly defined later for each semantics separately. However, we

forsake precise definitions of the set Val of values and the semantics e of expressions. For e , assume for simplicity that it

always returns a normal value. If desired, a treatment of runtime errors can be added to the theory along the lines of our

paper [10]. In addition, we use an order relation onVal which is equality on normal values but treats� (ifVal � �) as greater

than any normal value. The role of � as possible limit value of infinite sequences is discussed in Section 6; it is safe to forget

about � before that point.

Denote by ℘(X) the powerset of X , and by X* the set of all finite vectors with components from X . Furthermore, X+ is X*

without the empty vector. Let T ⊂ Val be the set of truth values. Composition of functions is written like f ; g (the left-hand

function is applied first).

For each κ , the semantics sκ of statements, depending on procedure environment e, is defined as the greatest fixpoint

of some operator fffκ(e). As a semantics basically maps statements to sets of semantic objects, the operator fffκ(e) is a

transformation of such mappings. The order on the mappings that is assumed when talking about the greatest fixpoint

is the pointwise lift of the set inclusion order.

Roughly, the operator fffκ(e) adds one syntax-driven level to the evaluation of the argument statement. More precisely, the

result of the transformation on any mapping is a mapping which decomposes its argument statement, applies the original

mapping to each component, and finally fuses the resulting components together. Both the decomposition and the fusion

are syntax-driven.

We handle the decomposition and fusion stages separately. Thereby, the decomposition is the same for all kinds of

semantics while the fusion depends on both semantics and environment. In terms of category theory, the decomposition δ
is a C-coalgebra of syntactic objects and fusions ϕκ(e) are C-algebras of sets of semantic objects for an endofunctor C on the

category of sets and functions. The task of C is to distinguish between different syntactic constructs of statements.

Note that the decomposition does not necessarily find the syntactic subobjects of its argument. The idea of decomposition

is to provide the syntactic objects in terms of which the semantics of the original statement has to be expressed. In the case

of loop, the result of decomposition is even longer than the original statement since the meaning of while E do S is

unravelled using the semantics of the expression E and the complex statement S ; while E do S.

Both functor C and decomposition δ are defined completely in Fig. 4, so semantics sκ becomes defined when ϕκ does. In

order to achieve complete definition of ϕκ for some fixed κ , it suffices to define operators iniκ , finκ , elemκ , compκ for that κ .
For these four operators, Fig. 4 provides only signature.

The names of operators axm and rul are suggested by tree semantics where the semantic objects are composed by

axioms and rules. However, their counterparts can be observed for every semantics since, from a general point of view, every

semantics is built up in a similar recurrent way.

3.3. Details for concrete semantics

Here, we complete the definitions of all semantics by defining Baseκ , as well as iniκ , finκ , elemκ and compκ , for all κ . Yet
establishing the existence of the greatest fixpoint of fffκ(e) for all κ is left to Section 5.

For ordinal trace semantics, the base domain should contain execution traces of various lengths where the states are

enumerated by indices 0, 1, 2, etc. Depending on size, the indices can be limited differently. In the transfinite case, the limit

is a sufficiently large transfinite ordinal ∝. Assume that ∝ is a power of ω (as shown in [9], taking ∝ = ωω ensures that all

programs without calls can be executed to the end). As natural numbers are small ordinal numbers, the indices are ordinals

also for finite and standard semantics.

For arbitrary ordinal o, denote the set of all ordinals less than o by Oo and the set of all ordinals not exceeding o by Oo,

i.e.,

Oo = {π : π < o} , Oo = {π : π � o} = Oo ∪ {o} = Oo+1.

H. Nestra / Journal of Logic and Algebraic Programming 78 (2009) 573–592 579

Fig. 4. Common skeleton to all semantics of statements.

Then the base sets of finite, standard and transfinite ordinal trace semantics are defined like shown in Fig. 5 as sets of functions

from indices to states. We will denote the state on trace l corresponding to ordinal o by lo.
We say that a trace l ends if l has last element (in the transfinite cases, this is not equivalent to finiteness). Equivalently,

a trace ends iff its index set is of the form Oo for some o. All transfinite traces are required to end since the core idea of

transfinite semantics is the possibility of getting out from all loops. Hence the only endless traces are the infinite traces of

standard semantics.

The following introduces the length of a trace. This notion is reasonable only in the case of ordinal traces (or other traces

that can be reinterpreted as ordinal traces).

Definition 1. For any trace l ∈ Oo → State, the length of l is the least upper bound of Oo. Denote the length of l by |l|.
By definition, |l| = owhenever l ∈ Oo → State = Oo+1 → State. This way, the length of a trace is the number of steps

on it; for traces l that end, the number of states is |l| + 1.

In the definitions of ini, fin, elem and comp in Fig. 5, the exact kind is omitted because the definitions are common for all

three kinds. Since the composition of semantic object lists is actually used for lists containing either one or two elements,

the operation is specified for these cases only. If the first list ends then this operation coincides with “brazing concatenation”

580 H. Nestra / Journal of Logic and Algebraic Programming 78 (2009) 573–592

Fig. 5. Definition of the base sets and operators for ordinal trace semantics.

of [10], i.e., concatenation where the last element of the first list and the first element of the second list are fused together

into one element. As comp−→· is invoked only if the argument vector satisfies sound−→· (see Fig. 4), it is guaranteed that these

two elements always equal and one copy can be simply ignored. The assumption that ∝ is a power of ω ensures that O∝ is

closed w.r.t. binary addition, hence concatenation involves no overflows.

For introducing base sets for tree semantics and fractional semantics, we use cyclic definitions; these self-referencesmust

be resolved coinductively (i.e., anything is in whenever one cannot falsify this using the definition a finite number of times).

Definition 2. A tree t over set X has form
u1 · · · u l

x
where x ∈ X and u1, . . . , u l (l � 0) are trees. Thereby, x is called the root

of t and denoted root t .

The notation
u1 · · · u l

x
means a purely formal construct resembling deduction trees where u1, . . . , u l stand at place of

the premises and x stands at place of the conclusion.

Trees can be finite, as well as infinite. We need also an intermediate class of trees.

Definition 3. A tree
u1 · · · u l

x
is left-finite iff either l = 0 or each of u1, . . . , u l−1 is finite and u l is left-finite.

Every finite tree is clearly left-finite. In any left-finite tree, only the rightmost branch can be infinite. For example, the

transfinite tree semantics of the statement (while true do x := x + 1) ; x := 1 that was presented in Section 1.3 is

not left-finite since its left immediate subtree is infinite. However, its subtrees that were denoted t i there are left-finite since
the only infinite branch of them is the rightmost one.

Note that a tree in the form of an infinite chain c where c = c

x
for some x is also left-finite by definition. It is likely that

such trees have no practical value and could be left out of all domains, together with all trees containing such subtrees.

In our framework, trees contain elements of the form s → t or s → ⊥ where s, t ∈ State; call them transitions. As the

idea is to do an impression of deduction trees, not all trees of transitions are welcome. Restrictions along the lines of Glesner

[5] must be imposed. We call the appropriate trees consistent.

Definition 4. A tree
u1 · · · u l

x
is consistent iff either l = 0 and x is of the form s0 → s1 for s1 /= ⊥, or l > 0 and each u i is

consistent and there exist s0, . . . , sl ∈ State ∪ {⊥} such that the following holds:

(1) x = s0 → sl;

(2) root u i = si−1 → si for each i = 1, . . . , l;

(3) si = ⊥ only if i = l.

The definition implies that, in order to contain ⊥, a consistent tree must be infinite.

The base sets of tree semantics together with underlying operators are defined in Fig. 6. Again, composition is defined for

argument vectors containing one or two components only. Note that composition entails adding one level to the tree even

H. Nestra / Journal of Logic and Algebraic Programming 78 (2009) 573–592 581

Fig. 6. Definition of the base sets and operators for tree semantics.

in the case of one-element argument vector. It is easy to check that Base+̂, Baseω̂ and Base∝̂ are all closed w.r.t. elem ·̂ and

comp ·̂ .
For defining fractional trace semantics, it is first necessary to specify the sets of rational numbers that can be used for

indexing. Theymust reflect the tree structure so that branching in a subtreemeans division of the corresponding segment of

rationals into equal pieces. For example,

{
0,

1

2
, 1

}
and

{
0,

1

4
,
1

2
, 1

}
are allowed but

{
0,

1

3
, 1

}
is not. We call the appropriate

sets tree-like. Also notions that correspond to finiteness and left-finiteness in the case of trees are important. Denote by [a; b]
the set of rational numbers x such that a � x � b.

Definition 5. A set Z is tree-like iff {0, 1} ⊆ Z ⊆ [0; 1] and either Z = {0, 1} or there exists an integer n > 1 such that,

for each i = 0, . . . , n − 1, the linear projection of Z ∩
[
i

n
; i + 1

n

]
to [0; 1] is tree-like. (The linear mapping making the

projection is λa. na − i, hence
i

n
is mapped to 0 and

i + 1

n
is mapped to 1.)

Call a tree-like set left-finite iff either it is finite or its only accumulation point is 1.

Fig. 7 gives the base sets and the underlying operators of fractional trace semantics. The fractional traces are functions

from tree-like sets of rational numbers to states. Composition of two functions, among which the first does not end with

⊥, is found by compressing the first function to the first half of [0; 1] and the second function to the second half of the

same interval, using linear mappings. This way, the middle point
1

2
gets its state from both argument functions. As comp ·̃ is

invoked only for argument vectors satisfying sound ·̃ , the colliding states are equal and the result is a function again. Again,

it is easy to check that Base+̃, Baseω̃ and Base∝̃ are all closed w.r.t. elem ·̃ and comp ·̃ .
Finally, note that, if necessary, it is possible to make further restrictions to the semantic objects forming the sets Baseκ .

When doing this, one only has to ensure that Baseκ remains closed w.r.t. elemκ and compκ .

Fig. 7. Definition of the base sets and operators for fractional trace semantics.

582 H. Nestra / Journal of Logic and Algebraic Programming 78 (2009) 573–592

Further restrictions are needed if we want to keep the values of variables during transfinite computations under control;

currently, they are just undetermined after each infinite loop. This is discussed further in Section 6.

3.4. Properties of semantics

Additionally to the common structure of all semantics given in Fig. 4, one can observe some common properties that

cannot be deduced from the common framework. They are formulated in Propositions 6 and 7.

Proposition 6 refines the nature of the operators involved in the framework: namely, every elementary semantic object

built upon two states has the same states as the initial and final ones; the composition of semantic objects always shares

the initial state with the first term in the composition; analogously for the final state and the last term except if a preceding

term ends with non-state; and the terms in the composition that follow a term ending with non-state do not matter.

Proposition 6. For all kinds κ of semantics that are represented in Fig. 2, the following holds:
(i) iniκ(elemκ(s, t)) = s for all s, t ∈ State;
(ii) finκ(elemκ(s, t)) = t for all s, t ∈ State;
(iii) iniκ(compκ(u1, . . ., u l)) = iniκu1 for l = 1, 2 and all u1, . . ., u l ∈ Baseκ such that soundκ(u1, . . ., u l);
(iv) finκ(compκ(u1, . . ., u l)) = finκu l for l = 1, 2 and all u1, . . ., u l ∈ Baseκ such that soundκ(u1, . . ., u l) and none of

finκu1, . . ., finκu l−1 is ⊥;
(v) for all u , v ,w ∈ Baseκ , if soundκ(u , v) and soundκ(u ,w) and finκu = ⊥ then compκ(u , v) = compκ(u ,w).

Proof. Straightforward by specifications in Figs. 5–7. �

The cocontinuity of semantic operators (discussed shortly in Section 1 and proven in Section 5) holds thanks to the

injectivity of mappings elemκ and compκ .

Proposition 7.

(i) For all kinds κ of semantics occurring in Fig. 2, elemκ is one-to-one.
(ii) For all kinds κ of non-standard semantics occurring in Fig. 2, compκ is one-to-one.

Proof

(i) A direct consequence of Proposition 6(i)–(ii).

(ii) A straightforward case study by the specifications in Fig. 5–7. First note that finκ never returns ⊥ for non-standard

semantics. Hence the first case is chosen in each definition of binary compκ . In all these cases, the result contains both

operands entirely. �

4. Semantics of procedures

Assume that the code is syntactically correct. This means basically that all calls to procedures have the right number of

arguments and every called procedure has exactly one declaration.

The definition of semantics of procedures is given uniformly for all kinds of semantics using the same underlying sets

and operators already defined for semantics of statements.

Wefirst define the semantics of single declarations in Fig. 8. It is a pair that associates ameaning to theprocedure declared;

this meaning depends on a given environment parameter. The type of the object associated to the procedure is such that the

semantics of a declaration can be used as elements of environments (an environment can be treated as a set of such pairs).

The rhs of the definition of declaration semantics is written like a computer program in order to make the long ex-

pression maximally readable. The components of the resulting pair are separated by the �→ sign for emphasizing the

intent to use the pair as a building block of a function. The second component of the pair is a mapping whose argu-

ment is a possible vector of actual parameters found in a call statement. The mapping returns a set of semantic objects

obtained by wrapping entry and return actions around the semantics of the body of the procedure (sκ(S)(e)). The entry

action (axmκ {(s, s[X1 �→ e(E1)(s), ..., Xl �→ e(El)(s)]) : s ∈ State}) changes the values of formal variables according to the

actual parameters. The return action (axmκ {(s, t) : s, t ∈ State, ∀Y /= X1, ..., Xl (s(Y) = t(Y))}) leaves the values

of the formal parameters undetermined but keeps the other variables unchanged. Finally, set meet with
{t : t ∈ Baseκ , ∀i (iniκ(t)(Xi) = finκ(t)(Xi))} takes care of the formal parameters getting back their values they had before

the call.

Themeaning of single declarations does not involve semantic cycles. If the body of the procedure calls the sameprocedure,

its meaning is taken from the environment parameter. The semantics of recursion is given at module level, see Fig. 9. The

definition schema of module semantics mκ is similar to the schema in Fig. 4: we again use a decomposition coalgebra,

a functor and fusion algebras. Like in the case of statements, the fusion algebras depend on an additional environment

parameter. A superscript m is used for distinguishing the elements of module semantics from that of statement semantics.

H. Nestra / Journal of Logic and Algebraic Programming 78 (2009) 573–592 583

Fig. 8. Semantics of procedure declarations.

Fig. 9. Semantics of modules.

The aim is to define the semantics of any module as a transformation of environments of Envκ which updates the

values of the procedures declared in the module according to their declaration while keeping the values of other procedures

unchanged. As the semantics of amodulemust be described in terms of the semantics of its declarations and also in terms of

itself (because they can be recursive), the decomposition δm repeats its argument, as well as gives the set of its declarations.

A fusionϕm
κ , given an environment e and a pair (e′,D) of a new environment and a set of declarations, returns the update of e

with the semantics of all procedures declared in D provided by e′ (the expression e
[
dκ(D)(e′) : D ∈ D

]
denotes the update

of e with all correspondences that occur in the set
{
dκ(D)(e′) : D ∈ D

}
); hence precisely the procedures that are declared

in D are updated).

Now, the operator fff mκ and themodule semanticsmκ are defined similarly to fffκ and sκ , respectively. The order on Mod →
Envκ is defined by repeated lifting of the inclusion order on ℘(Baseκ).

5. Correctness of the definitions

Here,we remove the last uncertainties concerning the definitions of the semantics by proving the existence of the greatest

fixpoints that were referred to by the definitions. Furthermore, for six non-standard semantics, we prove that the greatest

fixpoints can be expressed as limits of non-transfinite sequences.

By Tarski’s well-known theorem, an operator on a complete lattice has a greatest (as well as least) fixpoint whenever it

is monotone. The domains of our operators fffκ(e) and fff mκ (e) are complete lattices since the order relations were defined via

lifting of powerset lattices. So for the existence of greatest fixpoints, it suffices to prove monotonicity.

According to Kleene’s theorem, for expressing a greatest fixpoint as the limit of a sequence, it suffices to establish

cocontinuity of the corresponding operator. (An operator is called continuous iff it preserves lubs of non-empty chains;

cocontinuity is the dual notion.)

Proving these two things is the content of Sections 5.1 and 5.2. In the case of statements, we prove continuity instead of

monotonicity; this is fine since continuity (as well as cocontinuity) implies monotonicity. We prefer to prove the stronger

propertywhen possible since this sometimes enables to reuse fragments of proofs. In the case of procedures, continuity does

not hold but, again to be able to unify two similar proof fragments, we state monotonicity in the form of preserving glbs of

finite non-empty chains.

584 H. Nestra / Journal of Logic and Algebraic Programming 78 (2009) 573–592

5.1. Semantics of statements

We obtain the desired results as corollaries from a list of small lemmas. Note that continuity is stated for all semantics

matching the schema in Fig. 4, irrespectively of whether they occur in the table in Fig. 2. Cocontinuity assumes properties of

our concrete semantics, it holds only for six non-standard semantics under consideration.

The first two lemmas establish continuity and cocontinuity of axmκ and rulκ . For the latter, we assume the set inclusion

order being lifted componentwise to lists of sets.

Lemma 8. For all semantics defined by the schema in Fig. 4:
(i) the operator axmκ preserves all lubs;
(ii) the operator rulκ preserves lubs of chains.

Proof. (i) Let (Pi : i ∈ I) be any family of sets of pairs of states. For any t ∈ Baseκ ,

t ∈ axmκ

⎛⎝⋃
i∈I

Pi

⎞⎠ ⇐⇒ ∃p ∈⋃
i∈I

Pi (t = elemκp)

⇐⇒ ∃i ∈ I ∃p ∈ Pi (t = elemκp)

⇐⇒ ∃i ∈ I (t ∈ axmκ(Pi))

⇐⇒ t ∈⋃
i∈I

axmκ(Pi).

(ii) Let (Li : i ∈ I) be a chain of lists of sets of semantic objects. This implies that the lists have equal length l and, for arbitrary

two of them, either all corresponding components are in relation ⊆ or they are in relation ⊇. Let Li = (U i,1, . . .,U i,l);
then

t ∈ rulκ
∨
i∈I

Li

⇐⇒ t ∈ rulκ

⎛⎝⋃
i∈I

U i,1, . . .,
⋃
i∈I

U i,l

⎞⎠
⇐⇒ ∃u1 ∈⋃

i∈I

U i,1, . . ., u l ∈⋃
i∈I

U i,l

(
soundκ(u1, . . ., u l) ∧ t = compκ(u1, . . ., u l)

)
⇐⇒ ∃i ∈ I ∃u1 ∈ U i,1, . . ., u l ∈ U i,l

(
soundκ(u1, . . ., u l) ∧ t = compκ(u1, . . ., u l)

)
⇐⇒ ∃i ∈ I

(
t ∈ rulκ(U i,1, . . .,U i,l)

)
⇐⇒ t ∈⋃

i∈I

rulκLi,

where the ‘only if’ part of the third ‘iff’ (bringing a common i ∈ I to the front) holds by the assumption that L is a

chain. �

Lemma 9. Let κ ∈
{−→+ , +̃, +̂,−→∝ , ∝̃, ∝̂

}
. Then:

(i) the operator axmκ preserves glbs of non-empty families;
(ii) the operator rulκ preserves glbs of non-empty chains.

Proof . (i) Let (Pi : i ∈ I) be any non-empty family of sets of pairs of states. For any t ∈ Baseκ ,

t ∈ axmκ

⎛⎝⋂
i∈I

Pi

⎞⎠ ⇐⇒ ∃p ∈⋂
i∈I

Pi (t = elemκp)

⇐⇒ ∃p ∈ State2 ∀i ∈ I (p ∈ Pi ∧ t = elemκp)

⇐⇒ ∀i ∈ I ∃p ∈ State2 (p ∈ Pi ∧ t = elemκp)

⇐⇒ ∀i ∈ I (t ∈ axmκ(Pi))

⇐⇒ t ∈⋂
i∈I

axmκ(Pi),

where the ‘if’ part of the third ‘iff’ (interchanging the quantifiers) holds by injectivity of elemκ (Proposition 7).

H. Nestra / Journal of Logic and Algebraic Programming 78 (2009) 573–592 585

(ii) Let (Li : i ∈ I) be a non-empty chain of lists of sets of semantic objects. This implies that lists have equal length l; let

Li = (U i,1, . . .,U i,l). We get

t ∈ rulκ
∧
i∈I

Li

⇐⇒ t ∈ rulκ

⎛⎝⋂
i∈I

U i,1, . . .,
⋂
i∈I

U i,l

⎞⎠
⇐⇒ ∃uuu ∈

⎛⎝⋂
i∈I

U i,1

⎞⎠× . . . ×
⎛⎝⋂

i∈I

U i,l

⎞⎠(soundκuuu ∧ t = compκuuu
)

⇐⇒ ∃uuu ∈ Baselκ ∀i ∈ I
(
uuu ∈ U i,1 × . . . × U i,l ∧ soundκuuu ∧ t = compκuuu

)
⇐⇒ ∀i ∈ I ∃uuu ∈ Baselκ

(
uuu ∈ U i,1 × . . . × U i,l ∧ soundκuuu ∧ t = compκuuu

)
⇐⇒ ∀i ∈ I

(
t ∈ rulκ

(
U i,1, . . .,U i,l

))
⇐⇒ t ∈⋂

i∈I

rulκLi,

where the ‘if’ part of the fourth ‘iff’ (interchanging the quantifiers) holds by injectivity of compκ (Proposition 7). �

Assume the inclusion order on ℘(Baseκ) being standardly lifted to C(℘ (Baseκ)). (Note that C(℘ (Baseκ)) does not

become a lattice since the elements in different summand sets are incomparable.)

Lemma 10. For all semantics defined by the schema in Fig. 4 and for every e ∈ Envκ , the operator ϕκ(e) preserves lubs of

non-empty chains.

Proof. A chain in C(℘ (Baseκ)) can consist of elements of one of five different types correspondingly to the summand of

the categorical sum in the definition of C. Consider all cases.
Assignment. The lifted order in this summand is discrete, thus any non-empty chain contains just one element of the form

(X , E) and we get

ϕκ(e)

⎛⎝∨
i∈I

(X , E)

⎞⎠ = ϕκ(e)(X , E) =⋃
i∈I

ϕκ(e)(X , E).

Call. Similar to the assignment case.

Composition. The elements of our chain are of the form (U i,V i). Using Lemma 8, we get

ϕκ(e)

⎛⎝∨
i∈I

(U i,V i)

⎞⎠ = rulκ

⎛⎝∨
i∈I

(U i,V i)

⎞⎠ =⋃
i∈I

rulκ(U i,V i) =⋃
i∈I

ϕκ(e)(U i,V i).

Conditional. The elements of our chain are of the form (E,U i,V i)where E does not change. Hence both the family of pairs

(iftrueκ(E),U i) and the family of pairs (iffalseκ(E),V i) are chains. Using Lemma 8, we obtain

ϕκ(e)

⎛⎝∨
i∈I

(E,U i,V i)

⎞⎠ = ϕκ(e)

⎛⎝E,⋃
i∈I

U i,
⋃
i∈I

V i

⎞⎠
= rulκ

⎛⎝iftrueκ(E),
⋃
i∈I

U i

⎞⎠ ∪ rulκ

⎛⎝iffalseκ(E),
⋃
i∈I

V i

⎞⎠
= ⋃

i∈I

rulκ

(
iftrueκ(E),U i

)
∪⋃

i∈I

rulκ

(
iffalseκ(E),V i

)

= ⋃
i∈I

(
rulκ

(
iftrueκ(E),U i

)
∪ rulκ

(
iffalseκ(E),V i

))
= ⋃

i∈I

ϕκ(e)(E,U i,V i).

586 H. Nestra / Journal of Logic and Algebraic Programming 78 (2009) 573–592

Loop. The elements of our chain are of the form (E,U i)where E does not change. Noting again that the pairs (iftrueκ(E),U i)
form a chain and using Lemma 8, we obtain

ϕκ(e)

⎛⎝∨
i∈I

(E,U i)

⎞⎠ = ϕκ(e)

⎛⎝E,⋃
i∈I

U i

⎞⎠
= rulκ

(
iftrueκ(E),

⋃
i∈I

U i) ∪ rulκ(iffalseκ(E)

)

= ⋃
i∈I

rulκ

(
iftrueκ(E),U i) ∪ rulκ(iffalseκ(E)

)
= ⋃

i∈I

ϕκ(e)(E,U i). �

Lemma 11. For all κ ∈
{−→+ , +̃, +̂,−→∝ , ∝̃, ∝̂

}
and for all e ∈ Envκ , the operator ϕκ(e) preserves glbs of non-empty chains.

Proof. Like in the proof of the previous lemma, consider five cases of the summand set where the members of our chain are

taken from.

Assignment, call, composition are handled like the same cases of Lemma 10.

Conditional. The elements of our chain are of the form (E,U i,V i). Similarly to the corresponding case in Lemma 10, write

ϕκ(e)

⎛⎝∧
i∈I

(E,U i,V i)

⎞⎠ = ϕκ(e)

⎛⎝E,⋂
i∈I

U i,
⋂
i∈I

V i

⎞⎠
= rulκ

⎛⎝iftrueκ(E),
⋂
i∈I

U i

⎞⎠ ∪ rulκ

⎛⎝iffalseκ(E),
⋂
i∈I

V i

⎞⎠
= ⋂

i∈I

rulκ

(
iftrueκ(E),U i) ∪⋂

i∈I

rulκ(iffalseκ(E),V i

)

= ⋂
i∈I

(
rulκ(iftrueκ(E),U i) ∪ rulκ(iffalseκ(E),V i)

)
= ⋂

i∈I

ϕκ(e)(E,U i,V i).

Here, the third equality holds by Lemma 9. The fourth equality needs special attention. Downward inclusion is easy. For the

other direction, suppose

t ∈⋂
i∈I

(
rulκ(iftrueκ(E),U i) ∪ rulκ(iffalseκ(E),V i)

)
,

i.e., t ∈ rulκ(iftrueκ(E),U i) ∪ rulκ(iffalseκ(E),V i) for every i ∈ I. If t ∈ rulκ(iftrueκ(E),U i) for every i ∈ I or t ∈ rulκ(iffalseκ

(E),V i) for every i ∈ I then we are done. Therefore consider the case where t /∈ rulκ(iffalseκ(E),V i1) for some i1 ∈ I and

t /∈ rulκ(iftrueκ(E),U i2) for some i2 ∈ I. But the pairs (U i,V i) form a chain and hence are all pairwise comparable; let i* be

such that (U i*,V i*) = (U i1 ,V i1) ∧ (U i2 ,V i2). As rulκ is monotone by Lemma 9 (as well as by Lemma 8), it turns out that

t /∈ rulκ(iffalseκ(E),V i*) and t /∈ rulκ(iftrueκ(E),U i*), a contradiction.

Loop. The elements of our chain are of the form (E,U i). Using Lemma 9, we get

ϕκ(e)

⎛⎝∧
i∈I

(E,U i)

⎞⎠ = ϕκ(e)

⎛⎝E,⋂
i∈I

U i

⎞⎠
= rulκ

⎛⎝iftrueκ(E),
⋂
i∈I

U i

⎞⎠ ∪ rulκ (iffalseκ(E))

= ⋂
i∈I

rulκ(iftrueκ(E),U i) ∪ rulκ (iffalseκ(E))

= ⋂
i∈I

(rulκ(iftrueκ(E),U i) ∪ rulκ(iffalseκ(E)))

= ⋂
i∈I

ϕκ(e)(E,U i),

where the second last equality holds by distributivity between join and (non-empty) meet. �

H. Nestra / Journal of Logic and Algebraic Programming 78 (2009) 573–592 587

The following fact is standard since C is a polynomial functor. We omit the proof.

Lemma 12. The part of functor C that works on functions preserves lubs and glbs of non-empty families.

Now, it remains to tie all pieces together.

Theorem 13. Let κ be a kind of semantics defined by the schema in Fig. 4 and let e ∈ Envκ .
(i) The operator fffκ(e) preserves lubs of non-empty chains.

(ii) If κ ∈
{−→+ , +̃, +̂,−→∝ , ∝̃, ∝̂

}
then fffκ(e) preserves glbs of non-empty chains.

Proof . (i) Let (z i : i ∈ I) be a non-empty chain of mappings of type Stmt → ℘(Baseκ). In order to prove

fffκ(e)

(∨
i∈I

z i

)
= ∨

i∈I

fffκ(e)(z i), fix a statement S and prove the equality fffκ(e)

(∨
i∈I

z i

)
(S) = ⋃

i∈I

fffκ(e)(z i)(S). By Lemmas 12

and 10, indeed,

fffκ(e)

⎛⎝∨
i∈I

z i

⎞⎠ (S) = ϕκ(e)

⎛⎝C
⎛⎝∨

i∈I

z i

⎞⎠ (δ(S))

⎞⎠
= ϕκ(e)

⎛⎝∨
i∈I

C(z i)(δ(S))

⎞⎠
= ⋃

i∈I

ϕκ(e)(C(z i)(δ(S)))

= ⋃
i∈I

fffκ(e)(z i)(S).

(ii) Analogously, by using Lemmas 12 and 11. �

One may ask whether the assumption κ ∈
{−→+ , +̃, +̂,−→∝ , ∝̃, ∝̂

}
is really needed. The following proposition shows that

the answer is yes.

Proposition 14. For κ ∈ {−→ω , ω̃, ω̂
}
, the operators fffκ(e) do not preserve glbs of non-empty chains.

Proof. Fix two statements S1, S2 arbitrarily. Choose an infinite semantic object t and a family (v i : i ∈ N) of semantic

objects, all from Baseκ . Let (z i : i ∈ N) be a family of mappings of type Stmt → ℘(Baseκ) such that z i(S1) = {t} and

z i(S2) = {v i, v i+1, . . . } for each i. Then⋂
i∈N

z i(S1) = {t} , ⋂
i∈N

z i(S2) = ∅.

Therefore,

⎛⎝fffκ(e)

⎛⎝∧
i∈N

z i

⎞⎠⎞⎠ (S1 ; S2) = ϕκ(e)

⎛⎝C
⎛⎝∧

i∈N

z i

⎞⎠ (δ(S1 ; S2))

⎞⎠ = ϕκ(e)({t} ,∅) = rulκ({t} ,∅) = ∅.

However,

⋂
i∈N

fffκ(e)(z i)(S1 ; S2) = ⋂
i∈N

ϕκ(e)(C(z i)(δ(S1 ; S2)))

= ⋂
i∈N

ϕκ(e)({t} , {v i, v i+1, . . . })
= ⋂

i∈N

rulκ({t} , {v i, v i+1, . . . })
= ⋂

i∈N

{
compκ t

}
= {

compκ t
}
. �

588 H. Nestra / Journal of Logic and Algebraic Programming 78 (2009) 573–592

5.2. Semantics of procedures

Again, we prove monotonicity (that is equivalent to preservation of glbs of finite non-empty chains) and cocontinuity

results simultaneously via a series of lemmas.

Lemma 15. Let κ be a kind of semantics matching the schema in Fig. 4.
(i) Then ϕκ preserves glbs of finite non-empty chains.

(ii) If κ ∈
{−→+ , +̃, +̂,−→∝ , ∝̃, ∝̂

}
then ϕκ preserves glbs of all non-empty chains.

Proof. Let (ei : i ∈ I) be any (finite for part (i)) non-empty chain of environments. We must prove that ϕκ

(∧
i∈I

ei

)
(x) =⋂

i∈I

ϕκ(ei)(x) for all x ∈ C(℘ (Baseκ)). For all cases different from call, this is straightforward since the return value of ϕκ does

not depend on the environment argument. For the call case,

ϕκ

⎛⎝∧
i∈I

ei

⎞⎠ (P, (E1, . . ., El)) = rulκ

⎛⎝⋂
i∈I

ei(P)(E1, . . ., El)

⎞⎠
= ⋂

i∈I

rulκ (ei(P)(E1, . . ., El)) =⋂
i∈I

ϕκ(ei)(P, (E1, . . ., El)),

where the second equality (preservation of glb by rulκ) follows from monotonicity of rulκ (a consequence of Lemma 8) for

part (i) and from Lemma 9 for part (ii). �

Lemma 16. Let κ be a kind of semantics matching the schema in Fig. 4.
(i) Then fffκ preserves glbs of finite non-empty chains.

(ii) If κ ∈
{−→+ , +̃, +̂,−→∝ , ∝̃, ∝̂

}
then fffκ preserves glbs of all non-empty chains.

Proof. Let (ei : i ∈ I) be any (finite for part (i)) non-empty chain of environments. Using Lemma 15, we obtain for arbitrary

semantics z ∈ Stmt → ℘(Baseκ) and statement S that

fffκ

⎛⎝∧
i∈I

ei

⎞⎠ (z)(S) = ϕκ

⎛⎝∧
i∈I

ei

⎞⎠ (C(z)(δ(S))) =⋂
i∈I

ϕκ(C(z)(δ(S))) =⋂
i∈I

fffκ(ei)(z)(S). �

Lemma 17. Let κ be a kind of semantics matching the schema in Fig. 4 and let S ∈ Stmt.
(i) Then sκ(S) preserves glbs of finite non-empty chains.

(ii) If κ ∈
{−→+ , +̃, +̂,−→∝ , ∝̃, ∝̂

}
then sκ(S) preserves glbs of all non-empty chains.

Proof . (i) We show that sκ(S) is monotone. Let e1, e2 ∈ Envκ such that e1 ≤ e2. By Lemma 16, fffκ(e1) ≤ fffκ(e2). Expanding
gfp by Tarski’s theorem, we get

gfp(fffκ(e1)) = ∨
z∈Stmt→℘(Baseκ)

z≤fffκ (e1)(z)

z ≤ ∨
z∈Stmt→℘(Baseκ)

z≤fffκ (e2)(z)

z = gfp(fffκ(e2)),

where relation ≤ in the middle holds because every z that occurs as an argument of the join in the left occurs also as an

argument of the join in the right. Consequently, sκ(S)(e1) ≤ sκ(S)(e2).
(ii) Let (ei : i ∈ I) be a non-empty chain of environments. By Lemma 16, we get

sκ(S)

⎛⎝∧
i∈I

ei

⎞⎠ = gfp

⎛⎝fffκ

⎛⎝∧
i∈I

ei

⎞⎠⎞⎠ (S) = gfp

⎛⎝∧
i∈I

fffκ(ei)

⎞⎠ (S).

Hence we would be done if gfp preserved glbs of non-empty chains. But here, gfp can be expanded by Kleene’s theorem

and it is well known that such fixpoint operator preserves glbs of non-empty chains of cocontinuous functions (see, for

example, Chapter 8 of Winskel [15]; it is formulated dually for lubs and continuous functions there). It remains to use

Theorem 13. �

H. Nestra / Journal of Logic and Algebraic Programming 78 (2009) 573–592 589

Lemma 18. Let κ be a kind of semantics matching the schemata in Figs. 4 and 8, and let D ∈ Decl.
(i) Then dκ(D) preserves glbs of finite non-empty chains.

(ii) If κ ∈
{−→+ , +̃, +̂,−→∝ , ∝̃, ∝̂

}
then dκ(D) preserves glbs of all non-empty chains.

Proof. The environment argument occurs in one place in the definition of dκ — in sκ(S)(e). By Lemma 17, one can bring

glb out from this. By Lemma 8, axmκ and rulκ are monotone. Therefore, the finite glb (for part (i)) can be brought out of all

operators axmκ and rulκ . For part (ii), the same can be done by Lemma 9. As set meet with a constant is also cocontinuous,

the glb can be moved to the front of the long expression and we have done. �

Lemma 19. Let κ be a kind of semantics matching the schemata in Figs. 4, 8 and 9, and let e ∈ Envκ .
(i) Then ϕm

κ (e) preserves glbs of finite non-empty chains.

(ii) If κ ∈
{−→+ , +̃, +̂,−→∝ , ∝̃, ∝̂

}
then ϕm

κ (e) preserves glbs of all non-empty chains.

Proof. Let (e′i ,D), i ∈ I, be the elements of our chain. We write

ϕm
κ (e)

⎛⎝∧
i∈I

(e′i ,D)

⎞⎠ = ϕm
κ (e)

⎛⎝∧
i∈I

e′i ,D
⎞⎠ = e

⎡⎣dκ(D)

⎛⎝∧
i∈I

e′i

⎞⎠ : D ∈ D
⎤⎦

= ∧
i∈I

(
e
[
dκ(D)(e′i) : D ∈ D

])
=∧

i∈I

ϕm
κ (e)(e′i ,D),

where only the second last equality is unclear. To prove it, apply both sides to some arguments P and v. If P is declared by no

declaration in D then

e

⎡⎣dκ(D)

⎛⎝∧
i∈I

e′i

⎞⎠ : D ∈ D
⎤⎦ (P)(v) = e(P)(v) =⋂

i∈I

e(P)(v) =⋂
i∈I

e
[
dκ(D)(e′i) : D ∈ D

]
(P)(v).

Consider the case where P is declared by declaration D ∈ D. Interpreting the pairs dκ(D)(e′) as partial mappings that are

defined on P only and using Lemma 18, we obtain

e

⎡⎣dκ(D)

⎛⎝∧
i∈I

e′i

⎞⎠ : D ∈ D
⎤⎦ (P)(v) = dκ(D)

⎛⎝∧
i∈I

e′i

⎞⎠ (P)(v)

=
⎛⎝∧

i∈I

dκ(D)(e′i)
⎞⎠ (P)(v)

= ⋂
i∈I

dκ(D)(e′i)(P)(v)

= ⋂
i∈I

e
[
dκ(D)(e′i) : D ∈ D

]
(P)(v). �

Lemma 20. The part of functor Cm that works on functions preserves lubs and glbs of non-empty families.

Proof. Standard. �

Theorem 21. Let κ be a kind of semantics matching the schemata in Figs. 4, 8 and 9, and let e ∈ Envκ .
(i) Then fff mκ (e) preserves glbs of finite non-empty chains.

(ii) If κ ∈
{−→+ , +̃, +̂,−→∝ , ∝̃, ∝̂

}
then fff mκ (e) preserves glbs of all non-empty chains.

Proof. Similar to the proof of Theorem 13. �

5.3. Example

Cocontinuity of semantics means that it can be obtained as a limit of a step-by-step approximation process that is

not transfinite. In order to illustrate this process, we show how the transfinite tree semantics of the example program

P = (while true do x := x + 1) ; x := 1 which was observed in Section 1 takes shape. Similarly to that example,

assume that states contain only variable x (this means, for instance, that s[x �→ v] = {x �→ v} for any state s and value v).

590 H. Nestra / Journal of Logic and Algebraic Programming 78 (2009) 573–592

Denote the sequence of approximations by s0, s1, The process starts from �; this means that s0(S) contains all trees
in Base∝̂, irrespectively of S.

As s i+1 = ϕ∝̂(e)(s i) for each i (the environment e does not matter), we have

s i+1(x := 1) = ϕ∝̂(e)(x, 1) = axm∝̂ {(s, {x �→ 1}) : s ∈ State} = {elem∝̂(s, {x �→ 1}) : s ∈ State} ,

i.e., starting from s1, the semantics of x := 1 contains precisely the one-vertex trees s → {x �→ 1}. Analogously, the
semantics of x := x + 1 for each s i+1 consists of trees s → {x �→ s(x) + 1}, i.e., the one-vertex trees where the value

of x in the final state is one larger than that in the initial state.

DenoteW = while true do x := x + 1. Now

s1(W ; x := 1) = ϕ∝̂(e)(s0(W), s0(x := 1)) = ϕ∝̂(e)(�,�) = rul∝̂(�,�)

consists of trees of the form
u v

ini∝̂u → fin∝̂v
such that fin∝̂u = ini∝̂v (by condition sound∝̂(u , v)) and

s i+2(W ; x := 1) = rul∝̂(s i+1(W), s i+1(x := 1))

consists of trees of the form
u s′ → {x �→ 1}

s → {x �→ 1} where u ∈ s i+1(W) such that ini∝̂ = s and fin∝̂u = s′. The limit semantics

s∝̂(W ; x := 1) therefore contains trees of the same form for which u belongs to all s i+1(W).
It remains to study the development of semantics of W . First,

s1(W) = ϕ∝̂(e)(true, s0(x := x + 1 ; W)) = ϕ∝̂(e)(true,�)

= rul∝̂(iftrue∝̂(true),�) ∪ rul∝̂(iffalse∝̂(true))

= rul∝̂(axm∝̂ {(s, s) : s ∈ State} ,�) ∪ rul∝̂(axm∝̂∅)

= rul∝̂({s → s : s ∈ State} ,�),

i.e., s1(W) consists of trees having the form
s → s u

s → s′
where ini∝̂u = s and fin∝̂u = s′. Analogously to the analysis of

s1(W ; x := 1), we can see that s1(x := x + 1 ; W) = rul∝̂(�,�), therefore

s2(W) = rul∝̂({s → s : s ∈ State} , s1(x := x + 1 ; W))

consists of trees of the form

s → s

u v

s → s′
s → s′ ,

where ini∝̂u = s,fin∝̂u = ini∝̂v andfin∝̂v = s′. Continuing thisway, each new level refines the nature of the trees belonging

to the semantics. Fixing the initial state s = {x �→ 0}, the limit semantics contains the treepresented in theexample inSection

1 but also other trees obtained from that one by replacing � with whatever constant.

In transfinite fractional trace semantics, the process and the result are similar but the transfinite nature of the trace is

more evident. The infinite branch of the process we described for tree semantics goes within

[
0; 1

2

]
but there are also points

1

2
and 1 involved already during the first steps.

Contrastingly, the result of the process for transfinite ordinal trace semantics is different. Suppose ∝ = ωω (the limit

length of trace). Firstly, s0(W) = � containing all traces of length less than ∝. Next we obtain

s1(W) = rul−→∝ ({(s, s) : s ∈ State} ,�) containing all traces starting with a double state. Since s1(x := x + 1 ; W) =
rul−→∝ (�,�) = �, we have s2(W) = s1(W). Furthermore,

s2(x := x + 1 ; W) = rul−→∝ ({(s, {x �→ s(x) + 1}) : s ∈ State} , s1(W))

and thus s3(W) = rul−→∝ ({(s, s) : s ∈ State} , s2(x := x + 1 ; W)) contains all traces starting with double s followed by

double {x �→ s(x) + 1}. This way, we see that the limit semantics ofW contains all infinite traces whose first ω states are s,

s, {x �→ s(x) + 1}, {x �→ s(x) + 1}, {x �→ s(x) + 2}, {x �→ s(x) + 2}, etc. As∝ > ω, there is an undetermined computation

H. Nestra / Journal of Logic and Algebraic Programming 78 (2009) 573–592 591

following the first ω steps (not only one undetermined state as in the tree and fractional trace semantics). For program

W ; x := 1, the value of x can change to 1 after whatever amount of this garbage.

As the “demonic behaviour” occurs only after the first ω steps, the standard ordinal trace semantics is free of this and

coincides with the usual agreement of what a program really does.

6. Issues of determinism

Determinism of semantics can be broken in twoways. Firstly, a program can have several possible behaviours in the same

initial circumstances. Secondly, a program can have no behaviours at all.

Non-determinism of the first kind can be acceptable. Concerning the application in program slicing discussed in Section

1, multiplicity of behaviours does not exclude a semantics from being a reasonable setting provided non-determinism does

not add unexpected data dependences.

Moreover,we canmake the statement semantics deterministic by redefiningBaseκ in such away that it contains precisely

the semantic objects that reflect runs that meet the following two conditions:

1. If a variable has one value at one stage of execution and another value in some later moment, then between these two

observations, there exist two consecutive on timeline states where the value of this variable is different.

2. Whenever a state directly follows an endless sequence of states where the value of a variable does not stabilize, the

value of the variable in this state is �.

In other words, the conditions say that the value of any variable after an endless computation is determined by the

behaviour of the value of that variable during the computation, whereby it is � for non-stabilizing value sequences and

otherwise equals the value to which the sequence stabilizes. With this, we make the nature of transfinite traces similar to

those used in the work of Giacobazzi and Mastroeni [4].

As argued in [9], however, this restriction is not satisfying in program slicing. Instead, the sequences whose stabilization

matters must be composed from the values observed at the head program point of the infinitely working loop rather than

during the whole run. This change is not so easy to do in our semantics since one cannot detect the program points where

the states occurring on the trace are observed. For that, one must add program points to semantic objects. For example, the

trace semantics would be much more like structural operational semantics of [12], containing “rest of code” components

which show the current program point. In principle, this can be done along the lines of our work [10].

It is not clear how to interpret the second kind of non-determinism. This is likely to be undesirable since it would mean

that also the first ω steps of execution that are really performed remain outside the semantics.

Currently,wehavenoproof that our transfinite fractional and tree semantics of all programsprovide at least onebehaviour

for every initial state.

7. Further work

The problems related to determinism (discussed in Section 6) are worth further investigation. Discovering conditions

under which the transfinite fractional and tree semantics of modules, equipped with restrictions that enable them to use

as the setting of program slicing, are deterministic would be interesting. Of course, it is important to study whether the

semantics bring along programs with missing behaviour.

Another possible piece of further work would be investigating whether the hierarchy of semantics considered in this

paper can be built up as a Cousot hierarchy (discussed in Section 3.1). Transfinite semantics in the Cousot hierarchy has

already been a subject of work of Giacobazzi and Mastroeni [4]; but the way they built up their semantics is very different

from that of us and, moreover, their work did not involve tree semantics or fractional semantics.

Acknowledgements

The work was partially supported by the Estonian Science Foundation under grant nos. 6713 and 7543.

The author thanks the anonymous reviewers who made a lot of valuable suggestions and comments.

References

[1] D.W. Binkley, K.B. Gallagher, Program slicing, Advances in Computers, 43 (1996) 1–50.
[2] P. Cousot, Constructive design of a hierarchy of semantics of a transition system by abstract interpretation, Electronic Notes in Theoretical Computer

Science 6 (1997) 25.
[3] P. Cousot, Constructive design of a hierarchy of semantics of a transition system by abstract interpretation, Theoretical Computer Science 277 (2002)

47–103.
[4] R. Giacobazzi, I. Mastroeni, Non-standard semantics for program slicing, Higher-Order Symbolic Computation 16 (2003) 297–339.
[5] S. Glesner, A proof calculus for natural semantics based on greatest fixed point semantics, Electronic Notes in Theoretical Computer Science 132 (2005)

75–93.
[6] R. Kennaway, J.W. Klop, R. Sleep, F.-J. de Vries, Transfinite reductions in orthogonal term rewriting systems, Information and Computation 119 (1)

(1995) 18–38.
[7] X. Leroy, Coinductive big-step operational semantics, In: P. Sestoft (Ed.), Proceedings of ESOP 2006, Lecture Notes in Computer Science, vol. 3924, 2006,

pp. 54–68.

592 H. Nestra / Journal of Logic and Algebraic Programming 78 (2009) 573–592

[8] X. Leroy, H. Grall, Coinductive big-step operational semantics, Information and Computation 207 (2) (2009) 284–304.
[9] H. Nestra, Transfinite semantics in program slicing, Proceedings of the Estonian Academy of Sciences: Engineering 11 (4) (2005) 313–328.

[10] H. Nestra, Fractional semantics, in: M. Johnson, V. Vene, (Eds.), Proceedings of AMAST 2006, Lecture Notes in Computer Science, vol. 4019, 2006, pp.
278–292.

[11] H. Nestra, Iteratively defined transfinite trace semantics and program slicing with respect to them, Ph.D. Thesis, University of Tartu, 2006, 119 pp.
[12] F. Nielson, H.R. Nielson, Semantics with Applications: An Appetizer, Springer, 2007.
[13] F. Tip, A survey of program slicing techniques, Journal of Programming Languages 3 (3) (1995) 121–181.
[14] M. Weiser, Programmers use slices when debugging, Communications of the ACM 25 (7) (1982) 446–452.
[15] G. Winskel, The Formal Semantics of Programming Languages, The MIT Press, 1993.

	Introduction
	Syntax of the language
	Semantics of statements
	Semantics of procedures
	Correctness of the definitions
	Issues of determinism
	Further work
	References

