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This paper contains a study of the problem of torsion of chiral bars with arbitrary cross-sections in the
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1. Introduction

The behavior of chiral materials is of interest in investigation of
carbon nanotubes, auxetic materials, bones as well as composites
with inclusions. In this paper we use the theory of gradient elastic-
ity (Toupin, 1962; Mindlin, 1964; Mindlin and Eshel, 1968; Papan-
icolopulos, 2011) to study the problem of torsion of homogeneous
and isotropic chiral cylinders. This work is motivated by the recent
interest in using gradient elasticity to model the chiral behavior of
elastic materials (see Maranganti and Sharma, 2007; Auffray et al.,
2009; Papanicolopulos, 2011; Askes and Aifantis, 2011 and refer-
ences therein). We note that the gradient elasticity has been re-
cently used to investigate the behavior of carbon nanotubes
(Wang and Hu, 2005; Wang and Wang, 2007; Askes and Aifantis,
2009; Aifantis, 2009; Zhang et al., 2010; Yayli, 2011). A material
is called isotropic chiral if its symmetry group equals the proper
orthogonal group. In gradient elasticity the torsion of a circular cyl-
inder, subjected to displacement conditions on the ends, has been
investigated by Papanicolopulos (2011). In the present paper we
study the deformation of a cylinder with arbitrary cross-section
which is subjected to moments on the ends. The torsion problem
is reduced to the study of some generalized plane strain problems.
The method is applied to study the torsion of a circular cylinder.

The paper is structured as follows. In Section 2 we present the
basic equations of the linear theory of gradient elasticity. Section 3
is devoted to the formulation of the problem of torsion of chiral
rods. In Section 4 we define the generalized plane strain problem
and introduce some auxiliary plane problems. The solutions of
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these auxiliary plane problems depend only on the constitutive
coefficients and the cross-section of the cylinder. Section 5 pre-
sents the solution of the torsion problem. The three-dimensional
problem is reduced to the study of some plane problems. In gen-
eral, the torsion of an elastic cylinder is accompanied by extension
(or contraction) and bending. In Section 6 we use the solution
given in the preceding section to investigate the torsion of a circu-
lar cylinder. It is shown that the torsion of a right cylinder made of
an isotropic chiral elastic material is accompanied only by
extension.

2. Basic equations

In this section we present the basic equations of isotropic chiral
elastic solids in the first strain-gradient theory (Toupin, 1962;
Mindlin, 1964; Mindlin and Eshel, 1968; Papanicolopulos, 2011).
We consider a body that in undeformed state occupies the region
B of euclidean three-dimensional space and is bounded by the sur-
face 9B. We refer the deformation of the body to a fixed system of
rectangular axes Ox, (k=1,2,3). Let n be the outward unit nor-
mal of B. Letters in boldface stand for tensors of an order p > 1,
ponents of v in the Cartesian coordinate system. We shall employ
the usual summation and differentiation conventions: Latin sub-
scripts (unless otherwise specified) are understood to range over
the integers (1,2,3), whereas Greek subscripts to the range (1,2),
summation over repeated subscripts is implied and subscripts pre-
ceded by a comma denote partial differentiation with respect to
the corresponding Cartesian coordinate.

We assume that B is a bounded region with Lipschitz boundary
0B, consisting of a finite number of smooth surfaces. Let I', be the
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intersection of two adjoined smooth surfaces and C = UI',. We as-
sume that B is occupied by a homogeneous and isotropic chiral
elastic solid. Let u be the displacement vector field on B. Through-
out this paper, the strain measures are given by

1
ej = = (Uij + Uji),

3 Kijk = Ugjj- (1)

The constitutive equations for isotropic chiral elastic solids are
(Mindlin and Eshel, 1968; Papanicolopulos, 2011).

Tij = ).Erréij + Z,ueij +f(8,'km Kikm + Ejkm Kf,'km)7
1 . . .
Hijie = 5 01 (Knridjk + 2Kirr 0 + Knjik) + 02 (Kirr ik + Kjrrdik)
+ 2003 Kby + 2004155 + s (Kigi + Kigj) + f (Eiks€js + Ejxs€is),  (2)

where 7 is the stress tensor, (i, is the double stress tensor, J; is the
Kronecker delta, &3 is the alternating symbol and
A as, (s=1,2,...,5), and f are constitutive constants. In the case
of a centrosymmetric (achiral) material the coefficient f is equal to
zero.

The equilibrium equations are

Tjij — Ausji.sj +Fi =0, (3)

where F; is the body force per unit volume.
Following Toupin (1962) and Mindlin (1964) we introduce the
functions P;,R; and Q; by

P = (‘Eki - :urki.,r)nk - Dj(nr/’trﬁ) + (Dknk)mnp:usph (4)
Ri = psinens, Qi = (ipMg) €irgSr

where D; are the components of the surface gradient,

0
;M) 87)(,(’

D; = (du —
s are the components of the unit vector tangent to C, and (g) de-
notes the difference of limits of g from both sides of C. We denote
by B the closure of B.

We say that the vector field u; is an admissible displacement
field on B provided u; € C*(B)nC?(B). An admissible system of
stresses on B is an ordered array of function (ty, i) with the fol-
lowing properties: (i) t; € C' (B), ty; € C*(B); (ii) Ty = Tji, My, = M-
By an admissible state on B we mean an ordered array of fields
A = (u;, ey, Kijk, Tyj, ) With the properties: (i) u; is an admissible
displacement field on B; (ii) e; € C'(B), ku € C*(B),e;j = eji,
Kk = Kjix; (iii) (Ty, ) is an admissible system of stresses on B.

By an external data system on B we mean an ordered array
L = (F;,P;,R;, Q;) with the properties: (i) F; is continuous on B;
(ii) P; and R; are piecewise regular on 0B; (iii) Q; is piecewise reg-
ular on C. We say that A = (u;, ey, K, Tyj, Hy,) 1S an elastic state cor-
responding to the body force F, if A is an admissible state that
satisfies the Egs. (1)-(3) on B.

The traction problem of elastostatics consists in finding an elas-
tic state that corresponds to the body force F; and satisfies the
boundary conditions

P;=P;, Ri=R on 0B\C, Q;=Q; on C, (5)

where I~’,-, ki and Q,- are prescribed functions.

Papanicolopulos (2011) has shown that in the case of isotropic
linear gradient elasticity the chiral behavior is controlled by a sin-
gle material parameter. In the case of anisotropic materials the po-
tential energy density W is given by

2W = Cijmneijemn + 2Fjjkmn@iiKimn + Dijimnp Kijk Kmnp.-

In the case of isotropic chiral materials the tensor Fjm, has the form

Fijtmn = f18i0mn + f2€imkdjn + f3€mikdjm + fa&jikdmn + f5Ejnkim
+f68mnk(5ij7

where fi, (k=1,2,...,6), are arbitrary coefficients. Thus, the po-
tential energy density for isotropic chiral materials is given by

1
W= 5 Jerejj + eje; 4 0 KigeKyjj + 0 Kiji Kirr 4 03 Kiir K

+ O Kiji K + 05 K Kigi + 2f Eikme@ii Kigm - (6)

where f = (s + f5)/2.

In what follows we assume that the elastic potential is a posi-
tive definite quadratic form in the variables e; and k. The restric-
tions imposed by this assumption on the constitutive coefficients
have been presented by Mindlin and Eshel (1968) and Papanicolo-
pulos (2011).

The necessary and sufficient conditions for the existence of a
solution of the traction problem are (Hlavacek and Hlavacek, 1969)

/F,»d7/+ 13,-da+/ Qids =0, (7)
B J OB C

/ ejXiFidv + / Eije <le~3k + njﬁk) da + / &ixX;Qids = 0.
B B c
We note that the mixed problem of elastostatics has been investi-
gated by Hlavacek and Hlavacek (1969).

3. Statement of the problem

We assume that the region B from here on refers to the interior
of a right cylinder of length h with the cross-section X and the lat-
eral boundary IT. Let " be the boundary of X. The Cartesian coordi-
nate frame is supposed to be chosen in such a way that x;-axis is
parallel to the generators of B and the x;0x, plane contains one
of terminal cross-sections. We denote by X; and X%,, respectively,
the cross-section located at x; = 0 and x; = h. We denote by I,
the boundary of the cross-section X, (Fig. 1). In view of the forego-
ing agreements, we have

B={x:(x1,%2) € Z,0 <x3 <h}, II={x:(x,x2) €,0<x3 <h},
i ={x:(X1,X2) € Z,x3 =0}, Zp={x:(x1,%) € X,x3 = h},
F] :{XZ (X],Xz) (S F,X3 :0}, rz = {X: (X],Xz) EF,X3 :h}

We assume that the lateral surface IT is smooth, so that Q; is equal
to zero on I1. The cylinder is supposed to be free from lateral load-
ing. The conditions on the lateral boundary are

P,=0, R =0 onlIl. (8)

X5 I,

Fig. 1. A prismatic bar.
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We assume that the body forces are absent and that the load on the
cylinder is distributed over its ends, X; and X,, in a way which ful-
fills the equilibrium conditions of a rigid body. Let the loading ap-
plied on Z; be statically equivalent to the force F = (0,0, F3) and
the moment M = (M;, M,, Ms). We shall prove that the torsion of
cylinder is accompanied by bending and extension. We have intro-
duced the loads F3 and M, to put in evidence these effects. For the
end located at x3 = 0 we have the following conditions

Pacda + des = 07 (9)
hoR I
Psda+ | Qsds = F3, (10
bR Jry
/ (%P5 + Ry)da +/ X,Q3ds = &g,3Mp, (11
bR I
/ Eup3XoPpda +/ E4p3XxQpds = M3. (12)
Jz I

On the end located at x3 = h we have the conditions

P,da+ [ Q,ds=0, (13)
%, I,
Psda+ | Qids = —F3, (14)
5, T,
/ (x,P5 — Ry)da + / X,Q5d5 = £55M,, (15)
2, I,
/ Sa,gx“P,;daJr/ 8@3)(“0_/;(15 = —Ms. (16)
2, I,
Let us note that from (4) we obtain
Pi= —T5i + 2y, + Mgsi3, Ri= a3 on Xy,
Pi= T3 = 20,51, — Maziz, Ri=ligy on Xy, (17)
Qi=-2U,n, on Iy, Q;=2usn, on Iy,

where (nq,n,,0) are the direction cosines of the exterior normal to
I1.
The Egs. (3) reduce to

Tjij — Myjigj = 0. (18)

The problem consists in finding the functions u; of class
C*(B) n C*(B) which satisfy the Egs. (1), (2) and (18) on B, the condi-
tions (8) on the lateral surface, and the conditions (9)-(16) on the
ends, when the constants F; and M;, and the constitutive coeffi-
cients are prescribed. If 73 =0 and M,, = 0, then the problem re-
duces to the torsion problem.

4. Auxiliary plane problems

Let us assume that the cylinder B is subjected to the external
data system (F,-,I~’,-,§,-, Qi) with the properties: (i) F;, P; and R; are
independent of the axial coordinate; (ii) Q; = 0 on Il. We note that
the lateral surface is smooth so that we have Q; = 0.

Let A = (wi, ey, Kix, Ty, Uip,) be an elastic state on the cylinder B.
Then A is a state of generalized plane strain provided

(X1,%2) € Z. (19)

The restrictions (19), in conjunction with the Eqgs. (1) and (2) imply
that ey, K, T and p are all independent of the axial coordinate.
The strain measures (1) reduce to

U; = Ui(X1,X2),

261/1 = uot./} + u/i‘oca 260(3 = U3, Kaz/jj = uj,a/f (20)

and

es3 =0, Ig3=0.

The constitutive equations become

Tup = A€ppdas + 2[Hesp + f(Exp3Kpp3 + Epp3Kap3),
T3 = 2,ueo¢3 Jngp/BKotp[iv

1 . .

Hagy = 501 (Kppadpy + 216:0p 0 + Kpppday) 1)
+ O‘Z(Kazpp&/fy + K/;ppaop/) + 203 Kp,)yéa/f + 20(4Ka/fy
+ OC5(K7M + Kyg(/g) +f(8w3€,33 -+ 8/37389(3),

Hopz = 203 Kpp3éoc/f + 20(4Ku/f3 +f('gpoaetfp + 8p1f3eip)s

and

1 .
T33 = }~e/)/)7 ,u3“/; = jal Kﬂ[}3bc{ﬁ + 05 Kpy3 +f8/f/)3emp7

Hap3 = %051 Kppa + 02Kapp + fEpazesp,

M3y = 01 Kapp + 203K ppy + 2fExp3e3p,

Hsz3 = (01 + 2063)Kpp3.

The equations of equilibrium reduce to

Tpip — Mpjpv + Fj = 0 on X (22)
It follows from (4) that

Py = (Tpi — Upgi )15 — Dp(Mptly ) + (Dplip)ngny gy,
Ri = p,,npny. (23)

The conditions on the lateral surface reduce to

P;=P;, R=R on T. (24)

The generalized plane strain problem consists in finding an elastic
state on B which satisfies the geometrical Egs. (20), the constitutive
Eqgs. (21) and the equilibrium Egs. (22) on Z, and the boundary con-
ditions (24) on I'. We assume that F;, I~’,- and E,- are functions of class
C*, and that X is C*-smooth. The functions 733, {3, and pt33; can be
determined after the displacement field is found.

In view of (20) and (21) the equations of equilibrium (22) can be
expressed in terms of the functions u; in the form

UAU, + (2 + [)up gy — 2(0t3 + 0lg) AAU, — 2(01 + 0t + ot5) Allg gy
+2feypAus g+ F, =0,

UAus — 2(0i3 + 0t4)AAUs + 2fEp3AU, , +F3 =0, on Z. (25)

In the case of achiral materials we have f = 0, and the Eqgs. (25) re-
duce to two uncoupled systems: one for the functions u, and the
other for the function us. The next theorem can be established using
the results presented by Hlavacek and Hlavacek (1969).

Theorem 1. The generalized plane strain problem has a solution if
and only if

/deaJr/T)kds:O,
z T

/ EaaoFyda + / E325(u Py + 1R ,)ds = 0. (26)
JE r

Following Fichera (1972), if we consider a “C*-theory”, then (26)
are necessary and sufficient conditions for the existence of a C*
solution of the generalized plane strain problem.

In what follows we will use four special problems of generalized
plane strain, denoted by A¥, (k = 1,2,3,4). In the problem A" the

external data system is (F\", P!, R"") where

1 a e B
FV =26y, P = —Jxiny + (01 — 200) €30 (112) Ny,

~ X 1
Py = —xymy + 5 (0 = 202)E30 (13 — 3) 1y,

- N (27)
P =2fn,, R\ =203 — o + (00 — 200)n2,

E(zl) = (ocl — 2a2)n1n2, E(;) =0.
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The problem A® is characterized by the following loading

~ 1

F? =)0y, PP = —ixom +§(o¢1 — 200) €34 (13 — 13) 11y,

PP = —ixony + (01 — 200)€30y (M) Ny, PY = —2fn,,

RP = (o — 205)nymy, RY =203 — oy + (o — 200)n2, RY =0.
(28)

In the problem A® the body force and the boundary data are given

by

F¥ =0, P®=—mn, P¥=0 R>=0. (29)

The problem A® corresponds to the following external data

~ 1
= O, P(14) = if[5n1 -+ D] (inz) + D2 (X2n1 — 2X1 nz)

— 2(Xpminy —x113)(Dyny)],
1

= 5f[5m2 + D1 (xinz = 2x,m1) + Dz (xim1)

—2(x1n1ny — x21m3) (D, )],

P

4
P(3 ) = ,uf83/fpxpn/f7

D4 D4 D4
RY = foan? —xyminy), RS =f(xuen? —ximny), RYY =0.

(30)

It is easy to show that the necessary and sufficient conditions (26)
for the existence of the solution are satisfied for each boundary va-
lue problem A%, (k = 1 2,3,4).

Let us denote by u®, f]), Ki,’f}, 7 and pipe, the displacement, the
strain measures, the stress tensor and the double stress tensor in

the problem A®, (k=1,2,3,4), respectively. We introduce the

notations
k) (I( (k) (k)
PY = (1 Bi :up/}l g — Dp(yptgy) + (Do) pingny,

(
1 (31)

ky (k)
R :upwnﬂn‘

() ok 4 k) (k)
The functions ;" e;”, Kpgr, Tj;

i and u,. satisfy the geometrical
equations

_ 4 (k) (ky _ 4, (k) (k) _ (k)
Zexﬁ uac b + uﬁ o 260,3 - u3.w Koc/] u) ap? (32)
the constitutive equations

k) _ 550k (k)
Top = Aeﬁ)pailf + 2/"leoc/f +f(?0‘03K/f;)3 + F/"P3Ko/p3)

k) _ (k) k)
Ty = 2,&8 +f£ﬂ/53 Kocp/f

1
,um —OC1( ppazo/f + ZK,ppby/; + Kpp/iow) + 062( xpp()/f) + Kﬁppbw’)

+ Zochpm,éw + 200k, + o5 (10, + K5) + f(exmaell + epzelly),
ﬂ(xk/x>3 =203 Kpp3 ap + 20‘4’%/33 +f(£p°<3e/ip + SplBea/Z):
(33)
and the equilibrium equations
Ty~ Hpipn + 7 =0, (34)
on %, and the boundary conditions
PY=pPY RYM=RY on T (35)
i i ?
where F® P and R, (k = 1,2,3,4) are defined by (27)-(30).

We note that the solutions of the problems A¥ depend only on
the constitutive coefficients and the domain .

5. Solution of the problem

It is known (Iesan, 1986; lesan, 2009) that the solution of the
problem of extension, bending and torsion can be found in the
class of displacement vector fields u with the property that us is
a rigid displacement. This result has been established in the classi-

cal theory but it also holds in the gradient elasticity. We seek the
solution of the problem formulated in Section 3 in the form

l 4
Uy = =5 €2 + EapaCaXpXs + D _Cllf,
=1
4 (36)
Us = (C1X1 + CoXp + C3)X5 + it
=
where u}k) are the displacements in the problem A%, and

¢, (k=1,2,3,4), are unknown constants. It is easy to see that
the displacement vector u given by (36) has the property that u;
is a rigid displacement. In view of (1)and (36) we find that

1 K
€y = chew, €3 = EapXpCa + che“
i pat

k
€33 = C1X1 + CoXo +C3,  Kopy = Zcm&}.w

= (37)
4 k
Kypz = ZCkKéﬂ)y Kp3y = €3p5Ca,
k=1
Ky33 = —K334 = Cy, K333 =0,

where e ® and K ; are defined in (32). It follows from (2) and (37)
that the stress tensor and the double stress tensor are given by

4
k
Toup = [A(C1X1 + CoXp + C3) — 2fCa] 0y + ) Ty,
k=1

Tus = UE3puCaXp + 2f Ep3C, + chrw
k=

T3z = (A+ 2)(C1X1 + CaXa + C3) + 4fc, + Ache
k=1

o
k 2 k)
Mg = 2(02 — 03)C1 + chﬂ%1)1> Moz = 2(02 — 0t3)C2 + chﬂ(zzzv
k=1 k=1

4
K
Hazy = (o1 — 203)C1 — feuxn + ZCICH(ZZ)N
k=1

Uypy = (001 — 203)C — feuxp + ch,“nz7
=1

Mg = 5(2052 —0q)C2 + fC4X2 + ch,um,

1
Hiza = 5 (202 — 0 )€1 + fC4X1 + ch,um7

pa

1

Hyzz = 5(2“2 — o1 +40y)C, — —fc4xa
1

+ kZ:ck (oczicw +50% K+ fz~:3,mu3 2,)

Msz, = (01 — 203 — 2004 + 2005)Cy, + fCyX,

+ ch (OC] Kotpp + 203 Kppot +f83zypu3 2;)
Uyzp = smf (C1X1 + CaXa + C3) + E34p(2004 — 45)Cq

+ch< acllcppB()wnLocsKM + fesgpelk ),

4
k) (k
Hopz = chﬂé;w Hgs3 = (01 + 2a3)ZCka/))3’
k=1 k=1

where ‘c ) and ,um are given by (33).
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The equations of equilibrium (18) and the boundary conditions
(8) are satisfied on the basis of the Egs. (34) and (35), where the
functions F¥, P and R are given by (27)-(30).

The conditions (9) on the end X, are identically satisfied. In-
deed, with the help of the divergence theorem and the Eqgs. (4),
(17), (18) and (8) we obtain

Pida +/ Qqds = —/ Tyda = — /[131 + X1 (T30 — Mgz zp)]d0
Z I ) )

= */lixl (T30 — Moc[}?»,/i)nids */Z'ullB-ﬂda

= _/I"X] (:u'pv3n0<n/’ - :upoﬁnﬂn").vnids

- /2 Hygs pda

== /E[(Hpv3n1np —= Kp13ply) y + ly s slda
—/ ,umgnpnvmds = —/ Rsnids =0
T r

In a similar way we can prove that the second condition from (9), as
well as the conditions (13) are identically satisfied. We note that the
stress tensor and the double stress tensor from (38) can be written
in the form

4 4
k e (k
Tij = chtlgj s Hpgr = i 59
k=1 k=1
where
3 o 3
t(/f) = /L(;g(/; + T;,;)7

0(3 = 2feyp3 + Toc3
(4)

ﬁ = /].X,)éa/; + Tx/i s

to(/i = —2f51/; + T:xﬁ7
t(3) _ -3

4) _
3 = Tu3s t13 = U&3paXp + Tcﬁ’
£ = (A+2wx, + 7€), 15 _)+2u+ﬁepp, £y = 4f + el
=(1) _ (1) _ 3 _,,03
St = 2(02 — 03) + My, g111 —.“mv S —:“111’
4) _ _ 2(2) _ (2)
Sint = it S0 = Mazys &30 = 2(002 — 03) + [,
(1) (1)

S =Mooy S0 = Momyy &1 = 01 — 2063 + [y,
£2) _ @) _ —fx, + @)
6221 = Mao1s 221 = Hao1s G221 = —J%1 + Hagps

M _ M £(2) _ (2) £3) _ ,,3)
Stz = Mtz G112 = 01 — 203 + iy, Sipp = Hipas

4 4
fgl)z =—fx; + ﬂ§1)2v

W _ o a2 1 @
Sia1 = Hiz1s Sio1 = 5(2“2 —01) + Hyaqs 121 :“121’

1 1
fg‘% = jﬁ‘z + :“(1‘;)17 f%122 =53 (200 —og) + ,“122

2 _ ,,@ £3) _ ,,03) 4 _ (4)
S =M i = Mgy S = jf’ﬁ + Wi
1 1
&, = 5 (202 — o+ 404)5y, + azKW 5 oKl + f83pau§’>p,
2 1 )
Coms = ——ﬂ-+mm#+2mkba f&m%w
5;{30( - ( — 203 — 2004 + 20(5)611 + Kazpp + 203 Kpp&
+f831,,u3p, (i=1,2,3),
&y = o + ou K, + 205K, + feaul),

1
Ef)y = esupfX, + 2061 K\ dup + s KL + fespelf),

3 3 3
ffxg)/; = E3opf + jOh K(pp)359cﬂ + aSK;ﬂx)g +f83/ipe§;7)7

4 4 4
o K;gs dup + Us K;iac)3 +fesppely),

(k=1,2,3,4). (40)

1
ff,:tg)/; = &3,5(20t4 — Us) +§
(k)

z (k)
lY/)’3 lua/f37 8333 = (1 + 203)K 3,

With the help of (17) and (39), the conditions (10)-(12) and (14)-
(16) reduce to

4 4 4
> DuCi = &My, Y D= —F3, > Daxci = —Ms, (41)
k=1 k=1 P

where the constants Dy, (r,s,=1,2,3,4), are defined by
Dy = /[xottg;) + 25%3 - C33a]da
b

k k «(k
D3y, = / tg;d& Dy, = / 831/;()(&['(3/}) +2§&3)/;)da,
z z

The constants D,s can be calculated after the solutions of the prob-
lems A® | (k=1,2,3,4), are found.

Let us prove that the system (41) can always be solved for the
constants c;,c,c3 and c4. Following Mindlin and Eshel (1968)
and Hlavacek and Hlavacek (1969), in the absence of body forces,
we have

(42)

2/.Wdz)—/ (Piu; + Riu;jn;) da-&-/Qiuds (43)
JB 9B

We consider two elastic states S = (uj,ej;, K}, Ty, i) and
S" = (uf, e}, Kjy, Ty, 1y,) corresponding to zero body forces. We

denote
2E(W',u") =/ (P} + Riuj;n; da+/Qu”ds (44)
OB

where P}, R; and Q; are the functions P;,R; and Q; from (4) associ-
ated to the state S'. The reciprocity relation (Hlavacek and Hlavacek,
1969; Beatty and Cheverton, 1976) leads to the following equality

E(W,u") = E",u). (45)

It follows from (36) that the displacement u can be expressed as

4
k
U= v, (46)
k=1
where
o - _Las B B — B
v = —5x50y +u, v =u,
U = eapuxpxs +ul), v = x5 + U, (47)
) =xs+uf, oy =ud.

It follows from (43) and (46) that the internal energy E can be ex-
pressed in the form

4
E= [ Wdv = B.ccs,

B rs=1

Brs = E( y(r)7 1}<3))7
Since the potential energy is positive definite, we find that
det(Bs) # 0. Let us apply the relation (44) for the states
S0 = (¥, ¢ ,]’<)777pqr7 60, &%), (k=1,2,3,4), where 2¢)° = v/ + vY
and %, = v,. We obtain

2E(v", v9)) = hDys.

(r,;s=1,2,3,4).

Thus, we conclude that det(D,s) # 0. From the reciprocity relation
(45) we get

D =Dy, (r,;s=1,2,3,4). (48)

The solution of the problem is given by (36) where the constants

C1,Ca,c3 and ¢4 are determined by the system (41), and the functions

u](.'” are the displacements in the generalized plane strain problems
® (k=1,2,3,4).
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It follows from (41) that the torsion of a chiral cylinder is
accompanied, in general, by extension and bending.

Remark 1. Let us describe how the problems AV, (G=1,2,3,4),
were selected. Following (lesan, 1986), the solution u of the
problem can be found in the class of functions u with the property
that u3 is a rigid displacement. This fact implies that

Uy = — = CoX3 + CabapuXpX3 + &,y Us = (C1X1 + CaXy + C3)X3 + &3,

2
where ¢, (k = 1,2,3,4), are arbitrary constants and g; are arbitrary
functions of x; and x; . In these relations we have neglected a rigid
deformation. Let us take g; = c1u§” + czu}2> + cgul@) + C4u§4) , where
u}” are unknown functions. If we require that the equilibrium equa-
tions and the conditions on the lateral surface be satisfied for any
constants ¢y, ¢, , ¢3 and ¢4 , then we find that the functions u,.(") sat-
1sfy the plane strain problem AY (j=1,2,3,4). The functions
u ).(i=1,2,3,4), are not really displacements since they do not
have dlmensmns of length. In the classical elasticity this method
has been developed by lesan (1986), lesan (2009). The solution pre-
sented in this paper for a cylinder with arbitrary cross-section is
new even for achiral gradient elasticity.

6. Application

In this section we use the method presented in Section 5 to
study the torsion of a circular cylinder. The torsion of a circular cyl-
inder subjected to displacement boundary conditions on the ends
has been investigated by Papanicolopulos (2011). In this case the
torsion produces a dilatation in the radial direction. In what fol-
lows we study the torsion of circular cylinder subjected to mo-
ments on the ends. We assume that the cylinders B is defined by
B={x:x3+x3 <a*0<x; <h},(a>0) and suppose that the mo-
ments M; and M, are equal to zero. To obtain the solution of the
problem we have to solve the auxiliary plane problems A® and
to determine the constants ¢, (k=1,2,3,4). We introduce the
notation r = (x2 +x2)"/%. Let us note that on the boundary of T
we have r = a and n, = x,/a.

It is easy to see that the external data system for the problem
A® s (F® =0,PY = —in,,PY) = 0,R® = 0). The external data

system for the problem A( reduces to (F¥ =0,P =2fn,,
P =0, R = 0). First, we study the problem A . We seek the
solutlon of this problem in the form

u) =xU(r), u’ =0, (49)

where U is an unknown function of class C*. The functions u}®’ must

satisfy the Egs. (25) in the absence of body forces. We note that

3 N ~1q7
Uyy = OupU + Xox,r U,
p

3)
®3)
o,

g, = Aup) = x,(U" +3r'U),

pou

UD) = XXX 72U — 173X XU+ 171U (85p Xy + OunXp + S puksn),

y

(50)
where U’ = dU/dr,U" = d*U/dr*.
The equilibrium Egs. (25), with F; = 0, reduce to
(1-2A)ARx,U) =0, (51)

where
Oy = 2000 + 062 + 03 + otg + 0t5) /(2 + 200)] V2.

Let us note that A(x,U) = x,(U" + 3r-1U"). It follows from (51) that
the function U satisfies the equation

d? L, d d? 4d
(F—i—?:r a £%><d2+3 dr U=0.

The solution of this equation, which is bounded at r = 0, is given by
U=¢ +C211(r/€1), (52)

where I is the modified Bessel function of the first kind and order
one, and C; and C, are arbitrary constants.

Let us impose the boundary conditions (35) for k = 3. First, from
(33), (49) and (50) we obtain

3 -
Hovs = flepapxXs + ExapXpxJr U,
so that

= uSsnn, =0 on r=a.

As R = 0, we conclude that the condition R} = R on T is iden-
tically satisfied. In view of (33), (49) and (50) we find that on the
boundary I" we have

= 2X,[(01 + Otz + 03 + 0lg + 0t5)U” + (301 + 30tz + 303
+ 204 + 205)a U (53)

Since for a circular cylinder we have R® = 0, with the help of the

relation (52) and (53) we find that the conditions R®) = R, on
r = a, imply that C; = 0. From (49) and (52) we get
O =Cix,, uf) =0, (54)

where C; is an unknown constant. Thus, we find that

efﬁ) = Cidy, €3 =0,
3 3 3 3

T =200+ W)Cidyy, Ty =0, iy =i =0,

PP =20+ pwCin,, PP =0, R®=0.

Kypy = 0,

The conditions (35) for k = 3 are satisfied if C; is given by
2

Cl=—5——. 55
YT 200+ ) (53)
In a similar way we find that the solution of the problem A®
f
u@:i+um,u?:0 (56)
It follows from (54), (56) and (40) that
] =E =0 & =euf(1-0), &5=0, &, =0,

4 )
t(;:2f< /1+.U>’ 3ﬁ = fesppXy,  Ey = — fxw B =
1
_i+ﬂ>
where

E=pu@G2r+21)/(4+ p).

By using these relations, from (42) we obtain
Du3 = O, Da4 = 0, D33 = TCGZE,

f2

(4
c&:&w@m—%

_1 4 2
Dy —inua + 4204 — 05 — i+,u)7w , (57)
2f(32+2p)
D3y =Dgp =22 1207
34 43 T na?.

From (48) and (57) we find that D3, = 0 and Dy, = 0. Thus, the sys-
tem (41) reduces to

Dygcy =0, D33C3 + D3gCq = —F3, DazC3 + DayCq = —Ms. (58)

The solution of the system (59) is

1 =0=0, ¢3=(D33M3—DyF3)/d, c4=(D34F3—D33M3)/d,

(59)
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where d = D33D44 — D%,. From (36), (54), (56) and (59) we see that
the solution of the problem is

Uy = E3p,C4XpX3 + <C3C1 + C4>Xo<7 U3 = C3X3,

A+
where c3, ¢, and C; are given by (55) and (59).

We note that for a chiral circular cylinder we have D34 # 0 so
that the torsion and extension cannot be treated independently
of each other. In the case of an achiral circular cylinder the coeffi-
cient f is equal to zero and the torsion is not accompanied by
extension. In the context of the gradient elasticity the torsion prob-
lem for an achiral cylinder has been studied in various papers (see
Lardner, 1971; Lomakin, 1987; Kahrobaiyan et al., 2011 and refer-
ences therein). The method presented in this paper can be used to
investigate the torsion problem in the theory of gradient elasticity
established by Aifantis (1992), Aifantis (2003).

7. Conclusions

The results established in this paper can be summarized as
follows:

(a) In the context of the gradient elasticity we establish the
solution of the torsion problem for isotropic chiral cylinders
with arbitrary cross-sections. As in classical theory the prob-
lem is reduced to the study of two-dimensional problems.

(b) We introduce the generalized plane strain problem and
present an existence result for the traction problem.

(c) We express the solution of the torsion problem in terms of
solutions of four generalized plane strain problems which
depend only on the constitutive coefficients and the cross
section of the bar.

(d) We show that, in general, the torsion of an isotropic chiral
bar is accompanied by extension and bending.

(e) We use the method given in this paper to investigate the tor-
sion of a circular cylinder. It is shown that the torsion of a
right circular cylinder made of an isotropic chiral elastic
material is accompanied only by extension. The solution
could be of interest for experimental investigations.
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