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This paper contains a study of the problem of torsion of chiral bars with arbitrary cross-sections in the
context of the linear theory of gradient elasticity. The solution is expressed in terms of solutions of four
auxiliary plane problems characterized by loads which depend only on the constitutive coefficients. It is
shown that, in general, the torsion produces extension (or contraction) and bending effects. The results
are used to investigate the torsion of a homogeneous circular bar. In contrast with the case of achiral cir-
cular cylinders, the torsion and extension cannot be treated independently of each other.
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1. Introduction

The behavior of chiral materials is of interest in investigation of
carbon nanotubes, auxetic materials, bones as well as composites
with inclusions. In this paper we use the theory of gradient elastic-
ity (Toupin, 1962; Mindlin, 1964; Mindlin and Eshel, 1968; Papan-
icolopulos, 2011) to study the problem of torsion of homogeneous
and isotropic chiral cylinders. This work is motivated by the recent
interest in using gradient elasticity to model the chiral behavior of
elastic materials (see Maranganti and Sharma, 2007; Auffray et al.,
2009; Papanicolopulos, 2011; Askes and Aifantis, 2011 and refer-
ences therein). We note that the gradient elasticity has been re-
cently used to investigate the behavior of carbon nanotubes
(Wang and Hu, 2005; Wang and Wang, 2007; Askes and Aifantis,
2009; Aifantis, 2009; Zhang et al., 2010; Yayli, 2011). A material
is called isotropic chiral if its symmetry group equals the proper
orthogonal group. In gradient elasticity the torsion of a circular cyl-
inder, subjected to displacement conditions on the ends, has been
investigated by Papanicolopulos (2011). In the present paper we
study the deformation of a cylinder with arbitrary cross-section
which is subjected to moments on the ends. The torsion problem
is reduced to the study of some generalized plane strain problems.
The method is applied to study the torsion of a circular cylinder.

The paper is structured as follows. In Section 2 we present the
basic equations of the linear theory of gradient elasticity. Section 3
is devoted to the formulation of the problem of torsion of chiral
rods. In Section 4 we define the generalized plane strain problem
and introduce some auxiliary plane problems. The solutions of
ll rights reserved.
these auxiliary plane problems depend only on the constitutive
coefficients and the cross-section of the cylinder. Section 5 pre-
sents the solution of the torsion problem. The three-dimensional
problem is reduced to the study of some plane problems. In gen-
eral, the torsion of an elastic cylinder is accompanied by extension
(or contraction) and bending. In Section 6 we use the solution
given in the preceding section to investigate the torsion of a circu-
lar cylinder. It is shown that the torsion of a right cylinder made of
an isotropic chiral elastic material is accompanied only by
extension.
2. Basic equations

In this section we present the basic equations of isotropic chiral
elastic solids in the first strain-gradient theory (Toupin, 1962;
Mindlin, 1964; Mindlin and Eshel, 1968; Papanicolopulos, 2011).
We consider a body that in undeformed state occupies the region
B of euclidean three-dimensional space and is bounded by the sur-
face @B. We refer the deformation of the body to a fixed system of
rectangular axes Oxk; ðk ¼ 1;2;3Þ. Let n be the outward unit nor-
mal of @B. Letters in boldface stand for tensors of an order p P 1,
and if v has the order p, we write v ij;...;k (p subscripts) for the com-
ponents of v in the Cartesian coordinate system. We shall employ
the usual summation and differentiation conventions: Latin sub-
scripts (unless otherwise specified) are understood to range over
the integers ð1;2;3Þ, whereas Greek subscripts to the range ð1;2Þ,
summation over repeated subscripts is implied and subscripts pre-
ceded by a comma denote partial differentiation with respect to
the corresponding Cartesian coordinate.

We assume that B is a bounded region with Lipschitz boundary
@B, consisting of a finite number of smooth surfaces. Let Cp be the
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Fig. 1. A prismatic bar.
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intersection of two adjoined smooth surfaces and C ¼ [Cp. We as-
sume that B is occupied by a homogeneous and isotropic chiral
elastic solid. Let u be the displacement vector field on B. Through-
out this paper, the strain measures are given by

eij ¼
1
2
ðui;j þ uj;iÞ; jijk ¼ uk;ij: ð1Þ

The constitutive equations for isotropic chiral elastic solids are
(Mindlin and Eshel, 1968; Papanicolopulos, 2011).

sij ¼ kerrdij þ 2leij þ f ðeikmjjkm þ ejkmjikmÞ;

lijk ¼
1
2
a1ðjrridjk þ 2jkrrdij þ jrrjdikÞ þ a2ðjirrdjk þ jjrrdikÞ

þ 2a3jrrkdij þ 2a4jijk þ a5ðjkji þ jkijÞ þ f ðeiksejs þ ejkseisÞ; ð2Þ

where sij is the stress tensor, lijk is the double stress tensor, dij is the
Kronecker delta, eijk is the alternating symbol and
k;l;as; ðs ¼ 1;2; . . . ;5Þ, and f are constitutive constants. In the case
of a centrosymmetric (achiral) material the coefficient f is equal to
zero.

The equilibrium equations are

sji;j � lsji;sj þ Fi ¼ 0; ð3Þ

where Fi is the body force per unit volume.
Following Toupin (1962) and Mindlin (1964) we introduce the

functions Pi;Ri and Q i by

Pi ¼ ðski � lrki;rÞnk � DjðnrlrjiÞ þ ðDknkÞnsnplspi; ð4Þ
Ri ¼ lrsinrns; Q i ¼ hlpjinpnqiejrqsr ;

where Di are the components of the surface gradient,

Di ¼ ðdik � ninkÞ
@

@xk
;

sk are the components of the unit vector tangent to C, and hgi de-
notes the difference of limits of g from both sides of C. We denote
by B the closure of B.

We say that the vector field uj is an admissible displacement
field on B provided uj 2 C4ðBÞ \ C3ðBÞ. An admissible system of
stresses on B is an ordered array of function ðsij;lpqrÞ with the fol-
lowing properties: (i) sij 2 C1ðBÞ;likj 2 C2ðBÞ; (ii) sij ¼ sji;lijk ¼ ljik.
By an admissible state on B we mean an ordered array of fields
A ¼ ðui; eij;jijk; sij;lijkÞ with the properties: (i) ui is an admissible
displacement field on B; (ii) eij 2 C1ðBÞ;jijk 2 C2ðBÞ; eij ¼ eji;

jijk ¼ jjik; (iii) ðsij;lijkÞ is an admissible system of stresses on B.
By an external data system on B we mean an ordered array

L ¼ ðFi; ePi; eRi; eQ iÞ with the properties: (i) Fi is continuous on B;
(ii) ePi and eRi are piecewise regular on @B; (iii) eQ i is piecewise reg-
ular on C. We say that A ¼ ðui; eij;jijk; sij;lijkÞ is an elastic state cor-
responding to the body force Fk if A is an admissible state that
satisfies the Eqs. (1)–(3) on B.

The traction problem of elastostatics consists in finding an elas-
tic state that corresponds to the body force Fi and satisfies the
boundary conditions

Pi ¼ ePi; Ri ¼ eRi on @B n C; Q i ¼ eQ i on C; ð5Þ

where ePi; eRi and eQ i are prescribed functions.
Papanicolopulos (2011) has shown that in the case of isotropic

linear gradient elasticity the chiral behavior is controlled by a sin-
gle material parameter. In the case of anisotropic materials the po-
tential energy density W is given by

2W ¼ Cijmneijemn þ 2Fijkmneijjkmn þ Dijkmnpjijkjmnp:

In the case of isotropic chiral materials the tensor Fijkmn has the form
Fijkmn ¼ f1eijkdmn þ f2eimkdjn þ f3einkdjm þ f4ejikdmn þ f5ejnkdim

þ f6emnkdij;

where fk; ðk ¼ 1;2; . . . ;6Þ, are arbitrary coefficients. Thus, the po-
tential energy density for isotropic chiral materials is given by

W ¼ 1
2

kerrejj þ leijeij þ a1jiikjkjj þ a2jijjjirr þ a3jiirjjjr

þ a4jijkjijk þ a5jijkjkji þ 2f eikmeijjkjm: ð6Þ

where f ¼ ðf3 þ f5Þ=2.
In what follows we assume that the elastic potential is a posi-

tive definite quadratic form in the variables eij and jijk. The restric-
tions imposed by this assumption on the constitutive coefficients
have been presented by Mindlin and Eshel (1968) and Papanicolo-
pulos (2011).

The necessary and sufficient conditions for the existence of a
solution of the traction problem are (Hlavacek and Hlavacek, 1969)Z

B
Fidv þ

Z
@B

ePidaþ
Z

C

eQ ids ¼ 0; ð7ÞZ
B
eijkxjFkdv þ

Z
@B

eijk xj
ePk þ nj

eRk

� �
daþ

Z
C
eijkxj

eQ kds ¼ 0:

We note that the mixed problem of elastostatics has been investi-
gated by Hlavacek and Hlavacek (1969).

3. Statement of the problem

We assume that the region B from here on refers to the interior
of a right cylinder of length h with the cross-section R and the lat-
eral boundary P. Let C be the boundary of R. The Cartesian coordi-
nate frame is supposed to be chosen in such a way that x3-axis is
parallel to the generators of B and the x1Ox2 plane contains one
of terminal cross-sections. We denote by R1 and R2, respectively,
the cross-section located at x3 ¼ 0 and x3 ¼ h. We denote by Ca

the boundary of the cross-section Ra (Fig. 1). In view of the forego-
ing agreements, we have

B ¼ fx : ðx1; x2Þ 2 R;0 < x3 < hg; P ¼ fx : ðx1; x2Þ 2 C;0 < x3 < hg
R1 ¼ fx : ðx1; x2Þ 2 R; x3 ¼ 0g; R2 ¼ fx : ðx1; x2Þ 2 R; x3 ¼ hg;
C1 ¼ fx : ðx1; x2Þ 2 C; x3 ¼ 0g; C2 ¼ fx : ðx1; x2Þ 2 C; x3 ¼ hg:

We assume that the lateral surface P is smooth, so that Qi is equal
to zero on P. The cylinder is supposed to be free from lateral load-
ing. The conditions on the lateral boundary are

Pi ¼ 0; Ri ¼ 0 on P: ð8Þ
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We assume that the body forces are absent and that the load on the
cylinder is distributed over its ends, R1 and R2, in a way which ful-
fills the equilibrium conditions of a rigid body. Let the loading ap-
plied on R1 be statically equivalent to the force F ¼ ð0; 0;F 3Þ and
the moment M ¼ ðM1;M2;M3Þ. We shall prove that the torsion of
cylinder is accompanied by bending and extension. We have intro-
duced the loads F 3 and Ma to put in evidence these effects. For the
end located at x3 ¼ 0 we have the following conditionsZ

R1

Padaþ
Z

C1

Qads ¼ 0; ð9ÞZ
R1

P3daþ
Z

C1

Q 3ds ¼ F 3; ð10ÞZ
R1

ðxaP3 þ RaÞdaþ
Z

C1

xaQ 3ds ¼ eba3Mb; ð11ÞZ
R1

eab3xaPbdaþ
Z

C1

eab3xaQbds ¼ M3: ð12Þ

On the end located at x3 ¼ h we have the conditionsZ
R2

Padaþ
Z

C2

Qads ¼ 0; ð13ÞZ
R2

P3daþ
Z

C2

Q 3ds ¼ �F 3; ð14Þ

Z
R2

ðxaP3 � RaÞdaþ
Z

C2

xaQ 3ds ¼ eab3Mb; ð15ÞZ
R2

eab3xaPbdaþ
Z

C2

eab3xaQbds ¼ �M3: ð16Þ

Let us note that from (4) we obtain

Pi ¼ �s3i þ 2la3i;a þ l33i;3; Ri ¼ l33i on R1;

Pi ¼ s3i � 2la3i;a � l33i;3; Ri ¼ l33i on R2; ð17Þ

Q i ¼ �2la3ina on C1; Qi ¼ 2la3ina on C2;

where ðn1;n2; 0Þ are the direction cosines of the exterior normal to
P.

The Eqs. (3) reduce to

sji;j � lrji;rj ¼ 0: ð18Þ

The problem consists in finding the functions ui of class
C4ðBÞ \ C3ðBÞ which satisfy the Eqs. (1), (2) and (18) on B, the condi-
tions (8) on the lateral surface, and the conditions (9)–(16) on the
ends, when the constants F 3 and Mj, and the constitutive coeffi-
cients are prescribed. If F 3 ¼ 0 and Ma ¼ 0, then the problem re-
duces to the torsion problem.

4. Auxiliary plane problems

Let us assume that the cylinder B is subjected to the external
data system ðFi; ePi; eRi; eQ iÞ with the properties: (i) Fi; ePi and eRi are
independent of the axial coordinate; (ii) eQ i ¼ 0 on P. We note that
the lateral surface is smooth so that we have Qi ¼ 0.

Let A ¼ ðui; eij;jijk; sij;lijkÞ be an elastic state on the cylinder B.
Then A is a state of generalized plane strain provided

ui ¼ uiðx1; x2Þ; ðx1; x2Þ 2 R: ð19Þ

The restrictions (19), in conjunction with the Eqs. (1) and (2) imply
that eij;jijk; sij and lijk are all independent of the axial coordinate.
The strain measures (1) reduce to

2eab ¼ ua;b þ ub;a; 2ea3 ¼ u3;a; jabj ¼ uj;ab ð20Þ

and

e33 ¼ 0; jk3i ¼ 0:
The constitutive equations become

sab ¼ keqqdab þ 2leab þ f ðeaq3jbq3 þ ebq3jaq3Þ;
sa3 ¼ 2lea3 þ f eqb3jaqb;

labc ¼
1
2
a1ðjqqadbc þ 2jcqqdab þ jqqbdacÞ
þ a2ðjaqqdbc þ jbqqdacÞ þ 2a3jqqcdab þ 2a4jabc

þ a5ðjcba þ jcabÞ þ f ðeac3eb3 þ ebc3ea3Þ;
lab3 ¼ 2a3jqq3dab þ 2a4jab3 þ f ðeqa3ebq þ eqb3eaqÞ;

ð21Þ

and

s33 ¼ keqq; l3ab ¼
1
2
a1jqq3dab þ a5jba3 þ f ebq3eaq;

l3a3 ¼
1
2
a1jqqa þ a2jaqq þ f eqa3e3q;

l33a ¼ a1jaqq þ 2a3jqqa þ 2f eaq3e3q;

l333 ¼ ða1 þ 2a3Þjqq3:

The equations of equilibrium reduce to

sbj;b � lqmj;qm þ Fj ¼ 0 on R: ð22Þ

It follows from (4) that

Pi ¼ ðsbi � lqbi;qÞnb � DqðnblbqiÞ þ ðDqnqÞnbnmlbmi;

Ri ¼ lqminqnm: ð23Þ

The conditions on the lateral surface reduce to

Pi ¼ ePi; Ri ¼ eRi on C: ð24Þ

The generalized plane strain problem consists in finding an elastic
state on B which satisfies the geometrical Eqs. (20), the constitutive
Eqs. (21) and the equilibrium Eqs. (22) on R, and the boundary con-
ditions (24) on C. We assume that Fi; ePi and eRi are functions of class
C1, and that R is C1-smooth. The functions s33;l3bi and l33i can be
determined after the displacement field is found.

In view of (20) and (21) the equations of equilibrium (22) can be
expressed in terms of the functions uk in the form

lDua þ ðkþ lÞub;ba � 2ða3 þ a4ÞDDua � 2ða1 þ a2 þ a5ÞDub;ba

þ 2f eab3Du3;b þ Fa ¼ 0;
lDu3 � 2ða3 þ a4ÞDDu3 þ 2feqm3Dum;q þ F3 ¼ 0; on R: ð25Þ

In the case of achiral materials we have f ¼ 0, and the Eqs. (25) re-
duce to two uncoupled systems: one for the functions ua and the
other for the function u3. The next theorem can be established using
the results presented by Hlavacek and Hlavacek (1969).

Theorem 1. The generalized plane strain problem has a solution if
and only ifZ

R
Fkdaþ

Z
C

ePkds ¼ 0;Z
R
e3abxaFbdaþ

Z
C
e3abðxa

ePb þ na
eRbÞds ¼ 0: ð26Þ

Following Fichera (1972), if we consider a ‘‘C1-theory’’, then (26)
are necessary and sufficient conditions for the existence of a C1

solution of the generalized plane strain problem.

In what follows we will use four special problems of generalized
plane strain, denoted by AðkÞ; ðk ¼ 1;2;3;4Þ. In the problem Að1Þ the
external data system is ðFð1Þi ; eP ð1Þi ; eRð1Þi Þ where

Fð1Þi ¼ kd1i; eP ð1Þ1 ¼ �kx1n1 þ ða1 � 2a2Þe3amðn1n2Þ;mna;eP ð1Þ2 ¼ �kx1n2 þ
1
2
ða1 � 2a2Þe3amðn2

1 � n2
2Þ;anm;eP ð1Þ3 ¼ 2fn2;

eRð1Þ1 ¼ 2a3 � a1 þ ða1 � 2a2Þn2
1;eRð1Þ2 ¼ ða1 � 2a2Þn1n2; eRð1Þ3 ¼ 0:

ð27Þ
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The problem Að2Þ is characterized by the following loading

Fð2Þi ¼ kd2i; eP ð2Þ1 ¼ �kx2n1 þ
1
2
ða1 � 2a2Þe3amðn2

1 � n2
2Þ;anm;eP ð2Þ2 ¼ �kx2n2 þ ða1 � 2a2Þe3amðn1n2Þ;mna; eP ð2Þ3 ¼ �2fn1;eRð2Þ1 ¼ ða1 � 2a2Þn1n2; eRð2Þ2 ¼ 2a3 � a1 þ ða1 � 2a2Þn2

2;
eRð2Þ3 ¼ 0:

ð28Þ

In the problem Að3Þ the body force and the boundary data are given
by

Fð3Þi ¼ 0; eP ð3Þa ¼ �kna; eP ð3Þ3 ¼ 0; eRð3Þi ¼ 0: ð29Þ

The problem Að4Þ corresponds to the following external data

Fð4Þi ¼ 0; eP ð4Þ1 ¼
1
2

f ½5n1 þ D1ðx2n2Þ þ D2ðx2n1 � 2x1n2Þ

� 2ðx2n1n2 � x1n2
2ÞðDqnqÞ�;eP ð4Þ2 ¼

1
2

f ½5n2 þ D1ðx1n2 � 2x2n1Þ þ D2ðx1n1Þ

� 2ðx1n1n2 � x2n2
1ÞðDqnqÞ�; eP ð4Þ3 ¼ le3bqxqnb;eRð4Þ1 ¼ f ðx1n2

2 � x2n1n2Þ; eRð4Þ2 ¼ f ðx2n2
1 � x1n1n2Þ; eRð4Þ3 ¼ 0:

ð30Þ

It is easy to show that the necessary and sufficient conditions (26)
for the existence of the solution are satisfied for each boundary va-
lue problem AðkÞ, (k ¼ 1;2;3;4).

Let us denote by uðkÞi ; eðkÞij ;j
ðkÞ
pqr; sðkÞij and lðkÞpqr the displacement, the

strain measures, the stress tensor and the double stress tensor in
the problem AðkÞ; ðk ¼ 1;2;3;4Þ, respectively. We introduce the
notations

PðkÞi ¼ ðs
ðkÞ
bi � lðkÞqbi;qÞnb � DqðnblðkÞbqiÞ þ ðDqnqÞlðkÞbminbnm;

RðkÞi ¼ lðkÞqminqnm:
ð31Þ

The functions uðkÞi ; eðkÞij ;j
ðkÞ
pqr; sðkÞij and lðkÞpqr satisfy the geometrical

equations

2eðkÞab ¼ uðkÞa;b þ uðkÞb;a; 2eðkÞa3 ¼ uðkÞ3;a; jðkÞabj ¼ uðkÞj;ab; ð32Þ

the constitutive equations

sðkÞab ¼ keðkÞqqdab þ 2leðkÞab þ f ðeaq3jðkÞbq3 þ ebq3jðkÞaq3Þ;

sðkÞa3 ¼ 2leðkÞa3 þ f eqb3jðkÞaqb;

lðkÞabc ¼
1
2
a1ðjðkÞqqadbc þ 2jðkÞcqqdab þ jðkÞqqbdacÞ þ a2ðjðkÞaqqdbc þ jðkÞbqqdacÞ

þ 2a3jðkÞqqcdab þ 2a4jðkÞabc þ a5ðjðkÞcba þ jðkÞcabÞ þ f ðeac3eðkÞb3 þ ebc3eðkÞa3 Þ;

lðkÞab3 ¼ 2a3jðkÞqq3dab þ 2a4jðkÞab3 þ f ðeqa3eðkÞbq þ eqb3eðkÞaqÞ;
ð33Þ

and the equilibrium equations

sðkÞbj;b � lðkÞqmj;qm þ FðkÞj ¼ 0; ð34Þ

on R, and the boundary conditions

PðkÞi ¼ eP ðkÞi ; RðkÞi ¼ eRðkÞi on C; ð35Þ

where FðkÞi ; eP ðkÞi and eRðkÞi ; ðk ¼ 1;2;3;4Þ are defined by (27)–(30).
We note that the solutions of the problems AðkÞ depend only on

the constitutive coefficients and the domain R.

5. Solution of the problem

It is known (Ies�an, 1986; Ies�an, 2009) that the solution of the
problem of extension, bending and torsion can be found in the
class of displacement vector fields u with the property that u;3 is
a rigid displacement. This result has been established in the classi-
cal theory but it also holds in the gradient elasticity. We seek the
solution of the problem formulated in Section 3 in the form

ua ¼ �
1
2

cax2
3 þ e3bac4xbx3 þ

X4

k¼1

ckuðkÞa ;

u3 ¼ ðc1x1 þ c2x2 þ c3Þx3 þ
X4

k¼1

ckuðkÞ3 ;

ð36Þ

where uðkÞj are the displacements in the problem AðkÞ, and
ck; ðk ¼ 1;2;3;4Þ, are unknown constants. It is easy to see that
the displacement vector u given by (36) has the property that u;3

is a rigid displacement. In view of (1)and (36) we find that

eab ¼
X4

k¼1

ckeðkÞab ; ea3 ¼
1
2
e3baxbc4 þ

X4

k¼1

ckeðkÞa3 ;

e33 ¼ c1x1 þ c2x2 þ c3; jabc ¼
X4

k¼1

ckjðkÞabc;

jab3 ¼
X4

k¼1

ckjðkÞab3; jb3a ¼ e3bac4;

ja33 ¼ �j33a ¼ ca; j333 ¼ 0;

ð37Þ

where eðkÞij and jðkÞabj are defined in (32). It follows from (2) and (37)
that the stress tensor and the double stress tensor are given by

sab ¼ ½kðc1x1 þ c2x2 þ c3Þ � 2fc4�dab þ
X4

k¼1

cksðkÞab ;

sa3 ¼ le3bac4xb þ 2f eaq3cq þ
X4

k¼1

cksðkÞa3 ;

s33 ¼ ðkþ 2lÞðc1x1 þ c2x2 þ c3Þ þ 4fc4 þ k
X4

k¼1

ckeðkÞqq;

l111 ¼ 2ða2 � a3Þc1 þ
X4

k¼1

cklðkÞ111; l222 ¼ 2ða2 � a3Þc2 þ
X4

k¼1

cklðkÞ222;

l221 ¼ ða1 � 2a3Þc1 � fc4x1 þ
X4

k¼1

cklðkÞ221;

l112 ¼ ða1 � 2a3Þc2 � fc4x2 þ
X4

k¼1

cklðkÞ112;

l121 ¼
1
2
ð2a2 � a1Þc2 þ

1
2

fc4x2 þ
X4

k¼1

cklðkÞ121;

l122 ¼
1
2
ð2a2 � a1Þc1 þ

1
2

fc4x1 þ
X4

k¼1

cklðkÞ122;

la33 ¼
1
2
ð2a2 � a1 þ 4a4Þca �

1
2

fc4xa

þ
X4

k¼1

ck a2jðkÞaqq þ
1
2
a1jðkÞqqa þ

1
2

f e3qauðkÞ3;q

� �
;

l33a ¼ ða1 � 2a3 � 2a4 þ 2a5Þca þ fc4xa

þ
X3

k¼1

ck

�
a1jðkÞaqq þ 2a3jðkÞqqa þ f e3aquðkÞ3;q

�
;

la3b ¼ e3abf ðc1x1 þ c2x2 þ c3Þ þ e3abð2a4 � a5Þc4

þ
X4

k¼1

ck
1
2
a1jðkÞqq3dab þ a5jðkÞba3 þ f e3bqeðkÞaq

� �
;

lab3 ¼
X4

k¼1

cklðkÞab3; l333 ¼ ða1 þ 2a3Þ
X4

k¼1

ckjðkÞqq3;

ð38Þ

where sðkÞai and lðkÞabj are given by (33).
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The equations of equilibrium (18) and the boundary conditions
(8) are satisfied on the basis of the Eqs. (34) and (35), where the
functions FðkÞi ; eP ðkÞi and eRðkÞi are given by (27)–(30).

The conditions (9) on the end R1 are identically satisfied. In-
deed, with the help of the divergence theorem and the Eqs. (4),
(17), (18) and (8) we obtainZ

R1

P1daþ
Z

C1

Q 1ds ¼ �
Z

R
s31da ¼ �

Z
R
½s31 þ x1ðsa3;a � lab3;abÞ�da

¼ �
Z

C
x1ðs3a � lab3;bÞnads�

Z
R
l1b3;bda

¼ �
Z

C
x1ðlqm3nanq � lqa3nqnmÞ;mnads

�
Z

R
l1b3;bda

¼ �
Z

R
½ðlqm3n1nq � lq13nqnmÞ;m þ l1b3;b�da

¼ �
Z

C
lqm3nqnmn1ds ¼ �

Z
C

R3n1ds ¼ 0:

In a similar way we can prove that the second condition from (9), as
well as the conditions (13) are identically satisfied. We note that the
stress tensor and the double stress tensor from (38) can be written
in the form

sij ¼
X4

k¼1

cktðkÞij ; lpqr ¼
X4

k¼1

ckn
ðkÞ
pqr; ð39Þ

where

tðqÞab ¼ kxqdab þ sðqÞab ; tð3Þab ¼ kdab þ sð3Þab ;

tð4Þab ¼ �2f dab þ sð4Þab ; tðqÞa3 ¼ 2f eaq3 þ sðqÞa3 ;

tð3Þa3 ¼ sð3Þa3 ; tð4Þa3 ¼ le3baxb þ sð4Þa3 ;

tðmÞ33 ¼ ðkþ 2lÞxm þ keðmÞqq; tð3Þ33 ¼ kþ 2lþ keð3Þqq; tð4Þ33 ¼ 4f þ keð4Þqq;

nð1Þ111 ¼ 2ða2 � a3Þ þ lð1Þ111; nð2Þ111 ¼ lð2Þ111; nð3Þ111 ¼ lð3Þ111;

nð4Þ111 ¼ lð4Þ111; nð1Þ222 ¼ lð1Þ222; nð2Þ222 ¼ 2ða2 � a3Þ þ lð2Þ222;

nð3Þ222 ¼ lð3Þ222; nð4Þ222 ¼ lð4Þ222; nð1Þ221 ¼ a1 � 2a3 þ lð1Þ221;

nð2Þ221 ¼ lð2Þ221; nð3Þ221 ¼ lð3Þ221; nð4Þ221 ¼ �fx1 þ lð4Þ221;

nð1Þ112 ¼ lð1Þ112; nð2Þ112 ¼ a1 � 2a3 þ lð2Þ112; nð3Þ112 ¼ lð3Þ112;

nð4Þ112 ¼ �fx2 þ lð4Þ112;

nð1Þ121 ¼ lð1Þ121; nð2Þ121 ¼
1
2
ð2a2 � a1Þ þ lð2Þ121; nð3Þ121 ¼ lð3Þ121;

nð4Þ121 ¼
1
2

fx2 þ lð4Þ121; nð1Þ122 ¼
1
2
ð2a2 � a1Þ þ lð1Þ122;

nð2Þ122 ¼ lð2Þ122; nð3Þ122 ¼ lð3Þ122; nð4Þ122 ¼
1
2

fx1 þ lð4Þ122;

nðjÞa33 ¼
1
2
ð2a2 � a1 þ 4a4Þdja þ a2jðjÞaqq þ

1
2
a1jðjÞqqa þ

1
2

f e3qauðjÞ3;q;

nð4Þa33 ¼ �
1
2

fxa þ a2jð4Þaqq þ
1
2
a1jð4Þqqa þ

1
2

f e3qauð4Þ3;q;

nðjÞ33a ¼ ða1 � 2a3 � 2a4 þ 2a5Þdja þ a1jðjÞaqq þ 2a3jðjÞqqa

þ f e3aquðjÞ3;q; ðj ¼ 1;2;3Þ;

nð4Þ33a ¼ fxa þ a1jð4Þaqq þ 2a3jð4Þqqa þ f e3aquð4Þ3;q;

nðqÞa3b ¼ e3abfxq þ
1
2
a1jðqÞmm3dab þ a5jðqÞba3 þ f e3bmeðqÞam ;

nð3Þa3b ¼ e3abf þ 1
2
a1jð3Þqq3dab þ a5jð3Þba3 þ f e3bqeð3Þaq ;

nð4Þa3b ¼ e3abð2a4 � a5Þ þ
1
2
a1jð4Þqq3dab þ a5jð4Þba3 þ fe3bqeð4Þaq ;

nðkÞab3 ¼ lðkÞab3; nðkÞ333 ¼ ða1 þ 2a3ÞjðkÞqq3; ðk ¼ 1;2;3;4Þ: ð40Þ
With the help of (17) and (39), the conditions (10)–(12) and (14)–
(16) reduce toX4

k¼1

Dakck ¼ eab3Mb;
X4

k¼1

D3kck ¼ �F 3;
X4

k¼1

D4kck ¼ �M3; ð41Þ

where the constants Drs; ðr; s;¼ 1;2;3;4Þ, are defined by

Dak ¼
Z

R
½xatðkÞ33 þ 2nðkÞa33 � nðkÞ33a�da;

D3k ¼
Z

R
tðkÞ33 da; D4k ¼

Z
R
e3abðxatðkÞ3b þ 2nðkÞa3bÞda:

ð42Þ

The constants Drs can be calculated after the solutions of the prob-
lems AðkÞ; ðk ¼ 1;2;3;4Þ, are found.

Let us prove that the system (41) can always be solved for the
constants c1; c2; c3 and c4. Following Mindlin and Eshel (1968)
and Hlavacek and Hlavacek (1969), in the absence of body forces,
we have

2
Z

B
Wdv ¼

Z
@B
ðPiui þ Riui;jnjÞdaþ

Z
C

Q iuids: ð43Þ

We consider two elastic states S0 ¼ ðu0i; e0ij;j0ijk; s0ij;l0ijkÞ and
S00 ¼ ðu00i ; e00ij;j00ijk; s00ij;l00ijkÞ corresponding to zero body forces. We
denote

2Eðu0;u00Þ ¼
Z
@B
ðP0iu00i þ R0iu

00
i;jnjÞdaþ

Z
C

Q 0iu
00
i ds; ð44Þ

where P0i; R0i and Q 0i are the functions Pi;Ri and Qi from (4) associ-
ated to the state S0. The reciprocity relation (Hlavacek and Hlavacek,
1969; Beatty and Cheverton, 1976) leads to the following equality

Eðu0;u00Þ ¼ Eðu00;u0Þ: ð45Þ

It follows from (36) that the displacement u can be expressed as

ui ¼
X4

k¼1

ckv ðkÞi ; ð46Þ

where

v ðbÞa ¼ �
1
2

x2
3dab þ uðbÞa ; v ð3Þa ¼ uð3Þa ;

v ð4Þa ¼ e3baxbx3 þ uð4Þa ; v ðaÞ3 ¼ xax3 þ uðaÞ3 ;

v ð3Þ3 ¼ x3 þ uð3Þ3 ; v ð4Þ3 ¼ uð4Þ3 :

ð47Þ

It follows from (43) and (46) that the internal energy E can be ex-
pressed in the form

E ¼
Z

B
Wdv ¼

X4

r;s¼1

Brscrcs;

where

Brs ¼ Eðv ðrÞ; v ðsÞÞ; ðr; s ¼ 1;2;3;4Þ:

Since the potential energy is positive definite, we find that
detðBrsÞ – 0. Let us apply the relation (44) for the states

SðkÞ ¼ ðv ðkÞi ; eðkÞij ;g
ðkÞ
pqr; t

ðkÞ
ij ; n

ðkÞ
pqrÞ; ðk ¼ 1;2;3;4Þ, where 2eðkÞij ¼ v ðkÞi;j þ v ðkÞj;i

and gðkÞpqr ¼ v ðkÞr;pq. We obtain

2Eðv ðrÞ; v ðsÞÞ ¼ hDrs:

Thus, we conclude that detðDrsÞ– 0. From the reciprocity relation
(45) we get

Drs ¼ Dsr ; ðr; s ¼ 1;2;3;4Þ: ð48Þ

The solution of the problem is given by (36) where the constants
c1; c2; c3 and c4 are determined by the system (41), and the functions
uðkÞj are the displacements in the generalized plane strain problems
AðkÞ; ðk ¼ 1;2;3;4Þ.
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It follows from (41) that the torsion of a chiral cylinder is
accompanied, in general, by extension and bending.

Remark 1. Let us describe how the problems AðjÞ; ðj ¼ 1;2;3;4Þ,
were selected. Following (Ies�an, 1986), the solution u of the
problem can be found in the class of functions u with the property
that u;3 is a rigid displacement. This fact implies that

ua ¼ �
1
2

cax2
3 þ c4e3baxbx3 þ ga; u3 ¼ ðc1x1 þ c2x2 þ c3Þx3 þ g3;

where ck; ðk ¼ 1;2;3;4Þ, are arbitrary constants and gj are arbitrary
functions of x1 and x2 . In these relations we have neglected a rigid
deformation. Let us take gi ¼ c1uð1Þi þ c2uð2Þi þ c3uð3Þi þ c4uð4Þi , where
uðjÞi are unknown functions. If we require that the equilibrium equa-
tions and the conditions on the lateral surface be satisfied for any
constants c1; c2 , c3 and c4 , then we find that the functions uðjÞi sat-
isfy the plane strain problem AðjÞ; ðj ¼ 1;2;3;4Þ. The functions
uðjÞi ; ðj ¼ 1;2;3;4Þ, are not really displacements since they do not
have dimensions of length. In the classical elasticity this method
has been developed by Ies�an (1986), Ies�an (2009). The solution pre-
sented in this paper for a cylinder with arbitrary cross-section is
new even for achiral gradient elasticity.
6. Application

In this section we use the method presented in Section 5 to
study the torsion of a circular cylinder. The torsion of a circular cyl-
inder subjected to displacement boundary conditions on the ends
has been investigated by Papanicolopulos (2011). In this case the
torsion produces a dilatation in the radial direction. In what fol-
lows we study the torsion of circular cylinder subjected to mo-
ments on the ends. We assume that the cylinders B is defined by
B ¼ fx : x2

1 þ x2
2 < a2;0 < x3 < hg; ða > 0Þ and suppose that the mo-

ments M1 and M2 are equal to zero. To obtain the solution of the
problem we have to solve the auxiliary plane problems AðkÞ and
to determine the constants ck; ðk ¼ 1;2;3;4Þ. We introduce the
notation r ¼ ðx2

1 þ x2
2Þ

1=2. Let us note that on the boundary of R
we have r ¼ a and na ¼ xa=a.

It is easy to see that the external data system for the problem
Að3Þ is ðFð3Þi ¼ 0; eP ð3Þa ¼ �kna; eP ð3Þ3 ¼ 0; eRð3Þi ¼ 0Þ. The external data
system for the problem Að4Þ reduces to ðFð4Þj ¼ 0; eP ð4Þa ¼ 2fna;eP ð4Þ3 ¼ 0; eRð4Þj ¼ 0Þ. First, we study the problem Að3Þ. We seek the
solution of this problem in the form

uð3Þa ¼ xaUðrÞ; uð3Þ3 ¼ 0; ð49Þ

where U is an unknown function of class C4. The functions uð3Þa must
satisfy the Eqs. (25) in the absence of body forces. We note that

uð3Þa;q ¼ daqU þ xaxqr�1U0;

uð3Þa;qm ¼ xaxqxmr�2U00 � r�3xaxqxmU0 þ r�1U0ðdaqxm þ damxq þ dqmxaÞ;

uð3Þb;ba ¼ Duð3Þa ¼ xaðU00 þ 3r�1U0Þ;
ð50Þ

where U0 ¼ dU=dr;U00 ¼ d2U=dr2.
The equilibrium Eqs. (25), with Fi ¼ 0, reduce to

ð1� ‘2
1DÞDðxaUÞ ¼ 0; ð51Þ

where

‘1 ¼ ½2ða1 þ a2 þ a3 þ a4 þ a5Þ=ðkþ 2lÞ�1=2
:

Let us note that DðxaUÞ ¼ xaðU00 þ 3r�1U0Þ. It follows from (51) that
the function U satisfies the equation

d2

dr2 þ 3r�1 d
dr
� 1
‘2

1

 !
d2

dr2 þ 3r�1 d
dr

 !
U ¼ 0:
The solution of this equation, which is bounded at r ¼ 0, is given by

U ¼ C1 þ C2I1ðr=‘1Þ; ð52Þ

where I1 is the modified Bessel function of the first kind and order
one, and C1 and C2 are arbitrary constants.

Let us impose the boundary conditions (35) for k ¼ 3. First, from
(33), (49) and (50) we obtain

lð3Þqm3 ¼ f ½eq3bxmxb þ em3bxqxb�r�1U0;

so that

Rð3Þ3 ¼ lð3Þqm3nqnm ¼ 0 on r ¼ a:

As eRð3Þ3 ¼ 0, we conclude that the condition Rð3Þ3 ¼ eRð3Þ3 on C is iden-
tically satisfied. In view of (33), (49) and (50) we find that on the
boundary C we have

Rð3Þa ¼ 2xa½ða1 þ a2 þ a3 þ a4 þ a5ÞU00 þ ð3a1 þ 3a2 þ 3a3

þ 2a4 þ 2a5Þa�1U0�: ð53Þ

Since for a circular cylinder we have eRð3Þa ¼ 0, with the help of the
relation (52) and (53) we find that the conditions Rð3Þa ¼ eRð3Þa , on
r ¼ a, imply that C2 ¼ 0. From (49) and (52) we get

uð3Þa ¼ C1xa; uð3Þ3 ¼ 0; ð54Þ

where C1 is an unknown constant. Thus, we find that

eð3Þab ¼ C1dab; eð3Þa3 ¼ 0; jð3Þabc ¼ 0;

sð3Þab ¼ 2ðkþ lÞC1dab; sð3Þa3 ¼ 0; lð3Þabc ¼ lð3Þab3 ¼ 0;

Pð3Þa ¼ 2ðkþ lÞC1na; Pð3Þ3 ¼ 0; Rð3Þi ¼ 0:

The conditions (35) for k ¼ 3 are satisfied if C1 is given by

C1 ¼ �
k

2ðkþ lÞ : ð55Þ

In a similar way we find that the solution of the problem Að4Þ is

uð4Þa ¼
f

kþ l
xa; uð4Þ3 ¼ 0: ð56Þ

It follows from (54), (56) and (40) that

tð3Þ33 ¼ E; tð3Þ3a ¼ 0; nð3Þa3b ¼ e3abf ð1� C1Þ; nð3Þa33 ¼ 0; nð3Þ33a ¼ 0;

tð4Þ33 ¼ 2f 2þ k
kþ l

� �
; tð4Þ3b ¼ le3qbxq; nð4Þa33 ¼ �

1
2

fxa; nð4Þ33a ¼ fxa;

nð4Þa3b ¼ e3ab 2a4 � a5 �
f 2

kþ l

� �
;

where

E ¼ lð3kþ 2lÞ=ðkþ lÞ:

By using these relations, from (42) we obtain

Da3 ¼ 0; Da4 ¼ 0; D33 ¼ pa2E;

D44 ¼
1
2
pla4 þ 4ð2a4 � a5 �

f 2

kþ l
Þpa2;

D34 ¼ D43 ¼
2f ð3kþ 2lÞ

kþ l
pa2:

ð57Þ

From (48) and (57) we find that D3a ¼ 0 and D4a ¼ 0. Thus, the sys-
tem (41) reduces to

Dabcb ¼ 0; D33c3 þ D34c4 ¼ �F 3; D43c3 þ D44c4 ¼ �M3: ð58Þ

The solution of the system (59) is

c1 ¼ c2 ¼ 0; c3 ¼ ðD34M3 � D44F 3Þ=d; c4 ¼ ðD34F 3 � D33M3Þ=d;

ð59Þ
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where d ¼ D33D44 � D2
34. From (36), (54), (56) and (59) we see that

the solution of the problem is

ua ¼ e3bac4xbx3 þ c3C1 þ
f

kþ l
c4

� �
xa; u3 ¼ c3x3;

where c3; c4 and C1 are given by (55) and (59).
We note that for a chiral circular cylinder we have D34 – 0 so

that the torsion and extension cannot be treated independently
of each other. In the case of an achiral circular cylinder the coeffi-
cient f is equal to zero and the torsion is not accompanied by
extension. In the context of the gradient elasticity the torsion prob-
lem for an achiral cylinder has been studied in various papers (see
Lardner, 1971; Lomakin, 1987; Kahrobaiyan et al., 2011 and refer-
ences therein). The method presented in this paper can be used to
investigate the torsion problem in the theory of gradient elasticity
established by Aifantis (1992), Aifantis (2003).

7. Conclusions

The results established in this paper can be summarized as
follows:

(a) In the context of the gradient elasticity we establish the
solution of the torsion problem for isotropic chiral cylinders
with arbitrary cross-sections. As in classical theory the prob-
lem is reduced to the study of two-dimensional problems.

(b) We introduce the generalized plane strain problem and
present an existence result for the traction problem.

(c) We express the solution of the torsion problem in terms of
solutions of four generalized plane strain problems which
depend only on the constitutive coefficients and the cross
section of the bar.

(d) We show that, in general, the torsion of an isotropic chiral
bar is accompanied by extension and bending.

(e) We use the method given in this paper to investigate the tor-
sion of a circular cylinder. It is shown that the torsion of a
right circular cylinder made of an isotropic chiral elastic
material is accompanied only by extension. The solution
could be of interest for experimental investigations.
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