cases. Mean BMI was 24.54 ± 5.73 kg/m². Forty-eight patients were given combina-
tion therapy and 52 patients were treated with a single drug. A total of 61% cases were
presented with some forms of ADR whereas 39 responded with no any ADRs. But from
Naranjo’s Algorithm, only one case had definite ADR, 23 probable, 34 possible and
four doubtful ADR. Presence of ADR was not associated with sex (p value 0.997, 1.0)
or any other drugs (p value 0.212). Combination therapy was significantly associated with
the type of therapy: monotherapy (p value 0.060). But combination therapy was associ-
ated with higher risk (OR= 1.96) Thirty three cases presented with cardiovascular
related adverse drug reactions (ADRs). The nine cases were related to warfarin,
20 cases with respiratory complaints (dry cough), five with dermatological complaints
like dermatitis and rashes, 11 with fatigue and four with gynaecomastia. Amlodipine, furosemide, spironolactone, enalapril, losartan were the common drugs causing ADRs. A full list of ADRs was available in the manuscript.

OBJECTIVES

- To evaluate the performance of the three algorithms with various observation times for identifying patients with hypertension.
- To validate the performance of the three algorithms with various observation times for identifying patients with hypertension.

METHODS

- We retrospectively analyzed administrative claims data linked to electronic medical records (EMR).
- Elixhauser, Charlson, and Deyo algorithms were used to identify patients with hypertension.
- The algorithms were tested with various observation times ranging from 30 days to 1 year.
- Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated.

RESULTS

- The Elixhauser algorithm performed better than the other two algorithms in terms of sensitivity, specificity, PPV, and NPV.
- The Elixhauser algorithm had a sensitivity of 91.9%, a specificity of 86.2%, a PPV of 77.3%, and an NPV of 81.8%.
- The Charlson and Deyo algorithms had lower sensitivities and specificities.

CONCLUSIONS

- The Elixhauser algorithm is the most suitable for identifying hypertension in administrative claims data.
- Further studies are needed to validate the findings in other populations and with different observation times.