Infinite Dimensional Cohomology Groups and Periodic Solutions of Asymptotically Linear Hamiltonian Systems

Andrzej Szulkin

Department of Mathematics, Stockholm University, 106 91 Stockholm, Sweden

and

Wenming Zou

Department of Mathematical Sciences, Tsinghua University, Beijing 100084, People’s Republic of China

Received August 25, 1999; revised June 2, 2000

In this paper we study the existence of nontrivial 2π-periodic solutions of asymptotically linear Hamiltonian systems. We consider the case of resonance both at zero and at infinity, and we permit time-dependent asymptotic matrices. Our main tools are an infinite dimensional cohomology theory and a corresponding Morse theory recently constructed by W. Kryszewski and the first author. We develop a method to compute the new critical groups.

Key Words: Hamiltonian; filtration; E-cohomology; critical groups; δ-Morse index; Morse inequalities.

1. INTRODUCTION

We consider the existence of nontrivial 2π-periodic solutions of asymptotically linear Hamiltonian systems

\[\dot{z} = JH'(z, t), \quad z \in \mathbb{R}^{2N}, \quad (S) \]

where

\[J := \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix} \]

1 Supported in part by the Swedish Natural Science Research Council.

2 This paper was written when W. Zou was doing postdoctoral research at the Department of Mathematics of Stockholm University with support of the Swedish Institute. He thanks the members of the Department of Mathematics for their hospitality during his stay in Stockholm.

0022-0396/01 35.00

Copyright © 2001 by Academic Press
All rights of reproduction in any form reserved.
is the standard symplectic matrix, $H \in C^2(\mathbb{R}^{2N} \times \mathbb{R}, \mathbb{R})$ is 2π-periodic in t, H' denotes the gradient of H with respect to the first $2N$ variables and there exist $s > 0$, $c > 0$ such that
\[(H) \quad |H_{zz}(z, t)| \leq c(1 + |z'|) \text{ for all } (z, t) \in \mathbb{R}^{2N} \times \mathbb{R}.
\]

In what follows we assume that there exist two symmetric $2N \times 2N$ matrices $A(t)$ and $A_0(t)$ with continuous and 2π-periodic entries such that
\[H(z, t) = \frac{1}{2} A(t) z \cdot z + G(z, t),
\]
where $G'(z, t) = o(|z|)$ uniformly in t as $|z| \to \infty$ and
\[H(z, t) = \frac{1}{2} A_0(t) z \cdot z + G_0(z, t),
\]
with $G_0'(z, t) = o(|z|)$ uniformly in t as $|z| \to 0$. We denote by \cdot and $|\cdot|$ the usual inner product and norm in \mathbb{R}^{2N}. The Hamiltonian system (S) satisfying (1.1) and (1.2) is called asymptotically linear both at infinity and at zero. Moreover, it is called nonresonant at infinity if 1 is not a Floquet multiplier of the linear system $\dot{z} = JA(t) z$; nonresonance at 0 is defined in a similar way by replacing $A(t)$ with $A_0(t)$.

Before introducing our assumptions on $H(z, t)$ and stating the main results, let us recall some earlier work on asymptotically linear Hamiltonian systems. The case of (S) nonresonant at infinity was considered in [2, 3] under the additional assumptions that H_{zz} is bounded and A, A_0 are time-independent; in [4] H_{zz} was bounded and (S) was also nonresonant at zero. In [5] A, A_0 were time-independent and in [6] H_{zz} was bounded. For (S) resonant at infinity it was assumed in [7] that $A(t)$ is a constant matrix; [8, 9] considered the strongly resonant case and [14] studied (S) under the assumption that $A(t), A_0(t)$ are so-called finitely degenerate, which is a strong condition. Moreover, no results on the existence of multiple solutions were obtained in [7–9, 14]. Recently Kryszewski and the first author [1] constructed an infinite dimensional cohomology theory and a Morse theory corresponding to it. These theories were applied to the study of Hamiltonian systems and wave equations. In particular, the case of (S) resonant at infinity was studied in [1] under the hypotheses that $G'(z, t)$ is bounded and $G(z, t) \to \infty$ (or $-\infty$) uniformly in t as $|z| \to \infty$. This was done by computing the new critical groups (the δ-cohomology groups) at zero and at infinity. However, in the case of resonance at 0, [1] contained no detailed computation of critical groups there; it was only shown that the groups at zero and at infinity were different under certain assumptions.

The purpose of the present paper is to develop a method to compute the δ-cohomology groups both at infinity and at zero when resonance occurs at infinity and at zero simultaneously. We admit H such that $G'(z, t)$ and
$G_0(z, t)$ are unbounded and $G(z, t), G_0(z, t)$ may change sign. Under rather weak conditions we obtain at least two nontrivial solutions for (S).

In order to state our assumptions, we introduce a control function $h_\infty : \mathbb{R}^+ \to \mathbb{R}^+$ such that $h_\infty(t)$ is increasing in t

$$1 \leq \frac{h_\infty(t)}{H_\infty(t)} \leq \alpha < 2, \quad h_\infty(s + t) \leq m(h_\infty(s) + h_\infty(t)) \quad \text{for any} \quad s, t \in \mathbb{R}^+,$$

where $H_\infty(t) = \int_0^t h_\infty(s) \, ds$ and α, m are constants. Evidently, $h_\infty(t) = t^\sigma$ with $0 < \sigma < 1$ is a simple example. Now we assume

$$(H_1) \quad |G(z, t)| \leq c(1 + h_\infty(|z|)) \quad \text{for all} \quad z \in \mathbb{R}^{2N} \quad \text{and} \quad t \in \mathbb{R};$$

$$(H_2) \quad \liminf_{|t| \to \infty} \frac{|G(z, t)|}{H_\infty(t)} := b^\pm(t) \geq 0 \quad \text{uniformly for} \quad t \in \mathbb{R}. $$

Here and in the following the letter c will be repeatedly used to denote various positive constants whose exact value is irrelevant. For a function a we write $a(t) = O(t)$ if $a(t) \leq c(t)$ for large t. Moreover, if h_0 is defined only for small $t > 0$, we may assume without loss of generality that it has been extended so that (1.3) holds for all $t \in \mathbb{R}^+$. We suppose that

Let $h_0 : \mathbb{R}^+ \to \mathbb{R}^+$ be a control function (for G_0) such that

$$2 < \beta \leq \frac{h_0(t)}{H_0(t)} \leq \gamma \quad \text{for} \quad t \text{ small,} \quad (1.3)$$

where $H_0(t) = \int_0^t h_0(s) \, ds$, and β, γ are constants. Obviously, $h_0(t) = t^\delta$ with $\delta > 1$ satisfies (1.3). Moreover, although h_0 is defined only for small $t > 0$, we may assume without loss of generality that it has been extended so that (1.3) holds for all $t \in \mathbb{R}^+$. We suppose that

$$(H_3) \quad |G_0(z, t)| \leq ch_0(|z|) \quad \text{for} \quad |z| \text{ small;}$$

$$(H_3') \quad \liminf_{|t| \to \infty} \frac{|G_0(z, t)|}{H_0(t)} := b^0(t) \geq 0 \quad \text{uniformly for} \quad t \in \mathbb{R}.$$
and similarly, \(\int_0^t G(t, z(t)) \cdot w dt \leq c \|z\|^{p-1} \|w\|_p \) \((\| \cdot \|_p \) denotes the usual norm in \(L^p([0, 2\pi], \mathbb{R}^{2N})\)).

Remark 1.2. \((H_1)\) and \((H_4)\) imply that \(G'(z, t) = o(|z|)\) uniformly in \(t\) as \(|z| \to \infty\) and \(G''(z, t) = o(|z|)\) uniformly in \(t\) as \(|z| \to 0\). However, \((H_1)\) does not imply that \(G'(z, t)\) is bounded. Since \(a^2(t)\) and \(b^2(t)\) may be zero on a set of positive measure, \(G(z, t)\) and \(G''(z, t)\cdot z\) may not be of constant sign; moreover, \(G(z, t)\) may be bounded on a subset of positive measure. So our results will extend different conclusions contained in \([1]\) (and \([7, 10, 14, 18]\)). In \([1]\) it was assumed that \(G'(z, t)\) is bounded and \(G(z, t) \to \infty\) (or \(-\infty\)) uniformly in \(t\) as \(|z| \to \infty\).

In order to state our main result, we shall need the notion of \(d\)-Morse index which was introduced in \([1]\) and will be recalled in Section 2. It is a kind of relative Morse index for the quadratic form \(\sum_{k=1}^n (-Jz^2 - Az) \cdot zdh\), where \(A = A(t)\) is a symmetric \(2N \times 2N\) matrix. Denote this index by \(j^-(A)\) and the nullity of this quadratic form by \(j^0(A)\) and let \(j^+(A) = -j^-(A) - j^0(A)\). If we denote the Maslov-type index (cf. \([3, 4, 6]\)) of \(A\) by \((j, n)\), then \(j = j^-(A)\) and \(n = j^0(A)\) (cf. Remark 7.2 of \([1]\)). Now we state the main results.

Theorem 1.1. Suppose that \(H \in C^2(\mathbb{R}^{2N} \times \mathbb{R}, \mathbb{R})\) satisfies \((H_0), (H_1)\) and one of the conditions \((H_2+)\). Then \((S)\) has a nontrivial \(2\pi\)-periodic solution in each of the following two cases:

(i) \((H_2^+)\) and \(j^-(A) \neq j^-(A_0) + j^0(A_0)\);

(ii) \((H_2^+)\) and \(j^+(A) \neq j^+(A_0) + j^0(A_0)\).

Theorem 1.2. Suppose that \(H \in C^4(\mathbb{R}^{2N} \times \mathbb{R}, \mathbb{R})\) satisfies \((H_1)\) and \((H_3)\). Then \((S)\) has a nontrivial \(2\pi\)-periodic solution in each of the following four cases:

(i) \((H_2^+), (H_4^-), \) and \(j^-(A) + j^0(A) \neq j^-(A_0) + j^0(A_0)\);

(ii) \((H_2^+), (H_4^-), \) and \(j^+(A) \neq j^+(A_0)\);

(iii) \((H_2^-), (H_4^+), \) and \(j^-(A) \neq j^+(A_0) + j^0(A_0)\);

(iv) \((H_2^-), (H_4^+), \) and \(j^-(A) \neq j^-(A_0)\).

If the difference between the \(d\)-Morse indices at zero and at infinity is large enough, we obtain the following results on the existence of multiple solutions.
Theorem 1.3. Suppose that \(H \in C^2(\mathbb{R}^{2N} \times \mathbb{R}, \mathbb{R}) \) satisfies \((H_0), (H_1)\) and \((H_3)\). Then \((S)\) has at least two nontrivial \(2\pi\)-periodic solutions in each of the following four cases:

(i) \((H_+^2), (H_+^4), \text{ and } |j^+(A) - j^+(A_0)| \geq 2N;\)

(ii) \((H_-^2), (H_-^4), \text{ and } |j^+(A) + j^-(A_0)| \geq 2N;\)

(iii) \((H_-^2), (H_+^4), \text{ and } |j^- - j^+(A_0)| \geq 2N;\)

(iv) \((H_-^2), (H_-^4), \text{ and } |j^-(A) - j^- - A_0)| \geq 2N.\)

Corollary 1.1. Suppose that \(H \in C^2(\mathbb{R}^{2N} \times \mathbb{R}, \mathbb{R}) \) satisfies \((H_0), (H_1)\), one of the conditions \((H_2^\pm)\), and \(A(t) = A_0(t) \equiv 0 \) (hence \(H(z, t) = G(z, t) = G_0(z, t) \)). Furthermore, let \(H'(z, t) = \alpha(|z|) \) uniformly in \(t \) for \(|z| \to 0 \). Then \((S)\) has at least two nontrivial \(2\pi\)-periodic solutions in each of the following two cases:

(i) \((H_+^2)\) and either there exists a \(\delta > 0 \) such that \(H(z, t) \leq 0 \) whenever \(|z| < \delta \) or \((H_3)\) are satisfied;

(ii) \((H_-^2)\) and either there exists a \(\delta > 0 \) such that \(H(z, t) \geq 0 \) whenever \(|z| < \delta \) or \((H_3)\) are satisfied.

Remark 1.3. Theorem 1.1 extends Theorem 7.5 in [1] where \(G' \) was assumed to be bounded and \(G(z, t) \to \infty \) (or \(-\infty \)) uniformly in \(t \) as \(|z| \to \infty \). Theorem 1.2 is a new result. Theorem 1.3 extends Theorem 7.8 in [1] where \(0 \) was nondegenerate \((j^0A_0) = 0 \), i.e., \((S)\) is nonresonant at zero), \(G' \) was bounded and \(G(z, t) \to \infty \) (or \(-\infty \)) uniformly in \(t \) as \(|z| \to \infty \). Corollary 1.1 is a generalization of Corollary 7.9 of [1].

2. PRELIMINARIES

In this section we recall some basic facts about the infinite dimensional cohomology theory and Morse theory of [1].

Assume that \(E \) is a real Hilbert space and there is a filtration \((E_n)_{n=1}^\infty\) of \(E \), i.e., an increasing sequence of closed subspaces of \(E \) such that \(E = \text{cl}(\bigcup_{n=1}^\infty E_n) \) (\(\text{cl} \) denotes the closure). Suppose that a sequence \((d_n)_{n=1}^\infty\) of nonnegative integers is given and let \(\mathcal{E} = \{E_n, d_n\}_{n=1}^\infty \). If \((X, A)\) is a closed pair of subsets of \(E \), then for any integer \(q \) we define the \(q \)-th \(\mathcal{E} \)-cohomology group of \((X, A)\) with coefficients in \(\mathcal{F} \) by the formula

\[
H^q_{\mathcal{E}}(X, A) := [(H^{q+d_n}(X \cap E_n, A \cap E_n))_{n=1}^\infty],
\]
where \([(\xi_n)_n] \) is the equivalence class of sequences \((\xi_n)_n \) such that
\(\xi_n = \delta_n \) for almost all \(n \) (cf. [1]). When \(\mathcal{F} \) is a field, \(H^*_E(\mathcal{F}, A) \) is a (graded) vector space over \(\mathcal{F} \). We shall use the symbol \([\mathcal{F}] \) to denote the group \([[(\mathcal{F})_n]_n] \) if \(\mathcal{F}_n = \mathcal{F} \) for almost all \(n \).

Let \(\Phi \in C^1(E, \mathbb{R}) \) be a functional satisfying the \((PS)^*\)-condition with respect to \(\delta \); that is, whenever a sequence \((y_j)_j \) is such that \(8(y_j) \) is bounded, \(y_j \in E_n \) for some \(n_j \), \(n_j \to \infty \) and \(P_n \delta \Phi(y_j) \to 0 \) as \(j \to \infty \), then \((y_j)_j \) has a convergent subsequence. Here \(P_n \) denotes the orthogonal projector of \(E \) onto \(E_n \). If \(p \) is an isolated critical point of \(\Phi \), then there exists an admissible pair \((W, W^-)\) for \(\Phi \) and \(p \) (i.e., a kind of Gromoll–Meyer pair with filtration; see Definition 2.3 and Proposition 2.6 of [1]) and the \(q \)th critical group \((q \in \mathbb{Z})\) of \(\Phi \) at \(p \) with respect to \(\delta \) can be defined by

\[
C^*_q(\Phi, p) := H^*_q(W, W^-)
\]

It was proved in [1] that the critical groups \(C^*_q(\Phi, p) \) are well defined and have a certain continuity property (see Propositions 2.7 and 2.8 of [1]).

If the critical set \(K = K(\Phi) \) is compact, then there exists an admissible pair \((W, W^-)\) for \(\Phi \) and \(K \) (cf. Lemma 2.13 of [1]). The critical groups of \((\Phi, K)\) given by

\[
C^*_q(\Phi, K) := H^*_q(W, W^-)
\]

are well defined and have a continuity property (cf. Propositions 2.12 and 2.14 of [1]). Further properties of critical groups and \(\delta \)-cohomology groups, including the Morse inequalities, may be found in [1].

For an arbitrary linear self-adjoint operator \(L \), denote the Morse index of \(L \) by \(M(L) \). Suppose that \(L \) is a Fredholm operator of index 0 and \(Q_n : R(L) \to R(L) \cap E_n \) is the orthogonal projector of \(R(L) \) onto \(R(L) \cap E_n \).

Define the \(\delta \)-Morse index \(M^*_\delta(L) \) of \(L \) by the formula

\[
M^*_\delta(L) := \lim_{n \to \infty} (M(Q_n L)_{R(L) \cap E_n}) - d_n.
\]

Although this limit does not exist in general, it exists for operators \(L \) associated with \((S)\) provided the sequence \((d_n) \) is chosen properly.

Now we turn to the asymptotically linear Hamiltonian system \((S)\). Let \(E := H^1(\mathcal{S}, \mathbb{R}^{2N}) \) be the Sobolev space of \(2\pi \)-periodic \(\mathbb{R}^{2N} \)-valued functions

\[
z(t) = a_0 + \sum_{k=1}^{\infty} (a_k \cos kt + b_k \sin kt), \quad a_0, a_k, b_k \in \mathbb{R}^{2N},
\]
such that \(\sum_{k=1}^{\infty} k(|a_k|^2 + |b_k|^2) < \infty \). Then \(E \) is a Hilbert space with a norm \(\| \cdot \| \) induced by the inner product \(\langle \cdot, \cdot \rangle \) given by
\[
\langle z, z' \rangle := 2\pi a_0 \cdot a_0' + \pi \sum_{k=1}^{\infty} k(a_k \cdot a_k' + b_k \cdot b_k').
\]

Set
\[
F_k := \{ a_k \cos kt + b_k \sin kt : a_k, b_k \in \mathbb{R}^{2N} \}, \quad k \geq 0,
\]
and
\[
E'_n := \bigoplus_{k=0}^{n} F_k \equiv \{ z \in E : z(t) = a_0 + \sum_{k=1}^{n} (a_k \cos kt + b_k \sin kt) \}.
\]

Then \((E_n')_{n=1}^{\infty} \) is a filtration of \(E \). Denote \(\mathcal{E} = \{ E_n, d_n \} \) with \(d_n := N(1 + 2n) = \frac{1}{4} \dim E_n \).

Suppose that \(B(t) \) is a symmetric \(2N \times 2N \) matrix with continuous \(2\pi \)-periodic entries. Then the operator \(B \) given by the formula
\[
\langle Bz, w \rangle := \int_{0}^{2\pi} B(t) z \cdot w \ dt
\]
is compact. According to Proposition 5.2 of [1] (see also the argument following Proposition 7.1 there), the operator \(L_B \) given by
\[
\langle L_B z, w \rangle := \int_{0}^{2\pi} (-Jz - B(t) z) \cdot w \ dt
\]
is \(A \)-proper and \(M_\mathcal{E}(L_B) \) is well defined and finite.

Denote
\[
\begin{align*}
\mathbf{j}^- (B) &:= M_\mathcal{E}(L_B), \\
\mathbf{j}^+ (B) &:= M_\mathcal{E}(L_B) := M_\mathcal{E}(-L_B), \\
\mathbf{j}^0 (B) &:= M_\mathcal{E}(L_B) := \dim \ker (L_B).
\end{align*}
\]

Then \(\mathbf{j}^- (B) + \mathbf{j}^+ (B) + \mathbf{j}^0 (B) = 0 \) (cf. p. 3214 of [1]). Since \(M_\mathcal{E}(L_B) \) is in fact the number of linearly independent \(2\pi \)-periodic solutions of the linear system \(\dot{z} = JB(t) z \), \(0 \leq M_\mathcal{E}(L_B) \leq 2N \).
It is well known (cf. [11]) that under condition \((H_1)\) \(z(t)\) is a \(2\pi\)-periodic solution of \((S)\) if and only if it is a critical point of the \(C^1\)-functional

\[
\Phi(z) = \frac{1}{2} \int_0^{2\pi} (-J_z - A(t)z) \cdot z \, dt - \int_0^{2\pi} G(z, t) \, dt := \frac{1}{2} \langle Lz, z \rangle - \varphi(z)
\]

Moreover, \(\Phi \in C^2(E, \mathbb{R})\) if \((H_0)\) is satisfied. By (1.1), (1.2) and [1, 5, 11] (or by Remark 1.1), \(\mathcal{V} \varphi(z) = o(\|z\|)\) as \(\|z\| \to \infty\) and \(\mathcal{V} \varphi(t) = o(\|z\|)\) as \(\|z\| \to 0\). In particular, \((S)\) has the trivial solution \(z = 0\).

\[3.\text{ COMPUTATION OF CRITICAL GROUPS}\]

Let \(L := L_{R} \) and \(L_0 := L_{B_0}\) (cf. (2.1)) and introduce a new filtration \(\mathcal{E}' := \{ E_n', d_n' \}_{n=1}^{\infty} \), where \(E_n' := (R(L) \cap E_n) \oplus \ker(L)\) and \(d_n = N(1 + 2n)\) as before. Then \(L, L_0\) are \(A\)-proper with respect to \(\mathcal{E}'\) (because they are with respect to \(\mathcal{E}\)) and

\[
M_{\mathcal{E}'}(L) = M_{\mathcal{E}'}(A) \quad \text{and} \quad M_{\mathcal{E}'}(L_0) = M_{\mathcal{E}'}(A_0)\]

(see the proof of Theorem 7.5 of [1]). In this section we will compute the critical groups \(C^\bullet_{\mathcal{E}'}(\Phi, 0)\) and \(C^\bullet_{\mathcal{E}'}(\Phi, K(\Phi))\). For this aim, we first show how conditions \((H_1)\) and \((H_\frac{3}{2})\) imply \((PS)^*\) with respect to \(\mathcal{E}'\).

\[\text{Lemma 3.1. Suppose that } (H_\frac{3}{2}) \text{ holds. Then}
\]

\[
\liminf_{\|z\| \to \infty} \frac{\int_0^{2\pi} G(z, t) \, dt}{H_{\infty}(\|z\|)} > 0.
\]

\[\text{Proof. Since } \dim \ker(L) < \infty, \text{ the norm } \|\cdot\| \text{ and the } L^\infty\text{-norm are equivalent on } \ker(L). \text{ Moreover, if } z \in \ker(L) \text{ and } z(t_0) = 0 \text{ for some } t_0, \text{ then } z = 0. \text{ Therefore } \delta (\|z\|) \leq |z(t)| \leq c \|z\| \text{ for some } \delta, c > 0 \text{ and all } t. \text{ Since } h_{\infty} \text{ is increasing and } h_{\infty}(s + t) \leq m(h_{\infty}(s) + h_{\infty}(t)), \text{ it is easy to see that } c_1 h_{\infty}(\|z\|) \leq h_{\infty}(\|z\|) \leq c_2 h_{\infty}(\|z\|) \text{ and therefore } c_3 H_{\infty}(\|z\|) \leq H_{\infty}(\|z\|) \leq c_4 H_{\infty}(\|z\|) \text{ for a suitable choice of constants. Hence it follows from } (H_\frac{3}{2}) \text{ that for any } \varepsilon > 0 \text{ and } \|z\| > R = R(\varepsilon),\]
\[\pm \int_0^{2\pi} \frac{G(z, t)}{H_\infty(\|z\|)} H_\infty(|z|) \, dt \]
\[\geq \int_0^{2\pi} (a^2(t - \varepsilon) - \varepsilon) \, dt \]
\[\geq c_3 \int_0^{2\pi} a^2(t) \, dt - 2\pi c_4. \]

Since \(a^2(t) \geq 0 \) and \(\varepsilon \) is arbitrary, the conclusion follows.

Lemma 3.2. Assume \((H_1)\) and \((H_2^+\)). Then \(\Phi \) satisfies \((PS)^*\) with respect to \(\delta^* \). Moreover, under these hypotheses, \(\Phi \) satisfies the usual \((PS)\)-condition for each \(n \).

Proof. We only consider the case where \((H_2^-)\) holds, the other one is similar. Let \((z_j)\) be a \((PS)^*\)-sequence, i.e., \(z_j \in E_n \), \(\Phi(z_j) \) is bounded, \(P_n \nabla \Phi(z_j) \to 0 \) and \(n_j \to \infty \) as \(j \to \infty \) (\(P_n \) is the orthogonal projector onto \(E_n \)). By Theorem 4.5 in [1], we may find \(c > 0 \) and \(n_0 > 0 \) such that
\[\|P_n Lz\| \geq c \|z\| \quad \text{for all} \quad z \in R(L) \cap E_n \quad \text{and} \quad n \geq n_0. \]

For \(z \in E_n \), write \(z = w + z_0 \in R(L) \cap E_n \otimes \ker(L) \). Then \(P_n \nabla \Phi(z_j) = P_n Lw_j - P_n \nabla \varphi(z_j) \to 0 \).

Since
\[\int_0^{2\pi} h_\infty(\|z_0\|) \, |y| \, dt \leq c \int_0^{2\pi} h_\infty(\|z_0\|) \, |y| \, dt \leq ch_\infty(\|z_0\|) \|y\| \]
(cf. the proof of Lemma 3.1), we obtain by Remark 1.1 and the Sobolev embedding theorem that
\[c \|w_j\| \leq \|P_n Lw_j\| \leq c(1 + \|w_j\|^{s-1} + h_\infty(\|z_0\|)). \]

Therefore \(\|w_j\| \leq c(1 + h_\infty(\|z_0\|)) \). Moreover, by Remark 1.1 again and by the mean value theorem,
\[\Phi(z_j) \geq -c \|w_j\|^2 - \varphi(z_j) + \varphi(z_0) - \varphi(z_0) \]
\[= -c \|w_j\|^2 - \int_0^{2\pi} (G(z_j, t) - G(z_0, t)) \, dt - \varphi(z_0) \]
\[\geq -c \|w_j\|^2 - c(1 + \|w_j\|^{s-1} + h_\infty(\|z_0\|)) \|w_j\| - \varphi(z_0) \]
\[\geq -c(1 + h_\infty(\|z_0\|)) \varphi(z_0). \]
If $|z_0^j| \to \infty$, then it follows from Lemma 3.1 that
\[
\Phi(z_j) \geq -c \frac{\varphi(z_j^0)}{h_\infty(\|z_j^0\|)}
\]
\[
= -c + \frac{\varphi(z_j^0)}{h_\infty(\|z_j^0\|)} H_\infty(\|z_j^0\|)
\]
\[
\to \infty
\]
as $j \to \infty$ because
\[
H_\infty(t) \frac{1}{H_\infty(t)} \geq ct^{2-n} \to \infty \quad \text{whenever} \quad t \to \infty.
\]
This contradicts the boundedness of $\Phi(z_j)$. It follows that $\|z_0^j\|$ and hence $\|z_j\|$ is bounded. Recalling the compactness of $\nabla \varphi$, we see that (z_j) has a convergent subsequence. $lacksquare$

In order to compute $C^*_R(\Phi, 0)$, we first prove the following auxiliary results.

Lemma 3.3. Suppose that (H$_3$) and (H$_4^+$) hold. Then for any sequence $(z_n) \in E$ such that $z_n = z_0^i + w_n$, where $z_0^i \in \ker(L_0)$, $w_n \in (\ker(L_0))^\perp$, $\|z_n^i\| \to 0$ and $\|z_0^0^j/\|z_n\| \to 1$, we have
\[
\liminf_{n \to \infty} \frac{\int_0^{2\pi} G_0(z_n, t) \cdot z_n \ dt}{H_0(\|z_n\|)} > 0.
\]

Proof. First, by the definition of h_0, it is easy to check that
\[
\left(\frac{s}{t} \right)^\theta \leq H_0(s) / H_0(t) \leq \left(\frac{s}{t} \right)^7 \quad \text{for} \quad s \geq t > 0 \quad \text{and} \quad s, t \text{ small} \quad (3.1)
\]
Since h_0 may be extended in such a way that (1.3) holds for all $t > 0$, we may assume that also the above inequality holds for all $t > 0$.

Let $z = w + z^0 \in (\ker(L_0))^\perp \ker(L_0)$. Since $w \in L^2([0, 2\pi], \mathbb{R}^{2N})$, for each $\varepsilon_1 > 0$ there exists $R(\varepsilon_1) > 0$, independent of w and such that
\[
\text{meas}\{ t \in [0, 2\pi] : |w(t)| > R(\varepsilon_1) \|w\| \} < \varepsilon_1.
\]
Set
\[
\Omega_n = \{ t \in [0, 2\pi] : |w_n(t)| \leq R(\varepsilon_1) \|w_n\| \};
\]

378 SZULKIN AND ZOU
then measurable $\{0, 2\pi\} \setminus \Omega_n < \varepsilon_1$. As $\int_0^{2\pi} h^\pm(t) \, dt > 0$, we may choose ε_1 so small that

$$\int_{\Omega_n} h^\pm(t) \, dt \geq \frac{1}{2} \int_0^{2\pi} h^\pm(t) \, dt > 0.$$

Since $\ker L_0$ is finite dimensional, we may assume

$$|z_n(t)| \leq c(R(\varepsilon_1) + c) \|z_n\| \quad \text{whenever } t \in \Omega_n.$$

For any $\varepsilon_2 > 0$, by (H^\pm_4), we have that

$$\pm \frac{G_0(z_n, t)}{H_0(|z_n|)} \cdot z_n \geq b^\pm(t) - \varepsilon_2$$

whenever $t \in \Omega_n$ and n is large enough. Since H_0 is increasing, $H_0(|z_n|) \geq H_0(\|z_n\|)$ for $|z_n| \geq \|z_n\|$. On the other hand, recalling that $\|z_n\| = \|z_0\| + c_1 \|w_n\| \to 1$, we obtain

$$\frac{|z_n(t)|}{\|z_n\|} \geq \frac{|z_0(t)| - |w_0(t)|}{\|z_n\|} \geq \frac{\delta \|z_n\|}{\|z_n\|} - R(\varepsilon_1) \|w_n\| \to \delta$$

as $t \in \Omega_n$ and $n \to \infty$, where δ is as in the proof of Lemma 3.1. This and (3.1) imply

$$\frac{H_0(|z_n|)}{H_0(\|z_n\|)} \geq \left(\frac{\delta}{2} \right)^{7} \quad \text{for } t \in \Omega_n, \quad |z_n(t)| \leq \|z_n\| \text{ and } n \text{ large enough}.$$

Since it is easy to check by (3.1) that

$$\left| \int_0^{2\pi} \frac{H_0(|z_n|)}{H_0(\|z_n\|)} \, dt \right| \leq c_1$$

for some $c_1 > 0$, it follows, for n large enough, that

$$\int_{\Omega_n} \frac{\pm G_0(z_n, t)}{H_0(\|z_n\|)} \cdot z_n \, dt \geq \int_{\Omega_n} (b^\pm(t) - \varepsilon_2) \frac{H_0(|z_n|)}{H_0(\|z_n\|)} \, dt \geq c_2 \int_{\Omega_n} b^\pm(t) \, dt - c_1 \varepsilon_2$$

$$\geq c_3 \int_0^{2\pi} b^\pm(t) \, dt - c_1 \varepsilon_2 = c_4 - c_1 \varepsilon_2.$$

(3.2)
where the constants c_i are independent of $\varepsilon_1, \varepsilon_2$. On the other hand, we may assume without loss of generality that (H_3) holds for all z. Indeed, suppose that (H_3) is satisfied whenever $|z| \leq \delta_0$. Since h_0 may be extended so that (1.3) holds for all t, then by (1.3) and (3.1) it is easy to check that

$$\frac{\beta (s)^{\beta - 1}}{\gamma (t)^{\gamma - 1}} \leq \frac{h_0(s)}{h_0(t)} \leq \frac{\gamma (s)^{\gamma - 1}}{\beta (t)^{\beta - 1}}$$

for all $s, t > 0$.

It follows that $h_0(t) \geq c t^{\beta - 1}$ for $t > \delta_0$. Hence by the asymptotic linearity of $H'(z, t)$,

$$|G_0(z, t)| \leq c |z| \leq \hat{c} h_0(|z|)$$

for some $\hat{c} > 0$ and all $|z| > \delta_0$. (3.3)

Using (H_3), which now holds for all z, we see that

$$\frac{|\pm G_0(z_n, t) \cdot z_n|}{H_0(|z_n|)} \leq \frac{c h_0(|z_n|)}{H_0(|z_n|)} \leq c.$$

Since $\text{meas}([0, 2\pi] \setminus \Omega_n) < \varepsilon_1$, it follows that

\[
\left| \frac{1}{(0, 2\pi) \cap \Omega_n} \int_{(0, 2\pi) \cap \Omega_n} \frac{\pm G_0(z_n, t) \cdot z_n}{H_0(|z_n|)} \, dt \right| \\
\leq c \int_{(0, 2\pi) \cap \Omega_n} \frac{H_0(|z_n|)}{H_0(|z_n|)} \, dt \\
\leq c \varepsilon_1^{1/2} \left(\int_0^{2\pi} \frac{H_2(z_n)}{H_0(|z_n|)} \, dt \right)^{1/2}.
\]

If $|z_n| \leq \|z_n\|$, then $H_0(|z_n|)/H_0(|z_n|) \leq 1$. Otherwise, by (3.1),

$$\frac{H_0(|z_n|)}{H_0(|z_n|)} \leq \left(\frac{|z_n|}{\|z_n\|} \right)^\gamma.$$

Using this and the Sobolev embedding of E into $L^{2\gamma}([0, 2\pi], \mathbb{R}^{2N})$, we obtain that

\[
\left| \frac{1}{(0, 2\pi) \cap \Omega_n} \int_{(0, 2\pi) \cap \Omega_n} \frac{\pm G_0(z_n, t) \cdot z_n}{H_0(|z_n|)} \, dt \right| \leq c \varepsilon_1^{1/2}
\]

for n large enough. Combining (3.2) and (3.4) and letting n be large enough, we have

$$\int_0^{2\pi} \frac{\pm G_0(z_n, t)}{H_0(|z_n|)} \, dt \geq c_4 - c_1 \varepsilon_2 - c_4^{1/2} > 0$$

since c, c_1, c_4 are independent of ϵ_1, ϵ_2 and c_1, c_2 may be chosen arbitrarily small.

Lemma 3.4. Assume (H_3), (H_4^\pm) and set

$$\mathcal{D}(p, \theta) := \{ z \in E : z = z^0 + w \in \ker(L_0) \oplus (\ker(L_0))^\perp, \quad 0 < \|z\| \leq p \text{ and } \|w\| \leq \theta \|z\| \}.$$

Then there exist $p > 0$ and $\theta \in (0, 1)$ such that

$$\pm \langle \nabla \Phi(z), z^0 \rangle < 0 \quad \text{for all } z \in \mathcal{D}(p, \theta).$$

Proof. Assume by contradiction that for any n there exists $z_n = z_n^0 + w_n \in \ker(L_0) \oplus (\ker(L_0))^\perp$ such that $0 < \|z_n\| < \frac{1}{p}$, $\|w_n\| \leq \frac{1}{2} \|z_n\|$ but

$$\pm \langle \nabla \Phi(z_n), z_n^0 \rangle \geq 0.$$

This implies that $\|z_n\| \to 0$, $\|w_n\|/\|z_n\| \to 1$ as $n \to \infty$ and

$$-\int_0^{2n} \pm g_0(z_n, t) \cdot z_n^0 dt = -\langle \pm \varphi_0(z_n), z_n^0 \rangle = \pm \langle \nabla \Phi(z_n), z_n^0 \rangle \geq 0;$$

it follows that

$$\limsup_{n \to \infty} \frac{\int_0^{2n} \pm g_0(z_n, t) \cdot z_n^0 dt}{h_0(\|z_n\|/\|z_n\|)} \leq 0.$$

By (3.1) and the definition of h_0,

$$\frac{h_0(\|z_n\|)}{h_0(\|z_n\|/\|z_n\|)} \leq c \max_{\beta, \gamma} \left(\left(\frac{\|z_n\|}{\|z_n\|/\|z_n\|} \right)^{\beta - 1}, \left(\frac{\|z_n\|}{\|z_n\|/\|z_n\|} \right)^{-\gamma} \right).$$

Therefore, using (H_3) and (3.3), we obtain

$$\left| \int_0^{2n} \frac{\pm g_0(z_n, t) \cdot w_n dt}{h_0(\|z_n\|/\|z_n\|)} \right| \leq c \left(\left(\int_0^{2n} \frac{h^2_0(\|z_n\|)}{h_0(\|z_n\|/\|z_n\|)} \right)^{1/2} \left(\int_0^{2n} \frac{|w_n|^2 \|z_n\|^2 dt}{\|z_n\|^2} \right)^{1/2} \right) \leq c \frac{\|w_n\|}{\|z_n\|} \to 0.$$
as } n \to \infty. \text{ Finally, in view of Lemma 3.3, }
\liminf_{n \to \infty} \frac{1}{h_n(t)} \int_0^{s_n} G_0(z_n, t) \cdot z_n \, dt = \liminf_{n \to \infty} \frac{1}{h_n(t)} \int_0^{s_n} G_0(z_n, t) \cdot z_n \, dt > 0.\]

This contradicts the preceding estimate about the upper limit. \hfill \blacksquare

Using the above lemmas we can now compute the critical groups \(C^q_\omega(\Phi, 0) \) by making a perturbation and using the continuity property of \(C^q_\omega(\Phi, 0) \).

Lemma 3.5. Assume \((H_3)\) and \((H^-)\) (or \((H^-)\)). Then

(i) \((H^-)\) implies that \(C^q_\omega(\Phi, 0) = \{ \mathcal{F} \} \) for \(q = f^-(A_0) + f^0(A_0) \) and \([0]\) otherwise;

(ii) \((H^-)\) implies that \(C^q_\omega(\Phi, 0) = \{ \mathcal{F} \} \) for \(q = f^-(A_0) \) and \([0]\) otherwise.

Proof. (i) For any \(\lambda \in [0, 1] \) and \(z = z^0 + w \in \ker(L_0) \oplus (\ker(L_0))^\perp = E \) we consider the following perturbation of \(\Phi \):
\[
\Phi_\lambda(z) := \Phi(z) - \frac{1}{2} \lambda \| z^0 \|^2 = \frac{1}{2} \langle L_0 z - \lambda z^0, z \rangle - \varphi_0(z). \]

We claim that there exists a neighborhood \(\mathcal{N} \) of 0 such that 0 is the unique critical point of \(\Phi_\lambda \) in \(\mathcal{N} \) for any \(\lambda \in [0, 1] \). In fact, if \(z \in \mathcal{G}(\rho, \theta) \), then by Lemma 3.4 \(z^0 \neq 0 \) and
\[
\langle \nabla \Phi_\lambda(z), z^0 \rangle = \langle \nabla \Phi(z), z^0 \rangle - \lambda \langle z^0, z^0 \rangle < 0. \]

If \(z \in \{ z \in E : 0 < \| z \| \leq \rho \} \setminus \mathcal{G}(\rho, \theta) \), then \(\| w \| > \theta \| z \| \). Let \(w = w^+ + w^- \); then there exists a constant \(c \) such that
\[
\langle L_0 w, w^+ - w^- \rangle > c \| w^+ \|^2. \]
Therefore
\[
\langle \nabla \Phi_\lambda(z), w^+ - w^- \rangle = \langle L_0 w, w^+ - w^- \rangle - \langle \nabla \varphi_0(z), w^+ - w^- \rangle \]
\[
\geq \| w^+ + w^- \|^2 \left(c - \frac{\| \nabla \varphi_0(z) \|}{\| w^+ + w^- \|} \right) \]
\[
\geq \| w^+ + w^- \|^2 \left(c - \frac{\| \nabla \varphi_0(z) \|}{\theta \| z \|} \right) \]
\[
> 0 \]
for sufficiently small \(\rho \) and \(\| z \| \leq \rho \). The above arguments imply that 0 is the only critical point of \(\Phi_\lambda \) in \(\mathcal{N} := \{ z : \| z \| \leq \rho \} \) for all \(\lambda \in [0, 1] \). Since \(\| P_n L_0 w \| \geq c \| w \| \) whenever \(w \in \text{R}(L_0) \cap E^*_n \) and \(n \) is large enough, it is easy
to see that \(\Phi_i \) satisfies \((PS)^*\) in \(N \). Moreover, \(\operatorname{sup}_{x} |\Phi_i| < \infty \) and the mapping \(\lambda \mapsto \lambda \Phi_i \) is continuous uniformly in \(z \in N \). By Corollary 2.9 of [1], \(C^*_\Phi(0, 0) \) is independent of \(\lambda \in [0, 1] \). Therefore

\[
C^*_\Phi(0, 0) = C^*_\Phi(1, 0).
\]

On the other hand, since \(\ker L_0 \) is finite dimensional and \(L_0 \) is A-proper, it is easy to check that the operator \(L_0 \) defined by \(L_0 z = L_0 z - z^0 \) is invertible and A-proper.

Next we turn to the computation of the critical groups \(C^q_{\Phi}(N, 0) \) for almost all \(q \). By Lemma 4.1 of [1], \(E^q = R(L_0) \cap E^q_n \oplus P^q_n \ker(L_0); \) therefore \(z = w + z^0 = \tilde{w} + z^0 \in R(L_0) \cap E^q_n \oplus P^q_n \ker(L_0) \) and \(w - \tilde{w} = z^0 - z^0 \). Since \(P^q_n y \to y \) uniformly for \(y \) on bounded subsets of \(\ker(L_0) \) and \(w - \tilde{w} \in R(L_0) \), it follows that

\[
\sup_{n} \left\{ \|w - \tilde{w}\| : z = w + z^0 = \tilde{w} + z^0 \in E^q_n, \|z\| = 1 \right\} \to 0 \quad \text{as} \quad n \to \infty.
\]

So for \(n \) large, \(M^q_{\Phi}(E^q_n \cap \ker(L_0)) \) is the sum of the Morse indices of the form \(\langle L_0 z, z \rangle = \langle L_0 w, w \rangle - \langle 0, z^0 \rangle, \quad z \in E^q_n, \)

and according to Theorem 4.5 in [1], this form is nondegenerate for almost all \(n \). By Lemma 4.2 of [1], \(E^q = R(L_0) \cap E^q_n \oplus P^q_n \ker(L_0); \) therefore \(z = w + z^0 = \tilde{w} + z^0 \in R(L_0) \cap E^q_n \oplus P^q_n \ker(L_0) \) and \(w - \tilde{w} = z^0 - z^0 \). Since \(P^q_n y \to y \) uniformly for \(y \) on bounded subsets of \(\ker(L_0) \) and \(w - \tilde{w} \in R(L_0) \), it follows that

\[
M^q_{\Phi}(L_0) = M^q_{\Phi}(L_0) + \dim \ker(L_0) = j^q(A_0) + j^q(A_0),
\]

and by Theorem 5.3 of [1],

\[
C^q_{\Phi}(1, 0) = \begin{cases} \mathcal{F} & \text{for } q = j^q(A_0) + j^q(A_0) \text{ and } [0] \text{ otherwise;} \\ \end{cases}
\]

(iii) The proof is analogous with \(\Phi_i(z) := \frac{1}{2} \langle L_0 z + \lambda z^0, z \rangle - \varphi_i(z). \]

Next we turn to the computation of the critical groups \(C^q_{\Phi}(N, K) \).

Lemma 3.6. Suppose that \((H_1)\) and one of the conditions \((H_2^+)\) hold and \(K = K_{\Phi} \) is finite. Then

(i) \((H_2^+)\) implies that \(C^q_{\Phi}(N, K) = \begin{cases} \mathcal{F} & \text{for } q = j^q(A) + j^q(A) \text{ and } [0] \text{ otherwise;} \\ \end{cases} \)

(ii) \((H_2^+)\) implies that \(C^q_{\Phi}(N, K) = \begin{cases} \mathcal{F} & \text{for } q = j^q(A) \text{ and } [0] \text{ otherwise.} \\ \end{cases} \)

Proof. (i) Let \(E^+_n = (R(L) \cap E^+_n) \oplus \ker(L) = E^+_n \oplus E^-_n \oplus \ker(L) \) be the decomposition corresponding to the positive, the negative, and the zero
part of the operator L on E_n. Then there exist $c^* > 0$ and $n_0 > 0$ such that
\[\pm \langle Lz^+, z^* \rangle \geq c^* \| z^+ \|^2 \]
for all $z^* \in E_\infty^n$, $n \geq n_0$. Consider the set
\[\mathcal{U}_n := \{ z = z^+ + z^- + z^0 \in E_n^*: \| z^+ \|^2 - \frac{c^*}{8 \| L \|} \| z^- \|^2 - \frac{\lambda H^2_z(\| z^0 \|)}{1 + \| z^0 \|^2} \leq M \}, \]
where $z^* \in E_\infty^n$, $z^0 \in \ker(L)$; the constants $\lambda > 0, M > 0$ will be determined later. An outer normal vector to $\partial \mathcal{U}_n$ (the boundary of \mathcal{U}_n) is
\[n = n(z) = z^+ - d z^- - \frac{\lambda}{2} p'(\| z^0 \|) \frac{z^0}{\| z^0 \|}, \]
where $d = \frac{8 \| L \|}{c^*}$ and $p(t) = H^2_z(t)/(1 + t^2)$. We claim that $\Phi|_{\mathcal{U}_n}$ has no critical point in $E_n \setminus \mathcal{U}_n$. In fact, by Remark 1.1, it is easy to check that
\[\| \nabla \Phi(z) \| \leq c (1 + \| z^+ \|^s - 1 + \| z^- \|^s - 1 + h_{aw}(\| z^0 \|)) \]
for $z \in E$.

Therefore, for ε small enough and $n \geq n_0$,
\[\langle \nabla \Phi(z), v_n \rangle = \langle Lz^+, z^* \rangle - d \langle Lz^-, z^- \rangle - \langle \nabla \Phi(z), v_n \rangle \]
\[\geq c^* \| z^+ \|^2 + d c^* \| z^- \|^2 - c_1 (1 + h_{aw}(\| z^0 \|)) + \| z^+ \|^s - 1 + \| z^- \|^s - 1(\| z^+ \|^2 + d \| z^- \|^2 + \lambda \| p'(\| z^0 \|) \|) \]
\[\geq \frac{1}{2} c^* \| z^+ \|^2 - \frac{d}{2} c^* \| z^- \|^2 - c_1 e \lambda^2 | p'(\| z^0 \|) |^2 - c_1 e^{-1} h_{aw}^2(\| z^0 \|) - c_2. \]

Here we have used the inequalities $xy \leq e^{-1} x^2 + e y^2$ and $xy^{s-1} \leq x^2 + e y^2 + c$ which hold for all $x, y \geq 0, c > 0$ and an appropriate $c = c(e)$. By the definition of h_{aw}, we see that
\[| p'(\| z^0 \|) |^2 \leq \frac{4H^2_z(t)}{(1 + t^2)^2} \left(\frac{z}{t} (1 + t^2) + t \right)^2, \]
\[h_{aw}^2(t) \leq \frac{4H^2_z(t)}{1 + t^2} + c \]
for $t > 0$. Let $\lambda > 10 c_1/(e c^*)$. Since $H_{aw}(t)/(1 + t^2) \to 0$ as $t \to \infty$, it is easy to verify that
\[c_1 e \lambda^2 | p'(\| z^0 \|) |^2 + c_1 e^{-1} h_{aw}^2(\| z^0 \|) \leq \frac{\lambda c^* H^2_z(\| z^0 \|)}{2 (1 + \| z^0 \|)^2} + c. \]
Therefore
\[
\langle \nabla \Phi(z), v_n \rangle \geq \frac{c^+}{2} (|z^+| - d |z^-|^2 - \lambda p(|z^0|)) - c
\]
\[
\geq \frac{c^+}{2} M - c
\]
\[
> 0
\]
for an appropriate \(M \). So \(\Phi|_{\mathcal{E}_n} \) has no critical point outside \(\mathcal{U}_n \) and on \(\partial \mathcal{U}_n \).

It is easy to construct a pseudogradient vector field \(V \) on \(\mathcal{E}_n \) such that \(\langle V(z), v_n(z) \rangle > 0 \) on \(\partial \mathcal{U}_n \). This implies that the flow of \(-V\) points into \(\mathcal{U}_n \) on \(\partial \mathcal{U}_n \).

Next we show that on \(\mathcal{U}_n \)
\[
\Phi(z) \to -\infty \quad \text{if and only if} \quad |z^0 + z^-| \to \infty \quad (3.5)
\]
and the convergence is uniform with respect to the choice of \(n \geq n_0 \). Indeed, if \(z \in \mathcal{U}_n \), then \(|z^+|^2 \leq M + d |z^-|^2 + \lambda p(|z^0|) \), and since \(p(t) \leq c(1 + h^2_{\alpha}(t)) \), it follows using the mean value theorem as in the proof of Lemma 3.2 that
\[
\Phi(z) = \frac{1}{2} (\langle Lz^+, z^+ \rangle + \langle Lz^-, z^- \rangle) - \varphi(z)
\]
\[
\leq \frac{1}{2} \|L\| |z^+|^2 - \frac{1}{2} c^* |z^-|^2 - \varphi(z^0) + \varphi(z^0) - \varphi(z)
\]
\[
\leq \frac{1}{2} \|L\| |z^+|^2 - \frac{1}{2} c^* |z^-|^2 - \varphi(z^0)
\]
\[
+ c(1 + h_{\alpha}(|z^0|)) + |z^+|^s - 1 + |z^-|^s - 1 |z^+ + z^-|
\]
\[
\leq \|L\| |z^+|^2 - \frac{1}{4} c^* |z^-|^2 + ch^2_{\alpha}(|z^0|) - \varphi(z^0) + c
\]
\[
\leq (\frac{1}{4} c^* + d \|L\|) |z^-|^2 + \|L\| \lambda p(|z^0|)
\]
\[
+ ch^2_{\alpha}(|z^0|) + \|L\| M - \varphi(z^0) + c
\]
\[
\leq -\frac{c^*}{8} |z^-|^2 + ch^2_{\alpha}(|z^0|) - \varphi(z^0) + c.
\]
In view of the definition of h_∞ and Lemma 3.1, we have that
\[
\lim_{t \to \infty} \frac{h_\infty^2(t)}{H_\infty(t)} \leq c t^{-2} = 0 \quad \text{and} \quad \liminf_{|z| \to \infty} \frac{\varphi(z)}{H_\infty(|z|)} > 0;
\]
consequently,
\[
\lim_{|z| \to \infty} \frac{\varphi(z)}{h_\infty^2(|z|)} = \infty,
\]
and $\Phi(z) \to -\infty$ uniformly in n as $|z^0| \to \infty$.

On the other hand, if $z \in U_n$ and $|z^0 + z^-| \leq c$, then $|z^+| \leq \tilde{c}$ for an appropriate $\tilde{c} > 0$; hence $\Phi(z) \to -\infty$ implies that $|z^0 + z^-| \to \infty$.

Now we adapt an argument of Lemma 7.6 in [1]. Choose $a > 0$ such that $K = K(\Phi) \subset \{ z \in E : |\Phi(z)| < a \}$. By (3.5), there exists $R_2 = R_2(a)$ (R_2 independent of n) such that
\[
D_2 := \{ z \in U_n : |z^- + z^0| \geq R_2 \} \subset U_n \cap \Phi^{-n}.
\]
Using (3.5) again, we first find $b > a$ with the property that $\Phi^{-b} \cap U_n \subset D_2$, and then $R_1 > R_2$ such that
\[
D_1 := \{ z \in U_n : |z^0 + z^-| \geq R_1 \} \subset \Phi^{-b} \cap U_n.
\]
Define $\xi : [0, 1] \times D_2 \to D_1$ as follows:
\[
\xi(t, z) = \begin{cases}
 z & \text{if } |z^- + z^0| \geq R_1, \\
 z + \frac{z^- + z^0}{|z^- + z^0|} \{ tR_1 + (1 - t) |z^- + z^0| \} & \text{if } |z^- + z^0| < R_1.
\end{cases}
\]

It is easy to see that ξ is a strong deformation retraction of D_2 onto D_1 (since $p^* > 0$, ξ does not leave U_n). By $(PS)^*$, $K(\Phi|_{E_n}) \subset U_n \backslash \Phi^{-1}(\{ -b, -a \})$ for $n \geq n_0$ (possibly after choosing a larger n_0). Therefore, using the flow of $-V$, it is easy to construct a strong deformation retraction η of $\Phi^{-n} \cap U_n$ onto $\Phi^{-b} \cap U_n$. Let $\xi * \eta$ denote the deformation η followed by ξ. Then $\xi * \eta$ is a strong deformation retraction of $\Phi^{-n} \cap U_n$ onto D_1.

Applying the flow of $-V$ again, we obtain a strong deformation retraction of $\Phi^{-n} \cap U_n$ onto $\Phi^{-(n+1)} \cap U_n$. Finally, by the above-mentioned properties and the strong excision (cf. Property 1.2 of [1]), we have that for $n \geq n_0$,
\[H^q(\Phi^a \cap E^a_n, \Phi^{-a} \cap E^{-a}_n) \cong H^q((\Phi^{-a} \cap E^a_n) \cup \varnothing_n, \Phi^{-a} \cap E^{-a}_n) \]
\[\cong H^q(\varnothing_n, \Phi^{-a} \cap \varnothing_n) \quad \text{(excision)} \]
\[\cong H^q(\varnothing_n, D_1) \]
\[\cong \begin{cases} \mathcal{F} & \text{if } q = j^-(A) + j^0(A) + d_n, \\ 0 & \text{otherwise.} \end{cases} \]

Since the excision property implies that
\[H^q_e(\Phi^a, \Phi^{-a}) \cong H^q_e(\Phi^{-1}([-a, a]), \Phi^{-1}(-a)) \]
and \((\Phi^{-1}([-a, a]), \Phi^{-1}(-a))\) is an admissible pair for \(\Phi\) and \(K\) (cf. Proposition 2.5 of [1]), the conclusion of case (i) follows from the definition of \(C^*_e(\Phi, K(\Phi))\).

(ii) Set
\[V_n := \left\{ \begin{array}{l} z \in E_n : \|z^-\|^2 - \frac{c^*}{8\|L\|} \|z^+\|^2 - \frac{jH^2(\|z^0\|)}{1 + \|z^0\|^2} \leq M, \end{array} \right\}. \]

Then an outer normal vector to \(\partial V_n\) is
\[v_n = v_n(z) = z^- - \frac{c^*}{8\|L\|} z^+ - \frac{\lambda}{2} p'(\|z^0\|) \frac{z^0}{\|z^0\|}, \quad \text{where } p(t) = \frac{H^2_n(\lambda t)}{1 + t^2}. \]

By an argument similar to that in case (i), there exist \(\lambda\) and \(M\) such that
\[\langle \nabla \Phi(z), v_n \rangle \leq -\frac{c^*}{2} \left(\|z^-\|^2 - \frac{c^*}{8\|L\|} \|z^+\|^2 - \frac{jH^2(\|z^0\|)}{1 + \|z^0\|^2} \right) + c \]
\[\leq -\frac{c^*}{2} M + c \]
\[< 0, \]
where \(c\) is independent of \(n \geq n_0\). It follows that \(\Phi|_{\varnothing_n}\) has no critical point in \(E_n \setminus V_n\) and there exists a pseudogradient vector field \(V\) such that the flow of \(-V\) points outwards on \(\partial V_n\). Furthermore,
\[\|z^-\|^2 \leq \frac{c^*}{8\|L\|} \|z^+\|^2 + \frac{jH^2(\|z^0\|)}{1 + \|z^0\|^2} + M \quad \text{for } z \in \varnothing_n; \]
consequently, \(\Phi(z) = \frac{1}{2} \langle Lz^+, z^+ \rangle + \frac{1}{2} \langle Lz^-, z^- \rangle - \varphi(z) \)
\[\geq \frac{1}{2} \epsilon^* \|z^+\|^2 - \frac{1}{2} L \|z^+\|^2 - \varphi(z^0) \]
\[- c(1 + h_n(\|z^0\|) + \|z^+\|^s - 1 + \|z^-\|^s - 1) \|z^+ + z^-\| \]
\[\geq \frac{c^*}{8} \|z^+\|^2 - ch_n^2(\|z^0\|) - \varphi(z^0) - c. \]

Since by Lemma 3.1,
\[\lim_{\|z^0\| \to \infty} \frac{- \varphi(z^0)}{h_n^2(\|z^0\|)} = \infty, \]
it follows that \(\Phi(z) \to \infty \) uniformly in \(n \) as \(\|z^+ + z^0\| \to \infty \). As in case (i) we also see that the reverse implication is true.

It follows that we can find \(a > 0 \) such that \(K = K(\Phi) \subset \{ z \in E : |\Phi(z)| < a \} \) and \(\Phi^{-a} \cap E_n^+ \subset E_n^+ \setminus \mathcal{V}_n^0 \). Since \(\Phi^a \cap \mathcal{V}_n \) is a bounded set, we find \(R_0 > 0 \) such that
\[\Phi^a \cap \mathcal{V}_n \subset D := \{ z \in \mathcal{V}_n : \|z^+ + z^0\| \leq R_0 \}. \]

Since \(D \) is also bounded, there exists \(b > a \) such that \(D \subset \Phi^b \cap \mathcal{V}_n \). Similar to the proof of Lemma 7.6 in [1], we find a strong deformation retraction \(\xi \) of \(E_n^+ \) onto \(D \cap \mathcal{V}_n \) (we can e.g. use the flow of \(-v_n \) to deform \(E_n^+ \) onto \(\mathcal{V}_n \) and that of \(v_n \) to deform \(\mathcal{V}_n \) onto \(D \cup \partial \mathcal{V}_n \)). By \((PS)^* \), we may assume that \(K(\Phi|_{E_n^+}) \subset \mathcal{V}_n \setminus \Phi^{-1} [a, b] \) for \(n \geq n_0 \), so the flow of \(-V \) provides a strong deformation retraction of \(E_n^+ \setminus \mathcal{V}_n \) onto \(\Phi^{-a} \cap E_n^+ \). Moreover, the flow of \(-V \) induces a strong deformation retraction \(\eta \) of \((E_n^+ \setminus \mathcal{V}_n) \cup D \) onto \(\Phi^a \cap E_n^+ \). Now it is easy to see that the mapping \(\eta \ast \xi \) is a strong deformation retraction of \(E_n^+ \) onto \(\Phi^a \cap E_n^+ \). Therefore
\[H^q(\Phi^a \cap E_n^+, \Phi^{-a} \cap E_n^+) \cong H^q(E_n^+, \Phi^{-a} \cap E_n^+) \]
\[\cong H^q(E_n^+, E_n^+ \setminus \mathcal{V}_n) \]
\[\cong \begin{cases} \mathcal{F} & \text{if } q = j^*(A) + d_n, \\ 0 & \text{otherwise.} \end{cases} \]

Now by the same argument as in case (i) we get the conclusion. \(\blacksquare \)
Remark 3.1. For the computation of the usual relative homology groups, see [12, 13, 15]. We emphasize that the results of [12, 13, 15] cannot be used directly to deal with strongly indefinite functionals.

4. PROOFS OF THE MAIN RESULTS

Based on the computations of the critical groups $C^*_q(\Phi, 0)$ and $C^*_q(\Phi, K)$, we can prove the main results of Section 1.

Proof of Theorem 1.1. (i) By Lemma 3.6, (H^-_2) implies that $C^*_q(\Phi, K) = \begin{bmatrix} \mathcal{F} \\ 0 \end{bmatrix}$ for $q = j^-(A)$ and $[0]$ otherwise. On the other hand, if 0 is the only critical point of Φ, then $C^*_q(\Phi, K) = C^*_q(\Phi, 0)$. It follows from the shifting theorem (cf. Theorem 5.4 of [1]) that $C^*_q(\Phi, 0) = \begin{bmatrix} C^{q - j^{-}(A_0)}(\tilde{\Phi}_0, 0) \end{bmatrix}$, where $\tilde{\Phi}_0$ is defined on a subset of $\ker(L_0)$. Since $\dim \ker(L_0) = j^-(A_0)$, $C^*_q(\Phi, 0) = [0]$ whenever $q \notin \{ j^{-}(A_0), j^{-}(A_0) + j^0(A_0) \}$. So by our assumption, $C^*_q(\Phi, 0) = \{ 0 \} \neq C^*_q(\Phi, K)$, a contradiction.

(ii) Since $j^-(A) + j^0(A) + j^+(A) = 0$, the conclusion follows from Lemma 3.6(i) and a similar argument.

Proof of Theorem 1.2. It follows from Lemmas 3.5 and 3.6 that $C^*_q(\Phi, 0) \neq C^*_q(\Phi, K)$ for some q; hence $K \neq \{ 0 \}$.

Proof of Theorem 1.3. We only prove the case (i) as an example. The other cases are similar. Since

$$(H^-_2)\text{ implies that } C^*_q(\Phi, K) = \begin{bmatrix} \mathcal{F} \\ 0 \end{bmatrix} \quad \text{for } q = j^-(A) + j^0(A),$$

and

$$(H^-_4)\text{ implies that } C^*_q(\Phi, 0) = \begin{bmatrix} \mathcal{F} \\ 0 \end{bmatrix} \quad \text{for } q = j^{-}(A_0) + j^0(A_0),$$

there exists a nonzero critical point z_0. Suppose there are no other ones, then by Theorem 5.4 of [1], $C^*_q(\Phi, z_0) = \begin{bmatrix} C^{q - q}(\tilde{\Phi}_0, 0) \end{bmatrix}$ for some $r_0 \in \mathbb{Z}$ and some functional $\tilde{\Phi}_0$ defined on a space Z with $\dim Z \leq 2N$. In this case the Morse inequalities read

$$tf^-(A_0) + j^0(A_0) + \sum_{i=0}^{2N-2} b_i t^{r_i + i} = tf^-(A) + j^0(A) + (1 + t) Q(t),$$
where $b_i \in [Z]$ and $x \in Z$. That the sum on the left-hand side above contains at most $2N - 1$ nonzero terms follows from the fact that if $C^0(\tilde{\phi}_0, 0) \neq 0$, then $\tilde{\phi}_0$ has a local minimum at 0 and $C^0(\tilde{\phi}_0, 0) = 0$ for $p \neq 0$, and if $C^{2N}(\tilde{\phi}_0, 0) \neq 0$, then $\tilde{\phi}_0$ has a local minimum there and $C^p(\tilde{\phi}_0, 0) = 0$ for $p \neq 2N$. By comparing the exponents, we can find i and j such that $\alpha + i = j^\ast(A) + j^\ast(A_0)$ and $\alpha + j = j^\ast(A_0) + j^\ast(A_0) \pm 1$, where $i, j \in \{0, 1, \ldots, 2N - 2\}$. So $|j^\ast(A) - j^\ast(A_0)| = |j^\ast(A) + j^\ast(A_0) - j^\ast(A_0) - j^\ast(A_0)| = |i - j \pm 1| \leq 2N - 1$, a contradiction.

Proof of Corollary 1.1. We only prove case (ii). Since $A = A_0 \equiv 0$, $j^\ast(0) = -N$ and $j^0(0) = 2N$ (cf. Proposition 7.1 of [1]). Consequently, by Lemma 3.6, $C^q_\ast(\Phi, K) = [\mathcal{F}]$ if $q = N$ and $[0]$ otherwise. On the other hand, by Corollary 5.5 of [1] and Lemma 3.5, $C^q_\ast(\Phi, 0) = [\mathcal{F}]$ if $q = -N$ and $[0]$ otherwise. If Φ has only one nontrivial critical point, then by the Morse inequalities,

$$t^{-N} + \sum_{i=0}^{2N-2} b_i t^{\ast+i} = t^N + (1 + t) \mathcal{Q}(t),$$

and similar to the proof of Theorem 1.3, we get a contradiction.

Note added in proof. After submission of this paper, a related work by Abbondandolo [16] appeared. In [16] a different infinite dimensional Morse theory (which goes back to [17]) was introduced and it was shown that (S) has a nontrivial periodic solution under certain conditions of asymptotic linearity. The asymptotic conditions in [16] and here are rather different, and when they coincide, our conclusions are stronger.

REFERENCES

14. G. Fei, Maslov-type index and periodic solution of asymptotically linear Hamiltonian systems which are resonant at infinity, *J. Differential Equations* 121 (1995), 121–133.