
J
H
E
P
0
6
(
2
0
1
4
)
1
0
7

Published for SISSA by Springer

Received: April 20, 2014

Accepted: May 25, 2014

Published: June 18, 2014

T-duality off shell in 3D type II superspace
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1 Introduction

In paper [1] we obtained the curvature tensor (previously discovered in [2–4]) in a way

manifestly covariant under O(D,D) T-duality. The aim of this paper is to extend the

techniques of the T-dually extended spaces from the bosonic case to the supersymmetric

case. In D = 10, this would simultaneously describe Types IIA and IIB supergravity; here

we consider the simpler case of D = 3, where the theory can easily be treated off shell.

Manifest T-duality is in general constructed by doubling the space-time coordinates,

as shown in [2–4]. This doubled space-time is further extended by the coordinates for the

Lorentz generators. The dependence of the background vielbein on them is fully fixed

(up to gauge) by the coset constraints [2–4]. This is done by requiring that the associate

torsions take their vacuum values. The generalisation of this approach to string theory

requires the use of the affine symmetry algebra (oscillator algebra together with the Lorentz

algebra). The consistency (closure of the Jacobi identities) of the new affine symmetry

algebra requires addition of the new current Σmn for every Lorentz current Smn. We also
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add the new coordinates for the current Σmn. (The necessity of this new current was

first realized in the context of AdS5× S5 [5, 6].) In the supersymmetric case the fermionic

coordinates are doubled as well. For the fermionic current Dµ we need to add a dual

current Ωµ (for the consistency of the affine supersymmetry algebra), see [2–4]. By this

way we obtain the affine supersymmetry algebra with the extra currents Ωµ, Σmn.

The generalized torsion is constructed from this affine Lie algebra in a general back-

ground, which acts as the stringy generalization of covariant derivatives. Because of the ad-

ditional currents, the enlarged vielbein that describes this background includes the Lorentz

connection, and the enlarged torsion includes also the curvature. Closure of the algebra

implies the orthogonality constraints E η ET = η on the vielbein. In this paper we solve

these just at the linear level together with the coset constraints also solved at linear level.

There is also an extension of dimensional reduction to the usual D coordinates.

In this article (as a starting point for a bigger program on T-dually extended super-

spaces) we consider the 3 dimensional T-dually extended superspace. The higher dimen-

sional case is discussed in [7]. We would also see that this (toy) model of 3 dimensional

T-dually extended space goes with the idea of lower dimensional F-theory (i.e., the lower

dimensional analogue of 12 dimensional F-theory, see [8]). At the end we will show that

the physical spectrum (and the structure) of the theory coincides with N = 2 supergravity

in 3 dimensions (after dimensional reduction). That should be expected since as we will

show classical N = 1 supergravity in 4 dimensions can be interpreted as to have the same

F-theory origin as (manifestly) T-dual (covariant) 3D supergravity. So does 3D N = 2 su-

pergravity (after compactification of 4D N = 1 supergravity to 3D). The doubling in this

paper is obtained naturally from compactification of F-theory along one space direction.

We will get: SO ( 3, 2 ) → SO ( 2, 2) ≃ SO ( 2, 1 ) ⊗ SO ( 2, 1 ) (to be explained in the

text), which is T-dual N = 2 string theory and effectively T-dual 3D N = 2 supergravity.

We follow the procedure described in articles [1–4, 7]. The differences are that we work

just to linear order in fields and in 3D T-dual superspace. On top of that we will also find

the relation of the T-dually extended theory to the (lower dimensional analog of) F-theory.

2 F-theory (membrane vs. strings)

2.1 F-theory and its compactification

F-theory was first proposed by Cumrun Vafa as 12 dimensional theory, see [8]. The theory

is further compactified on the two-torus or more generally on elliptically fibered Calabi-Yau

manifolds. We discuss the 5 dimensional analogue of this theory. We want to motivate the

natural identification between 4D N = 1 supergravity, further compactified to 3D N = 2

(3DN = 2 supergravity is recently discussed in [9–11]), and T-dual 3DN = 2 string theory.

Both can be thought to have an origin in higher dimensional F-theory. This theory will be

further compactified in two ways. One compactification produces 4 dimensional M-theory

that will effectively become N = 1 supergravity with the specific chiral compensator that

contains a 3-form. This is expected since this N = 1 supergravity is an effective theory

of 2-branes (discussion of the lower dimensional supersymmetric membrane theory can be
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found in [12], (super) membrane theory discussed in [13–16]). The other compactification

gives 3 dimensional T-dual N = 2 string theory, so effectively T-dual N = 2 supergravity.

2.2 5D vs. 4D vs. 3D — Compactifications

5 dimensional F-theory is the (supersymmetric) 2-brane theory in the space with signature

(+, +, +, −, − ) . The Lorentz group is SO ( 3, 2 ). We can pick the physical time direction

and compactify F-theory along the other time direction, so we will get the Lorentz group

breaking SO ( 3, 2 ) → SO( 3, 1 ). The 4 dimensional N = 1 SO( 3, 1 ) theory is just 4

dimensional M-theory, which is effectively 4 dimensional N = 1 supergravity. We can

also pick one space direction and compactify F-theory along this direction, so we will get:

SO ( 3, 2 ) → SO ( 2, 2) ≃ SO ( 2, 1 ) ⊗ SO ( 2, 1 ), which will become T-dual N = 2

string theory and effectively T-dual 3D N = 2 supergravity. If we further compactify 4

dimensional N = 1 supergravity along a space direction we will get 3 dimensional N = 2

supergravity coupled to a vector multiplet. On the other hand, if we take T-dual 3D N = 2

theory and compactify half of the (doubled) dimensions we would again get 3D N = 2

supergravity coupled to a vector multiplet. We therefore have the natural identification

of the objects from 4D N = 1 supergravity (further compactified) and T-dual 3D N = 2

supergravity. We can therefore use the techniques of T-dually extended superspace and

derive 3D N = 2 supergravity coupled to a vector multiplet.

In 4D (n = −1
3 minimal and linearised) supergravity we have the prepotential Hα β̇

and the scalar prepotential V . The scalar prepotential becomes a particular (chiral) com-

pensator of the form φ = D̄2 V . That contains a 3-form, see section 4.4.d in [17], or

more generally [18]. This is expected since 4D N = 1 supergravity is the effective theory

for 2-branes.

The 4D N = 1 gauge transformations are, see section 5.2 in [17, 19]:

δ Hα β̇ = Dα L̄β̇ − D̄β̇ Lα and δ V = Dα Lα + D̄α̇ L̄α̇ (2.1)

where Dα and D̄α̇ are usual 4D N = 1 covariant derivatives. We can dimensionally reduce

the theory to 3D and obtain the 3D N = 2 theory. Using dimensional reduction we get:

Dα =
1√
2
(Dα + iDα′ ) and D̄α̇ =

1√
2
(Dα − iDα′ ) (2.2)

where Dα and Dα′ are real 3D N = 2 covariant derivatives. The gauge parameters can be

written as:

Lα =
1√
2
(Λα − iΛα′ ) and L̄α̇ =

1√
2
(Λα + iΛα′ ). (2.3)

The 3D N = 2 gauge transformations thus are:

δ H(α β̇) = δ Hαβ′ = i (D(α′ Λβ) + D(α Λβ′) ) (2.4)

δ H[α β̇] = δ V = Dα Λα − Dα′

Λα′ (2.5)

δ V = Dα Λα + Dα′

Λα′ (2.6)
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Figure 1. F-theory breaking.

The 4D N = 1 prepotential Hα β̇ ≡ (H(α β̇), H[α β̇] ) is a 4D vector and becomes

the 3D vector H(αβ′) and a prepotential V (for a vector multiplet). We also have the 4D

prepotential V (for the chiral compensator φ = D̄2 V) that becomes the 3D prepotential V .
On the other hand the 3D T-dual prepotential (symmetric part) H(αβ′) (after dimensional

reduction to 3D N = 2) is again a vector (describing conformal supergravity) but H[αβ′]

becomes the prepotential V , see the transformations (3.19), and the prepotential Hαβ′ is

just part of the vielbein, see table 3. Finally the 3D T-dual N = 2 prepotential V becomes

the prepotential for the vector multiplet in 3D N = 2 supergravity.

Therefore we have an identification between 3D N = 2 T-dual supergravity and

3D N = 2 supergravity coupled to a vector multiplet: H(αβ′) → H(αβ′), H[αβ′] → V
and V → V .

We also have the identification between 4D N = 1 supergravity and 3D N = 2

supergravity coupled to a vector multiplet: H(α β̇) → H(αβ′), H[α β̇] → V and V → V .
The situation is summarised in the above diagram 1, where Ht

[αβ] is the 5 dimensional

prepotential (α ∈ { 1, . . . 4 },“t” means that it is traceless, it has 5 real components).

3 Algebra

We give a very brief outline of the algebraic objects and steps that will lead to the formu-

lation of linearised T-dual 3D supergravity. The interested reader may see references [1–4]

(where the subject is explained in great detail).

3.1 Current algebra of ZM

As in paper [1], we consider the (super)string generalisation of the string oscillator algebra.

Because of T-duality and the (super)Bianchi identity the current algebra has a structure:

[ZM (1), ZN (2) ] = −i ηMN δ′ ( 2 − 1 ) − i fMNP ZP δ ( 2 − 1 ) (3.1)
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where ZM := (SMN , Dµ, PM , Ωµ, ΣMN ) is the generalisation of the (super)string oscil-

lators and the metric ηMN (given later). The PM generators are the O (D, D) generalisa-

tion of string oscillators Pm. In an explicit O(D, D) basis the PM generators are given as:

PM := (Pm, X ′m ). For future purposes we want to use a different, left/right basis. In the

left/right basis PM := (Pm, Pm̃ ) = 1√
2
(Pm + X ′

m, Pm − X ′
m ). The Lorentz generators

also have the left/right structure: SMN := (Smn, Sm̃ñ), where Smn are generators of left

(or equivalently Sm̃ñ right) Lorentz transformations. The Dµ := (Dµ, Dµ̃ ) are the gen-

erators of left and right supersymmetry transformations. The generators Ωµ := (Ωµ, Ωµ̃ )

and ΣMN := (Σmn, Σm̃ñ ) are the new generators, needed to satisfy the Bianchi identity.

For further reference see [1–4].

The full current algebra of ZM oscillators (3.1) is the affine (super)Lie algebra (3.2)

and its explicit form is:

[Smn (1), Skl (2) ] = −i η[m [k Sl ]n ] δ ( 2 − 1 ) (3.2)

[Smn (1), Dρ (2) ] = − i
1

2
( γmn )

σ
ρ Dσ δ ( 2 − 1 )

[Smn (1), Pk (2) ] = i ηk [m Pn ] δ ( 2 − 1 )

[Smn (1), Ωρ
(2) ] = − i

1

2
( γmn )

ρ
σ Ω

σ δ ( 2 − 1 )

[Smn (1), Σkl
(2) ] = −i δmn

kl δ′ ( 2 − 1 ) − iδ[m
[k ηn ] sΣ

l]s δ ( 2 − 1 )

{Dρ (1), Dσ(2) } = i 2 ( γm )ρσ Pm δ ( 2 − 1 )

[Dρ (1), Pm (2) ] = − i 2 ( γm)ρσ Ω
σ δ ( 2 − 1 )

{Dρ (1), Ωσ
(2) } = − i δσρ δ′ ( 2 − 1 ) − i

1

2
( γmn )σρ Σ

mn δ ( 2 − 1 )

[Dρ (1), Σmn
(2) ] = 0

[Pm (1), Pn (2) ] = − i ηmn δ
′ ( 2 − 1 ) + i ηm [h ηn|s]Σ

hs δ ( 2 − 1 )

[Pm (1), Ωρ
(2) ] = 0

[Pm (1), Σkl
(2) ] = 0

{Ωρ
(1), Ωσ

(2) } = 0

[Ωρ
(1), Σmn

(2) ] = 0

[ Σmn
(1), Σk l

(2) ] = 0

99 Same for Left → Right

[ Left, Right } = 0

The only nonvanishing terms in the metric and structure constants are (as can be
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guessed by dimensional analysis)

ηPP , ηSΣ, ηDΩ, ; fSPP , fSSΣ , fDDP , fSDΩ (3.3)

where we have lowered the upper index on f with η to take advantage of its total (graded)

antisymmetry, and used “schematic” notation, replacing explicit indices with their type:

M := (MN , µ, M , µ, MN ) := (S, D, P, Ω, Σ ) (3.4)

Explicitly these are, for the left-handed algebra,

(η)mn = ηmn , (η)mn
pq = δmn

pq , (η)σ
ρ = δρσ (3.5)

fmn
pq = − δmn

pq , fmnpq
rs = η[m[pδq]n]

rs ,

fσρ
m = 2 ( γm )σρ , fmnσ

ρ = − 1

2
( γmn )

ρ
σ (3.6)

For the right-handed algebra we change the signs of the corresponding terms in ηMN but

not in f .

For dealing with antisymmetric pairs of indices we have introduced an implicit metric

such that for any two antisymmetric tensors we have

A ·B ≡ 1

2
AmnBmn (3.7)

The identity matrix with respect to this inner product is

δmn
pq ≡ δ[m

pδn]
q (3.8)

3.2 Background fields

The aim is to find the linearised formulation of the 3D T-dual theory. We are following

the approach used in the previous paper, see [1], section 1.2. We will briefly mention the

outline here:

We want to use the T-dual formulation of the stringy generalisation of the oscillator

algebra (3.2). We introduce background fields via vielbeins. Following [2–4] but using

algebra (3.1) we get:

ΠA(1) = EAM(XN )ZM (3.9)

The affine Lie algebra for the ΠA can be compactly written as:

[ΠA(1),ΠC(2)] ≡ −iηAC δ′ ( 2 − 1 )− iTACEΠE δ ( 2 − 1 ) (3.10)

where TACE is a (super)stringy generalisation of torsion, see [1]:

TACE = E[A
M(DMEC)

N )E−1
N

E

+
1

2
ηEDEDM(DME[A|

N )E−1
N

FηF|C) + EAMECNE−1
P

EfMNP (3.11)
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where [A | | C ) indicates graded antisymmetrization in only those indices. By DM in (3.11)

and in the whole text we mean the group covariant derivatives of the (non-affine) part of

algebra (3.2): [DM, DN } = − i fMNE DE .
Note that the (super)Jacobi identities imply the total graded antisymmetry of the

torsion, just as for the structure constants. Torsion (3.11) can be identified with that of

“ordinary” curved-space covariant derivatives by use of the strong constraint, as explained

in [1–4].

We can set the coefficient of the Schwinger term to be the metric η; the vielbein is

forced to obey the orthogonality constraints:

EAMηMN E CN ≡ ηAC (3.12)

This choice does not affect the physics, and simplifies many of the expressions. For example,

it implies the total graded antisymmetry of the torsion, when the upper index is implicitly

lowered with η:

TAB C =
1

2
E[A |

M(DME| B
N )EC )N + EAMEBNECPfMN P (3.13)

where we have used E−1
M

A = ηA BηM NEBN . (Also note that in the first term the graded

antisymmetrization can be written as a cyclic sum without the 1/2, since it is already

graded antisymmetric in the last two indices.) Thus, because of orthogonality, the vielbein

is like (the exponential of) a super 2-form, while the torsion is a super 3-form; similarly,

the Bianchi identities are a super 4-form.

The (super)orthogonality constraint (3.12) can be fully solved for the general structure

of the vielbein EAM. However, we are interested just in the linear level. Thus we get the

(super)orthogonality constraint for the linearised part of the vielbein E(1)AM:

EAM = δAM + E(1)AM + O (E(2) ) ⇒ using (3.12) (3.14)

E(1)
(AB ] = 0 (3.15)

We would also need the linear level version of the equation (3.13):

TAB C = fAB C + T (1)AB C + O (E(2) ) (3.16)

where T (1)AB C :=
1

2
D[AE(1)

B C ) +
1

2
E(1)

[A
M fM|B C ) (3.17)

3.3 Further constraints and gauge fixing

Following the discussion in subsection 4.2 in the paper [1], we get the coset constraint on the

torsion piece TS AB = fS AB (where we used the S index as the schematic index (3.4) and

A, B are general indices). At the linear level the previous condition becomes: T (1)S AB = 0.

From this one gets the condition for the linear vielbein: E(1)SM = 0 + O (E(2) ).

We would like to gauge fix some of the remaining gauge freedom. Note that the coset

constraints discussed above sets the gauge parameter (defined below) λS = 0. From

specific gauge fixing we get further conditions on the linear vielbein E(1). The gauge

transformations are given as (see also [2–4]):

δΛΠA = [− iΛ, ΠA } (3.18)

– 7 –
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where Λ :=

∫

d1λM (X )DM

We are working in the basis where the covariant derivatives satisfy: [DM, DN } =

i fMNP DP . Thus the (linear) gauge transformation of (linear) vielbein are:

δΛE(1)AB = − i

2
D[A λB ) + fABC λC (3.19)

Now, we can pick the following gauge:

γa
αβ E(1)

αβ = 0 ⇒ λa ∝ γa
αβ Dα λβ (3.20)

γa αβ E(1)
αa = 0 ⇒ λα ∝ γa αβ D[a λβ ] (3.21)

E(1)
ab = 0 ⇒ λab ∝ D[a λb ] (3.22)

99 Same for Left → Right

We can see that by (3.20), (3.21), (3.22) we automatically have expressions for gauge

parameters λP , λΩ, λΣ as derivatives of another gauge parameter λD. It is unlike the

usual N = 1 supergravity where we need first to solve the chirality condition to relate

derivatives of Λ with K, see section X.A.1 in [20], also section 5.3 in [17]. Moreover, (3.20)–

(3.22) give the constraints on E(1) and solving those we will get:

E(1)
DD = E(1)

αβ = 0, E(1)
PP = E(1)

ab = 0, E(1)αβ
β = 0 (part of E(1)P

D) (3.23)

Later (by dimension −1
2 constraints) one can see that E(1)

PD = 0. We thus need to set

up the dimensional constraints. The table 1 summarise the torsion dimensions.

We put the torsions of negative (engineering) dimensions to 0 (as always in QFT, see

the red coloured torsions in table 1). We also put the (unfixed) torsions of zero dimension

to 0 (see the blue torsions in the previous table), see [1]. We will also put the dimension
1
2 (unfixed) torsions to 0 (the green torsions in the table). Doing that we produce just

algebraic constraints on veilbeins.

The nontrivial dimensional constraints are:

TDD
Ω = 0, TDD

P = fDD
P , TDD

D = 0, TP P
Ω = 0 (3.24)

3.4 Dimensional constraints: solution

The solution to the previous nontrivial dimensional constraints can be given in full gener-

ality; however in this paper we are interested just in the linearised case.

Tables 2 and 3 summarise the linearised solutions of those four constraints (3.24).

Notice that we have also the possibility of mixed left/right indices. (Notice also the “.”

in the tables 2 and 3 means symbolic contraction. Do not be confused with “·” defined

in (3.7)).

From table 2 we can see that we have one linear relation: E(1)
ΣD ∝ E(1)

ΩP . From

table 3 we have linear relations: {E(1)
P D̃, E

(1)
P P̃ , E

(1)
Ω D̃, E

(1)
Ω P̃ , E

(1)
Σ D̃ } ∝ E(1)

D D̃.

Again, we have automatically obtained the expressions for the vielbeins as derivatives of

the E(1)
D D̃ vielbein (prepotential). It is unlike N = 1 supergravity where the prepoten-

tial comes as the solution of the bisection condition (or chirality condition in covariant

approach), see section X.A.1 in [20] and section 5.2.a and 5.3 in [17].
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Torsion Dim.

T Σ
S S − 2

TS S
Ω − 3

2

T P
S S − 1

TS D
Ω − 1

TS S
D − 1

2

TS P
Ω − 1

2

TDD
Ω − 1

2

T S
S S 0

TS D
D 0

T P
S P 0

TDD
P 0

Torsion Dim.

TS D
S 1

2

TS P
D 1

2

TDD
D 1

2

TP P
Ω 1

2

T S
S P 1

TS Ω
D 1

TDP
D 1

TDD
S 1

T P
P P 1

TS Ω
S 3

2

TDP
S 3

2

TDΩ
D 3

2

TP P
D 3

2

Torsion Dim.

T S
S Σ 2

TDΩ
S 2

T S
P P 2

TP Ω
D 2

TDΣ
S 5

2

TP Ω
S 5

2

TΩΩ
D 5

2

T S
P Σ 3

TΩΩ
S 3

TΩΣ
S 7

2

T S
ΣΣ 4

Table 1. Torsion dimensions.

TDD
Ω = 0 and γa αβ E(1)

αa = 0 ⇒ E(1)
PD = 0

TDD
P = fDD

P ⇒ E(1)
DΩ = 0

TP P
Ω = 0 or TDD

D = 0 ⇒ E(1)
ΣD = E(1)ab

α = − 2 γ[aαρE
(1)ρ |b ]

≡ γ .E(1)
Ω
P

Table 2. Unmixed constraints.

TDD
Ω̃ = 0 ⇒ E(1)

P D̃ ≡ E(1)
a α̃ = − 1

2 γa
β ǫDβ E

(1)
ǫ α̃ ≡ − γ .DD . E(1)

D D̃

TDD
P̃ = 0 ⇒ E(1)

P P̃ ≡ E(1)
a b̃

= − 1
2 γa

β ǫDβ E
(1)

ǫ b̃
≡ − γ .DD . E(1)

D P̃

TD D̃
P = 0 ⇒ E(1)

Ω D̃ ≡ E(1)α
β̃
= − 1

6 γ
a ǫ αD[ǫE

(1)
a] β̃ ≡ − γ .D[D . E(1)

P ] D̃

TP P̃
Ω = 0 ⇒ E(1)

Ω P̃ ≡ E(1)α
ã = − 1

6 γ
b ǫ αD[ǫE

(1)
b] ã ≡ − γ .D[D . E(1)

P ] P̃

TP P
Ω̃ = 0 ⇒ E(1)

Σ D̃ ≡ E(1)ab
α̃ = ηa c ηbdD[cE

(1)
d] α̃ ≡ η η .D[P . E(1)

P ] D̃

Table 3. Mixed constraints.
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3.5 Dimension 1 unmixed constraints

To proceed we need to find the constraints for the dimension 1 torsions. We can see that

putting those to zero in general introduces differential constraints, which we do not want

(except for the strong constraint and later the equation of motion). However, there is a

way how to fix dimension 1 torsions without producing differential constraints. We will

use the following set of unmixed constraints (again we have two cases for the torsion index

structure, mixed and unmixed):

T (1)
P P P ≡ T (1)

abc = ϑ εab cB (3.25)

T (1)
DDΣ ≡ T (1)

αβ
ab = ξ γabαβ B

T (1)
P DΩ ≡ T (1)

aα
β = ζ γa

β
αB

where the new object B is determined from (3.25). Using the linearised Bianchi identity

we get:

Lin. Bianchi id. D[A T (1)
B C)

D − f[AB|
M T (1)

M|C)
D − T (1)

[AB
M fM|C)

D = 0

For dim. 1:
1

2
T (1)

αβ
ab − γ[a(α| ǫ T

(1)
β)

ǫ |b] + γcαβ T
(1)

c
ab = 0

Using (3.25):
ξ

2
γabαβ + ζ γ[a| ǫ

(α γ
b]

β) ǫ + ϑ εabc γc αβ = 0 ⇒

ξ = − 8 ζ − 2ϑ (3.26)

Equation (3.17) gives explicit relations for the T (1)’s from (3.25):

T (1)
ab c = − 1

2
η[a|d ηb| eE

(1)de
c] ≡ − η η .E(1)

ΣP (3.27)

T (1)
αβ

ab = D(αE
(1)

β)
ab + 2 γcαβ E

(1)ab
c ≡ D.E(1)

DΣ + γ.E(1)
ΣP (3.28)

T (1)
aα

β = DαE
(1) β

a + 2 γa α ǫE
(1) ǫ β +

1

4
εcd e γ

e β
αE

(1) cd
a (3.29)

≡ D.E(1)
ΩP + γ.E(1)

ΩΩ + ε γ.E(1)
ΣP

From (3.27) and first relation of (3.25) we get:

2ϑB = − εhde η
hcE(1)de

c (3.30)

From (3.29) and requiring that we want just algebraic constraints we get the second equa-

tion for (3.25) fixing constants:

0 = − 3 ζ − 1

8
( 2ϑ + 3 ξ ) − 1

2
ϑ (3.31)

Substituing result (3.26) we have the solution for any ϑ and ζ except when ϑ = − 6 ζ. That

condition would produce a differential constraint on E(1)
ΩP (see eq. (3.32)). From (3.29)

and the third of (3.25) we will get fixing of E(1)
ΩΩ. From (3.28) and the second of (3.25) we

will get fixing of E(1)
P Σ. The net result of dimension 1 unmixed algebraic constraints (3.25)
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is that everything can be expressed in terms of E(1)
DΣ and so (see table 2) by E(1)

P Ω (and

two constants ϑ, ζ s.t. ϑ 6= − 6 ζ):

B = − 1

ϑ + 6 ζ
γa α

β DαE
(1)β

a (3.32)

≡ − γ DD. E
(1)

ΩP

E(1)
ΩΩ = E(1) αβ =

1

12
γa (α| ǫDǫE

(1) β)
a +

1

12
γa

αβE(1)ab
b (3.33)

≡ γ DD. E
(1)

ΩP + γ.E(1)
ΣP

E(1)
P Σ = E(1)

c
ab = − 1

2
γc

αβ DαE
(1)

β
ab + (ϑ + 4 ζ ) ηc e ε

e abB (3.34)

≡ − γ DD. E
(1)

DΣ + η ε.B

3.6 Dimension 1 mixed constraints

Some of the mixed dimension 1 torsions are determined in terms of E(1)
α β̃
≡ E(1)

D D̃ and

E(1)
P Ω already. Using the previous results (tables 2, 3 and results of the previous section)

we can see that mixed dimension 1 torsions T (1)
a α̃

ρ ≡ T (1)
P D̃Ω and T (1)

α̃ β
ab ≡ T (1)

D̃ DΣ

are fully determined, see (3.35). The mixed determined and undetermined torsions are

summarised below:

T (1)
P D̃Ω ≡ T (1)

a α̃
β = DaE

(1)
α̃
β + D(β E(1)

α̃)a ≡ DP E(1)
D̃Ω + D(ΩE(1)

D̃)P

T (1)
D̃ DΣ ≡ T (1)

α̃ β
ab = D(α̃E

(1)
β)

ab + DabE(1)
α̃ β ≡ D(D̃ E(1)

D)Σ + DΣE(1)
D̃D

}

(3.35)

T (1)
P̃ P P ≡ T (1)

ã b c = D[bE
(1)

c] ã − ηbd ηc eE
(1)de

ã ≡ D[P E(1)
P ]P̃ − η η .E(1)

Σ P̃

T (1)
P̃ DΩ ≡ T (1)

ãα
β = D(αE

(1)β)
ã + 1

4 γde α
β E(1)de

ã ≡ D(D E(1)
Ω)P̃ + ε γ .E(1)

ΣP̃

T (1)
P D Ω̃ ≡ T (1)

aα
β̃ = D[aE

(1)
α]

β̃ + 2 γa α ǫE
(1)ǫ β̃ ≡ D[P E(1)

D]Ω̃ + γ .E(1)
ΩΩ̃

T (1)
D̃ D̃Σ ≡ T (1)

α̃ β̃
ab = D(α̃E

(1)
β̃)

ab + 2 γẽα̃ β̃ E
(1)

ẽ
ab ≡ D(D̃ E(1)

D̃)Σ + γ .E(1)
P̃Σ







(3.36)

From (3.36) it is evident that by putting T (1)
P̃ P P = 0 we can determine E(1)

Σ P̃ in terms

of E(1)
P P̃ and so E(1)

D D̃. Equivalently we can obtain that by fixing either of T (1)
P̃ DΩ

or T (1)
DD Σ̃ . By putting T (1)

P D Ω̃ = 0 we can determine E(1)
Ω Ω̃ in terms of E(1)

D Ω̃ and

E(1)
P Ω̃ and so again in E(1)

D D̃. The dimension 1 mixed constraints give:

E(1)
Σ P̃ ≡ E(1)bc

ã = ηbd ηc eD[dE
(1)

e] ã ≡ ηη .D[P E(1)
P ] P̃ (3.37)

E(1)
Ω Ω̃ ≡ E(1)α β̃ =

1

6
γa α ǫD[aE

(1)
ǫ]
β̃ ≡ γ .D[P E(1)

D]Ω̃ (3.38)

The dimension 1 constraints can be viewed also from another perspective. For that

we need to borrow the expression for the Cartan-Killing metric KAB that is discussed in

section 4.1. The expression for the linearised Cartan-Killing metric is:

K(1)AB ≡
1

2
f(A | C

D T (1)
B ]D

C (3.39)
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Taking (3.39) for A, B ∈ {α, β̃ } we get:

K(1)
αβ ∝ εαβ B, K(1)

α̃ β̃ ∝ εα̃ β̃ B̃, K(1)
α β̃ (3.40)

Then using exercise XA2.6 in [20] we can write the dimension 1 constraints as:

T (1)
abc ∝ εab c ε

αβ K(1)
β α , T (1)

αβ
ab ∝ γabαβ ε

ǫ σ K(1)
σ ǫ (3.41)

T (1)
aα

β ∝ γa
β
α ε

ǫ σ K(1)
σ ǫ , T (1)

a α̃
β ∝ γa

β ǫK(1)
ǫ α̃ (3.42)

T (1)
α̃ β

ab ∝ γabβ
ǫK(1)

ǫ α̃ , T (1)
aα

β̃ ∝ γa α ǫK
(1) ǫ β̃ (3.43)

Remaining dimension 1 torsions have to be 0 since we do not have an appropriate nonzero

Cartan-Killing metric. We also put the second torsion of (3.43) to 0, since that does

not produce any differential constraints and fixes E(1)
Ω Ω̃, see (3.38). Moreover in the

spirit of exercise XA2.6 in [20], we can identify (K(1)
α β̃ , B, B̃ ) with a SO( 3, 3 ) vector

Gαβ = (Ga, B, B̄ ) in SL( 4 ) notation (from N = 1 supergravity).

3.7 T̃ = 0

In the previous subsections we discovered that all the vielbeins (mixed and unmixed, except

for E(1)
ΩΣ and E(1)

ΣΣ) can be determined in terms of E(1)
PΩ and E(1)

DD̃. We need

further constraints to relate those two undetermined vielbeins. We are following article [2–

4]. There a new torsion was introduced. It came from the requirement of partial integration

also in the presence of the new integration measure φ2 (dilaton). Following [2–4] the new

torsion is:

T̃A := φ2←−∇A φ− 2 (3.44)

where ∇A = EAMDM. The torsion (3.44) should vanish, so we get the T̃ torsion con-

straint T̃A = 0. We are interested just in the first order part of T̃A:

T̃A = 0 + T̃ (1)A + O(E(2) ) ⇒ T̃ (1)A = DB E(1)BA + 2DA φ(1) (3.45)

where φ = 1 + φ(1) + O (φ(2))

The relation T̃ (1)
S = 0 gives DS φ(1) = 0. Using T̃ (1)

D = 0 we get the relation:

1

4
εabc γ

c β
αE

(1)ab
β = 2 γaαβ E

(1) β a = Dβ̃ E(1)
β̃ α + DãE(1)

ãα

−Dβ̃ E
(1) β̃

α − 2Dα φ
(1)

γ .E(1)
ΩP = DΩ̃E(1)

D̃D + DP̃ E(1)
P̃D − DD̃ E(1)

Ω̃D(3.46)

−DD φ(1)

where we used the results of table 2. Using table 3 for E(1)
ãα and E(1) β̃

α we have the

relation between E(1)
PΩ and E(1)

DD̃ and the linearised dilaton φ(1):

γ .E(1)
ΩP ≡ 2 γaαβ E

(1) β
a = − 1

3
γã β̃ ǫ̃ [Dã, Dβ̃ ]E

(1)
ǫ̃ α +

1

2
γã β̃ ǫ̃DãDβ̃ E

(1)
ǫ̃ α

− 2Dα φ
(1) (3.47)

≡ − γ . [DP̃ , DD̃]E
(1)

D̃ D + γ .DP̃ DD̃ E(1)
D̃ D − DD φ(1)
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We notice that result (3.47) is exactly the right combination in order to express B

from (3.32) in terms of E(1)
D̃ D and φ(1). This will be used in following sections:

B = − 1

ϑ + 6 ζ
εν αDν

[

γã β̃ ǫ̃

(

− 1

6
[Dã, Dβ̃ ] +

1

4
DãDβ̃

)

E(1)
ǫ̃ α − Dα φ

(1)

]

(3.48)

≡ ε .DD

[

γ .
(

[DP̃ , DD̃ ] − DP̃ DD̃

)

E(1)
D̃ D − DD φ(1)

]

Using the relation T̃ (1)
P = 0 and similar steps we get:

− 2 εabc γ
b α
ǫ DαE

(1) ǫ c + 2DαE
(1)α

a − 4Da φ
(1)

= − 1

3
γã β̃ ǫ̃ [Dã, Dβ̃ ] γa

σ αDσ E
(1)

ǫ̃ α

+
1

2
γã β̃ ǫ̃DãDβ̃ γa

σ αDσ E
(1)

ǫ̃ α

(

using (3.47)
)

= γa
σ αDσ

(

− 2 γbαβ E
(1) β

b

)

− 2 εabc γ
b α
ǫ DαE

(1) ǫ c + 2DαE
(1)α

a − 4Da φ
(1)

= − 2 εab c γ
b α
ǫ DαE

(1) ǫ c + 2DαE
(1)α

a

− 4Da φ
(1) (3.49)

So, from the relation T̃ (1)
P = 0 we will get no new constraints.

From relations T̃ (1)
Ω = 0 and T̃ (1)

Σ = 0 we will get some constraints on unfixed (and

unused) vielbeins E(1)
ΣΩ and E(1)

ΣΣ.

4 Cartan-Killing metric and field equations

4.1 Cartan-Killing metric

Having the Lie algebra G, one can define a symmetric bilinear form:

K (X, Y ) :=
1

xλ
Tr ( adX adY ) ≡ 1

xλ

〈
Ei

∣
∣ adX adY |Ei〉 (4.1)

where X, Y ∈ G and xλ ≡ Dynkin index

and Ei, E
j ∈ G andG∗

then for X, Y ∈ basis of G:

K (Ei, Ej ) ≡ Kij =
1

xad
fim

n fj n
m (4.2)

where fa b
c are struc. cons. of G

The Cartan-Killing metric has many important group theoretical properties. We are in-

terested in it because the field equations for the background fields can be viewed as if the
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level of (engineering) dimension 1 of the (generalised) Cartan-Killing metric takes its free

value. To see that, we need to generalise the Cartan-Killing metric (4.2) to the case of

the (inhomogenous) graded algebra (3.2). We use the direct generalisation of the expres-

sion (4.2) for the algebra (3.2) in the presence of the background fields (vielbeins). In that

case the structure constants are given by (3.11). We get (the Dynkin index xad = 2):

KAB =
1

2
TACD TBDC (4.3)

We are interested in the linearised version of previous equation. Again we expand the

vielbeins to the first order and get:

KAB =
1

2
fACD fBDC +

1

2
f(A | C

D T (1)
B ]D

C

︸ ︷︷ ︸

K(1)
AB

+O (E(2) ) (4.4)

where T (1)AB C :=
1

2
D[AE(1)

B C ) +
1

2
E(1)

[A
M fM|B C )

4.2 Field equations

After imposing all the constraints we have found that everything can be expressed in terms

of E(1)
P Ω and E(1)

D D̃. The gamma “trace” part of E(1)
P Ω is related directly to E(1)

D D̃

by (3.47). Therefore we want the equation of motion for the field E(1)
D D̃.

We start with some action S and vary it with respect to the vielbein EDD and put it

to zero, i.e., δ/δ EDD S = 0. The variation produces a dimension 1 antisymmetric tensor.

On the other hand in the previous subsection we have seen that KDD is the canonical

antisymmetric dimension 1 tensor. Therefore we can impose the equations of motion:

δ

δ EDD
S ≡ KDD = 0 (4.5)

For the vielbein Eα̃ β we produce the following equations:

Kα̃ β = 0 ⇒ K(1)
α̃ β = 0 (4.6)

Plugging the definitions of structure constants and linearised torsions (note that only the

combination of dimension 1 torsions is present, since lower dimensional T (1) torsions are

all set to zero):

− 2 γm̃α̃ ν̃ T
(1)

β m̃
ν̃ + 2 γmβ ν T

(1)
α̃m

ν − 1

8
ε
ã b̃ c̃

γc̃ ν̃
α̃ T

(1)
β ν̃

ãb̃ +
1

8
εabc γ

c ν
β T

(1)
α̃ ν

ab = 0

(4.7)

To simplify (4.7) we can use one of the linearised (super)Bianchi identities that relates

T (1)
α̃ β

ab ≡ T (1)
D̃ DΣ with T (1)

α̃
a ν ≡ T (1)

D̃ P Ω :

T (1)
α̃ β

ab = 2 γ[aβ ν T
(1) b]

α̃
ν (4.8)

Doing that we can see that the field equation (4.7) becomes:

− γm̃α̃ ν̃ T
(1)

β m̃
ν̃ + γmβ ν T

(1)
α̃m

ν = 0 (4.9)
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using the explicit knowledge of T (1)
α̃m

ν from table 3 and also the result of the T̃D con-

straint (3.47). Then (4.9) can be rewritten as a differential equation just for the vielbein

E(1)
D̃ D ≡ E(1)

α̃ β . For completeness we give the e.o.m. for the vielbein E(1)
α̃ β :

[

δσ̃α̃

(

− 1

2
γm ν

β DmD2 − δνβ � − γ ν
s β . (Dm × Da ) − 2 δνβ D

µDµ − 2Dν Dβ

)

(4.10)

+
1

2
δνβ ǫ

σ̃ǫ̃Dα̃ D̃
2Dǫ̃ − ( α̃ → β andβ → α̃ )

]

E(1)
σ̃ ν = 0

[(

γ .DP DD . DD − DP . DP − γ . (DP . DP ) − DΩ . DD − DΩDD

)

(4.11)

+DD̃ DD̃ . DD̃ DD̃ − ( D̃ ↔ D )
]

E(1)
D̃ D = 0

where � ≡ ηa bDaDb and γ ν
s β . (Dm × Da ) ≡ εsma γ ν

s β DmDa ∝ DΣ.

The remaining equations are obtained by variation of S with respect to Eαβ and Eα̃ β̃ .

We get:

Kαβ = K(1)
αβ = 0 and Kα̃ β̃ = K(1)

α̃ β̃ = 0 (4.12)

where

K(1)
αβ ∝ εαβ B K(1)

α̃ β̃ ∝ εα̃ β̃ B̃ (4.13)

Equations (4.12) and (4.13) can be rewritten in a different way:

B + B̃ = 0 and B − B̃ = 0 (4.14)

where B is given by eq. (3.48). Because the explicit structure of B and B̃ is important for

the following considerations we repeat it here:

B ∝ εν αDν

(

Dǫ̃ +
1

4
γã β̃ ǫ̃DãDβ̃

)

E(1)
ǫ̃ α + εαβ Dβ Dα φ

(1) (4.15)

≡ ε .DD (DΩ̃ + γ .DP̃ DD̃ )E(1)
D̃ D + DD . DD φ(1)

B̃ ∝ εν̃ ǫ̃Dν̃

(

− Dα +
1

4
γa β αDaDβ

)

E(1)
ǫ̃ α + εα̃ β̃ Dβ̃ Dα̃ φ

(1) (4.16)

≡ ε .DD̃ (−DΩ + γ .DP DD )E(1)
D̃ D + DD̃ . DD̃ φ(1)

To analyse the second terms in (4.15) and (4.16) we need the following identities:

γa β αDaDβ = 4Dα − 1

2
D2 εα ǫDǫ ≡ DΩ − (DD . DD) εDD (4.17)

γã β̃ α̃DãDβ̃ = − 4Dα̃ +
1

2
D̃2 εα̃ ǫ̃Dǫ̃ ≡ −DΩ̃ + (DD̃ . DD̃) εDD̃ (4.18)

where D2 = εβ αDαDβ ≡ DD . DD (similarly for D̃2).

Using (4.17) and (4.18) we get:

B ∝ − 1

8
D̃2 ( εαν εǫ̃ σ̃ Dν Dσ̃ E

(1)
ǫ̃ α ) + D2 φ(1) (4.19)

≡ −DD̃ . DD̃ (DD DD̃ ) . E(1)
D̃ D + DD . DD φ(1)
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B̃ ∝ − 1

8
D2 ( εαν εǫ̃ σ̃ Dν Dσ̃ E

(1)
ǫ̃ α ) + D̃2 φ(1) (4.20)

≡ −DD . DD (DD DD̃ ) . E(1)
D̃ D + DD̃ . DD̃ φ(1)

Then the first of (4.14) becomes the equation:

0 = (D2 + D̃2 )

(

− 1

8
εαν εǫ̃ σ̃ Dν Dσ̃ E

(1)
ǫ̃ α + φ(1)

)

(4.21)

We can rewrite (4.21) using a new field V :

(D2 − D̃2 )V =:

(

− 1

8
εαν εǫ̃ σ̃ Dν Dσ̃ E

(1)
ǫ̃ α + φ(1)

)

(4.22)

Using this definition (4.21) can be written as:

0 = (D2 + D̃2 ) (D2 − D̃2 )V (4.23)

The operator (D2 + D̃2 ) (D2 − D̃2 ) acts on the scalar field V . It can be rewritten in a

nicer form:

(D2 + D̃2 ) (D2 − D̃2 )V = 4 (� − Dν D
ν + Dν Dν − ( �̃ − Dν̃ D

ν̃ + Dν̃ Dν̃ ) )V

≡ 4DADA V (4.24)

Therefore the first equation of (4.14) can be rewritten as:

DADA V = 0 (4.25)

and so (4.25) is identically satisfied since it is just the strong constraint.

The second equation of (4.14) becomes the e.o.m. for the V field:

(D2 − D̃2 )2 V = 0 (4.26)

4.3 Field equations: summary

The field equations are summarised in the following table 4.

K(1)
α̃ β = 0 ⇒

[

δσ̃α̃

(

− 1
2 γ

m ν
β DmD2 − δνβ � − γ ν

s β . (Dm × Da )

− 2 δνβ D
µDµ − 2Dν Dβ

)

+ 1
2 δ

ν
β ǫ

σ̃ǫ̃Dα̃ D̃
2Dǫ̃

− ( α̃ → β andβ → α̃ )
]

E(1)
σ̃ ν = 0

K(1)
αβ + K(1)

α̃ β̃ = 0 ⇒ DADA V = 0

where (D2 − D̃2 )V =: (− 1
8 ε

αν εǫ̃ σ̃ Dν Dσ̃ E
(1)

ǫ̃ α + φ(1) )

K(1)
αβ − K(1)

α̃ β̃ = 0 ⇒ (D2 − D̃2 )2 V = 0

Table 4. Field equations.
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5 Dilaton

The result of the previous section gives the structure of the linear dilaton φ(1), see table 4.

Using the relation (4.22) we find the structure of the linear dilaton:

φ(1) =
1

8
εαν εǫ̃ σ̃ Dν Dσ̃ E

(1)
ǫ̃ α + (D2 − D̃2 )V

≡ ε εDD DD̃ . E(1)
D D̃ + (DD . DD − DD̃ . DD̃ )V (5.1)

We notice that the structure of the linear dilaton matches the structure of the dilaton field

obtained by compactifying 4D N = 1 supergravity to 3 dimensions, see section 7.2.b in [17].

For the dilaton we can though impose the space-time action (after compactification of half

of the dimensions, as usual in double field theory):

Sdil :=

∫

d3x d2θ φ2 (5.2)

where φ ≈ 1 + φ(1). Moreover the cosmological constant can be added; then the

action becomes:

Sdil :=

∫

d3x d2θ (φ2 − λV ) (5.3)

6 Conclusion

We outline the results we have obtained: we started with T-dual N = 2 string theory,

i.e,. effective N = 2 supergravity in 3 dimensions. We knew that this theory should be

equivalent to the theory obtained from classical N = 1 supergravity in 4 dimensions. In

this paper we first obtained the dimension − 1 prepotential as the vielbein component

E(1)
D D̃ ≡ E(1)

α β̃ and the dimension − 3
2 unconstrained gauge parameter ΛD ≡ Λα

(also ΛD̃) without solving any differential constraints. In the usual 4 dimensional N = 1

supergravity they appear only through their derivatives in objects of higher dimension after

solving differential constraints, see section X.A.1 in [20]. We also derived the structure of

N = 2 supergravity in 3 dimensions using the techniques of T-dually extended superspace.

In particular the structure of the linear dilaton φ was derived. It matches the structure

obtained from 4D N = 1 and its compactification, see section 7.9 in [17] and [19]. This

suggests that the T-dually extended superspace approach can be extended also to higher

dimensional cases, see [7].
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