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Abstract

Let G be arank n additive subgroup of C and Vir[G] the corresponding Virasoro algebra of rank n.
In the present paper, irreducible weight modules with finite dimensional weight spaces over Vir[G]
are completely determined. There are two different classes of them. One class consists of simple
modules of intermediate series whose weight spaces are all 1-dimensional. The other is constructed
by using intermediate series modules over a Virasoro subalgebra of rank n — 1. The classification
of such modules over the classical Virasoro algebra was obtained by O. Mathieu in 1992 using a
completely different approach.
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1. Introduction

Let C be the field of complex numbers. The Virasoro algebra Vir := Vir[Z] (over C) is
the Lie algebra with the basis {c, d; | i € Z} and the Lie bracket defined by

[c,di]=0,
i*—i
[d,',dj]Z(j—i)di+j+5,"_jTC, Vi, j € Z.
The structure theory of the Virasoro algebra weight modules with finite dimensional weight
spaces is fairly well developed. For details, we refer the readers to [6], the book [4] and the
references therein.

The centerless Virasoro algebra is actually a Witt algebra, and generalized Witt al-
gebras in positive characteristic and characteristic 0 were studied by many authors, for
instance, Zassenhaus [19], Kaplansky [5], Ree [12], Wilson [17], Strade [13]; and Os-
born [9], Djokovic and Zhao [2], Passman [10], Xu [18].

Patera and Zassenhaus [11] introduced the generalized Virasoro algebra Vir[G] for any
additive subgroup G of C. This Lie algebra can be obtained from Vir by replacing the index
group Z with G (see Definition 2.1). If G >~ Z", then Vir[G] is called a rank n Virasoro
algebra (or a higher rank Virasoro algebra if n > 2).

Representations for generalized Virasoro algebras Vir[G] have been studied by several
authors. Mazorchuk [8] proved that all irreducible weight modules with finite dimensional
weight spaces over Vir[Q] are intermediate series modules (where Q is the field of rational
numbers). In [7], Mazorchuk determined the irreducibility of Verma modules with zero
central charge over higher rank Virasoro algebras. In [3], Hu, Wang and Zhao obtained
a criterion for the irreducibility of Verma modules over the generalized Virasoro algebra
Vir[G] over an arbitrary field F of characteristic O (G is an additive subgroup of F).
Su and Zhao [16] proved that weight modules with all weight spaces 1-dimensional are
some so-called intermediate series of modules. In [14,15], Su proved that the irreducible
weight modules over higher rank Virasoro algebras are divided into two classes: intermedi-
ate series modules, and GHW modules. In [1], Billig and Zhao constructed a new class of
irreducible weight modules with finite dimensional weight spaces over some generalized
Virasoro algebras.

The aim of this paper is to complete the classification of irreducible weight modules
with finite dimensional weight spaces over higher rank Virasoro algebras Vir[G]. The result
for n = 1 was obtained by Mathieu [6] by using a completely different method.

This paper is arranged as follows.

In Section 2, we collect some known results. For any total order “>" on G, which
is compatible with the group addition, and for any ¢, h € C, we recall the definition of
the Verma module M (¢, h, =) over Vir[G] and some known facts about such modules
(see [3]). We recall from [1] the construction of a class of irreducible weight modules with
finite dimensional weight spaces over some generalized (including higher rank) Virasoro
algebras. These modules are denoted by V («, 8, b, Go) (see (2.5) for definition) for some
a,BeC,be G\ {0}, and a subgroup Gy of G with G = Zb & Gy. We also recall in
Theorem 2.5 a useful result from [14].
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In Section 3, we give a classification of irreducible weight modules with finite dimen-
sional weight spaces over Vir[G] for G >~ Z", i.e., any such module is either an intermedi-
ate series module V'(a, B, G) or V(«, B, b, Gy) for suitable parameters (Theorem 3.9). We
show that all GHW modules (see the definition preceding Theorem 2.5) over Vir[G] are
isomorphic to modules V («, 8, b, Go). The main technique we employ in this paper is to
thoroughly study the weight set supp(V) (sometimes also called the support) of nontrivial
irreducible weight modules V with finite dimensional weight spaces. We first spend a lot
of effort to handle the case n =2 (Lemma 3.3-Theorem 3.7), and then use induction on n
to deal with all other cases. The induction turns out to be rather difficult.

We hope that our results will have some applications in physics since the Lie algebras
studied in the present paper have similar properties as the classical Virasoro algebra which
is widely used in physics.

2. Weight modules over generalized Virasoro algebras

In this section we recall the construction of various modules and collect some known
results for later use.

Definition 2.1. Let G be a nonzero additive subgroup of C. The generalized Virasoro
algebra Vir[G] (over C) is the Lie algebra with the basis {c, d, | x € G} and the Lie bracket
defined by

[c,dx] =0,
X3 —x
[dy,dy]l = (x — y)dyyy +<Sx,_ch, Vx,yegG.
It is clear that Vir[G] >~ Vir[aG] for any a € C*. For any x € G* := G \ {0}, Vir[xZ] is
a Lie subalgebra of Vir[G] isomorphic to Vir.
Fix a total order “>"" on G which is compatible with the addition, i.e., x > y implies

x+z>y+zforany z € G. Let
Gy ={xeG|x>0}, G_={xeG|x=<0}.
Then G = G4 U {0} U G_ and we have the triangular decomposition
Vir[G] = Vir[G]; @ Vir[G]- @ Vir[G]o,

where Vir[G]y = @xeG+
It is clear that either

Cdy, Vit[G]- = @, . Cdy, Vir[Glo = Cdy + Ce.

#HyeG|0<y=<x}=o00, VxeGy, 2.1
or

daeGy, #{yeG|0<y=<a}=0. 2.2)
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We say that the order is dense respectively discrete if (2.1) respectively (2.2) holds.

A Vir[G]-module V is called trivial if Vir[G]V = 0. For any Vir[G]-module V and
¢, AeC, let Vi :={v eV |dyv = Av,cv = cv} denote the weight space of V corre-
sponding to a weight (¢, A). When c acts as the scalar ¢ on the whole space V, we shall
simply write Vj instead of V ;.

A Vir[G]-module V is called a weight module if V is the sum of its weight spaces. For
a weight module V we define supp(V) := {X € C| V, # 0}, which is generally called the
weight set (or the support) of V.

For any Lie algebra L, we shall use U (L) to denote its universal enveloping algebra. For
any ¢, h € C, let I (¢, h, >) be the left ideal of U := U (Vir[G]) generated by the elements

{dilieGy}U{do—h-1,c—c-1}.
Then the Verma module with the highest weight (¢, k) for Vir[G] is defined as
M@, h,=):=U/I(, h,>).
This module has a basis consisting of the following vectors
d_jd_iy---d_jvp, keNU{[0}, i;e€Gy, Vjandix>--->ir>i; >0,

where v, = 14 1(¢, h, >) is the highest weight vector. Let V (¢, h, >) be the unique irre-
ducible quotient of M (¢, h, >). Let us recall

Theorem 2.2. [3, Theorem 3.1] Let ¢, h € C.

(1) Assume that the order “=" is dense. Then the Verma module M (¢, h, =) is an irre-

ducible Vir[G]-module if and only if (¢, h) # (0, 0). Moreover,

M'(0,0,>) = Z Cd_j, ---d_i,vo

[]yeees ixeGy, k>0

is an irreducible submodule of M (0, 0, >).

(2) Assume that the order “>=" is discrete. Then the Verma module M (¢, h, >) is an ir-
reducible Vir[G]-module if and only if for the minimal positive element a € G with
respect to “>", the Vir[aZ]-module M, (¢, h, =) = U (Vir[Za])vy, is irreducible.

Now we give another class of Vir[G]-modules V («, 8, G) for any «, 8 € C (see [16]).
These Vir[G]-modules all have basis {vy | x € G} with actions given by the following
formula

cvy =0, divy =(+y+xB)vyiy, Vx,yeG.

One knows from [16] that V («, 8, G) is reducible if and only if « € G and 8 € {0, 1}.
By V/(a, 8, G) we denote the unique nontrivial irreducible sub-quotient of V («, 8, G).
Then supp(V’'(a, B, G)) = a + G or supp(V'(a, 8, G)) = G \ {0}. We now recall
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Theorem 2.3. [16, Theorem 4.6] Let V be a nontrivial irreducible weight module over
Vir[G] with all weight spaces 1-dimensional. Then V >~ V'(a, b, G) for some a,b € C.

Now we assume that G = Zb & Go C C where 0 # b € C and Gy is a nonzero subgroup
of C. (Note that some G lack this property.) We temporarily set L = Vir[G]. For any i € Z,
we set

Lip = EP Cdipta,

aGGo
Ly= @ Lip, L_= @ Lip, Lo > Vir[Gol.
i>0 i<0

For any «, 8 € C, we have the irreducible Lo-module V'(«a, 8, Go). We extend the
Lo-module structure on V'(a, 8, Gg) to an (L, + Lg)-module structure by defining
L. V'(a, B, Gy) =0. Then we obtain the induced L-module

M(b, Go, V(. B, Go)) =Indf V(. B, Go)
=U(L) QU (L4 +Lo) V/(O[, B, Go). 2.3)

_ As vector spaces, M (b, Gy, V'(a, B, Go)) ~ U(L_) ®c V'(e, B, Go). The L-module
M(b, Gy, V'(a, B, Go)) has a unique maximal proper submodule J. Then we obtain the
irreducible quotient module

M(b, Go, V'(a, B, Go)) = M(b, Go, V'(a, B, Go))/J. (2.4)
It is clear that this module is uniquely determined by «, 8, b and Gg; and that
supp(M(b, Go, V' (a, B, Go))) =Z b+ Gy or (Z+b + Go) \ {0} (2.5)

Note that b can be replaced by any element in b + Gy.
To simplify notation, set

V =V(a, B,b,Go) = M(b, Go, V'(a, B, Gp)). (2.6)

It is clear that V = 5 V_ib+a+G,» Where

iEZ+

V_ ibta+Gy = @ Viibtatas Veibtata ={v €V |dov=(—ib+a+a)v}.

aceGo

Now we recall

Theorem 2.4. [1, Theorem 3.1] All weight spaces of the Vir[G]-module V («, B, b, Gy),
defined above, are finite dimensional. More precisely, dim V_;p1q4a < (2i + D! for all
ieN, aeGy.
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From now on in this paper we assume that G ~ Z" for some integer n > 1, V =
D, Va+x is an irreducible weight module over Vir[G] with finite dimensional weight
spaces (i.e., dim V1 < oo for all x € C) where a € C. If there exists N € N such that
dim V1 < N for all x € C, we say that V is uniformly bounded. If there exists a Z-basis
B={by,...,b,}of G and v,, € V4, such that

dyva, =0, YO#xe€Z b+ - +7Z" by,

we say that V is a generalized highest weight module (GHW module for short) with GHW
Ag wr.t. B (see [14]). The vector v 4, is called a GHW vector with respect to B, or simply
a GHW vector. Finally we recall

Theorem 2.5. [14, Theorem 1.2] Suppose that G >~ 7", n > 1 and V is a nontrivial irre-
ducible weight Vir| G]-module with finite dimensional weight spaces.

(a) If V is uniformly bounded, then V >~ V'(a, 8, G) for suitable a, B € C.
(b) If'V is not uniformly bounded, then V is a GHW module.

3. Classification of weight modules

In this section we give a classification of all irreducible weight modules with finite
dimensional weight spaces over higher rank Virasoro algebras. More precisely, we prove
that any such module is either V'(«, B, G) or V(«, B, b, Gg) (Theorem 3.9). To this end,
by Theorem 2.5, we need only study GHW modules.

Recall that G is an additive subgroup of C with G >~ 7Z" and n > 1, and that V =
P, <G Va+x is an irreducible weight module over Vir[G] with finite dimensional weight
spaces.

By “>" we denote the lexicographic order on Z", i.e., (x1, ..., x,) > (¥1, ..., y) if and
only if there exists s: 1 <s < n such that x; = y; for 1 <i <s —1and x5 > y;.
We write (x1,...,X) > (V1,...,yn) if x; > y; for 1 <i < n; and (x1,...,x,) >

015y ifx 2y for 1 <i <.

In this section, the letters i, j, k,l,m,n, p,q,r,s,t,x,y denote integers. For conve-
nience, we set [p,g]l ={x | x € Z, p < x < g} and define similarly the infinite intervals
(—o00, pl, [g,00) and (—o00, +00). Fora € G or S C G, we denote by Vir[a] or Vir[S] the
subalgebra of Vir[G] generated by {d1,, d12,4} or {d+,, dio, | a € S}, respectively.

Lemma 3.1. Suppose that B = (b1, b, ..., by) is a Z-basis of G and n > 2. Let V be a
nontrivial irreducible GHW Vir| G]-module with GHW Ay w.rt. B.

(a) For any v € V, there exists p > 0 such that d; p,+iyby+.+i,b, v = 0 for all (i1, i2,
cesin) Z2 (P, pyeees )

(b) If Ag+i1b1+iz2br+---+inb, € supp(V), then for any positive integers ki, ka, .. ., ky,
there exists m > 0 such that {x € Z.| Ao+ i1by +i2by+---+i,b, +x(k1b1 + koby +
“+ knbyn) € supp(V)} = (o0, m].
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(c) Let S be any subgroup of G of rank n, then any nonzero Vir[S]-submodule of V is
nontrivial.
(d) There exists a Z-basis B' = {b},b,, ..., by} of G such that
(d1) V is a GHW module with GHW Ag w.rt. B';
(d2) (Ag+Z+D, + ZFbh + -+ + Z+D.) Nsupp(V) = { Ao};
(d3) (Z/i%/— ZYb| — Ztby — - = ZTb}) Nsupp(V) = Ag — Z1b| — Z1by — - —
ne
(d4) Ao +kiby +koby + -+ knby, ¢ supp(V), Y(ki, ko, ..., kn) = (1,02, ..., in) if
Ao +i1b) +izby 4 - - +inb;, ¢ supp(V);
(d5) Ao+ kib| +koby + - - 4 kpb;, € supp(V), V(ki, ko, ..., kn) < (i1, 02,...,00) if
Ag +i1b) +ixby + - - +inb;, € supp(V);
(d6) ForanyO# (ki, ko, ..., ky) =>0and (i, i2,...,in) €Z", we have {x € Z | Ay +
Yo i+ x(Q0 kb)) € supp(V)} = (—o0, m] for some m € 7.

Proof. For n = 2 a slightly weaker form of this lemma is a combination of several lemmas
in [15].
(a) Without loss of generality, we may assume that v =uv ,4,, where
d,
1

= di{”bl+i§‘)b2+---+i,§”bn Dby +iP byt tis by 'di{’“bl+i§’”)bz+---+i£””bn

€ U(Vir[G]).

Take p = max{— Zi}” ® _ Zi§s><0 iés), e — Zi,ﬁf)<0 i} + 1. By induction on m,

i
<0°l >
and using the Lie bracket in Vir[G], we easily obtain

di\by+isby+tiphy, ¥ =0, Y(i1,02,...,in) = (P, p,..., P).
) Let J ={x €Z| Ao+ Y_j_, ithi + x(X_j_, kib;) € supp(V)}.
Claim 1. For any nonzero v € V, we have d_ (i, b, +kyby+--+knby)V 7 0.

Proof. Suppose that d_k, p,+kyby+-—+kb,)V = 0 for some nonzero v € V. Let p be as
in (a). Then d_ (b, +kybyt-tknby) AN dp, 1 p(ky by +koby+-+knby) TOT i € [1, 1] act trivially
on v. Since Vir[G] is generated by these elements, we see that Vir[G]v = 0, contradicting
the fact that V is a nontrivial irreducible module. Claim 1 follows. O

It follows from this claim that J = (—oo, m] for some m > 0 or J =Z.
Suppose that J = Z. For any x € Z, let

Ay =Ag+i1thy +izby+ - +inby +x(kiby + kabo + - - - + kyby).

We know that Virl®! := Vir[k;b; +kaby + - - - +k,by,] is a rank one Virasoro subalgebra, and
W= @xez Vi, isa Virl*l-module. From (a) and a well-known result in [6, Lemma 1.6]
for any x € Z there exists y > x such that Vi, contains a Virl¥] primitive vector (a nonzero
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weight vector v such that dj, b, 4,0+ +k,b,)v = 0 for all [ € N). So there are infinitely
many nontrivial highest weight Vir*l-modules having the same weight Ao, which implies
dim Vj, = oo. This contradiction yields that J # Z. Hence, (b) is proved.

(c)Forany p,let 1 =(p+1L,p,....p), b=(p+2,p+1,p,p,....0), Ik =11 +
0,0,834,..-,00k)€Z", k=3,...,n. Let

A=| B, (3.1

Then det(A) = 1. Suppose that there exists a rank n subgroup S of G and a nonzero
vo € V such that Vir[S]vg = 0. Now take p as in (a), that is, d;, p, +i,br+-.-+i,b, Vo = 0 for all
(i1,12,...,in) = (p, p, ..., p). Let (b, b3,...,b}) = (b1, b2, ..., by)A. Then dprvo =0
for all i =1,2,...,n. Since G/S§ is a finite group, there exists some i > 0, such that
—i(by + b5+ +by) €. Clearly d_p,d_ps, ..., d—p belongs to the subalgebra gen-
erated by the elements:

dfi(bf+b§+--~+b;§)v dbfv = 1, 2, R (9

and Vir[G] is generated by d:tbl’f, i=1,2,...,n. Hence we have Vir[G]vg = 0, a contra-
diction to the fact that V is nontrivial.

(d) By (b) we can suppose that {x € Z | Ag + x(by + b2 + --- + b,) € supp(V)} =
(00, p — 2] for some p > 2. Take A as in (3.1), and (b}, b/z, e, b;l) = (b1,ba,...,by)A.
One can easily check (d1)—(d6) by using (b) and Claim 1. We omit the details. O

To better understand the proof of Lemma 3.1(d) and the lemmas that follow it might help
if one draws a diagram in the Ob;b;-plane for n = 2 to describe those sets. For instance,
if A = x1b1 + x2b> in the first quadrant, i.e., x; > 0, x > 0, then Ag + A ¢ supp(V) and
Ag — A e supp(V).

In the next lemma we do not assume the irreducibility of V.

Lemma 3.2. If 'V is a nonzero uniformly bounded weight module over Vir[G], then V has
an irreducible submodule.

Proof. Fix a € supp(V). Then P ¢cG Ve+a 1s a Vir[G]-submodule. Thus it is enough to
prove the lemma for V = 9 ¢cG Ve+a- We may assume that V' does not have any nonzero
trivial submodules. So we can further assume that a # 0.

We shall prove the lemma by induction on dim V.

If dimV, =1, let W be the submodule generated by V,. We know that there exists
a maximal proper submodule W’ of W not containing V,. So W/ W’ is irreducible. By
Theorem 2.5, we know that W/ W' is a V'(a, B, G). So W, =0.If W/, #0 for a’ # a,
then consider the Vir[a — a’]-module generated by Wa/ ,. From the Virasoro algebra theory,
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we see that @’ = 0, hence Vir[G]W’ = 0, a contradiction. So W' =0 and W itself is an
irreducible Vir[G]-submodule. The lemma follows in this case.

In general, for any nonzero v € V,, let W be the submodule generated by v. By Zorn’s
Lemma, there exists a maximal proper submodule W’ of W not containing v. By Theo-
rem 2.5, W/ W >~ V'(a, B, G) for some «, B € C. If W =0 we are done. If W’ 5 0, then,
applying the inductive hypothesis to W', we have an irreducible submodule of W’. The
lemma is proved. O

In the rest of this section we further assume that V = 2eG VAg+g 18 a nontrivial ir-
reducible GHW Vir[G]-module with GHW Ay w.r.t. B ={by, b, ..., b,}, where Ay € C,
and B satisfies the properties of Lemma 3.1(d).

Lemma 3.3. If there exist (i1, 12, ...,1n), (k1, k2, ..., k) € Z" with ky, ..., k, relatively
prime, and (s1, ..., sp) > 0 satisfying

n n
iAO + Z irh + thstbt

=1 =1

n
(X1, X2, ... %) €Z", Y kusixi =0 Nsupp(V) =14,

t=1

then V.~ M®', Gy, V'(a, B, Go)) for some a,B € C, and G = 7Zb' & Gy, where
0#£b' €C, Gg is a subgroup of G.

Remark. The above condition means that a lattice in some affine hyperplane of Z" orthog-
onal to (k1, k3, ..., k,) contains no weights of V.

Proof. As mentioned earlier, to understand the proof of this lemma better it may be helpful
to sketch in the Ob1b;-plane for n = 2 the sets used in the proof.

By Lemma 3.1(d6), we have k; > O for all i = 1,2,...,n or k; <0 for all i =
1,2,...,n. We may assume that (k1, k2, ..., k,) > 0. Let

n n
Goz{Zx,bt €G Zkixi=0}. (3.2)
t=1 i=1

Claim 1. There exists mq € 7Z such that

n
{AO + thb,

t=1

n
(x1,x2,...,x,) €Z", Zkixi > mo} Nsupp(V)=0. (3.3)

i=1

Proof. Let A; = s;51(—081.+k1 + k¢, —62,¢k1, ..., —8n,1k1) Whose corresponding element
in G is s;s1(—k1b; + k;b1) € Go. Note that k1 % 0. One may easily check that for any
(z1,22,...,20) € Z" with Z:;l z:k; > 0, there exist suitable I; € Z,t = 1,2, ...,n, such
that

n
(Zle27-~~7Zn)=(Z/]9Z/2s~--aZ;1)+thAt7 (3'4)
t=1
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where 0 > z; > —kjysys; forall 7 € {2,3,...,n}. Hence z| > 0. Now let N = max{k;s;si,
kisisz, ..., kisisn}, andmo =) ,_, ks(N +i;). Then using (3.4), for any (x1, x2, ..., x,) €
Z" with Y7, kix; > mo we have

n
(X1, X2, ..., %) — (i1 +N,i2+N,...,in+N):(xi,xé,...,x,’l)—i—thAt,
where 0 > x, > —kys1s1, i.e.,
n
(1. X2, ) = (ni, i) + (N XN+ x5 N +x,) + > LA, (35)

t=1

Let (y1, y2, -+, yn) = 2y [t A;. We have

n n n n
A() + thbt = A() + Zitb[ + Zytb[ + ZZert'
t=1 t=1 t=1 t=1

Note that Y/, yiby = > 1, yps:by with Y7 y/s;k; = 0. From the assumption we know
that

n n
Ao+ Y ishi+ Y yibi ¢ supp(V). (3.6)
=1 =1
By applying Lemma 3.1(d4) we obtain Ao+ >, x;b; ¢ supp(V). The claim follows. O
From Claim 1 we have a unique integer m with the following two properties:

(D) {Ao+ Y/ xiby €supp(V) | x1,x2, ..., Xy €Z, Y i_  kixi >m} =¥, and
(2) P:={Ao+ Y /_xiby esupp(V) | x; € Z, Y ! kixi =m — 1} # .

Fix some b/1 = Huby + by + --- + t,b, with Z:'l:lkiti = 1. Since for any g =
Y i1 8ibi € G, weseethat g — (3_7_, kigi)b| € Go, then G = Zb| ® Gy. Fix 19 € P. We
have P = (A9 + Go) Nsupp(V). Let W = @AGA0+GO Vi, which is a Vir[Gg]-submodule
of V.

Claim 2. W is a uniformly bounded Vir[ Go]-module.
Proof. Let0 5 w € V; forsome A € P. Noting that (P + G+ b}) Nsupp(V) = @, and that

for any ag € Gy, the set {da+b’1 ,d | a € Go} generates the Lie algebra Vir[b, Go] =
Vir[G], we deduce

—ap—b}

d_ao_b/lw #0 for any ap € Gy.
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Thus we obtain a linear injection d—ao—bﬁ *Viday = Vk—hﬁ . Thus dim Vj 44, < dim Vx—b’l
for all ag € Gy, i.e., W is uniformly bounded. Claim 2 follows. O

By Lemma 3.2, W has an irreducible Vir[Go]-submodule W’. By Theorem 2.5, any
irreducible uniformly bounded module is either trivial or isomorphic to V'(«, 8, Gg) for
some (a, B) € C2. Now the center ¢ acts as zero on W’. The Vir[G] = Vir[b’l, Go]-module
V is generated by W' and i) +ay W’ =0 for any k € N,ag € Gg. So V is the unique

irreducible quotient of M (b}, Go, W'). If W/ = Cuvg then V = Cuvy. Since V is nontrivial,
we have W' =~ V/(«, B, Go) for some (o, B) € C> and V >~ M (¥, Go, V'(«, B, Gp)). O

For any Z-basis B’ = {b|, b}, ..., b} of G, we define the total order “>p” on G as
follows: x1b] 4+ x1b) + - -+ 4+ xub;, >p y1b} + y1by + -+ + yub), if (x1,x2,...,x,) >
(y17y2»~~7)’n)~

Corollary 3.4. Suppose that G ~ 7. For any (0, 0) # (¢, h) € C?, and any Z-basis B' =
{b}, b} of G, there exists ) € supp(V (¢, h, >pr)) such that diim(V (¢, h, >p)); = oo.

Proof. Suppose that for any A € supp(V (¢, h, >p/)) we have dim(V (¢, h, =p/)), < oo. It

is easy to see that supp(V (¢, h, >=p1)) C (h —Nb| +Zb4) U (h —ZF b)), hence V (¢, h, >p/)
is a GHW module with GHW h w.r.t. B’. Note that

(h +Nb| + Zb5) Nsupp(V (¢, h, >p)) =¥, and
(h +Zb5) Nsupp(V (¢, h, >p)) # 0.

Using the same argument as in the proof of Claim 2 of Lemma 3.2, we see that

W= @ V(¢ h,>p )t
LeZD),

is a uniformly bounded Vir[b’z] module. Since W contains the submodule W’ =
U (Vir[b}])(vy) which is a highest weight module with highest weight (¢, ), W' (and W)

is not uniformly bounded. A contradiction. Hence (¢, k) = (0,0). The corollary fol-
lows. O

Lemma 3.5. Suppose that G ~ 7. If there exist (k,1) #0, (i, j) € Z*, p,q € 7 such that
{x €Z| Ao+ iby + jbr+ x(kby + 1b2) € supp(V)} D (—o0, p]U g, 00),

then V >~ M (b}, Zb,, V' (a, B, Zb})) for some o, B € C, and a Z-basis B' = (b}, b)) of G.

Proof. From Lemma 3.1(d6), we see kI < 0. We may assume that / > 0. Let

(i+qgk,j+pl), ifp<qg—1,

(’0’10)2{0,1), ifp>q—1.
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Denote L := {ioh1 + job2 + x(kby +1b2) | x € Z}. If p < q — 1, write
iob1 + joba + x(kby +1b2) = iby + jby + (x +q) (kb1 +1b2) + (p — q@)lob2  or
iby + jby 4+ (x + p) (kb1 + 1b2) + (¢ — p)koby
according to x > 0 or x < 0. From Lemma 3.1(d5) we see that all points in the set Ag + L
are weights of V.

Write (k,[) = s(ko, lp) with ko, o relatively prime, s > 1. By replacing (i, j) with
(i, jo — (s — 1)lp), we may assume that p = ¢g. Then similarly we have Lo:=ib; + jby +
Z(kob1 + lob2) C supp(V). Using Lemma 3.1(d5) we see that

{ Ao+ xb1 + yby | lox — koy < loi — ko(jo — (s — Dlo), (x,y) € Z*} C supp(V),
i.e., all points under the line Ag — (s — 1)loby 4+ Lo are weights of V (It might help if one
draws a diagram on the Ob1b>-plane.)

So we may assume that k, / are relatively prime, k < 0, [ > 0, and there exists an inte-
ger mq such that

{Ag+xby + yby | Ix — ky <mo, (x,y) € Z*} C supp(V). 3.7)

Fix (k',1") € Z* with Ik’ — kI’ = 1. Denote b/1 =kb| + Iby and b’2 =k'by +1U'by. If

{Ao — kby + b, + tb} | t € Z} Nsupp(V) =0,
then the lemma follows from Lemma 3.3. Hence we may assume that

{Ao — kby + b5+ 1} | t € Z} Nsupp(V) # 0. (3.9)

Choose A — kb + b, — sb} € supp(V), and a nonzero weight vector v € V4, by, -
Let

b = sb| — b}, by = (s + 1)b| — b}.
Since Ag — kby, Ag — kby + b} € Ao+ ZT by + ZT by, we obtain
db/l/v = 0, db/z/v =0.
Thus
dmh’l'-i-nb’z’v:O’ Vm>0, n>0.

Using this, one sees that v is a GHW vector with respect to the Z-basis {b] + b)), b 4 2bJ}
of G. Now by Lemma 3.1(b) there exists some xq such that

Ao+ b5+ x((B] +b5) + (b +2b5)) ¢ supp(V), Vx> xp. (3.9)
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(b7 + b5) + (b] +205) = 2b] + 3b5 = (25 +3(s + 1))} — 5b)
= ((55 4+ 3)k — 5k')by + ((5s + 3) — 51')b»,
I1((5s +3)k — 5k") — k((55 4+ 3)l = 51') = =5(lk" — k") = =5 < 0.

Hence for x sufficiently large we have
Ao + by +x((b] +b5) + (b] +2b5)) € { Ao +xby + yba | Ix —ky <mo, (x,y) € Z*},

which is a contradiction to (3.7) and (3.9), hence (3.8) cannot occur. The lemma fol-
lows. O

Lemma 3.6. Suppose that G =~ 72, If there exist (i, j), (k,[) € 72 and x1, x2, x3 € 7 with
X1 < X2 < X3, such that

Ag+iby + jby +x1(kby +1b3) ¢ supp(V),
Ao +1iby + jby + x2(kby + 1bo) € supp(V), and
Ao +iby + jby +x3(kby +1b3) ¢ supp(V),

then
(a) there exists x € 7. with x1 < x < x3 such that
Ao+ iby + jby +x(kby +1by) =0,

and further,
(b) such a module V does not exist.

Proof. We may assume that k, [ are relatively prime, and by Lemma 3.1(d6) we see kI < 0.
So we may assume that k < 0 and [ > 0. Replacing x; by the largest x < x3 with Ag+ibj +

Jjba+x (kb1 +1by) € supp(V), and then replacing x3 by x4+ 1 and (i, j) by (i, j) +x2(k, 1)
we can assume that

X1 <x2=0, X3=1. (3.10)
Fix a nonzero weight vector v € VAytip,+jb,. Then (3.10) means
iy +1b, v = 0 = dx, (kb +1b) Vs

which yields d+p,+1p,)v = 0. By Lemma 3.1(b) we can choose p,q > 0 such that
dppy+gb,v = 0. Since kg —Ip < 0, then S = {b] = kb +1by, b, = pb| 4+ gbs} is a Z-linear
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independent subset of G. Note that dmb’, b} for n > 0 belong to the subalgebra generated
by diha s db/z Thus

dmanbrzv:O, Vn > 0,m e Z.

Consider the Vir[b/l]-module wW=U (Vir[b/l])v. By using the PBW basis of U (Vir[S]) we
have

(Ao +ibi + jby + Zby + Nbs) Nsupp(U (Vir[S)v) = 1. (3.11)

Case 1. W is not uniformly bounded.

From Virasoro algebra theory we see that W has a nontrivial irreducible sub-quotient
Vir[b/l]—module W1/ W, which is a highest (or lowest) weight Vilr[b/1 ]-module. Using (3.11)
and PBW Theorem, we know that W’ = U (Vir[S]) W/ U (Vir[S]) W, is a highest weight
Vir[S]-module w.r.t. the lexicographic order determined by {b}, b} with highest weight
not equal to (0, 0). Now by Corollary 3.4, W’ has a weight space of infinite dimension. So
does S. This case does not occur.

Case 2. W is uniformly bounded.

First we can easily see that the center c¢ acts as zero on V. From the fact that
supp(V'(a, B, Zb))) = a + Zb) or Zb} \ {0} and the assumption (3.10), we know that
W C Vp, the weight space with 0 weight. We deduce (a).

It is clear that W = Vj = Cvg. Denote by W” the Vir[S]-module generated by W,
which is a Vir[S]-submodule of V. Now by (3.11), Vir[S]-module W” is a quotient mod-
ule of M(0,0, >p5/), and W” is nontrivial (from Lemma 3.1(c)), so W” is reducible. If
d_b/2 +sob| VO = 0 for some sg, from

-1
d_p s v0 = (=5 + (250 = )bY) " [d_py 4 b » s —sg; 10 = O,

and the fact that {d—bé +sb), | s € Z} generates {d_,b/2 +sb), | s € Z, t € N}, combining with

(3.11) we deduce that W” is a trivial Vir[S]-submodule, a contradiction to Lemma 3.1(c).
So we have

d_b/2+5b/1 vo#0 foranys eZ.

Thus {—b} + sb] | s € Z} C supp(V). Now by Lemma 3.5, we have V >~ M (b}, Zb,
V'(«, B, Zb))) for some «, B € C, and a Z-basis B’ = (b, b)) of G. It is easy to see that
M (b)), Zb}, V'(a, B, Zb')) does not satisfy condition (a). Thus such a module V' does not
exist.

This completes the proof. O

The idea of Claims 1 and 2 in the proof of the next theorem comes from the proof of
[15, Theorem 1.1] for n = 2.
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Theorem 3.7. Suppose that B = (by, by) is a Z-basis of the additive subgroup G C C.
If V is a nontrivial irreducible weight module with finite dimensional weight spaces over
the higher rank Virasoro algebra Vit[G], then V = V'(a, B, G) or V = M (b}, Zb}, V' («,
B, Zb))) for some a, B € C, and a Z-basis B' = (b}, b)) of G.

Proof. To the contrary, we suppose that V £ V' (e, 8, G) or M (b, Zb}, V' («, B, Zb})) for
any o, # € C, and any Z-basis of B’ = (b, b}) of G. From Theorem 2.5 we may assume
that V is a GHW module with GHW A( w.r.t. the basis B = {b1, by} for G. We need to
prove that V = M (b}, Zb), V' (a, B, Zb})) for proper parameters. We still assume that B

satisfies Lemma 3.1(d). By Lemmas 3.3, 3.5 and 3.6, for any (i, j),0 # (k,]) € 72, there
exists p € Z such that

{x €Z| Ag+ibi + jbr+ x(kby +1b2) € supp(V)} = (=00, p] or [p,00). (3.12)

Then for any i € N, there exist x;, y; € Z" such that

(=00, yil=max{y € Z| Ag — iby + ybs € supp(V)},
(=00, x;j]=max{x € Z| Ao+ xb; — ibs € supp(V)}.
By Lemma 3.1(d5) we know that y; 11 > y; > 0,x;41 > x; > 0. Let j,r eN, if y;, >
t(yj+1),thent > 1and Ay, Ag+1(—jb1 + (y; + 1)b2) € supp(V), and by (3.12), Ag +
(=Jjb1 + (yj + 1)b2) € supp(V), contrary to the definition of y;. So
yij <t(yj+1), Vt, jeN. (3.13)
Since Ao + b2 ¢ supp(V) and Ay — jb1 + yjbo = Ag + by + (—jb1 + (y; — Db2) €
supp(V), then (3.12) yields Ao + by + t(—jby + (y; — 1)b2) € supp(V) for all ¢ > 0.
Hence
Wity =D +1, Vi jeN. (3.14)
Using (3.13), (3.14) we obtain
JOi—D+1<yij<i(yj+1), Vi jelN

From j(y; — 1)+ 1 <i(y; + 1) and the one with i, j interchanged, we deduce

ﬂ_i—i—.j‘—1<&<&+i+{"—l

- - - , Vi,jelN (3.15)
J 1y l J 1]
This shows that the following limits exist:
a=1lim 2, = lim 2, (3.16)

i—o0 I i—»oo I
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where the second equation is obtained by symmetry. Note that (3.12) implies that there
exists some jo € N such that y;, > 1 (otherwise (Ao + 2by + Zb1) Nsupp(V) = ). Hence
by (3.14) we deduce

Yo s =Ly Lo Y=l

1jo Jo 1jo Jo

thus « > 0. Similarly 8 > 0.

Claim 1. « = 8~ is an irrational number.

Proof. Suppose that @ > ~!. Choose s,q € N with s,q relatively prime and « >
s/q > B~'. Applying (3.12) to Ag + t(—gby + sby), by the definition of «, we have
Ag + t(—gb1 + sby) € supp(V) for all sufficiently large ¢. From (3.12), hence, for all
sufficiently large ¢ we have Ag — t(—gb1 + sb) ¢ supp(V), which implies that

B=lim — <

Xst q
t—o0 st Ky ’

ie., ,3’1 > 5/q, a contradiction. So we have o < ,3’1, and similarly we have o > ﬁ’l.
Thus o = B~ 1.

Assume o = g /s is a rational number, where s, g € N are relatively prime. By (3.12),
there exists some mqg € Z such that Ag — by + mo(sb; — qb>) ¢ supp(V). Say mg > 0.
Since Ag € supp(V), by (3.12) again, we deduce

Ao +i(—mosbi + (mog + 1)by) € supp(V), Vi € [0, oc].
However
q — lim Yimgs S mog+1 - q

o= — N =
N i—o00 Imgos mos N

a contradiction. Hence « is an irrational number, and Claim 1 follows. 0O
‘We define a total order >, on G as follows:
ib1+ jby >4 kb1 +1by <& ia+j>ka+l.
Let Gt = {ib; + jby € G | ib] + jby >4 0}. If A € supp(V) satisfies (A + GT) N
supp(V) = @, then V is a nontrivial highest weight module w.r.t. “<,”. Since the order
“<4” 18 dense, from Theorem 2.2 we see that V is a Verma module, which contradicts the

fact that all weight spaces of V are finite dimensional. So for any A € supp(V) we have

(A +GT) Nsupp(V) # 0. (3.17)



646 R. Lu, K. Zhao / Advances in Mathematics 206 (2006) 630-656

Claim 2. If Ao + g € supp(V) for some g =iby + jby € GT then
Ao+ kb1 +1by e supp(V), Vkby +1by <4 ib1 + jbs.

Proof. If there exists some kb| + [by <4 ib1 + jby such that Ag + kby + by ¢ supp(V),
(3.12) implies

Ao+ iby + jby+1((k— )by + (I — j)ba) ¢ supp(V), VreN.

Ifk—i<O0(then! — j > 0), from (k —i)by + (I — j)by <o 0 we see that —(I — j)/
(k — i) < . On the other hand,

i—k)—i i+t —j I—j
tmoot(i—k)—i tooot(i—k)y—i i—k

a contradiction. If k — i > 0, from (k —i)b; + (I — j)b2 <o 0 we know that (I — j) <O,
and —(k —i)/(I — j) <a~!. Similarly,
-1 Xt k—1i

o =Ilim — < — -,
t—oo t l—]

again a contradiction. If k —i = 0, by Lemma 3.1(d5) we have (I — j) > 0, but by (k —
)by + (I — j)by <4 0, we have I — j < 0, which is also a contradiction. So we have
Claim2. O

Claim 2 implies that for any A € supp(V), we have
A — Gt Csupp(V). (3.18)
Claim 3. d_,v; # 0 for any g = iby + jby € G and any nonzero weight vector v; € V.

Proof. Suppose that d_gv) =0 for some g =ib| + jbs € Gt and 0#£ vy € V. By (3.12)
and (3.18), we see that dsgzvy = 0 for all sufficiently large s > 0. Hence dyv) = 0. By
Lemma 3.1(b) we can choose g1 = pb; + gb; such that dg, vy, =0 and S ={g, g1} is a
Z-linearly independent subset of G. Consider the Vir[g]-module W = U (Vir[g])v,.. Using
the PBW basis of U (Vir[S]) we have

(A + Zg 4+ Ngy) Nsupp(U (Vir[S])v;.) = 2.

By (3.12) and (3.18) there exists some so such that A + sg ¢ supp(V) for all s > s9. Hence
any irreducible Vir[g]-subquotient of W is a highest weight module. If W has a nontrivial
irreducible Vir[g]-subquotient, using the arguments, analogous to those used in Case 1
in the proof of Lemma 3.6, we get a contradiction. So we deduce that W = Cv; with
A = 0. With a similar discussion as in Case 2 in the proof of Lemma 3.6 we obtain that
A+ 7Zg — g1 Csupp(U (Vir[S])vy), which contradicts (3.12). Hence Claim 3 follows. O
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Fix Ag +ib1 + jby € supp(V), where ib; + jb, € G*. We are going to show that
dim Va4ip,+ b, = 00. F i O lete=1(j+i 0. Since the order “<,” i
Ao+iby+jb, = 00. For a given n > 0, let ¢ = - (j + i) > 0. Since the order “<,” is
dense, we can choose p,q € Z with 0 < g + pa < ¢. Hence we obtain 0 <, pb; + gb>
and npb1 +nqgby <4 (ib1 + jby). Then from Claim 2 we deduce that
Ao+ m(pby + gbr) € supp(V), Vm <0.

By (3.12) we assume that mq is the maximal integer such that Ay + mo(pb1 + gb2) €
supp(V), so mg > n. Let

M ={g € GT 0% Ag+mo(pbi +qb2) + g € supp(V)}.
By (3.17) M is an infinite set. Denote g = pb| + gb>.
Claim 4. There exist go € M such that for any k: 1 < k < n, the k vectors
d*5'd gv, d7d sgv, ..., d_gd_-1yzv, dgg
are linearly independent, where v € Vpq1go+moz \ {0}
Proof. We will prove the claim by induction on k.

Suppose that v € VA4 g4mez \ {0} for g € M.
If k =1, from dgv g4g+mez = 0, we deduce that

-3
dzd_zv = (—2g(Ao + g +mog) + c)v.

Let hy(g) := —28(Ag + g + mpg) + g &¢. Then the set M| = {g € M | h1(g) # 0} is
infinite and d_zv # 0 for any g € M;.
Suppose that k > 1 and there exist an infinite set My_; C M such that
dk 2d_gv dk 3d_ ey d_g,d,(kfz)gv, d,(kfl)gv

are linearly independent for any v € Va4 g4mgz \ {0} and g € My_;.
Now we consider k. If the vectors

dfgv, di§2d_2gv, coey d_gd_—1)gv, d—gzv

are linearly dependent for some g € My_;. Then there exist ay, ..., a; € C, not all zero,
such that

wk—aldk-v—f—azd d 28V + - -+ agd_ (k)gv—o

Using [dg, d* 1= —kg(2do + (k — 1)g — &34 c)d" ", we deduce that
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0= dgu}k

_ ko = = gz_l k—1
= —aikg 2(Ao+g+(m0—k+1)g)+(k—1)g—TC dlv

+a2(—k+2)§<2(Ao+g+(mo—k+ Dg)+ (k—3)g — g B

c) df?d_zgv

—3a2§df§1v~|—--~

_ _ -1
+ak1(—1)g<2(/10 + g+ (mo—k+1)g) — g B C)d—(k—l)gv

+ (—k)ar—18d—zd—(n-2)3V Ag+g+(mo—k+1)z T ak (—k — 1)gd—(k—1)zv.
This together with the inductive hypothesis yields that
ai=ayfi(g), Vi=1,2,... .k, (3.19)

where f;(X) is a polynomial of degree i — 1 in X. Using (3.19) and the following compu-
tations

0= dzwy

=3 =
= ay(—k = Dg(~k)g - (—3)é<—2§(/\0 Hetmod) + 5 gC)”
12

D) —(k—1s
Jr((k l)g)12 (k l)gc>v

22)3 — 23
+ax(—k—1)g(=k)g--- (—4)§<—4§(Ao + g +mog) + (g)igc)v +--

+ ag—1(—k — 1)@(—2@ — 1Dg(Ao+g+mog)

- 3_ -
N (kg) kgc>v

+ag (—Zkg(Ao +g+mog) B

=arhi(g)v,

where h;(X) is a polynomial of degree k in X. Then My = {g € Mjy_1 | hx(g) # 0} is
infinite and the vectors in Claim 4 are linearly independent for go € Mj. Hence Claim 4
follows. O

From Claim 4 we know that dim VA, g,+(mg—n)z = 1 for some go € M and for all
n € N. Noting that go, g € GT, by Claim 3 we deduce that dim V4, > n for all n € N.
Hence dim V4, = oo. This proves that (3.12) cannot occur, and the theorem follows. O

Lemma 3.8. Suppose that G = 7Zb| @ Go. Then supp(M (b}, Go,V'(a, B, Go)) =
supp(V'(a, B, Go)) U (@ + Go — Nb)).
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Proof. It is clear that

supp(M (b}, Go, V'(a, B, Go))) C supp(V'(a, B, Go)) U (& + Go — NbY),
supp(V' (e, B. Go)) C supp(M (b, Go, V'(a, B, Gp))).

Suppose that there exists d = a + go — sb| ¢ supp(M (b, Go, V'(a, B, Go)), where s > 0
and go € Go.

Choose a + g1 € supp(V'(«, B, Go)) \ {0}. Let d' = g1 — go +sb’. We see that o + g1 €
supp(V). Fix v € V/(«, B, Go)a+g, - Let W be the Vir[d', b} ]-submodule generated by v.
Then we have an irreducible sub-quotient module W’ of W with a + g; € supp(W’), and
a+ g1 £d ¢ supp(W’). We get a contradiction to Lemma 3.6. This completes the proof
of the lemma. O

From the lemma above we see that supp(M (b, Go, V'(a, 8, Go)) equals either o —
Z+b’l + G or (—Zer’1 + Go) \ {0}. Finally we can handle the general case.

Theorem 3.9. If V is a nontrivial irreducible weight module with finite dimensional
weight spaces over the higher rank Virasoro algebra Vir[G] for G ~ 7" (n > 2), then
V~V'(a,B,G)orV=M®b) Go V'(x B, Go)) for some a, p € C, b} € G\ {0}, and a
subgroup Go of G with G = Zb| & G.

Proof. From Theorem 2.5 we may assume that V is a nontrivial irreducible GHW module
with GHW Ay w.r.t. B ={by, by, ..., b,} over Vir[G], where B is a Z-basis of the addi-
tive subgroup G of C, then we need to prove that V ~ M (b}, Go, V'(a, B, Gp)). We still
assume that B satisfies Lemma 3.1(d).

We shall prove this by induction on n. For n = 2 this is Theorem 3.7. Now suppose
that the theorem holds for any n < N — 1 where N > 3. We shall prove V >~ M (', G,
V'(a, B, Gg)) forn = N.

If there exist g € G and a corank 1 subgroup G of G such that (Ag + g + Go) N
supp(V) C {0}, then the theorem follows from Lemma 3.3. (Indeed, If (Ag + g + Go) N
supp(V) = {0}, suppose that Go = Za; + - - - + Zay—1. We may assume that Ag + g =0.
Then (a1 +Z2a;+---+7Z2an_1) Nsupp(V) = @. Using Lemma 3.3 we have the theorem).
So we may assume that for any g € G and any corank 1 subgroup Gy,

(Ao + g + Go) Nsupp(V) € {0}. (3.20)

Hence the Vir[Go] module Vyyg16, = @xec 0 VAg+x+g has a nontrivial irreducible sub-
quotient. By Lemma 3.8, Theorem 2.5 and the inductive hypothesis, for any corank 1
subgroup Go and any g € G there exist a subgroup Go,1 of Go, X6 € Ap + g + Go and
80,1 € Go \ {0} with Go =Zgo,1 @ Go,1 such that

X+ Go,1 —Ngo,1 C supp(V). 3.2D

Note that some other elements in A, + G¢ can also be in supp(V). Next we are going to
show that under the assumption (3.21) such a module V' does not exist.
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Claim 1. There are no Ao € supp(V), to € Z, go, &1 € G \ {0} or subgroups G| C G;, C G
with G = Zgo ® G, and G, = 7.g| ® G satisfying

Ao —Z g1 +GY, Ao +i0g1 +Z g1+ G} C supp(V).
(If 1o <0, then A9 + G, C supp(V).)

Proof. Suppose that there exist Ag € supp(V), 1o € Z, go, g1 € G \ {0} and subgroups
G| C G, C G with G=2Zgy® G, and G, = Zg| ® G satisfying

o —7Z g + G, Mo +1og1 + Z g + G’ C supp(V).

Choose 0 # (ky, ..., kn) € ZN | k; relatively prime, such that

N N
GE):Iinb,‘ Zk,’X,‘ZO}.
i=1 i=1

If there exist i, j such that k;k; <0, then there exists b’ € G|, \ {0}, b’ > 0 with {x1o —
g1 + xb’ € supp(V)} = (—00, mg], a contradiction to the assumption (consider whether
b" € G)). Then k;ik; > 0 for all i, j € [1, N]. Hence we may assume that k; > 0 for all
ie[l,N]. Let

N

N
go= Zsi( )bi.

i=1
Since G{, ® Zgo = G we have

N

> sk = £1.
i=1

By replacing go with —gq if necessary, we may assume that ZINZI sl.(N)k,- = 1. Choose a
basis of G/, say {b], D}, ...,by_,}. Take b}y, _, = g1, b}y = go, then B' = {b, b}, ..., b}
is a basis of G.

Subclaim. For any Ny > 0 there exists mg € N such that [mg, 00) C {vazl kixi | x;j >
No,i=1,2,...,N}.

Proof. Note that ZZN=1 sl.(N)k,- = 1. Choose ng € N such that ng + si(N) > 0 for all i. Note
that k; > 0. Take mg = ZZNZI ki (No + k1ng). Noting that

N
mo + thy = (Zki(No +k1n0)> +kit, Vt>0, and

i=1
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N
mo +thy +i = (Zki(No+k1no+isi(N))) +thy, for0<i<ki,

i=1
we have proved the subclaim. O

Denote by, _, = g1 = ZlN=1 s,.(N_l)b,-. Choose Ny € N such that Ny + tosi(N_l) > 0 for

all i, then choose m for this Ny as in the subclaim above. By the subclaim for any m > my,
there exists (x1, x2, ..., x,) = (No, No, ..., Ng), such that m = Z,N=1 ki x;. Then using the
choice of (ki, ..., ky) one can easily verify that

N
mbly — > xib; € Gy
i=1

Using this we can write A € g — mb), + G, as

N N
h=xo+ho— Y xibi. )»=?»0+ho+tog1—((sz'bi)-l-togl),
i=1

i=1

where /¢ € G|,. Noting that

N N N
inbi, <(inbi> +logl> € Zz+bi,
i=1 i=1 i=1

and the fact that Lo + g € supp(V) or Ag + ho + fog1 € supp(V), using Lemma 3.1(d5)
we deduce

Lo —moby + Gy — Z by C supp(V). (3.22)
Fix some Ay € Ag + (i, Nb)) such that

N
M. Mo}, A b]—by € Ao+ Y ZTh foralli €[l,N]. (3.23)
i=1
Applying (3.21) to A, and Gy, (replace Gg by Gy), since N > 2 we have ip € [1, N — 1]
and s € Z such that

Ao + sobj, € supp(V). (3.24)
Denote b} = —sobl’.O — b} foralli € [1, N]\ip and bl’:) = —(so+ l)blf0 — bl Fix anonzero
Usg tsob!, € Vg +sob! - Itis easy to see that {b], ..., b} ) forms a Z-basis of G. By (3.23) we
0 0
have

dbf/v)‘6+30b;0 =0 foralli €[1, N].
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So we have
N
dyvy gy, =0 forallb e (Z50] + 2403+ + Z*b;(,)\ ( U Z+b§/)- (3.25)
i=1

Hence Ul +s0b] is a highest weight vector w.r.t.
o
" 1 4 /" 1 1 4 /! "

which satisfies Lemma 3.1(d). Now by Lemma 3.1(b) there exists x¢ such that for any
X > X0,

Ao+ sobj, 4+ x((261 4 b5) + (b] +5) + (b +b5) + -+ (b] + b)) ¢ supp(V).
(3.26)
Write (2b] + b)) 4+ (b + b)) + (b +D5) + --- + (b + bYy) = ho — I'bly, Ay = 2o —

mobly + go + Ibly where go, ho € G, 1,I' € Z, I > 0 (since Gy = Y Zb}). Then for
sufficiently large x,

Ao+ sobj, + x((261 4 by) + (b] +65) + (b +b5) + -+ (b] + DY)
€ Lo —mobly + (I —I'x)bly + G C Ao — moby + Gy — Nby, (3.27)
which contradicts (3.22). Thus Claim 1 follows. O
Denote G, =tby + Zby + Zb3 + --- + Zby for t € Z.

Claim 2. If for g € Ao+ G, g1, ¢} € Go \ {0}, and subgroups of Go: G1, G, with Gy =
7g1 ® G1, Go=1g| ® G}, we have

X0 —Ngi + G1, 20— Ng| + G} C supp(V),
then G| = G/l.
Proof. Suppose that G| # G|. Fix 0% fi =) i u;b; € Go (then u; = 0) satisfying
n
fie—-Ngi+G; and Zuixi =0
i=1
forall (xi,...,xy) € Z" with Y'_, x;b; € Gy, and fix 0 f] = Y"1, u}b; € Gy satisfy-

ing

n
fle-Ng{+G| and » ujx;=0
i=1
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for all (xy,...,xy) € Z" with Y7, x;b; € G|. (We simply write f L Gy, f' L G}.)
Since Gi # G| we see that Zf{ N Zf; = {0}. Hence we can choose a base B’ =
(b, b, ....bY_,}of G as follows: Fix by = Z,N:1 sl.(l)bi € Gy such thats{l), sél), e, s](\,l)
are relatively prime,

N N
Z uisi(l) >0 and Z ugsl.(l) <0, (3.28)
i=l i=1

and extend it to a Z basis B’ = {b, b}, ..., by,_,} of Go. By replacing b’l. (j > 1) with

b;. + mb/,, m > 0 if necessary, we may assume that b;. = Z,Nzl S,'(j)bi satisfies

N N
Y sPu;>0 and Y s uj<0 forall je[1,N —1]. (3.29)

i
i=1 i=1

Since f L Gy, f’ L G/, we see that
b;e —Ngi+G; and b, eNg\+G) forallie[l,N—1]. (3.30)
Take by, = b;. Hence B’ = {b), D), ..., b} is a basis of G. Fix
X = Xo + tobly + go, (3.31)
where 79 > 0, go € G are such that

N
M. Mo ED}, Ak, —by € Ao+ Y Zth; forallie[1,N].

i=1
So
ro» Ao b, AyE£b; —by ¢ supp(V) foralli €[1, N]. (3.32)

Now applying (3.21) to A and Go, since N > 2 we see that there exist some i( €
[1, N — 1] and sg € N such that

Ao+ sbl/-o csupp(V) foralls >sg, or
A6 + sbl/-0 esupp(V) foralls < —sp. (3.33)
We may assume that (3.33) holds (if A( + sb;() € supp(V) for all s < —sp, then the re-

maining arguments are exactly the same, using G1). Denote b; = —sob; — b; for all
i € [1, N1\ig and b}/ = —(so + 1)b], — bly.
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From (3.30) we see that

N
b+ + by e =) b —sonbj, —Nby C —Ng| + G} — Nby. (3.34)
i=1
Fix a nonzero Uiy tsob, € V)\6+S0bl{0. It is easy to see that {b], ..., by} forms a Z-basis
of G and
dprvyy sop =0 foralli €[, NJ. (3.35)
L IO
So we have

N
dpvy ey, =0 forallbe (ZTh] +ZF b+ + Z+b;(,)\ ( U Z+b;’). (3.36)
i=1

Hence Uil +s0b] is a highest weight vector w.r.t.
o
B" = {Zb/f +b5, b + b5, b + b5, ..., b + b?(,}
Now by Lemma 3.1(b) there exists some x¢ such that for any x > xo we have
Ao+ sobj, + x(b{ + b5 +--- +by) & supp(V). (3.37)

From (3.31) we can write A, = Ao + toby +1g} +h where h € G, [ € ZZ. Using (3.34),
for sufficiently large x we have

Ao+ sobj, + x (b} + b5 + -+ by) € ko — Ngj + G| —Nby Csupp(V)  (3.38)

since A9 — Ng| 4+ G| € supp(V). This is a contradiction to (3.37). Hence G| = G| and
Claim 2 follows. 0O

Denote V, .5, = @, Vao+s for t € Z. It is easy to see that V, . is a
Vir[by, ..., by]-module. For any 0 # X € supp(VA0+Gt) (we refer to (3.21) for the ex-
istence), A is a weight of a nontrivial irreducible Vir[bs, ..., by]-subquotient of V, o+Gy
From the inductive hypothesis and Claim 1, we know that such a nontrivial irreducible
Vir[bs, ..., by]-module is isomorphic to M (g;, G, V' (a;, B¢, G,)) for suitable oy, B; € C,
and g;, G; with Gy = Zg: ® G;. Thus from Lemma 3.8, if 0 £ A € supp(V) N (Ao +
g + G), then there exists a corank 1 subgroup G, of G such that

A+ Gy Csupp(V) U {0). (3.39)

Combining this with Claims 1 and 2, we deduce that for any ¢ € Z there exist a corank 1
subgroup G; in Go, o; € Ag + G and g; € Go such that Gg = Zg; & G; and

supp(V .6, \ 0} = (e — Z*g: + G¢) \ (0. (3.40)
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In particular,
o; —Ng, + G, C supp(VAoJrGt). (3.41)
Lemma 3.1(d5) and Lemma 3.8 ensure that
a1 — b1 —Ngip1 + Grqr, ar = Ngi + Gy C supp(Vy 16,)-

It follogvs from Claim _2 that G, = Grt1 for 2_111 t € 7. Thus there exist a corank 1 subgroup
Go in Go, a; € Ag + G, and go € Go with Gy = Z1 gy ® G such that either

supp(V 4,460 \ (0} = (& + Z* g0 + Go) \ {0}, or
supp(V 5,1 ) \ {0} = (e — Z*go + Go) \ {0}. (3.42)
If there exists ¢ € Z such that
Supp(V 1,6,) \ {0} = (e = Z" 0+ Go) \ 0},
supp(V 16, M0} = (@41 + Z7 g0 + Go) \ {0}.
Similarly we have A1, Ay € Ag + G, such that
A1 —Ngo+ Go, A2+ Ngo+ Go C supp(V),
which contradicts Claim 1. So we may assume that
supp(V4,16,) \ {0} = (e — Z" g0+ Go) \ {0}, Vi€, (3.43)
Hence we may assume that «; € Ag + Zgo + Zb1. Then for any A € supp(V'), we have
A+ Go Csupp(V) U {0}. (3.44)
Consider the Vir[go, bi]-module Vj,i17¢,4+26, Where go € Go \ {0} as before.
From (3.43), Vy4+2zg0+2b, has a nontrivial irreducible Vir[go, b1 ]-subquotient (we refer to

the last paragraph in the proof of Lemma 3.2). Hence there exist some A, € Ao+ Zgo+Zb;
and a basis by, g, of Zgo + Zb such that

2o + Zgg C supp(Vag+2g0+7b,)-
From (3.43) with t = 0 we know that g(/) ¢ 7.go- Hence by (3.44)
*o+Zgy+ Go C supp(V) U {0},

and Zb(/) + (Zg(/) + Go) = G, which contradicts Claim 1. This completes the proof of the
theorem. 0O
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