ADVANCES IN Mathematics

Classification of irreducible weight modules over higher rank Virasoro algebras

Rencai Lu ${ }^{\text {a,b }}$, Kaiming Zhao ${ }^{\text {c,d,* }}$
${ }^{\text {a }}$ Department of Mathematics, Peking University, Beijing 100871, PR China
${ }^{\mathrm{b}}$ Institute of Mathematics, Academy of Mathematics and System Sciences, Academia Sinica, Beijing 100080, PR China
${ }^{\text {c }}$ Department of Mathematics, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5
${ }^{\mathrm{d}}$ Institute of Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, PR China

Received 21 April 2005; accepted 14 October 2005
Available online 29 November 2005
Communicated by Pavel Etingof

Abstract

Let G be a rank n additive subgroup of \mathbb{C} and $\operatorname{Vir}[G]$ the corresponding Virasoro algebra of rank n. In the present paper, irreducible weight modules with finite dimensional weight spaces over $\operatorname{Vir}[G]$ are completely determined. There are two different classes of them. One class consists of simple modules of intermediate series whose weight spaces are all 1-dimensional. The other is constructed by using intermediate series modules over a Virasoro subalgebra of rank $n-1$. The classification of such modules over the classical Virasoro algebra was obtained by O. Mathieu in 1992 using a completely different approach. © 2005 Elsevier Inc. All rights reserved.

MSC: 17B10; 17B65; 17B68
Keywords: Virasoro algebra; Generalized Virasoro algebra; Weight module

[^0]
1. Introduction

Let \mathbb{C} be the field of complex numbers. The Virasoro algebra $\operatorname{Vir}:=\operatorname{Vir}[\mathbb{Z}]($ over $\mathbb{C})$ is the Lie algebra with the basis $\left\{c, d_{i} \mid i \in \mathbb{Z}\right\}$ and the Lie bracket defined by

$$
\begin{aligned}
{\left[c, d_{i}\right] } & =0 \\
{\left[d_{i}, d_{j}\right] } & =(j-i) d_{i+j}+\delta_{i,-j} \frac{i^{3}-i}{12} c, \quad \forall i, j \in \mathbb{Z} .
\end{aligned}
$$

The structure theory of the Virasoro algebra weight modules with finite dimensional weight spaces is fairly well developed. For details, we refer the readers to [6], the book [4] and the references therein.

The centerless Virasoro algebra is actually a Witt algebra, and generalized Witt algebras in positive characteristic and characteristic 0 were studied by many authors, for instance, Zassenhaus [19], Kaplansky [5], Ree [12], Wilson [17], Strade [13]; and Osborn [9], Djokovic and Zhao [2], Passman [10], Xu [18].

Patera and Zassenhaus [11] introduced the generalized Virasoro algebra Vir[G] for any additive subgroup G of \mathbb{C}. This Lie algebra can be obtained from Vir by replacing the index group \mathbb{Z} with G (see Definition 2.1). If $G \simeq \mathbb{Z}^{n}$, then $\operatorname{Vir}[G]$ is called a rank n Virasoro algebra (or a higher rank Virasoro algebra if $n \geqslant 2$).

Representations for generalized Virasoro algebras $\operatorname{Vir}[G]$ have been studied by several authors. Mazorchuk [8] proved that all irreducible weight modules with finite dimensional weight spaces over Vir $[\mathbb{Q}]$ are intermediate series modules (where \mathbb{Q} is the field of rational numbers). In [7], Mazorchuk determined the irreducibility of Verma modules with zero central charge over higher rank Virasoro algebras. In [3], Hu, Wang and Zhao obtained a criterion for the irreducibility of Verma modules over the generalized Virasoro algebra $\operatorname{Vir}[G]$ over an arbitrary field F of characteristic 0 (G is an additive subgroup of F). Su and Zhao [16] proved that weight modules with all weight spaces 1-dimensional are some so-called intermediate series of modules. In [14,15], Su proved that the irreducible weight modules over higher rank Virasoro algebras are divided into two classes: intermediate series modules, and GHW modules. In [1], Billig and Zhao constructed a new class of irreducible weight modules with finite dimensional weight spaces over some generalized Virasoro algebras.

The aim of this paper is to complete the classification of irreducible weight modules with finite dimensional weight spaces over higher rank Virasoro algebras Vir[G]. The result for $n=1$ was obtained by Mathieu [6] by using a completely different method.

This paper is arranged as follows.
In Section 2, we collect some known results. For any total order " \succ " on G, which is compatible with the group addition, and for any $\dot{c}, h \in \mathbb{C}$, we recall the definition of the Verma module $M(\dot{c}, h, \succ)$ over $\operatorname{Vir}[G]$ and some known facts about such modules (see [3]). We recall from [1] the construction of a class of irreducible weight modules with finite dimensional weight spaces over some generalized (including higher rank) Virasoro algebras. These modules are denoted by $V\left(\alpha, \beta, b, G_{0}\right)$ (see (2.5) for definition) for some $\alpha, \beta \in \mathbb{C}, b \in G \backslash\{0\}$, and a subgroup G_{0} of G with $G=\mathbb{Z} b \oplus G_{0}$. We also recall in Theorem 2.5 a useful result from [14].

In Section 3, we give a classification of irreducible weight modules with finite dimensional weight spaces over $\operatorname{Vir}[G]$ for $G \simeq \mathbb{Z}^{n}$, i.e., any such module is either an intermediate series module $V^{\prime}(\alpha, \beta, G)$ or $V\left(\alpha, \beta, b, G_{0}\right)$ for suitable parameters (Theorem 3.9). We show that all GHW modules (see the definition preceding Theorem 2.5) over Vir $[G]$ are isomorphic to modules $V\left(\alpha, \beta, b, G_{0}\right)$. The main technique we employ in this paper is to thoroughly study the weight set $\operatorname{supp}(V)$ (sometimes also called the support) of nontrivial irreducible weight modules V with finite dimensional weight spaces. We first spend a lot of effort to handle the case $n=2$ (Lemma 3.3-Theorem 3.7), and then use induction on n to deal with all other cases. The induction turns out to be rather difficult.

We hope that our results will have some applications in physics since the Lie algebras studied in the present paper have similar properties as the classical Virasoro algebra which is widely used in physics.

2. Weight modules over generalized Virasoro algebras

In this section we recall the construction of various modules and collect some known results for later use.

Definition 2.1. Let G be a nonzero additive subgroup of \mathbb{C}. The generalized Virasoro algebra $\operatorname{Vir}[G]($ over $\mathbb{C})$ is the Lie algebra with the basis $\left\{c, d_{x} \mid x \in G\right\}$ and the Lie bracket defined by

$$
\begin{aligned}
{\left[c, d_{x}\right] } & =0 \\
{\left[d_{x}, d_{y}\right] } & =(x-y) d_{x+y}+\delta_{x,-y} \frac{x^{3}-x}{12} c, \quad \forall x, y \in G
\end{aligned}
$$

It is clear that $\operatorname{Vir}[G] \simeq \operatorname{Vir}[a G]$ for any $a \in \mathbb{C}^{*}$. For any $x \in G^{*}:=G \backslash\{0\}, \operatorname{Vir}[x \mathbb{Z}]$ is a Lie subalgebra of Vir $[G]$ isomorphic to Vir.

Fix a total order " \succ " on G which is compatible with the addition, i.e., $x \succ y$ implies $x+z \succ y+z$ for any $z \in G$. Let

$$
G_{+}:=\{x \in G \mid x \succ 0\}, \quad G_{-}:=\{x \in G \mid x \prec 0\} .
$$

Then $G=G_{+} \cup\{0\} \cup G_{-}$and we have the triangular decomposition

$$
\operatorname{Vir}[G]=\operatorname{Vir}[G]_{+} \oplus \operatorname{Vir}[G]_{-} \oplus \operatorname{Vir}[G]_{0},
$$

where $\operatorname{Vir}[G]_{+}=\bigoplus_{x \in G_{+}} \mathbb{C} d_{x}, \operatorname{Vir}[G]_{-}=\bigoplus_{x \in G_{-}} \mathbb{C} d_{x}, \operatorname{Vir}[G]_{0}=\mathbb{C} d_{0}+\mathbb{C} c$.
It is clear that either

$$
\begin{equation*}
\#\{y \in G \mid 0 \prec y \prec x\}=\infty, \quad \forall x \in G_{+} \tag{2.1}
\end{equation*}
$$

or

$$
\begin{equation*}
\exists a \in G_{+}, \quad \#\{y \in G \mid 0 \prec y \prec a\}=0 . \tag{2.2}
\end{equation*}
$$

We say that the order is dense respectively discrete if (2.1) respectively (2.2) holds.
A $\operatorname{Vir}[G]$-module V is called trivial if $\operatorname{Vir}[G] V=0$. For any $\operatorname{Vir}[G]$-module V and $\dot{c}, \lambda \in \mathbb{C}$, let $V_{\dot{c}, \lambda}:=\left\{v \in V \mid d_{0} v=\lambda v, c v=\dot{c} v\right\}$ denote the weight space of V corresponding to a weight (\dot{c}, λ). When c acts as the scalar \dot{c} on the whole space V, we shall simply write V_{λ} instead of $V_{\dot{c}, \lambda}$.

A $\operatorname{Vir}[G]$-module V is called a weight module if V is the sum of its weight spaces. For a weight module V we define $\operatorname{supp}(V):=\left\{\lambda \in \mathbb{C} \mid V_{\lambda} \neq 0\right\}$, which is generally called the weight set (or the support) of V.

For any Lie algebra L, we shall use $U(L)$ to denote its universal enveloping algebra. For any $\dot{c}, h \in \mathbb{C}$, let $I(\dot{c}, h, \succ)$ be the left ideal of $U:=U(\operatorname{Vir}[G])$ generated by the elements

$$
\left\{d_{i} \mid i \in G_{+}\right\} \cup\left\{d_{0}-h \cdot 1, c-\dot{c} \cdot 1\right\}
$$

Then the Verma module with the highest weight (\dot{c}, h) for $\operatorname{Vir}[G]$ is defined as

$$
M(\dot{c}, h, \succ):=U / I(\dot{c}, h, \succ)
$$

This module has a basis consisting of the following vectors

$$
d_{-i_{1}} d_{-i_{2}} \cdots d_{-i_{k}} v_{h}, \quad k \in \mathbb{N} \cup\{0\}, \quad i_{j} \in G_{+}, \quad \forall j \text { and } i_{k} \geqslant \cdots \geqslant i_{2} \geqslant i_{1}>0,
$$

where $v_{h}=1+I(\dot{c}, h, \succ)$ is the highest weight vector. Let $V(\dot{c}, h, \succ)$ be the unique irreducible quotient of $M(\dot{c}, h, \succ)$. Let us recall

Theorem 2.2. [3, Theorem 3.1] Let $\dot{c}, h \in \mathbb{C}$.
(1) Assume that the order " \succ " is dense. Then the Verma module $M(\dot{c}, h, \succ)$ is an irreducible $\operatorname{Vir}[G]$-module if and only if $(\dot{c}, h) \neq(0,0)$. Moreover,

$$
M^{\prime}(0,0, \succ):=\sum_{i_{1}, \ldots, i_{k} \in G_{+}, k>0} \mathbb{C} d_{-i_{1}} \cdots d_{-i_{k}} v_{0}
$$

is an irreducible submodule of $M(0,0, \succ)$.
(2) Assume that the order " \succ " is discrete. Then the Verma module $M(\dot{c}, h, \succ)$ is an irreducible $\operatorname{Vir}[G]$-module if and only if for the minimal positive element $a \in G$ with respect to " \succ ", the $\operatorname{Vir}[a \mathbb{Z}]$-module $M_{a}(\dot{c}, h, \succ)=U(\operatorname{Vir}[\mathbb{Z} a]) v_{h}$ is irreducible.

Now we give another class of $\operatorname{Vir}[G]$-modules $V(\alpha, \beta, G)$ for any $\alpha, \beta \in \mathbb{C}$ (see [16]). These $\operatorname{Vir}[G]$-modules all have basis $\left\{v_{x} \mid x \in G\right\}$ with actions given by the following formula

$$
c v_{y}=0, \quad d_{x} v_{y}=(\alpha+y+x \beta) v_{x+y}, \quad \forall x, y \in G
$$

One knows from [16] that $V(\alpha, \beta, G)$ is reducible if and only if $\alpha \in G$ and $\beta \in\{0,1\}$. By $V^{\prime}(\alpha, \beta, G)$ we denote the unique nontrivial irreducible sub-quotient of $V(\alpha, \beta, G)$. Then $\operatorname{supp}\left(V^{\prime}(\alpha, \beta, G)\right)=\alpha+G$ or $\operatorname{supp}\left(V^{\prime}(\alpha, \beta, G)\right)=G \backslash\{0\}$. We now recall

Theorem 2.3. [16, Theorem 4.6] Let V be a nontrivial irreducible weight module over $\operatorname{Vir}[G]$ with all weight spaces 1 -dimensional. Then $V \simeq V^{\prime}(a, b, G)$ for some $a, b \in \mathbb{C}$.

Now we assume that $G=\mathbb{Z} b \oplus G_{0} \subset \mathbb{C}$ where $0 \neq b \in \mathbb{C}$ and G_{0} is a nonzero subgroup of \mathbb{C}. (Note that some G lack this property.) We temporarily set $L=\operatorname{Vir}[G]$. For any $i \in \mathbb{Z}$, we set

$$
\begin{gathered}
L_{i b}=\bigoplus_{a \in G_{0}} \mathbb{C} d_{i b+a}, \\
L_{+}=\bigoplus_{i>0} L_{i b}, \quad L_{-}=\bigoplus_{i<0} L_{i b}, \quad L_{0} \simeq \operatorname{Vir}\left[G_{0}\right] .
\end{gathered}
$$

For any $\alpha, \beta \in \mathbb{C}$, we have the irreducible L_{0}-module $V^{\prime}\left(\alpha, \beta, G_{0}\right)$. We extend the L_{0}-module structure on $V^{\prime}\left(\alpha, \beta, G_{0}\right)$ to an $\left(L_{+}+L_{0}\right)$-module structure by defining $L_{+} V^{\prime}\left(\alpha, \beta, G_{0}\right)=0$. Then we obtain the induced L-module

$$
\begin{align*}
\bar{M}\left(b, G_{0}, V^{\prime}\left(\alpha, \beta, G_{0}\right)\right) & =\operatorname{Ind}_{L_{+}+L_{0}}^{L} V^{\prime}\left(\alpha, \beta, G_{0}\right) \\
& =U(L) \otimes_{U\left(L_{+}+L_{0}\right)} V^{\prime}\left(\alpha, \beta, G_{0}\right) \tag{2.3}
\end{align*}
$$

As vector spaces, $\bar{M}\left(b, G_{0}, V^{\prime}\left(\alpha, \beta, G_{0}\right)\right) \simeq U\left(L_{-}\right) \otimes_{\mathbb{C}} V^{\prime}\left(\alpha, \beta, G_{0}\right)$. The L-module $\bar{M}\left(b, G_{0}, V^{\prime}\left(\alpha, \beta, G_{0}\right)\right)$ has a unique maximal proper submodule J. Then we obtain the irreducible quotient module

$$
\begin{equation*}
M\left(b, G_{0}, V^{\prime}\left(\alpha, \beta, G_{0}\right)\right)=\bar{M}\left(b, G_{0}, V^{\prime}\left(\alpha, \beta, G_{0}\right)\right) / J \tag{2.4}
\end{equation*}
$$

It is clear that this module is uniquely determined by α, β, b and G_{0}; and that

$$
\begin{equation*}
\operatorname{supp}\left(M\left(b, G_{0}, V^{\prime}\left(\alpha, \beta, G_{0}\right)\right)\right)=\mathbb{Z}^{+} b+G_{0} \quad \text { or } \quad\left(\mathbb{Z}^{+} b+G_{0}\right) \backslash\{0\} \tag{2.5}
\end{equation*}
$$

Note that b can be replaced by any element in $b+G_{0}$.
To simplify notation, set

$$
\begin{equation*}
V=V\left(\alpha, \beta, b, G_{0}\right)=M\left(b, G_{0}, V^{\prime}\left(\alpha, \beta, G_{0}\right)\right) \tag{2.6}
\end{equation*}
$$

It is clear that $V=\bigoplus_{i \in \mathbb{Z}_{+}} V_{-i b+\alpha+G_{0}}$, where

$$
V_{-i b+\alpha+G_{0}}=\bigoplus_{a \in G_{0}} V_{-i b+\alpha+a}, \quad V_{-i b+\alpha+a}=\left\{v \in V \mid d_{0} v=(-i b+\alpha+a) v\right\}
$$

Now we recall
Theorem 2.4. [1, Theorem 3.1] All weight spaces of the $\operatorname{Vir}[G]$-module $V\left(\alpha, \beta, b, G_{0}\right)$, defined above, are finite dimensional. More precisely, $\operatorname{dim} V_{-i b+\alpha+a} \leqslant(2 i+1)$!! for all $i \in \mathbb{N}, a \in G_{0}$.

From now on in this paper we assume that $G \simeq \mathbb{Z}^{n}$ for some integer $n>1, V=$ $\bigoplus_{x \in G} V_{a+x}$ is an irreducible weight module over $\operatorname{Vir}[G]$ with finite dimensional weight spaces (i.e., $\operatorname{dim} V_{a+x}<\infty$ for all $x \in \mathbb{C}$) where $a \in \mathbb{C}$. If there exists $N \in \mathbb{N}$ such that $\operatorname{dim} V_{a+x}<N$ for all $x \in \mathbb{C}$, we say that V is uniformly bounded. If there exists a \mathbb{Z}-basis $B=\left\{b_{1}, \ldots, b_{n}\right\}$ of G and $v_{\Lambda_{0}} \in V_{\Lambda_{0}}$ such that

$$
d_{x} v_{\Lambda_{0}}=0, \quad \forall 0 \neq x \in \mathbb{Z}^{+} b_{1}+\cdots+\mathbb{Z}^{+} b_{n},
$$

we say that V is a generalized highest weight module (GHW module for short) with GHW Λ_{0} w.r.t. B (see [14]). The vector $v_{\Lambda_{0}}$ is called a GHW vector with respect to B, or simply a GHW vector. Finally we recall

Theorem 2.5. [14, Theorem 1.2] Suppose that $G \simeq \mathbb{Z}^{n}, n>1$ and V is a nontrivial irreducible weight $\operatorname{Vir}[G]$-module with finite dimensional weight spaces.
(a) If V is uniformly bounded, then $V \simeq V^{\prime}(\alpha, \beta, G)$ for suitable $\alpha, \beta \in \mathbb{C}$.
(b) If V is not uniformly bounded, then V is a GHW module.

3. Classification of weight modules

In this section we give a classification of all irreducible weight modules with finite dimensional weight spaces over higher rank Virasoro algebras. More precisely, we prove that any such module is either $V^{\prime}(\alpha, \beta, G)$ or $V\left(\alpha, \beta, b, G_{0}\right)$ (Theorem 3.9). To this end, by Theorem 2.5 , we need only study GHW modules.

Recall that G is an additive subgroup of \mathbb{C} with $G \simeq \mathbb{Z}^{n}$ and $n>1$, and that $V=$ $\bigoplus_{x \in G} V_{a+x}$ is an irreducible weight module over $\operatorname{Vir}[G]$ with finite dimensional weight spaces.

By " \succ " we denote the lexicographic order on \mathbb{Z}^{n}, i.e., $\left(x_{1}, \ldots, x_{n}\right) \succ\left(y_{1}, \ldots, y_{n}\right)$ if and only if there exists $s: 1 \leqslant s \leqslant n$ such that $x_{i}=y_{i}$ for $1 \leqslant i \leqslant s-1$ and $x_{s}>y_{s}$.

We write $\left(x_{1}, \ldots, x_{n}\right)>\left(y_{1}, \ldots, y_{n}\right)$ if $x_{i}>y_{i}$ for $1 \leqslant i \leqslant n$; and $\left(x_{1}, \ldots, x_{n}\right) \geqslant$ $\left(y_{1}, \ldots, y_{n}\right)$ if $x_{i} \geqslant y_{i}$ for $1 \leqslant i \leqslant n$.

In this section, the letters $i, j, k, l, m, n, p, q, r, s, t, x, y$ denote integers. For convenience, we set $[p, q]=\{x \mid x \in \mathbb{Z}, p \leqslant x \leqslant q\}$ and define similarly the infinite intervals $(-\infty, p],[q, \infty)$ and $(-\infty,+\infty)$. For $a \in G$ or $S \subset G$, we denote by $\operatorname{Vir}[a]$ or $\operatorname{Vir}[S]$ the subalgebra of $\operatorname{Vir}[G]$ generated by $\left\{d_{ \pm a}, d_{ \pm 2 a}\right\}$ or $\left\{d_{ \pm a}, d_{ \pm 2 a} \mid a \in S\right\}$, respectively.

Lemma 3.1. Suppose that $B=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ is a \mathbb{Z}-basis of G and $n \geqslant 2$. Let V be a nontrivial irreducible $G H W \operatorname{Vir}[G]$-module with $G H W \Lambda_{0}$ w.r.t. B.
(a) For any $v \in V$, there exists $p>0$ such that $d_{i_{1} b_{1}+i_{2} b_{2}+\cdots+i_{n} b_{n}} v=0$ for all $\left(i_{1}, i_{2}\right.$, $\left.\ldots, i_{n}\right) \geqslant(p, p, \ldots, p)$.
(b) If $\Lambda_{0}+i_{1} b_{1}+i_{2} b_{2}+\cdots+i_{n} b_{n} \in \operatorname{supp}(V)$, then for any positive integers $k_{1}, k_{2}, \ldots, k_{n}$, there exists $m \geqslant 0$ such that $\left\{x \in \mathbb{Z} \mid \Lambda_{0}+i_{1} b_{1}+i_{2} b_{2}+\cdots+i_{n} b_{n}+x\left(k_{1} b_{1}+k_{2} b_{2}+\right.\right.$ $\left.\left.\cdots+k_{n} b_{n}\right) \in \operatorname{supp}(V)\right\}=(-\infty, m]$.
(c) Let S be any subgroup of G of rank n, then any nonzero $\operatorname{Vir}[S]$-submodule of V is nontrivial.
(d) There exists a \mathbb{Z}-basis $B^{\prime}=\left\{b_{1}^{\prime}, b_{2}^{\prime}, \ldots, b_{n}^{\prime}\right\}$ of G such that
(d1) V is a $G H W$ module with $G H W \Lambda_{0}$ w.r.t. B^{\prime};
(d2) $\left(\Lambda_{0}+\mathbb{Z}^{+} b_{1}^{\prime}+\mathbb{Z}^{+} b_{2}^{\prime}+\cdots+\mathbb{Z}^{+} b_{n}^{\prime}\right) \cap \operatorname{supp}(V)=\left\{\Lambda_{0}\right\}$;
(d3) $\left(\Lambda_{0}-\mathbb{Z}^{+} b_{1}^{\prime}-\mathbb{Z}^{+} b_{2}^{\prime}-\cdots-\mathbb{Z}^{+} b_{n}^{\prime}\right) \cap \operatorname{supp}(V)=\Lambda_{0}-\mathbb{Z}^{+} b_{1}^{\prime}-\mathbb{Z}^{+} b_{2}^{\prime}-\cdots-$ $\mathbb{Z}^{+} b_{n}^{\prime}$;
(d4) $\Lambda_{0}+k_{1} b_{1}^{\prime}+k_{2} b_{2}^{\prime}+\cdots+k_{n} b_{n}^{\prime} \notin \operatorname{supp}(V), \forall\left(k_{1}, k_{2}, \ldots, k_{n}\right) \geqslant\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ if $\Lambda_{0}+i_{1} b_{1}^{\prime}+i_{2} b_{2}^{\prime}+\cdots+i_{n} b_{n}^{\prime} \notin \operatorname{supp}(V) ;$
(d5) $\Lambda_{0}+k_{1} b_{1}^{\prime}+k_{2} b_{2}^{\prime}+\cdots+k_{n} b_{n}^{\prime} \in \operatorname{supp}(V), \forall\left(k_{1}, k_{2}, \ldots, k_{n}\right) \leqslant\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ if $\Lambda_{0}+i_{1} b_{1}^{\prime}+i_{2} b_{2}^{\prime}+\cdots+i_{n} b_{n}^{\prime} \in \operatorname{supp}(V)$
(d6) For any $0 \neq\left(k_{1}, k_{2}, \ldots, k_{n}\right) \geqslant 0$ and $\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in \mathbb{Z}^{n}$, we have $\left\{x \in \mathbb{Z} \mid \Lambda_{0}+\right.$ $\left.\sum_{l=1}^{n} i_{l} b_{l}^{\prime}+x\left(\sum_{l=1}^{n} k_{l} b_{l}^{\prime}\right) \in \operatorname{supp}(V)\right\}=(-\infty, m]$ for some $m \in \mathbb{Z}$.

Proof. For $n=2$ a slightly weaker form of this lemma is a combination of several lemmas in [15].
(a) Without loss of generality, we may assume that $v=u v_{\Lambda_{0}}$, where

$$
\begin{aligned}
u & =d_{i_{1}^{(1)}} b_{1}+i_{2}^{(1)} b_{2}+\cdots+i_{n}^{(1)} b_{n} \\
& d_{i_{1}^{(2)}} b_{1}+i_{2}^{(2)} b_{2}+\cdots+i_{n}^{(2)} b_{n} \\
& \in U(\operatorname{Vir}[G]) .
\end{aligned}
$$

Take $p=\max \left\{-\sum_{i_{1}^{(s)}<0} i_{1}^{(s)},-\sum_{i_{2}^{(s)}<0} i_{2}^{(s)}, \ldots,-\sum_{i_{m}^{(s)}<0} i_{m}^{(s)}\right\}+1$. By induction on m, and using the Lie bracket in $\operatorname{Vir}[G]$, we easily obtain

$$
d_{i_{1} b_{1}+i_{2} b_{2}+\cdots+i_{n} b_{n}} v=0, \quad \forall\left(i_{1}, i_{2}, \ldots, i_{n}\right) \geqslant(p, p, \ldots, p) .
$$

(b) Let $J=\left\{x \in \mathbb{Z} \mid \Lambda_{0}+\sum_{l=1}^{n} i_{l} b_{l}+x\left(\sum_{l=1}^{n} k_{l} b_{l}\right) \in \operatorname{supp}(V)\right\}$.

Claim 1. For any nonzero $v \in V$, we have $d_{-\left(k_{1} b_{1}+k_{2} b_{2}+\cdots+k_{n} b_{n}\right)} v \neq 0$.
Proof. Suppose that $d_{-\left(k_{1} b_{1}+k_{2} b_{2}+\cdots+k_{n} b_{n}\right)} v=0$ for some nonzero $v \in V$. Let p be as in (a). Then $d_{-\left(k_{1} b_{1}+k_{2} b_{2}+\cdots+k_{n} b_{n}\right)}$ and $d_{b_{i}+p\left(k_{1} b_{1}+k_{2} b_{2}+\cdots+k_{n} b_{n}\right)}$ for $i \in[1, n]$ act trivially on v. Since $\operatorname{Vir}[G]$ is generated by these elements, we see that $\operatorname{Vir}[G] v=0$, contradicting the fact that V is a nontrivial irreducible module. Claim 1 follows.

It follows from this claim that $J=(-\infty, m]$ for some $m \geqslant 0$ or $J=\mathbb{Z}$.
Suppose that $J=\mathbb{Z}$. For any $x \in \mathbb{Z}$, let

$$
\lambda_{x}=\Lambda_{0}+i_{1} b_{1}+i_{2} b_{2}+\cdots+i_{n} b_{n}+x\left(k_{1} b_{1}+k_{2} b_{2}+\cdots+k_{n} b_{n}\right)
$$

We know that $\operatorname{Vir}^{[k]}:=\operatorname{Vir}\left[k_{1} b_{1}+k_{2} b_{2}+\cdots+k_{n} b_{n}\right]$ is a rank one Virasoro subalgebra, and $W=\bigoplus_{x \in \mathbb{Z}} V_{\lambda_{x}}$ is a $\operatorname{Vir}^{[k]}$-module. From (a) and a well-known result in [6, Lemma 1.6] for any $x \in \mathbb{Z}$ there exists $y \geqslant x$ such that $V_{\lambda y}$ contains a $\operatorname{Vir}^{[k]}$ primitive vector (a nonzero
weight vector v such that $d_{l\left(k_{1} b_{1}+k_{2} b_{2}+\cdots+k_{n} b_{n}\right)} v=0$ for all $\left.l \in \mathbb{N}\right)$. So there are infinitely many nontrivial highest weight $\operatorname{Vir}^{[k]}$-modules having the same weight λ_{0}, which implies $\operatorname{dim} V_{\lambda_{0}}=\infty$. This contradiction yields that $J \neq \mathbb{Z}$. Hence, (b) is proved.
(c) For any p, let $I_{1}=(p+1, p, \ldots, p), I_{2}=(p+2, p+1, p, p, \ldots, p), I_{k}=I_{1}+$ $\left(0,0, \delta_{3, k}, \ldots, \delta_{n, k}\right) \in \mathbb{Z}^{n}, k=3, \ldots, n$. Let

$$
A=\left(\begin{array}{c}
I_{1} \tag{3.1}\\
I_{2} \\
I_{3} \\
\vdots \\
I_{n}
\end{array}\right) .
$$

Then $\operatorname{det}(A)=1$. Suppose that there exists a rank n subgroup S of G and a nonzero $v_{0} \in V$ such that $\operatorname{Vir}[S] v_{0}=0$. Now take p as in (a), that is, $d_{i_{1} b_{1}+i_{2} b_{2}+\cdots+i_{n} b_{n}} v_{0}=0$ for all $\left(i_{1}, i_{2}, \ldots, i_{n}\right) \geqslant(p, p, \ldots, p)$. Let $\left(b_{1}^{*}, b_{2}^{*}, \ldots, b_{n}^{*}\right)=\left(b_{1}, b_{2}, \ldots, b_{n}\right) A$. Then $d_{b_{i}^{*}} v_{0}=0$ for all $i=1,2, \ldots, n$. Since G / S is a finite group, there exists some $i>0$, such that $-i\left(b_{1}^{*}+b_{2}^{*}+\cdots+b_{n}^{*}\right) \in S$. Clearly $d_{-b_{1}^{*}}, d_{-b_{2}^{*}}, \ldots, d_{-b_{n}^{*}}$ belongs to the subalgebra generated by the elements:

$$
d_{-i\left(b_{1}^{*}+b_{2}^{*}+\cdots+b_{n}^{*}\right)}, d_{b_{i}^{*}}, \quad i=1,2, \ldots, n
$$

and $\operatorname{Vir}[G]$ is generated by $d_{ \pm b_{i}^{*}}, i=1,2, \ldots, n$. Hence we have $\operatorname{Vir}[G] v_{0}=0$, a contradiction to the fact that V is nontrivial.
(d) By (b) we can suppose that $\left\{x \in \mathbb{Z} \mid \Lambda_{0}+x\left(b_{1}+b_{2}+\cdots+b_{n}\right) \in \operatorname{supp}(V)\right\}=$ $(\infty, p-2]$ for some $p \geqslant 2$. Take A as in (3.1), and $\left(b_{1}^{\prime}, b_{2}^{\prime}, \ldots, b_{n}^{\prime}\right)=\left(b_{1}, b_{2}, \ldots, b_{n}\right) A$. One can easily check (d1)-(d6) by using (b) and Claim 1. We omit the details.

To better understand the proof of Lemma 3.1(d) and the lemmas that follow it might help if one draws a diagram in the $O b_{1} b_{2}$-plane for $n=2$ to describe those sets. For instance, if $\lambda=x_{1} b_{1}+x_{2} b_{2}$ in the first quadrant, i.e., $x_{1}>0, x_{2}>0$, then $\Lambda_{0}+\lambda \notin \operatorname{supp}(V)$ and $\Lambda_{0}-\lambda \in \operatorname{supp}(V)$.

In the next lemma we do not assume the irreducibility of V.
Lemma 3.2. If V is a nonzero uniformly bounded weight module over $\operatorname{Vir}[G]$, then V has an irreducible submodule.

Proof. Fix $a \in \operatorname{supp}(V)$. Then $\bigoplus_{g \in G} V_{g+a}$ is a $\operatorname{Vir}[G]$-submodule. Thus it is enough to prove the lemma for $V=\bigoplus_{g \in G} V_{g+a}$. We may assume that V does not have any nonzero trivial submodules. So we can further assume that $a \neq 0$.

We shall prove the lemma by induction on $\operatorname{dim} V_{a}$.
If $\operatorname{dim} V_{a}=1$, let W be the submodule generated by V_{a}. We know that there exists a maximal proper submodule W^{\prime} of W not containing V_{a}. So W / W^{\prime} is irreducible. By Theorem 2.5, we know that W / W^{\prime} is a $V^{\prime}(\alpha, \beta, G)$. So $W_{a}^{\prime}=0$. If $W_{a^{\prime}}^{\prime} \neq 0$ for $a^{\prime} \neq a$, then consider the $\operatorname{Vir}\left[a-a^{\prime}\right]$-module generated by $W_{a^{\prime}}^{\prime}$. From the Virasoro algebra theory,
we see that $a^{\prime}=0$, hence $\operatorname{Vir}[G] W^{\prime}=0$, a contradiction. So $W^{\prime}=0$ and W itself is an irreducible $\operatorname{Vir}[G]$-submodule. The lemma follows in this case.

In general, for any nonzero $v \in V_{a}$, let W be the submodule generated by v. By Zorn's Lemma, there exists a maximal proper submodule W^{\prime} of W not containing v. By Theorem 2.5, $W / W^{\prime} \simeq V^{\prime}(\alpha, \beta, G)$ for some $\alpha, \beta \in \mathbb{C}$. If $W^{\prime}=0$ we are done. If $W^{\prime} \neq 0$, then, applying the inductive hypothesis to W^{\prime}, we have an irreducible submodule of W^{\prime}. The lemma is proved.

In the rest of this section we further assume that $V=\bigoplus_{g \in G} V_{\Lambda_{0}+g}$ is a nontrivial irreducible GHW Vir[G]-module with GHW Λ_{0} w.r.t. $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$, where $\Lambda_{0} \in \mathbb{C}$, and B satisfies the properties of Lemma 3.1(d).

Lemma 3.3. If there exist $\left(i_{1}, i_{2}, \ldots, i_{n}\right),\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{Z}^{n}$ with k_{1}, \ldots, k_{n} relatively prime, and $\left(s_{1}, \ldots, s_{n}\right)>0$ satisfying

$$
\left\{\Lambda_{0}+\sum_{t=1}^{n} i_{t} b_{t}+\sum_{t=1}^{n} x_{t} s_{t} b_{t} \mid\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}, \sum_{t=1}^{n} k_{t} s_{t} x_{t}=0\right\} \cap \operatorname{supp}(V)=\emptyset
$$

then $V \simeq M\left(b^{\prime}, G_{0}, V^{\prime}\left(\alpha, \beta, G_{0}\right)\right)$ for some $\alpha, \beta \in \mathbb{C}$, and $G=\mathbb{Z} b^{\prime} \oplus G_{0}$, where $0 \neq b^{\prime} \in \mathbb{C}, G_{0}$ is a subgroup of G.

Remark. The above condition means that a lattice in some affine hyperplane of \mathbb{Z}^{n} orthogonal to ($k_{1}, k_{2}, \ldots, k_{n}$) contains no weights of V.

Proof. As mentioned earlier, to understand the proof of this lemma better it may be helpful to sketch in the $O b_{1} b_{2}$-plane for $n=2$ the sets used in the proof.

By Lemma 3.1(d6), we have $k_{i}>0$ for all $i=1,2, \ldots, n$ or $k_{i}<0$ for all $i=$ $1,2, \ldots, n$. We may assume that $\left(k_{1}, k_{2}, \ldots, k_{n}\right)>0$. Let

$$
\begin{equation*}
G_{0}=\left\{\sum_{t=1}^{n} x_{t} b_{t} \in G \mid \sum_{i=1}^{n} k_{i} x_{i}=0\right\} \tag{3.2}
\end{equation*}
$$

Claim 1. There exists $m_{0} \in \mathbb{Z}$ such that

$$
\begin{equation*}
\left\{\Lambda_{0}+\sum_{t=1}^{n} x_{t} b_{t} \mid\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}, \sum_{i=1}^{n} k_{i} x_{i} \geqslant m_{0}\right\} \cap \operatorname{supp}(V)=\emptyset \tag{3.3}
\end{equation*}
$$

Proof. Let $A_{t}=s_{t} s_{1}\left(-\delta_{1, t} k_{1}+k_{t},-\delta_{2, t} k_{1}, \ldots,-\delta_{n, t} k_{1}\right)$ whose corresponding element in G is $s_{t} s_{1}\left(-k_{1} b_{t}+k_{t} b_{1}\right) \in G_{0}$. Note that $k_{1} \neq 0$. One may easily check that for any $\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in \mathbb{Z}^{n}$ with $\sum_{t=1}^{n} z_{t} k_{t} \geqslant 0$, there exist suitable $l_{t} \in \mathbb{Z}, t=1,2, \ldots, n$, such that

$$
\begin{equation*}
\left(z_{1}, z_{2}, \ldots, z_{n}\right)=\left(z_{1}^{\prime}, z_{2}^{\prime}, \ldots, z_{n}^{\prime}\right)+\sum_{t=1}^{n} l_{t} A_{t} \tag{3.4}
\end{equation*}
$$

where $0 \geqslant z_{t}^{\prime}>-k_{1} s_{1} s_{t}$ for all $t \in\{2,3, \ldots, n\}$. Hence $z_{1}^{\prime} \geqslant 0$. Now let $N=\max \left\{k_{1} s_{1} s_{1}\right.$, $\left.k_{1} s_{1} s_{2}, \ldots, k_{1} s_{1} s_{n}\right\}$, and $m_{0}=\sum_{t=1}^{n} k_{t}\left(N+i_{t}\right)$. Then using (3.4), for any $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in$ \mathbb{Z}^{n} with $\sum_{i=1}^{n} k_{i} x_{i} \geqslant m_{0}$ we have

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right)-\left(i_{1}+N, i_{2}+N, \ldots, i_{n}+N\right)=\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right)+\sum_{t=1}^{n} l_{t} A_{t}
$$

where $0 \geqslant x_{t}^{\prime}>-k_{1} s_{1} s_{t}$, i.e.,

$$
\begin{equation*}
\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(i_{1}, i_{2}, \ldots, i_{n}\right)+\left(N+x_{1}^{\prime}, N+x_{2}^{\prime}, \ldots, N+x_{n}^{\prime}\right)+\sum_{t=1}^{n} l_{t} A_{t} \tag{3.5}
\end{equation*}
$$

Let $\left(y_{1}, y_{2}, \ldots, y_{n}\right)=\sum_{t=1}^{n} l_{t} A_{t}$. We have

$$
\Lambda_{0}+\sum_{t=1}^{n} x_{t} b_{t}=\Lambda_{0}+\sum_{t=1}^{n} i_{t} b_{t}+\sum_{t=1}^{n} y_{t} b_{t}+\sum_{t=1}^{n} \mathbb{Z}^{+} b_{t}
$$

Note that $\sum_{t=1}^{n} y_{t} b_{t}=\sum_{t=1}^{n} y_{t}^{\prime} s_{t} b_{t}$ with $\sum_{t=1}^{n} y_{t}^{\prime} s_{t} k_{t}=0$. From the assumption we know that

$$
\begin{equation*}
\Lambda_{0}+\sum_{t=1}^{n} i_{t} b_{t}+\sum_{t=1}^{n} y_{t} b_{t} \notin \operatorname{supp}(V) \tag{3.6}
\end{equation*}
$$

By applying Lemma 3.1(d4) we obtain $\Lambda_{0}+\sum_{t=1}^{n} x_{t} b_{t} \notin \operatorname{supp}(V)$. The claim follows.
From Claim 1 we have a unique integer m with the following two properties:
(1) $\left\{\Lambda_{0}+\sum_{t=1}^{n} x_{t} b_{t} \in \operatorname{supp}(V) \mid x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{Z}, \sum_{i=1}^{n} k_{i} x_{i} \geqslant m\right\}=\emptyset$, and
(2) $P:=\left\{\Lambda_{0}+\sum_{t=1}^{n} x_{t} b_{t} \in \operatorname{supp}(V) \mid x_{t} \in \mathbb{Z}, \sum_{i=1}^{n} k_{i} x_{i}=m-1\right\} \neq \emptyset$.

Fix some $b_{1}^{\prime}=t_{1} b_{1}+t_{2} b_{2}+\cdots+t_{n} b_{n}$ with $\sum_{i=1}^{n} k_{i} t_{i}=1$. Since for any $g=$ $\sum_{i=1}^{n} g_{i} b_{i} \in G$, we see that $g-\left(\sum_{i=1}^{n} k_{i} g_{i}\right) b_{1}^{\prime} \in G_{0}$, then $G=\mathbb{Z} b_{1}^{\prime} \oplus G_{0}$. Fix $\lambda_{0} \in P$. We have $P=\left(\lambda_{0}+G_{0}\right) \cap \operatorname{supp}(V)$. Let $W=\bigoplus_{\lambda \in \lambda_{0}+G_{0}} V_{\lambda}$, which is a $\operatorname{Vir}\left[G_{0}\right]$-submodule of V.

Claim 2. W is a uniformly bounded $\operatorname{Vir}\left[G_{0}\right]$-module.
Proof. Let $0 \neq w \in V_{\lambda}$ for some $\lambda \in P$. Noting that $\left(P+G_{0}+b_{1}^{\prime}\right) \cap \operatorname{supp}(V)=\emptyset$, and that for any $a_{0} \in G_{0}$, the set $\left\{d_{a+b_{1}^{\prime}}, d_{-a_{0}-b_{1}^{\prime}} \mid a \in G_{0}\right\}$ generates the Lie algebra $\operatorname{Vir}\left[b_{1}^{\prime}, G_{0}\right]=$ $\operatorname{Vir}[G]$, we deduce

$$
d_{-a_{0}-b_{1}^{\prime}} w \neq 0 \quad \text { for any } a_{0} \in G_{0}
$$

Thus we obtain a linear injection $d_{-a_{0}-b_{1}^{\prime}}: V_{\lambda+a_{0}} \rightarrow V_{\lambda-b_{1}^{\prime}}$. Thus $\operatorname{dim} V_{\lambda+a_{0}} \leqslant \operatorname{dim} V_{\lambda-b_{1}^{\prime}}$ for all $a_{0} \in G_{0}$, i.e., W is uniformly bounded. Claim 2 follows.

By Lemma 3.2, W has an irreducible $\operatorname{Vir}\left[G_{0}\right]$-submodule W^{\prime}. By Theorem 2.5, any irreducible uniformly bounded module is either trivial or isomorphic to $V^{\prime}\left(\alpha, \beta, G_{0}\right)$ for some $(\alpha, \beta) \in \mathbb{C}^{2}$. Now the center c acts as zero on $W^{\prime} . \operatorname{The} \operatorname{Vir}[G]=\operatorname{Vir}\left[b_{1}^{\prime}, G_{0}\right]$-module V is generated by W^{\prime} and $d_{k b_{1}^{\prime}+a_{0}} W^{\prime}=0$ for any $k \in \mathbb{N}, a_{0} \in G_{0}$. So V is the unique irreducible quotient of $M\left(b_{1}^{\prime}, G_{0}, W^{\prime}\right)$. If $W^{\prime}=\mathbb{C} v_{0}$ then $V=\mathbb{C} v_{0}$. Since V is nontrivial, we have $W^{\prime} \simeq V^{\prime}\left(\alpha, \beta, G_{0}\right)$ for some $(\alpha, \beta) \in \mathbb{C}^{2}$ and $V \simeq M\left(b_{1}^{\prime}, G_{0}, V^{\prime}\left(\alpha, \beta, G_{0}\right)\right)$.

For any \mathbb{Z}-basis $B^{\prime}=\left\{b_{1}^{\prime}, b_{2}^{\prime}, \ldots, b_{n}^{\prime}\right\}$ of G, we define the total order " $\succ_{B^{\prime}}$ " on G as follows: $x_{1} b_{1}^{\prime}+x_{1} b_{2}^{\prime}+\cdots+x_{n} b_{n}^{\prime} \succ_{B^{\prime}} y_{1} b_{1}^{\prime}+y_{1} b_{2}^{\prime}+\cdots+y_{n} b_{n}^{\prime}$ if $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \succ$ $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.

Corollary 3.4. Suppose that $G \simeq \mathbb{Z}^{2}$. For any $(0,0) \neq(\dot{c}, h) \in \mathbb{C}^{2}$, and any \mathbb{Z}-basis $B^{\prime}=$ $\left\{b_{1}^{\prime}, b_{2}^{\prime}\right\}$ of G, there exists $\lambda \in \operatorname{supp}\left(V\left(\dot{c}, h, \succ_{B^{\prime}}\right)\right)$ such that $\operatorname{dim}\left(V\left(\dot{c}, h, \succ_{B^{\prime}}\right)\right)_{\lambda}=\infty$.

Proof. Suppose that for any $\lambda \in \operatorname{supp}\left(V\left(\dot{c}, h, \succ_{B^{\prime}}\right)\right)$ we have $\operatorname{dim}\left(V\left(\dot{c}, h, \succ_{B^{\prime}}\right)\right)_{\lambda}<\infty$. It is easy to see that $\operatorname{supp}\left(V\left(\dot{c}, h, \succ_{B^{\prime}}\right)\right) \subset\left(h-\mathbb{N} b_{1}^{\prime}+\mathbb{Z} b_{2}^{\prime}\right) \cup\left(h-\mathbb{Z}^{+} b_{2}^{\prime}\right)$, hence $V\left(\dot{c}, h, \succ_{B^{\prime}}\right)$ is a GHW module with GHW h w.r.t. B^{\prime}. Note that

$$
\left.\begin{array}{rl}
\left(h+\mathbb{N} b_{1}^{\prime}+\mathbb{Z} b_{2}^{\prime}\right) & \cap \operatorname{supp}\left(V\left(\dot{c}, h, \succ_{B^{\prime}}\right)\right) \\
\left(h+\mathbb{Z} b_{2}^{\prime}\right) & \cap \operatorname{supp}\left(V\left(\dot{c}, h, \succ_{B^{\prime}}\right)\right)
\end{array}\right) \text { and } . \quad . \quad .
$$

Using the same argument as in the proof of Claim 2 of Lemma 3.2, we see that

$$
W=\bigoplus_{\lambda \in \mathbb{Z} b_{2}^{\prime}} V\left(\dot{c}, h, \succ_{B^{\prime}}\right)_{h+\lambda}
$$

is a uniformly bounded $\operatorname{Vir}\left[b_{2}^{\prime}\right]$ module. Since W contains the submodule $W^{\prime}=$ $U\left(\operatorname{Vir}\left[b_{2}^{\prime}\right]\right)\left(v_{h}\right)$ which is a highest weight module with highest weight $(\dot{c}, h), W^{\prime}$ (and W) is not uniformly bounded. A contradiction. Hence $(\dot{c}, h)=(0,0)$. The corollary follows.

Lemma 3.5. Suppose that $G \simeq \mathbb{Z}^{2}$. If there exist $(k, l) \neq 0,(i, j) \in \mathbb{Z}^{2}, p, q \in \mathbb{Z}$ such that

$$
\left\{x \in \mathbb{Z} \mid \Lambda_{0}+i b_{1}+j b_{2}+x\left(k b_{1}+l b_{2}\right) \in \operatorname{supp}(V)\right\} \supset(-\infty, p] \cup[q, \infty)
$$

then $V \simeq M\left(b_{1}^{\prime}, \mathbb{Z} b_{2}^{\prime}, V^{\prime}\left(\alpha, \beta, \mathbb{Z} b_{2}^{\prime}\right)\right)$ for some $\alpha, \beta \in \mathbb{C}$, and $a \mathbb{Z}$-basis $B^{\prime}=\left(b_{1}^{\prime}, b_{2}^{\prime}\right)$ of G.
Proof. From Lemma 3.1(d6), we see $k l<0$. We may assume that $l>0$. Let

$$
\left(i_{0}, j_{0}\right)= \begin{cases}(i+q k, j+p l), & \text { if } p<q-1 \\ (i, j), & \text { if } p \geqslant q-1\end{cases}
$$

Denote $L:=\left\{i_{0} b_{1}+j_{0} b_{2}+x\left(k b_{1}+l b_{2}\right) \mid x \in \mathbb{Z}\right\}$. If $p<q-1$, write

$$
\begin{gathered}
i_{0} b_{1}+j_{0} b_{2}+x\left(k b_{1}+l b_{2}\right)=i b_{1}+j b_{2}+(x+q)\left(k b_{1}+l b_{2}\right)+(p-q) l_{0} b_{2} \text { or } \\
i b_{1}+j b_{2}+(x+p)\left(k b_{1}+l b_{2}\right)+(q-p) k_{0} b_{1}
\end{gathered}
$$

according to $x \geqslant 0$ or $x<0$. From Lemma 3.1(d5) we see that all points in the set $\Lambda_{0}+L$ are weights of V.

Write $(k, l)=s\left(k_{0}, l_{0}\right)$ with k_{0}, l_{0} relatively prime, $s \geqslant 1$. By replacing (i, j) with $\left(i_{0}, j_{0}-(s-1) l_{0}\right)$, we may assume that $p=q$. Then similarly we have $L_{0}:=i b_{1}+j b_{2}+$ $\mathbb{Z}\left(k_{0} b_{1}+l_{0} b_{2}\right) \subset \operatorname{supp}(V)$. Using Lemma 3.1(d5) we see that

$$
\left\{\Lambda_{0}+x b_{1}+y b_{2} \mid l_{0} x-k_{0} y \leqslant l_{0} i-k_{0}\left(j_{0}-(s-1) l_{0}\right),(x, y) \in \mathbb{Z}^{2}\right\} \subset \operatorname{supp}(V),
$$

i.e., all points under the line $\Lambda_{0}-(s-1) l_{0} b_{2}+L_{0}$ are weights of V (It might help if one draws a diagram on the $O b_{1} b_{2}$-plane.)

So we may assume that k, l are relatively prime, $k<0, l>0$, and there exists an integer m_{0} such that

$$
\begin{equation*}
\left\{\Lambda_{0}+x b_{1}+y b_{2} \mid l x-k y \leqslant m_{0},(x, y) \in \mathbb{Z}^{2}\right\} \subset \operatorname{supp}(V) \tag{3.7}
\end{equation*}
$$

Fix $\left(k^{\prime}, l^{\prime}\right) \in \mathbb{Z}^{2}$ with $l k^{\prime}-k l^{\prime}=1$. Denote $b_{1}^{\prime}=k b_{1}+l b_{2}$ and $b_{2}^{\prime}=k^{\prime} b_{1}+l^{\prime} b_{2}$. If

$$
\left\{\Lambda_{0}-k b_{1}+b_{2}^{\prime}+t b_{1}^{\prime} \mid t \in \mathbb{Z}\right\} \cap \operatorname{supp}(V)=\emptyset
$$

then the lemma follows from Lemma 3.3. Hence we may assume that

$$
\begin{equation*}
\left\{\Lambda_{0}-k b_{1}+b_{2}^{\prime}+t b_{1}^{\prime} \mid t \in \mathbb{Z}\right\} \cap \operatorname{supp}(V) \neq \emptyset \tag{3.8}
\end{equation*}
$$

Choose $\Lambda_{0}-k b_{1}+b_{2}^{\prime}-s b_{1}^{\prime} \in \operatorname{supp}(V)$, and a nonzero weight vector $v \in V_{\Lambda_{0}-k b_{1}+b_{2}^{\prime}-s b_{1}^{\prime}}$. Let

$$
b_{1}^{\prime \prime}=s b_{1}^{\prime}-b_{2}^{\prime}, \quad b_{2}^{\prime \prime}=(s+1) b_{1}^{\prime}-b_{2}^{\prime}
$$

Since $\Lambda_{0}-k b_{1}, \Lambda_{0}-k b_{1}+b_{1}^{\prime} \in \Lambda_{0}+\mathbb{Z}^{+} b_{1}+\mathbb{Z}^{+} b_{2}$, we obtain

$$
d_{b_{1}^{\prime \prime}} v=0, \quad d_{b_{2}^{\prime \prime}} v=0
$$

Thus

$$
d_{m b_{1}^{\prime \prime}+n b_{2}^{\prime \prime}} v=0, \quad \forall m>0, n>0 .
$$

Using this, one sees that v is a GHW vector with respect to the \mathbb{Z}-basis $\left\{b_{1}^{\prime \prime}+b_{2}^{\prime \prime}, b_{1}^{\prime \prime}+2 b_{2}^{\prime \prime}\right\}$ of G. Now by Lemma 3.1(b) there exists some x_{0} such that

$$
\begin{equation*}
\lambda_{0}+b_{2}^{\prime}+x\left(\left(b_{1}^{\prime \prime}+b_{2}^{\prime \prime}\right)+\left(b_{1}^{\prime \prime}+2 b_{2}^{\prime \prime}\right)\right) \notin \operatorname{supp}(V), \quad \forall x>x_{0} \tag{3.9}
\end{equation*}
$$

But

$$
\begin{aligned}
&\left(b_{1}^{\prime \prime}+b_{2}^{\prime \prime}\right)+\left(b_{1}^{\prime \prime}+2 b_{2}^{\prime \prime}\right)=2 b_{1}^{\prime \prime}+3 b_{2}^{\prime \prime}=(2 s+3(s+1)) b_{1}^{\prime}-5 b_{2}^{\prime} \\
&=\left((5 s+3) k-5 k^{\prime}\right) b_{1}+\left((5 s+3) l-5 l^{\prime}\right) b_{2} \\
& l\left((5 s+3) k-5 k^{\prime}\right)-k\left((5 s+3) l-5 l^{\prime}\right)=-5\left(l k^{\prime}-k l^{\prime}\right)=-5<0
\end{aligned}
$$

Hence for x sufficiently large we have

$$
\lambda_{0}+b_{2}^{\prime}+x\left(\left(b_{1}^{\prime \prime}+b_{2}^{\prime \prime}\right)+\left(b_{1}^{\prime \prime}+2 b_{2}^{\prime \prime}\right)\right) \in\left\{\Lambda_{0}+x b_{1}+y b_{2} \mid l x-k y \leqslant m_{0},(x, y) \in \mathbb{Z}^{2}\right\}
$$

which is a contradiction to (3.7) and (3.9), hence (3.8) cannot occur. The lemma follows.

Lemma 3.6. Suppose that $G \simeq \mathbb{Z}^{2}$. If there exist $(i, j),(k, l) \in \mathbb{Z}^{2}$ and $x_{1}, x_{2}, x_{3} \in \mathbb{Z}$ with $x_{1}<x_{2}<x_{3}$, such that

$$
\begin{gathered}
\Lambda_{0}+i b_{1}+j b_{2}+x_{1}\left(k b_{1}+l b_{2}\right) \notin \operatorname{supp}(V), \\
\Lambda_{0}+i b_{1}+j b_{2}+x_{2}\left(k b_{1}+l b_{2}\right) \in \operatorname{supp}(V), \quad \text { and } \\
\Lambda_{0}+i b_{1}+j b_{2}+x_{3}\left(k b_{1}+l b_{2}\right) \notin \operatorname{supp}(V),
\end{gathered}
$$

then
(a) there exists $x \in \mathbb{Z}$ with $x_{1}<x<x_{3}$ such that

$$
\Lambda_{0}+i b_{1}+j b_{2}+x\left(k b_{1}+l b_{2}\right)=0
$$

and further,
(b) such a module V does not exist.

Proof. We may assume that k, l are relatively prime, and by Lemma 3.1(d6) we see $k l<0$. So we may assume that $k<0$ and $l>0$. Replacing x_{2} by the largest $x<x_{3}$ with $\Lambda_{0}+i b_{1}+$ $j b_{2}+x\left(k b_{1}+l b_{2}\right) \in \operatorname{supp}(V)$, and then replacing x_{3} by $x_{2}+1$ and (i, j) by $(i, j)+x_{2}(k, l)$ we can assume that

$$
\begin{equation*}
x_{1}<x_{2}=0, \quad x_{3}=1 \tag{3.10}
\end{equation*}
$$

Fix a nonzero weight vector $v \in V_{\Lambda_{0}+i b_{1}+j b_{2}}$. Then (3.10) means

$$
d_{k b_{1}+l b_{2}} v=0=d_{x_{1}\left(k b_{1}+l b_{2}\right)} v,
$$

which yields $d_{ \pm\left(k b_{1}+l b_{2}\right)} v=0$. By Lemma 3.1 (b) we can choose $p, q>0$ such that $d_{p b_{1}+q b_{2}} v=0$. Since $k q-l p<0$, then $S=\left\{b_{1}^{\prime}=k b_{1}+l b_{2}, b_{2}^{\prime}=p b_{1}+q b_{2}\right\}$ is a \mathbb{Z}-linear
independent subset of G. Note that $d_{m b_{1}^{\prime}+n b_{2}^{\prime}}$ for $n>0$ belong to the subalgebra generated by $d_{ \pm b_{1}^{\prime}}, d_{b_{2}^{\prime}}$. Thus

$$
d_{m b_{1}^{\prime}+n b_{2}^{\prime}} v=0, \quad \forall n>0, m \in \mathbb{Z}
$$

Consider the $\operatorname{Vir}\left[b_{1}^{\prime}\right]$-module $W=U\left(\operatorname{Vir}\left[b_{1}^{\prime}\right]\right) v$. By using the PBW basis of $U(\operatorname{Vir}[S])$ we have

$$
\begin{equation*}
\left(\Lambda_{0}+i b_{1}+j b_{2}+\mathbb{Z} b_{1}^{\prime}+\mathbb{N} b_{2}^{\prime}\right) \cap \operatorname{supp}(U(\operatorname{Vir}[S]) v)=\emptyset . \tag{3.11}
\end{equation*}
$$

Case 1. W is not uniformly bounded.
From Virasoro algebra theory we see that W has a nontrivial irreducible sub-quotient $\operatorname{Vir}\left[b_{1}^{\prime}\right]$-module W_{1} / W_{2} which is a highest (or lowest) weight $\operatorname{Vir}\left[b_{1}^{\prime}\right]$-module. Using (3.11) and PBW Theorem, we know that $W^{\prime}=U(\operatorname{Vir}[S]) W_{1} / U(\operatorname{Vir}[S]) W_{2}$ is a highest weight $\operatorname{Vir}[S]$-module w.r.t. the lexicographic order determined by $\left\{b_{1}^{\prime}, b_{2}^{\prime}\right\}$ with highest weight not equal to $(0,0)$. Now by Corollary $3.4, W^{\prime}$ has a weight space of infinite dimension. So does S. This case does not occur.

Case 2. $\quad W$ is uniformly bounded.
First we can easily see that the center c acts as zero on V. From the fact that $\operatorname{supp}\left(V^{\prime}\left(\alpha, \beta, \mathbb{Z} b_{1}^{\prime}\right)\right)=\alpha+\mathbb{Z} b_{1}^{\prime}$ or $\mathbb{Z} b_{1}^{\prime} \backslash\{0\}$ and the assumption (3.10), we know that $W \subset V_{0}$, the weight space with 0 weight. We deduce (a).

It is clear that $W=V_{0}=\mathbb{C} v_{0}$. Denote by $W^{\prime \prime}$ the $\operatorname{Vir}[S]$-module generated by W, which is a $\operatorname{Vir}[S]$-submodule of V. Now by (3.11), $\operatorname{Vir}[S]$-module $W^{\prime \prime}$ is a quotient module of $M\left(0,0, \succ_{B^{\prime}}\right)$, and $W^{\prime \prime}$ is nontrivial (from Lemma 3.1(c)), so $W^{\prime \prime}$ is reducible. If $d_{-b_{2}^{\prime}+s_{0} b_{1}^{\prime}} v_{0}=0$ for some s_{0}, from

$$
d_{-b_{2}^{\prime}+s b_{1}^{\prime}} v_{0}=\left(-b_{2}^{\prime}+\left(2 s_{0}-s\right) b_{1}^{\prime}\right)^{-1}\left[d_{-b_{2}^{\prime}+s_{0} b_{1}^{\prime}}, d_{s b_{1}^{\prime}-s_{0} b_{1}^{\prime}}\right] v_{0}=0
$$

and the fact that $\left\{d_{-b_{2}^{\prime}+s b_{1}^{\prime}} \mid s \in \mathbb{Z}\right\}$ generates $\left\{d_{-t b_{2}^{\prime}+s b_{1}^{\prime}} \mid s \in \mathbb{Z}, t \in \mathbb{N}\right\}$, combining with (3.11) we deduce that $W^{\prime \prime}$ is a trivial $\operatorname{Vir}[S]$-submodule, a contradiction to Lemma 3.1(c). So we have

$$
d_{-b_{2}^{\prime}+s b_{1}^{\prime}} v_{0} \neq 0 \quad \text { for any } s \in \mathbb{Z}
$$

Thus $\left\{-b_{2}^{\prime}+s b_{1}^{\prime} \mid s \in \mathbb{Z}\right\} \subset \operatorname{supp}(V)$. Now by Lemma 3.5, we have $V \simeq M\left(b_{2}^{\prime}, \mathbb{Z} b_{1}^{\prime}\right.$, $\left.V^{\prime}\left(\alpha, \beta, \mathbb{Z} b_{1}^{\prime}\right)\right)$ for some $\alpha, \beta \in \mathbb{C}$, and a \mathbb{Z}-basis $B^{\prime}=\left(b_{1}^{\prime}, b_{2}^{\prime}\right)$ of G. It is easy to see that $M\left(b_{2}^{\prime}, \mathbb{Z} b_{1}^{\prime}, V^{\prime}\left(\alpha, \beta, \mathbb{Z} b_{1}^{\prime}\right)\right)$ does not satisfy condition (a). Thus such a module V does not exist.

This completes the proof.
The idea of Claims 1 and 2 in the proof of the next theorem comes from the proof of [15, Theorem 1.1] for $n=2$.

Theorem 3.7. Suppose that $B=\left(b_{1}, b_{2}\right)$ is a \mathbb{Z}-basis of the additive subgroup $G \subset \mathbb{C}$. If V is a nontrivial irreducible weight module with finite dimensional weight spaces over the higher rank Virasoro algebra $\operatorname{Vir}[G]$, then $V \cong V^{\prime}(\alpha, \beta, G)$ or $V \cong M\left(b_{1}^{\prime}, \mathbb{Z} b_{2}^{\prime}, V^{\prime}(\alpha\right.$, $\left.\beta, \mathbb{Z} b_{2}^{\prime}\right)$) for some $\alpha, \beta \in \mathbb{C}$, and a \mathbb{Z}-basis $B^{\prime}=\left(b_{1}^{\prime}, b_{2}^{\prime}\right)$ of G.

Proof. To the contrary, we suppose that $V \nsupseteq V^{\prime}(\alpha, \beta, G)$ or $M\left(b_{1}^{\prime}, \mathbb{Z} b_{2}^{\prime}, V^{\prime}\left(\alpha, \beta, \mathbb{Z} b_{2}^{\prime}\right)\right)$ for any $\alpha, \beta \in \mathbb{C}$, and any \mathbb{Z}-basis of $B^{\prime}=\left(b_{1}^{\prime}, b_{2}^{\prime}\right)$ of G. From Theorem 2.5 we may assume that V is a GHW module with GHW Λ_{0} w.r.t. the basis $B=\left\{b_{1}, b_{2}\right\}$ for G. We need to prove that $V \cong M\left(b_{1}^{\prime}, \mathbb{Z} b_{2}^{\prime}, V^{\prime}\left(\alpha, \beta, \mathbb{Z} b_{2}^{\prime}\right)\right)$ for proper parameters. We still assume that B satisfies Lemma 3.1(d). By Lemmas 3.3, 3.5 and 3.6, for any $(i, j), 0 \neq(k, l) \in \mathbb{Z}^{2}$, there exists $p \in \mathbb{Z}$ such that

$$
\begin{equation*}
\left\{x \in \mathbb{Z} \mid \Lambda_{0}+i b_{1}+j b_{2}+x\left(k b_{1}+l b_{2}\right) \in \operatorname{supp}(V)\right\}=(-\infty, p] \quad \text { or } \quad[p, \infty) \tag{3.12}
\end{equation*}
$$

Then for any $i \in \mathbb{N}$, there exist $x_{i}, y_{i} \in \mathbb{Z}^{+}$such that

$$
\begin{aligned}
& \left(-\infty, y_{i}\right]=\max \left\{y \in \mathbb{Z} \mid \Lambda_{0}-i b_{1}+y b_{2} \in \operatorname{supp}(V)\right\} \\
& \left(-\infty, x_{i}\right]=\max \left\{x \in \mathbb{Z} \mid \Lambda_{0}+x b_{1}-i b_{2} \in \operatorname{supp}(V)\right\}
\end{aligned}
$$

By Lemma 3.1(d5) we know that $y_{i+1} \geqslant y_{i} \geqslant 0, x_{i+1} \geqslant x_{i} \geqslant 0$. Let $j, t \in \mathbb{N}$, if $y_{j t} \geqslant$ $t\left(y_{j}+1\right)$, then $t>1$ and $\Lambda_{0}, \Lambda_{0}+t\left(-j b_{1}+\left(y_{j}+1\right) b_{2}\right) \in \operatorname{supp}(V)$, and by (3.12), $\Lambda_{0}+$ $\left(-j b_{1}+\left(y_{j}+1\right) b_{2}\right) \in \operatorname{supp}(V)$, contrary to the definition of y_{j}. So

$$
\begin{equation*}
y_{t j}<t\left(y_{j}+1\right), \quad \forall t, j \in \mathbb{N} \tag{3.13}
\end{equation*}
$$

Since $\Lambda_{0}+b_{2} \notin \operatorname{supp}(V)$ and $\Lambda_{0}-j b_{1}+y_{j} b_{2}=\Lambda_{0}+b_{2}+\left(-j b_{1}+\left(y_{j}-1\right) b_{2}\right) \in$ $\operatorname{supp}(V)$, then (3.12) yields $\Lambda_{0}+b_{2}+t\left(-j b_{1}+\left(y_{j}-1\right) b_{2}\right) \in \operatorname{supp}(V)$ for all $t>0$. Hence

$$
\begin{equation*}
y_{t j} \geqslant t\left(y_{j}-1\right)+1, \quad \forall t, j \in \mathbb{N} . \tag{3.14}
\end{equation*}
$$

Using (3.13), (3.14) we obtain

$$
j\left(y_{i}-1\right)+1 \leqslant y_{i j}<i\left(y_{j}+1\right), \quad \forall i, j \in \mathbb{N}
$$

From $j\left(y_{i}-1\right)+1<i\left(y_{j}+1\right)$ and the one with i, j interchanged, we deduce

$$
\begin{equation*}
\frac{y_{j}}{j}-\frac{i+j-1}{i j}<\frac{y_{i}}{i}<\frac{y_{j}}{j}+\frac{i+j-1}{i j}, \quad \forall i, j \in \mathbb{N} . \tag{3.15}
\end{equation*}
$$

This shows that the following limits exist:

$$
\begin{equation*}
\alpha=\lim _{i \rightarrow \infty} \frac{y_{i}}{i}, \quad \beta=\lim _{i \rightarrow \infty} \frac{x_{i}}{i} \tag{3.16}
\end{equation*}
$$

where the second equation is obtained by symmetry. Note that (3.12) implies that there exists some $j_{0} \in \mathbb{N}$ such that $y_{j_{0}}>1$ (otherwise $\left.\left(\Lambda_{0}+2 b_{2}+\mathbb{Z} b_{1}\right) \cap \operatorname{supp}(V)=\emptyset\right)$. Hence by (3.14) we deduce

$$
\frac{y_{t j_{0}}}{t j_{0}} \geqslant \frac{y_{j_{0}}-1}{j_{0}}+\frac{1}{t j_{0}}>\frac{y_{j_{0}}-1}{j_{0}}>0
$$

thus $\alpha>0$. Similarly $\beta>0$.
Claim 1. $\alpha=\beta^{-1}$ is an irrational number.
Proof. Suppose that $\alpha>\beta^{-1}$. Choose $s, q \in \mathbb{N}$ with s, q relatively prime and $\alpha>$ $s / q>\beta^{-1}$. Applying (3.12) to $\Lambda_{0}+t\left(-q b_{1}+s b_{2}\right)$, by the definition of α, we have $\Lambda_{0}+t\left(-q b_{1}+s b_{2}\right) \in \operatorname{supp}(V)$ for all sufficiently large t. From (3.12), hence, for all sufficiently large t we have $\Lambda_{0}-t\left(-q b_{1}+s b_{2}\right) \notin \operatorname{supp}(V)$, which implies that

$$
\beta=\lim _{t \rightarrow \infty} \frac{x_{s t}}{s t} \leqslant \frac{q}{s},
$$

i.e., $\beta^{-1} \geqslant s / q$, a contradiction. So we have $\alpha \leqslant \beta^{-1}$, and similarly we have $\alpha \geqslant \beta^{-1}$. Thus $\alpha=\beta^{-1}$.

Assume $\alpha=q / s$ is a rational number, where $s, q \in \mathbb{N}$ are relatively prime. By (3.12), there exists some $m_{0} \in \mathbb{Z}$ such that $\Lambda_{0}-b_{2}+m_{0}\left(s b_{1}-q b_{2}\right) \notin \operatorname{supp}(V)$. Say $m_{0}>0$. Since $\Lambda_{0} \in \operatorname{supp}(V)$, by (3.12) again, we deduce

$$
\Lambda_{0}+i\left(-m_{0} s b_{1}+\left(m_{0} q+1\right) b_{2}\right) \in \operatorname{supp}(V), \quad \forall i \in[0, \infty] .
$$

However

$$
\alpha=\frac{q}{s}=\lim _{i \rightarrow \infty} \frac{y_{i m_{0} s}}{i m_{0} s} \geqslant \frac{m_{0} q+1}{m_{0} s}>\frac{q}{s},
$$

a contradiction. Hence α is an irrational number, and Claim 1 follows.

We define a total order $>_{\alpha}$ on G as follows:

$$
i b_{1}+j b_{2}>_{\alpha} k b_{1}+l b_{2} \quad \Leftrightarrow \quad i \alpha+j>k \alpha+l .
$$

Let $G^{+}=\left\{i b_{1}+j b_{2} \in G \mid i b_{1}+j b_{2}>_{\alpha} 0\right\}$. If $\lambda \in \operatorname{supp}(V)$ satisfies $\left(\lambda+G^{+}\right) \cap$ $\operatorname{supp}(V)=\emptyset$, then V is a nontrivial highest weight module w.r.t. " $<_{\alpha}$ ". Since the order " $<_{\alpha}$ " is dense, from Theorem 2.2 we see that V is a Verma module, which contradicts the fact that all weight spaces of V are finite dimensional. So for any $\lambda \in \operatorname{supp}(V)$ we have

$$
\begin{equation*}
\left(\lambda+G^{+}\right) \cap \operatorname{supp}(V) \neq \emptyset \tag{3.17}
\end{equation*}
$$

Claim 2. If $\Lambda_{0}+g \in \operatorname{supp}(V)$ for some $g=i b_{1}+j b_{2} \in G^{+}$then

$$
\Lambda_{0}+k b_{1}+l b_{2} \in \operatorname{supp}(V), \quad \forall k b_{1}+l b_{2}<_{\alpha} i b_{1}+j b_{2} .
$$

Proof. If there exists some $k b_{1}+l b_{2}<_{\alpha} i b_{1}+j b_{2}$ such that $\Lambda_{0}+k b_{1}+l b_{2} \notin \operatorname{supp}(V)$, (3.12) implies

$$
\Lambda_{0}+i b_{1}+j b_{2}+t\left((k-i) b_{1}+(l-j) b_{2}\right) \notin \operatorname{supp}(V), \quad \forall t \in \mathbb{N} .
$$

If $k-i<0$ (then $l-j \geqslant 0$), from $(k-i) b_{1}+(l-j) b_{2}<\alpha 0$ we see that $-(l-j) /$ $(k-i)<\alpha$. On the other hand,

$$
\alpha=\lim _{t \rightarrow \infty} \frac{y_{t(i-k)-i}}{t(i-k)-i} \leqslant \lim _{t \rightarrow \infty} \frac{j+t(l-j)}{t(i-k)-i}=\frac{l-j}{i-k},
$$

a contradiction. If $k-i>0$, from $(k-i) b_{1}+(l-j) b_{2}<_{\alpha} 0$ we know that $(l-j)<0$, and $-(k-i) /(l-j)<\alpha^{-1}$. Similarly,

$$
\alpha^{-1}=\lim _{t \rightarrow \infty} \frac{x_{t}}{t} \leqslant-\frac{k-i}{l-j}
$$

again a contradiction. If $k-i=0$, by Lemma 3.1(d5) we have $(l-j)>0$, but by $(k-$ i) $b_{1}+(l-j) b_{2}<_{\alpha} 0$, we have $l-j<0$, which is also a contradiction. So we have Claim 2.

Claim 2 implies that for any $\Lambda \in \operatorname{supp}(V)$, we have

$$
\begin{equation*}
\Lambda-G^{+} \subset \operatorname{supp}(V) \tag{3.18}
\end{equation*}
$$

Claim 3. $d_{-g} v_{\lambda} \neq 0$ for any $g=i b_{1}+j b_{2} \in G^{+}$and any nonzero weight vector $v_{\lambda} \in V_{\lambda}$.
Proof. Suppose that $d_{-g} v_{\lambda}=0$ for some $g=i b_{1}+j b_{2} \in G^{+}$and $0 \neq v_{\lambda} \in V_{\lambda}$. By (3.12) and (3.18), we see that $d_{s g} v_{\lambda}=0$ for all sufficiently large $s>0$. Hence $d_{g} v_{\lambda}=0$. By Lemma 3.1(b) we can choose $g_{1}=p b_{1}+q b_{2}$ such that $d_{g_{1}} v_{\lambda}=0$ and $S=\left\{g, g_{1}\right\}$ is a \mathbb{Z}-linearly independent subset of G. Consider the $\operatorname{Vir}[g]$-module $W=U(\operatorname{Vir}[g]) v_{\lambda}$. Using the PBW basis of $U(\operatorname{Vir}[S])$ we have

$$
\left(\lambda+\mathbb{Z} g+\mathbb{N} g_{1}\right) \cap \operatorname{supp}\left(U(\operatorname{Vir}[S]) v_{\lambda}\right)=\emptyset
$$

By (3.12) and (3.18) there exists some s_{0} such that $\lambda+s g \notin \operatorname{supp}(V)$ for all $s>s_{0}$. Hence any irreducible $\operatorname{Vir}[g]$-subquotient of W is a highest weight module. If W has a nontrivial irreducible Vir $[g]$-subquotient, using the arguments, analogous to those used in Case 1 in the proof of Lemma 3.6, we get a contradiction. So we deduce that $W=\mathbb{C} v_{\lambda}$ with $\lambda=0$. With a similar discussion as in Case 2 in the proof of Lemma 3.6 we obtain that $\lambda+\mathbb{Z} g-g_{1} \subset \operatorname{supp}\left(U(\operatorname{Vir}[S]) v_{\lambda}\right)$, which contradicts (3.12). Hence Claim 3 follows.

Fix $\Lambda_{0}+i b_{1}+j b_{2} \in \operatorname{supp}(V)$, where $i b_{1}+j b_{2} \in G^{+}$. We are going to show that $\operatorname{dim} V_{\Lambda_{0}+i b_{1}+j b_{2}}=\infty$. For a given $n>0$, let $\varepsilon=\frac{1}{n}(j+i \alpha)>0$. Since the order " $<_{\alpha}$ " is dense, we can choose $p, q \in \mathbb{Z}$ with $0<q+p \alpha<\varepsilon$. Hence we obtain $0<\alpha p b_{1}+q b_{2}$ and $n p b_{1}+n q b_{2}<_{\alpha}\left(i b_{1}+j b_{2}\right)$. Then from Claim 2 we deduce that

$$
\Lambda_{0}+m\left(p b_{1}+q b_{2}\right) \in \operatorname{supp}(V), \quad \forall m \leqslant 0 .
$$

By (3.12) we assume that m_{0} is the maximal integer such that $\Lambda_{0}+m_{0}\left(p b_{1}+q b_{2}\right) \in$ $\operatorname{supp}(V)$, so $m_{0} \geqslant n$. Let

$$
M=\left\{g \in G^{+} \mid 0 \neq \Lambda_{0}+m_{0}\left(p b_{1}+q b_{2}\right)+g \in \operatorname{supp}(V)\right\} .
$$

By (3.17) M is an infinite set. Denote $\bar{g}=p b_{1}+q b_{2}$.
Claim 4. There exist $g_{0} \in M$ such that for any $k: 1 \leqslant k \leqslant n$, the k vectors

$$
d_{-\bar{g}}^{k-1} d_{-\bar{g}} v, d_{-\bar{g}}^{k-2} d_{-2 \bar{g}} v, \ldots, d_{-\bar{g}} d_{-(k-1) \bar{g}} v, d_{-k \bar{g}} v
$$

are linearly independent, where $v \in V_{\Lambda_{0}+g_{0}+m_{0} \bar{g}} \backslash\{0\}$.
Proof. We will prove the claim by induction on k.
Suppose that $v \in V_{\Lambda_{0}+g+m_{0} \bar{g}} \backslash\{0\}$ for $g \in M$.
If $k=1$, from $d_{\bar{g}} v_{\Lambda_{0}+g+m_{0} \bar{g}}=0$, we deduce that

$$
d_{\bar{g}} d_{-\bar{g}} v=\left(-2 \bar{g}\left(\Lambda_{0}+g+m_{0} \bar{g}\right)+\frac{\bar{g}^{3}-\bar{g}}{12} c\right) v .
$$

Let $h_{1}(g):=-2 \bar{g}\left(\Lambda_{0}+g+m_{0} \bar{g}\right)+\frac{\bar{g}^{3}-\bar{g}}{12} c$. Then the set $M_{1}=\left\{g \in M \mid h_{1}(g) \neq 0\right\}$ is infinite and $d_{-\bar{g}} v \neq 0$ for any $g \in M_{1}$.

Suppose that $k>1$ and there exist an infinite set $M_{k-1} \subset M$ such that

$$
d_{-\bar{g}}^{k-2} d_{-\bar{g}} v, d_{-\bar{g}}^{k-3} d_{-2 \bar{g}} v, \ldots, d_{-\bar{g}} d_{-(k-2) \bar{g}} v, d_{-(k-1) \bar{g}} v
$$

are linearly independent for any $v \in V_{\Lambda_{0}+g+m_{0} \bar{g}} \backslash\{0\}$ and $g \in M_{k-1}$.
Now we consider k. If the vectors

$$
d_{-\bar{g}}^{k} v, d_{-\bar{g}}^{k-2} d_{-2 \bar{g}} v, \ldots, d_{-\bar{g}} d_{-(k-1) \bar{g}} v, d_{-k \bar{g}} v
$$

are linearly dependent for some $g \in M_{k-1}$. Then there exist $a_{1}, \ldots, a_{k} \in \mathbb{C}$, not all zero, such that

$$
w_{k}=a_{1} d_{-\bar{g}}^{k} v+a_{2} d_{-\bar{g}}^{k-2} d_{-2 \bar{g}} v+\cdots+a_{k} d_{-(k) \bar{g}} v=0
$$

Using $\left[d_{\bar{g}}, d_{-\bar{g}}^{k}\right]=-k \bar{g}\left(2 d_{0}+(k-1) \bar{g}-\frac{\bar{g}^{2}-1}{12} c\right) d_{-\bar{g}}^{k-1}$, we deduce that

$$
\begin{aligned}
0= & d_{\bar{g}} w_{k} \\
= & -a_{1} k \bar{g}\left(2\left(\Lambda_{0}+g+\left(m_{0}-k+1\right) \bar{g}\right)+(k-1) \bar{g}-\frac{\bar{g}^{2}-1}{12} c\right) d_{-\bar{g}}^{k-1} v \\
& +a_{2}(-k+2) \bar{g}\left(2\left(\Lambda_{0}+g+\left(m_{0}-k+1\right) \bar{g}\right)+(k-3) \bar{g}-\frac{\bar{g}^{2}-1}{12} c\right) d_{-\bar{g}}^{k-3} d_{-2 \bar{g}} v \\
& -3 a_{2} \bar{g} d_{-\bar{g}}^{k-1} v+\cdots \\
& +a_{k-1}(-1) \bar{g}\left(2\left(\Lambda_{0}+g+\left(m_{0}-k+1\right) \bar{g}\right)-\frac{\bar{g}^{2}-1}{12} c\right) d_{-(k-1) \bar{g}} v \\
& +(-k) a_{k-1} \bar{g} d_{-\bar{g}} d_{-(n-2) \bar{g}} v_{\Lambda_{0}+g+\left(m_{0}-k+1\right) \bar{g}}+a_{k}(-k-1) \bar{g} d_{-(k-1) \bar{g}} v .
\end{aligned}
$$

This together with the inductive hypothesis yields that

$$
\begin{equation*}
a_{i}=a_{1} f_{i}(g), \quad \forall i=1,2, \ldots, k \tag{3.19}
\end{equation*}
$$

where $f_{i}(X)$ is a polynomial of degree $i-1$ in X. Using (3.19) and the following computations

$$
\begin{aligned}
0= & d_{k \bar{g}} w_{k} \\
= & a_{1}(-k-1) \bar{g}(-k) \bar{g} \cdots(-3) \bar{g}\left(-2 \bar{g}\left(\Lambda_{0}+g+m_{0} \bar{g}\right)+\frac{\bar{g}^{3}-\bar{g}}{12} c\right) v \\
& +a_{2}(-k-1) \bar{g}(-k) \bar{g} \cdots(-4) \bar{g}\left(-4 \bar{g}\left(\Lambda_{0}+g+m_{0} \bar{g}\right)+\frac{(2 \bar{g})^{3}-2 \bar{g}}{12} c\right) v+\cdots \\
& +a_{k-1}(-k-1) \bar{g}\left(-2(k-1) \bar{g}\left(\Lambda_{0}+g+m_{0} \bar{g}\right)+\frac{((k-1) \bar{g})^{3}-(k-1) \bar{g}}{12} c\right) v \\
& +a_{k}\left(-2 k \bar{g}\left(\Lambda_{0}+g+m_{0} \bar{g}\right)+\frac{(k \bar{g})^{3}-k \bar{g}}{12} c\right) v \\
= & a_{1} h_{k}(g) v
\end{aligned}
$$

where $h_{k}(X)$ is a polynomial of degree k in X. Then $M_{k}=\left\{g \in M_{k-1} \mid h_{k}(g) \neq 0\right\}$ is infinite and the vectors in Claim 4 are linearly independent for $g_{0} \in M_{k}$. Hence Claim 4 follows.

From Claim 4 we know that $\operatorname{dim} V_{\Lambda_{0}+g_{0}+\left(m_{0}-n\right) \bar{g}} \geqslant n$ for some $g_{0} \in M$ and for all $n \in \mathbb{N}$. Noting that $g_{0}, \bar{g} \in G^{+}$, by Claim 3 we deduce that $\operatorname{dim} V_{\Lambda_{0}} \geqslant n$ for all $n \in \mathbb{N}$. Hence $\operatorname{dim} V_{\Lambda_{0}}=\infty$. This proves that (3.12) cannot occur, and the theorem follows.

Lemma 3.8. Suppose that $G=\mathbb{Z} b_{1}^{\prime} \oplus G_{0}$. Then $\operatorname{supp}\left(M\left(b_{1}^{\prime}, G_{0}, V^{\prime}\left(\alpha, \beta, G_{0}\right)\right)=\right.$ $\operatorname{supp}\left(V^{\prime}\left(\alpha, \beta, G_{0}\right)\right) \cup\left(\alpha+G_{0}-\mathbb{N} b_{1}^{\prime}\right)$.

Proof. It is clear that

$$
\begin{gathered}
\operatorname{supp}\left(M\left(b_{1}^{\prime}, G_{0}, V^{\prime}\left(\alpha, \beta, G_{0}\right)\right)\right) \subset \operatorname{supp}\left(V^{\prime}\left(\alpha, \beta, G_{0}\right)\right) \cup\left(\alpha+G_{0}-\mathbb{N} b_{1}^{\prime}\right) \\
\operatorname{supp}\left(V^{\prime}\left(\alpha, \beta, G_{0}\right)\right) \subset \operatorname{supp}\left(M\left(b_{1}^{\prime}, G_{0}, V^{\prime}\left(\alpha, \beta, G_{0}\right)\right)\right) .
\end{gathered}
$$

Suppose that there exists $d=\alpha+g_{0}-s b_{1}^{\prime} \notin \operatorname{supp}\left(M\left(b_{1}^{\prime}, G_{0}, V^{\prime}\left(\alpha, \beta, G_{0}\right)\right)\right.$, where $s>0$ and $g_{0} \in G_{0}$.

Choose $\alpha+g_{1} \in \operatorname{supp}\left(V^{\prime}\left(\alpha, \beta, G_{0}\right)\right) \backslash\{0\}$. Let $d^{\prime}=g_{1}-g_{0}+s b^{\prime}$. We see that $\alpha+g_{1} \in$ $\operatorname{supp}(V)$. Fix $v \in V^{\prime}\left(\alpha, \beta, G_{0}\right)_{\alpha+g_{1}}$. Let W be the $\operatorname{Vir}\left[d^{\prime}, b_{1}^{\prime}\right]$-submodule generated by v. Then we have an irreducible sub-quotient module W^{\prime} of W with $\alpha+g_{1} \in \operatorname{supp}\left(W^{\prime}\right)$, and $\alpha+g_{1} \pm d^{\prime} \notin \operatorname{supp}\left(W^{\prime}\right)$. We get a contradiction to Lemma 3.6. This completes the proof of the lemma.

From the lemma above we see that $\operatorname{supp}\left(M\left(b_{1}^{\prime}, G_{0}, V^{\prime}\left(\alpha, \beta, G_{0}\right)\right)\right.$ equals either $\alpha-$ $\mathbb{Z}^{+} b_{1}^{\prime}+G_{0}$ or $\left(-\mathbb{Z}^{+} b_{1}^{\prime}+G_{0}\right) \backslash\{0\}$. Finally we can handle the general case.

Theorem 3.9. If V is a nontrivial irreducible weight module with finite dimensional weight spaces over the higher rank Virasoro algebra $\operatorname{Vir}[G]$ for $G \simeq \mathbb{Z}^{n}(n \geqslant 2)$, then $V \simeq V^{\prime}(\alpha, \beta, G)$ or $V \simeq M\left(b_{1}^{\prime}, G_{0}, V^{\prime}\left(\alpha, \beta, G_{0}\right)\right)$ for some $\alpha, \beta \in \mathbb{C}, b_{1}^{\prime} \in G \backslash\{0\}$, and a subgroup G_{0} of G with $G=\mathbb{Z} b_{1}^{\prime} \oplus G_{0}$.

Proof. From Theorem 2.5 we may assume that V is a nontrivial irreducible GHW module with GHW Λ_{0} w.r.t. $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ over $\operatorname{Vir}[G]$, where B is a \mathbb{Z}-basis of the additive subgroup G of \mathbb{C}, then we need to prove that $V \simeq M\left(b_{1}^{\prime}, G_{0}, V^{\prime}\left(\alpha, \beta, G_{0}\right)\right)$. We still assume that B satisfies Lemma 3.1(d).

We shall prove this by induction on n. For $n=2$ this is Theorem 3.7. Now suppose that the theorem holds for any $n \leqslant N-1$ where $N \geqslant 3$. We shall prove $V \simeq M\left(b_{1}^{\prime}, G_{0}\right.$, $\left.V^{\prime}\left(\alpha, \beta, G_{0}\right)\right)$ for $n=N$.

If there exist $g \in G$ and a corank 1 subgroup G_{0} of G such that $\left(\Lambda_{0}+g+G_{0}\right) \cap$ $\operatorname{supp}(V) \subset\{0\}$, then the theorem follows from Lemma 3.3. (Indeed, If $\left(\Lambda_{0}+g+G_{0}\right) \cap$ $\operatorname{supp}(V)=\{0\}$, suppose that $G_{0}=\mathbb{Z} a_{1}+\cdots+\mathbb{Z} a_{N-1}$. We may assume that $\Lambda_{0}+g=0$. Then $\left(a_{1}+\mathbb{Z} 2 a_{1}+\cdots+\mathbb{Z} 2 a_{N-1}\right) \cap \operatorname{supp}(V)=\emptyset$. Using Lemma 3.3 we have the theorem). So we may assume that for any $g \in G$ and any corank 1 subgroup G_{0},

$$
\begin{equation*}
\left(\Lambda_{0}+g+G_{0}\right) \cap \operatorname{supp}(V) \nsubseteq\{0\} . \tag{3.20}
\end{equation*}
$$

Hence the $\operatorname{Vir}\left[G_{0}\right]$ module $V_{\Lambda_{0}+g+G_{0}}=\bigoplus_{x \in G_{0}} V_{\Lambda_{0}+x+g}$ has a nontrivial irreducible subquotient. By Lemma 3.8, Theorem 2.5 and the inductive hypothesis, for any corank 1 subgroup G_{0} and any $g \in G$ there exist a subgroup $G_{0,1}$ of $G_{0}, \lambda_{0}^{\prime} \in \Lambda_{0}+g+G_{0}$ and $g_{0,1} \in G_{0} \backslash\{0\}$ with $G_{0}=\mathbb{Z} g_{0,1} \oplus G_{0,1}$ such that

$$
\begin{equation*}
\lambda_{0}^{\prime}+G_{0,1}-\mathbb{N} g_{0,1} \subset \operatorname{supp}(V) \tag{3.21}
\end{equation*}
$$

Note that some other elements in $\lambda_{0}^{\prime}+G_{0}$ can also be in $\operatorname{supp}(V)$. Next we are going to show that under the assumption (3.21) such a module V does not exist.

Claim 1. There are no $\lambda_{0} \in \operatorname{supp}(V), t_{0} \in \mathbb{Z}, g_{0}, g_{1} \in G \backslash\{0\}$ or subgroups $G_{1}^{\prime} \subset G_{0}^{\prime} \subset G$ with $G=\mathbb{Z} g_{0} \oplus G_{0}^{\prime}$ and $G_{0}^{\prime}=\mathbb{Z} g_{1} \oplus G_{1}^{\prime}$ satisfying

$$
\lambda_{0}-\mathbb{Z}^{+} g_{1}+G_{1}^{\prime}, \lambda_{0}+t_{0} g_{1}+\mathbb{Z}^{+} g_{1}+G_{1}^{\prime} \subset \operatorname{supp}(V)
$$

(If $t_{0} \leqslant 0$, then $\lambda_{0}+G_{0}^{\prime} \subset \operatorname{supp}(V)$.)
Proof. Suppose that there exist $\lambda_{0} \in \operatorname{supp}(V), t_{0} \in \mathbb{Z}, g_{0}, g_{1} \in G \backslash\{0\}$ and subgroups $G_{1}^{\prime} \subset G_{0}^{\prime} \subset G$ with $G=\mathbb{Z} g_{0} \oplus G_{0}^{\prime}$ and $G_{0}^{\prime}=\mathbb{Z} g_{1} \oplus G_{1}^{\prime}$ satisfying

$$
\lambda_{0}-\mathbb{Z}^{+} g_{1}+G_{1}^{\prime}, \lambda_{0}+t_{0} g_{1}+\mathbb{Z}^{+} g_{1}+G_{1}^{\prime} \subset \operatorname{supp}(V)
$$

Choose $0 \neq\left(k_{1}, \ldots, k_{N}\right) \in \mathbb{Z}^{N}, k_{i}$ relatively prime, such that

$$
G_{0}^{\prime}=\left\{\sum_{i=1}^{N} x_{i} b_{i} \mid \sum_{i=1}^{N} k_{i} x_{i}=0\right\} .
$$

If there exist i, j such that $k_{i} k_{j} \leqslant 0$, then there exists $b^{\prime} \in G_{0}^{\prime} \backslash\{0\}, b^{\prime} \geqslant 0$ with $\left\{x \lambda_{0}-\right.$ $\left.g_{1}+x b^{\prime} \in \operatorname{supp}(V)\right\}=\left(-\infty, m_{0}\right]$, a contradiction to the assumption (consider whether $\left.b^{\prime} \in G_{1}^{\prime}\right)$. Then $k_{i} k_{j}>0$ for all $i, j \in[1, N]$. Hence we may assume that $k_{i}>0$ for all $i \in[1, N]$. Let

$$
g_{0}=\sum_{i=1}^{N} s_{i}^{(N)} b_{i}
$$

Since $G_{0}^{\prime} \oplus \mathbb{Z} g_{0}=G$ we have

$$
\sum_{i=1}^{N} s_{i}^{(N)} k_{i}= \pm 1
$$

By replacing g_{0} with $-g_{0}$ if necessary, we may assume that $\sum_{i=1}^{N} s_{i}^{(N)} k_{i}=1$. Choose a basis of G_{1}^{\prime}, say $\left\{b_{1}^{\prime}, b_{2}^{\prime}, \ldots, b_{N-2}^{\prime}\right\}$. Take $b_{N-1}^{\prime}=g_{1}, b_{N}^{\prime}=g_{0}$, then $B^{\prime}=\left\{b_{1}^{\prime}, b_{2}^{\prime}, \ldots, b_{N}^{\prime}\right\}$ is a basis of G.

Subclaim. For any $N_{0}>0$ there exists $m_{0} \in \mathbb{N}$ such that $\left[m_{0}, \infty\right) \subset\left\{\sum_{i=1}^{N} k_{i} x_{i} \mid x_{i} \geqslant\right.$ $\left.N_{0}, i=1,2, \ldots, N\right\}$.

Proof. Note that $\sum_{i=1}^{N} s_{i}^{(N)} k_{i}=1$. Choose $n_{0} \in \mathbb{N}$ such that $n_{0}+s_{i}^{(N)} \geqslant 0$ for all i. Note that $k_{1}>0$. Take $m_{0}=\sum_{i=1}^{N} k_{i}\left(N_{0}+k_{1} n_{0}\right)$. Noting that

$$
m_{0}+t k_{1}=\left(\sum_{i=1}^{N} k_{i}\left(N_{0}+k_{1} n_{0}\right)\right)+k_{1} t, \quad \forall t>0, \quad \text { and }
$$

$$
m_{0}+t k_{1}+i=\left(\sum_{i=1}^{N} k_{i}\left(N_{0}+k_{1} n_{0}+i s_{i}^{(N)}\right)\right)+t k_{1}, \quad \text { for } 0 \leqslant i<k_{1},
$$

we have proved the subclaim.
Denote $b_{N-1}^{\prime}=g_{1}=\sum_{i=1}^{N} s_{i}^{(N-1)} b_{i}$. Choose $N_{0} \in \mathbb{N}$ such that $N_{0}+t_{0} s_{i}^{(N-1)}>0$ for all i, then choose m_{0} for this N_{0} as in the subclaim above. By the subclaim for any $m \geqslant m_{0}$, there exists $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \geqslant\left(N_{0}, N_{0}, \ldots, N_{0}\right)$, such that $m=\sum_{i=1}^{N} k_{i} x_{i}$. Then using the choice of $\left(k_{1}, \ldots, k_{N}\right)$ one can easily verify that

$$
m b_{N}^{\prime}-\sum_{i=1}^{N} x_{i} b_{i} \in G_{0}^{\prime}
$$

Using this we can write $\lambda \in \lambda_{0}-m b_{N}^{\prime}+G_{0}^{\prime}$ as

$$
\lambda=\lambda_{0}+h_{0}-\sum_{i=1}^{N} x_{i} b_{i}, \quad \lambda=\lambda_{0}+h_{0}+t_{0} g_{1}-\left(\left(\sum_{i=1}^{N} x_{i} b_{i}\right)+t_{0} g_{1}\right)
$$

where $h_{0} \in G_{0}^{\prime}$. Noting that

$$
\sum_{i=1}^{N} x_{i} b_{i},\left(\left(\sum_{i=1}^{N} x_{i} b_{i}\right)+t_{0} g_{1}\right) \in \sum_{i=1}^{N} \mathbb{Z}^{+} b_{i}
$$

and the fact that $\lambda_{0}+h_{0} \in \operatorname{supp}(V)$ or $\lambda_{0}+h_{0}+t_{0} g_{1} \in \operatorname{supp}(V)$, using Lemma 3.1(d5) we deduce

$$
\begin{equation*}
\lambda_{0}-m_{0} b_{N}^{\prime}+G_{0}^{\prime}-\mathbb{Z}^{+} b_{N}^{\prime} \subset \operatorname{supp}(V) \tag{3.22}
\end{equation*}
$$

Fix some $\lambda_{0}^{\prime} \in \Lambda_{0}+\left(\sum_{i=1}^{N} \mathbb{N} b_{i}^{\prime}\right)$ such that

$$
\begin{equation*}
\lambda_{0}^{\prime}, \lambda_{0}^{\prime} \pm b_{i}^{\prime}, \lambda_{0}^{\prime} \pm b_{i}^{\prime}-b_{N}^{\prime} \in \Lambda_{0}+\sum_{i=1}^{N} \mathbb{Z}^{+} b_{i} \quad \text { for all } i \in[1, N] \tag{3.23}
\end{equation*}
$$

Applying (3.21) to λ_{0}^{\prime} and G_{0}^{\prime} (replace G_{0} by G_{0}^{\prime}), since $N>2$ we have $i_{0} \in[1, N-1]$ and $s_{0} \in \mathbb{Z}$ such that

$$
\begin{equation*}
\lambda_{0}^{\prime}+s_{0} b_{i_{0}}^{\prime} \in \operatorname{supp}(V) \tag{3.24}
\end{equation*}
$$

Denote $b_{i}^{\prime \prime}=-s_{0} b_{i_{0}}^{\prime}-b_{i}^{\prime}$ for all $i \in[1, N] \backslash i_{0}$ and $b_{i_{0}}^{\prime \prime}=-\left(s_{0}+1\right) b_{i_{0}}^{\prime}-b_{N}^{\prime}$. Fix a nonzero $v_{\lambda_{0}^{\prime}+s_{0} b_{i_{0}^{\prime}}^{\prime}} \in V_{\lambda_{0}^{\prime}+s_{0} b_{i_{0}}^{\prime}}$. It is easy to see that $\left\{b_{1}^{\prime \prime}, \ldots, b_{N}^{\prime \prime}\right\}$ forms a \mathbb{Z}-basis of G. By (3.23) we have

$$
d_{b_{i}^{\prime \prime}} v_{\lambda_{0}^{\prime}+s_{0} b_{i_{0}^{\prime}}^{\prime}}=0 \quad \text { for all } i \in[1, N]
$$

So we have

$$
\begin{equation*}
d_{b} v_{\lambda_{0}^{\prime}+s_{0} b_{i_{0}}^{\prime}}=0 \quad \text { for all } b \in\left(\mathbb{Z}^{+} b_{1}^{\prime \prime}+\mathbb{Z}^{+} b_{2}^{\prime \prime}+\cdots+\mathbb{Z}^{+} b_{N}^{\prime \prime}\right) \backslash\left(\bigcup_{i=1}^{N} \mathbb{Z}^{+} b_{i}^{\prime \prime}\right) \tag{3.25}
\end{equation*}
$$

Hence $v_{\lambda_{0}^{\prime}+s_{0} b_{i_{0}^{\prime}}^{\prime}}$ is a highest weight vector w.r.t.

$$
B^{\prime \prime \prime}=\left\{2 b_{1}^{\prime \prime}+b_{2}^{\prime \prime}, b_{1}^{\prime \prime}+b_{2}^{\prime \prime}, b_{1}^{\prime \prime}+b_{3}^{\prime \prime}, \ldots, b_{1}^{\prime \prime}+b_{N}^{\prime \prime}\right\}
$$

which satisfies Lemma 3.1(d). Now by Lemma 3.1(b) there exists x_{0} such that for any $x>x_{0}$,

$$
\begin{equation*}
\lambda_{0}^{\prime}+s_{0} b_{i_{0}}^{\prime}+x\left(\left(2 b_{1}^{\prime \prime}+b_{2}^{\prime \prime}\right)+\left(b_{1}^{\prime \prime}+b_{2}^{\prime \prime}\right)+\left(b_{1}^{\prime \prime}+b_{3}^{\prime \prime}\right)+\cdots+\left(b_{1}^{\prime \prime}+b_{N}^{\prime \prime}\right)\right) \notin \operatorname{supp}(V) \tag{3.26}
\end{equation*}
$$

Write $\left(2 b_{1}^{\prime \prime}+b_{2}^{\prime \prime}\right)+\left(b_{1}^{\prime \prime}+b_{2}^{\prime \prime}\right)+\left(b_{1}^{\prime \prime}+b_{3}^{\prime \prime}\right)+\cdots+\left(b_{1}^{\prime \prime}+b_{N}^{\prime \prime}\right)=h_{0}-l^{\prime} b_{N}^{\prime}, \lambda_{0}^{\prime}=\lambda_{0}-$ $m_{0} b_{N}^{\prime}+g_{0}+l b_{N}^{\prime}$ where $g_{0}, h_{0} \in G_{0}^{\prime}, l, l^{\prime} \in \mathbb{Z}, l^{\prime}>0$ (since $G_{0}^{\prime}=\sum_{i=1}^{N-1} \mathbb{Z} b_{i}^{\prime}$). Then for sufficiently large x,

$$
\begin{align*}
& \lambda_{0}^{\prime}+s_{0} b_{i_{0}}^{\prime}+x\left(\left(2 b_{1}^{\prime \prime}+b_{2}^{\prime \prime}\right)+\left(b_{1}^{\prime \prime}+b_{2}^{\prime \prime}\right)+\left(b_{1}^{\prime \prime}+b_{3}^{\prime \prime}\right)+\cdots+\left(b_{1}^{\prime \prime}+b_{N}^{\prime \prime}\right)\right) \\
& \quad \in \lambda_{0}-m_{0} b_{N}^{\prime}+\left(l-l^{\prime} x\right) b_{N}^{\prime}+G_{0}^{\prime} \subset \lambda_{0}-m_{0} b_{N}^{\prime}+G_{0}^{\prime}-\mathbb{N} b_{N}^{\prime} \tag{3.27}
\end{align*}
$$

which contradicts (3.22). Thus Claim 1 follows.

$$
\text { Denote } \bar{G}_{t}=t b_{1}+\mathbb{Z} b_{2}+\mathbb{Z} b_{3}+\cdots+\mathbb{Z} b_{N} \text { for } t \in \mathbb{Z}
$$

Claim 2. If for $\lambda_{0} \in \Lambda_{0}+G$, $g_{1}, g_{1}^{\prime} \in \bar{G}_{0} \backslash\{0\}$, and subgroups of $\bar{G}_{0}: G_{1}, G_{1}^{\prime}$ with $\bar{G}_{0}=$ $\mathbb{Z} g_{1} \oplus G_{1}, \bar{G}_{0}=\mathbb{Z} g_{1}^{\prime} \oplus G_{1}^{\prime}$, we have

$$
\lambda_{0}-\mathbb{N} g_{1}+G_{1}, \lambda_{0}-\mathbb{N} g_{1}^{\prime}+G_{1}^{\prime} \subset \operatorname{supp}(V)
$$

then $G_{1}=G_{1}^{\prime}$.
Proof. Suppose that $G_{1} \neq G_{1}^{\prime}$. Fix $0 \neq f_{1}=\sum_{i=1}^{n} u_{i} b_{i} \in \bar{G}_{0}$ (then $u_{1}=0$) satisfying

$$
f_{1} \in-\mathbb{N} g_{1}+G_{1} \quad \text { and } \quad \sum_{i=1}^{n} u_{i} x_{i}=0
$$

for all $\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{Z}^{n}$ with $\sum_{i=1}^{n} x_{i} b_{i} \in G_{1}$, and fix $0 \neq f_{1}^{\prime}=\sum_{i=1}^{n} u_{i}^{\prime} b_{i} \in \bar{G}_{0}$ satisfying

$$
f_{1}^{\prime} \in-\mathbb{N} g_{1}^{\prime}+G_{1}^{\prime} \quad \text { and } \quad \sum_{i=1}^{n} u_{i}^{\prime} x_{i}=0
$$

for all $\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{Z}^{n}$ with $\sum_{i=1}^{n} x_{i} b_{i} \in G_{1}^{\prime}$. (We simply write $f \perp G_{1}, f^{\prime} \perp G_{1}^{\prime}$.) Since $G_{1} \neq G_{1}^{\prime}$ we see that $\mathbb{Z} f_{1}^{\prime} \cap \mathbb{Z} f_{1}=\{0\}$. Hence we can choose a base $B^{\prime}=$ $\left\{b_{1}^{\prime}, b_{2}^{\prime}, \ldots, b_{N-1}^{\prime}\right\}$ of \bar{G}_{0} as follows: Fix $b_{1}^{\prime}=\sum_{i=1}^{N} s_{i}^{(1)} b_{i} \in \bar{G}_{0}$ such that $s_{1}^{(1)}, s_{2}^{(1)}, \ldots, s_{N}^{(1)}$ are relatively prime,

$$
\begin{equation*}
\sum_{i=1}^{N} u_{i} s_{i}^{(1)}>0 \quad \text { and } \quad \sum_{i=1}^{N} u_{i}^{\prime} s_{i}^{(1)}<0 \tag{3.28}
\end{equation*}
$$

and extend it to a \mathbb{Z} basis $B^{\prime}=\left\{b_{1}^{\prime}, b_{2}^{\prime}, \ldots, b_{N-1}^{\prime}\right\}$ of \bar{G}_{0}. By replacing $b_{j}^{\prime}(j>1)$ with $b_{j}^{\prime}+m b_{1}^{\prime}, m \gg 0$ if necessary, we may assume that $b_{j}^{\prime}=\sum_{i=1}^{N} s_{i}^{(j)} b_{i}$ satisfies

$$
\begin{equation*}
\sum_{i=1}^{N} s_{i}^{(j)} u_{i}>0 \quad \text { and } \quad \sum_{i=1}^{N} s_{i}^{(j)} u_{i}^{\prime}<0 \quad \text { for all } j \in[1, N-1] . \tag{3.29}
\end{equation*}
$$

Since $f \perp G_{1}, f^{\prime} \perp G_{1}^{\prime}$, we see that

$$
\begin{equation*}
b_{i}^{\prime} \in-\mathbb{N} g_{1}+G_{1} \quad \text { and } \quad b_{i}^{\prime} \in \mathbb{N} g_{1}^{\prime}+G_{1}^{\prime} \quad \text { for all } i \in[1, N-1] . \tag{3.30}
\end{equation*}
$$

Take $b_{N}^{\prime}=b_{1}$. Hence $B^{\prime}=\left\{b_{1}^{\prime}, b_{2}^{\prime}, \ldots, b_{N}^{\prime}\right\}$ is a basis of G. Fix

$$
\begin{equation*}
\lambda_{0}^{\prime}=\lambda_{0}+t_{0} b_{N}^{\prime}+\bar{g}_{0}, \tag{3.31}
\end{equation*}
$$

where $t_{0}>0, \bar{g}_{0} \in \bar{G}_{0}$ are such that

$$
\lambda_{0}^{\prime}, \lambda_{0}^{\prime} \pm b_{i}^{\prime}, \quad \lambda_{0}^{\prime} \pm b_{i}^{\prime}-b_{N}^{\prime} \in \Lambda_{0}+\sum_{i=1}^{N} \mathbb{Z}^{+} b_{i} \quad \text { for all } i \in[1, N]
$$

So

$$
\begin{equation*}
\lambda_{0}^{\prime}, \lambda_{0}^{\prime} \pm b_{i}^{\prime}, \lambda_{0}^{\prime} \pm b_{i}^{\prime}-b_{N}^{\prime} \notin \operatorname{supp}(V) \quad \text { for all } i \in[1, N] \tag{3.32}
\end{equation*}
$$

Now applying (3.21) to λ_{0}^{\prime} and \bar{G}_{0}, since $N>2$ we see that there exist some $i_{0} \in$ [$1, N-1]$ and $s_{0} \in \mathbb{N}$ such that

$$
\begin{gather*}
\lambda_{0}^{\prime}+s b_{i_{0}}^{\prime} \in \operatorname{supp}(V) \quad \text { for all } s \geqslant s_{0}, \quad \text { or } \\
\lambda_{0}^{\prime}+s b_{i_{0}}^{\prime} \in \operatorname{supp}(V) \quad \text { for all } s \leqslant-s_{0} . \tag{3.33}
\end{gather*}
$$

We may assume that (3.33) holds (if $\lambda_{0}^{\prime}+s b_{i_{0}}^{\prime} \in \operatorname{supp}(V)$ for all $s \leqslant-s_{0}$, then the remaining arguments are exactly the same, using G_{1}). Denote $b_{i}^{\prime \prime}=-s_{0} b_{i_{0}}^{\prime}-b_{i}^{\prime}$ for all $i \in[1, N] \backslash i_{0}$ and $b_{i_{0}}^{\prime \prime}=-\left(s_{0}+1\right) b_{i_{0}}^{\prime}-b_{N}^{\prime}$.

From (3.30) we see that

$$
\begin{equation*}
b_{1}^{\prime \prime}+\cdots+b_{N}^{\prime \prime} \in-\sum_{i=1}^{N} b_{i}^{\prime}-s_{0} n b_{i_{0}}^{\prime}-\mathbb{N} b_{1} \subset-\mathbb{N} g_{1}^{\prime}+G_{1}^{\prime}-\mathbb{N} b_{1} \tag{3.34}
\end{equation*}
$$

Fix a nonzero $v_{\lambda_{0}^{\prime}+s_{0} b_{i_{0}}^{\prime}} \in V_{\lambda_{0}^{\prime}+s_{0} b_{i_{0}}^{\prime}}$. It is easy to see that $\left\{b_{1}^{\prime \prime}, \ldots, b_{N}^{\prime \prime}\right\}$ forms a \mathbb{Z}-basis of G and

$$
\begin{equation*}
d_{b_{i}^{\prime \prime}} v_{\lambda_{0}^{\prime}+s_{0} b_{i_{0}^{\prime}}^{\prime}}=0 \quad \text { for all } i \in[1, N] . \tag{3.35}
\end{equation*}
$$

So we have

$$
\begin{equation*}
d_{b} v_{\lambda_{0}^{\prime}+s_{0} b_{i_{0}}^{\prime}}=0 \quad \text { for all } b \in\left(\mathbb{Z}^{+} b_{1}^{\prime \prime}+\mathbb{Z}^{+} b_{2}^{\prime \prime}+\cdots+\mathbb{Z}^{+} b_{N}^{\prime \prime}\right) \backslash\left(\bigcup_{i=1}^{N} \mathbb{Z}^{+} b_{i}^{\prime \prime}\right) \tag{3.36}
\end{equation*}
$$

Hence $v_{\lambda_{0}^{\prime}+s_{0} b_{i_{0}^{\prime}}^{\prime}}$ is a highest weight vector w.r.t.

$$
B^{\prime \prime \prime}=\left\{2 b_{1}^{\prime \prime}+b_{2}^{\prime \prime}, b_{1}^{\prime \prime}+b_{2}^{\prime \prime}, b_{1}^{\prime \prime}+b_{3}^{\prime \prime}, \ldots, b_{1}^{\prime \prime}+b_{N}^{\prime \prime}\right\}
$$

Now by Lemma 3.1(b) there exists some x_{0} such that for any $x>x_{0}$ we have

$$
\begin{equation*}
\lambda_{0}^{\prime}+s_{0} b_{i_{0}}^{\prime}+x\left(b_{1}^{\prime \prime}+b_{2}^{\prime \prime}+\cdots+b_{N}^{\prime \prime}\right) \notin \operatorname{supp}(V) \tag{3.37}
\end{equation*}
$$

From (3.31) we can write $\lambda_{0}^{\prime}=\lambda_{0}+t_{0} b_{N}^{\prime}+l g_{1}^{\prime}+h$ where $h \in G_{1}^{\prime}, l \in \mathbb{Z}$. Using (3.34), for sufficiently large x we have

$$
\begin{equation*}
\lambda_{0}^{\prime}+s_{0} b_{i_{0}}^{\prime}+x\left(b_{1}^{\prime \prime}+b_{2}^{\prime \prime}+\cdots+b_{N}^{\prime \prime}\right) \in \lambda_{0}-\mathbb{N} g_{1}^{\prime}+G_{1}^{\prime}-\mathbb{N} b_{1} \subset \operatorname{supp}(V) \tag{3.38}
\end{equation*}
$$

since $\lambda_{0}-\mathbb{N} g_{1}^{\prime}+G_{1}^{\prime} \in \operatorname{supp}(V)$. This is a contradiction to (3.37). Hence $G_{1}=G_{1}^{\prime}$ and Claim 2 follows.

Denote $V_{\Lambda_{0}+\bar{G}_{t}}=\bigoplus_{b \in \bar{G}_{t}} V_{\Lambda_{0}+b}$ for $t \in \mathbb{Z}$. It is easy to see that $V_{\Lambda_{0}+\bar{G}_{t}}$ is a $\operatorname{Vir}\left[b_{2}, \ldots, b_{N}\right]$-module. For any $0 \neq \lambda \in \operatorname{supp}\left(V_{\Lambda_{0}+\bar{G}_{t}}\right)$ (we refer to (3.21) for the existence), λ is a weight of a nontrivial irreducible $\operatorname{Vir}\left[b_{2}, \ldots, b_{N}\right]$-subquotient of $V_{\Lambda_{0}+\bar{G}_{t}}$. From the inductive hypothesis and Claim 1, we know that such a nontrivial irreducible $\operatorname{Vir}\left[b_{2}, \ldots, b_{N}\right]$-module is isomorphic to $M\left(g_{t}, G_{t}, V^{\prime}\left(\alpha_{t}, \beta_{t}, G_{t}\right)\right)$ for suitable $\alpha_{t}, \beta_{t} \in \mathbb{C}$, and g_{t}, G_{t} with $\bar{G}_{0}=\mathbb{Z} g_{t} \oplus G_{t}$. Thus from Lemma 3.8, if $0 \neq \lambda \in \operatorname{supp}(V) \cap\left(\Lambda_{0}+\right.$ $g_{t}+\bar{G}_{0}$), then there exists a corank 1 subgroup G_{λ} of \bar{G}_{0} such that

$$
\begin{equation*}
\lambda+G_{\lambda} \subset \operatorname{supp}(V) \cup\{0\} \tag{3.39}
\end{equation*}
$$

Combining this with Claims 1 and 2 , we deduce that for any $t \in \mathbb{Z}$ there exist a corank 1 subgroup G_{t} in $\bar{G}_{0}, \alpha_{t} \in \Lambda_{0}+\bar{G}_{t}$ and $g_{t} \in \bar{G}_{0}$ such that $\bar{G}_{0}=\mathbb{Z} g_{t} \oplus G_{t}$ and

$$
\begin{equation*}
\operatorname{supp}\left(V_{\Lambda_{0}+\bar{G}_{t}}\right) \backslash\{0\}=\left(\alpha_{t}-\mathbb{Z}^{+} g_{t}+G_{t}\right) \backslash\{0\} \tag{3.40}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\alpha_{t}-\mathbb{N} g_{t}+G_{t} \subset \operatorname{supp}\left(V_{\Lambda_{0}+\bar{G}_{t}}\right) \tag{3.41}
\end{equation*}
$$

Lemma 3.1(d5) and Lemma 3.8 ensure that

$$
\alpha_{t+1}-b_{1}-\mathbb{N} g_{t+1}+G_{t+1}, \alpha_{t}-\mathbb{N} g_{t}+G_{t} \subset \operatorname{supp}\left(V_{\Lambda_{0}+\bar{G}_{t}}\right)
$$

It follows from Claim 2 that $G_{t}=G_{t+1}$ for all $t \in \mathbb{Z}$. Thus there exist a corank 1 subgroup G_{0} in $\bar{G}_{0}, \alpha_{t} \in \Lambda_{0}+\bar{G}_{t}$ and $g_{0} \in \bar{G}_{0}$ with $\bar{G}_{0}=\mathbb{Z}^{+} g_{0} \oplus G_{0}$ such that either

$$
\begin{align*}
& \operatorname{supp}\left(V_{\Lambda_{0}+\bar{G}_{t}}\right) \backslash\{0\}=\left(\alpha_{t}+\mathbb{Z}^{+} g_{0}+G_{0}\right) \backslash\{0\}, \quad \text { or } \\
& \quad \operatorname{supp}\left(V_{\Lambda_{0}+\bar{G}_{t}}\right) \backslash\{0\}=\left(\alpha_{t}-\mathbb{Z}^{+} g_{0}+G_{0}\right) \backslash\{0\} . \tag{3.42}
\end{align*}
$$

If there exists $t \in \mathbb{Z}$ such that

$$
\begin{aligned}
\operatorname{supp}\left(V_{\Lambda_{0}+\bar{G}_{t}}\right) \backslash\{0\} & =\left(\alpha_{t}-\mathbb{Z}^{+} g_{0}+G_{0}\right) \backslash\{0\}, \\
\operatorname{supp}\left(V_{\Lambda_{0}+\bar{G}_{t+1}}\right) \backslash\{0\} & =\left(\alpha_{t+1}+\mathbb{Z}^{+} g_{0}+G_{0}\right) \backslash\{0\} .
\end{aligned}
$$

Similarly we have $\lambda_{1}, \lambda_{2} \in \Lambda_{0}+\bar{G}_{t}$ such that

$$
\lambda_{1}-\mathbb{N} g_{0}+G_{0}, \lambda_{2}+\mathbb{N} g_{0}+G_{0} \subset \operatorname{supp}(V)
$$

which contradicts Claim 1. So we may assume that

$$
\begin{equation*}
\operatorname{supp}\left(V_{\Lambda_{0}+\bar{G}_{t}}\right) \backslash\{0\}=\left(\alpha_{t}-\mathbb{Z}^{+} g_{0}+G_{0}\right) \backslash\{0\}, \quad \forall t \in \mathbb{Z} \tag{3.43}
\end{equation*}
$$

Hence we may assume that $\alpha_{t} \in \Lambda_{0}+\mathbb{Z} g_{0}+\mathbb{Z} b_{1}$. Then for any $\lambda \in \operatorname{supp}(V)$, we have

$$
\begin{equation*}
\lambda+G_{0} \subset \operatorname{supp}(V) \cup\{0\} . \tag{3.44}
\end{equation*}
$$

Consider the $\operatorname{Vir}\left[g_{0}, b_{1}\right]$-module $V_{\Lambda_{0}+\mathbb{Z} g_{0}+\mathbb{Z} b_{1}}$ where $g_{0} \in G_{0} \backslash\{0\}$ as before. From (3.43), $V_{\Lambda_{0}+\mathbb{Z} g_{0}+\mathbb{Z} b_{1}}$ has a nontrivial irreducible $\operatorname{Vir}\left[g_{0}, b_{1}\right]$-subquotient (we refer to the last paragraph in the proof of Lemma 3.2). Hence there exist some $\lambda_{0}^{\prime} \in \Lambda_{0}+\mathbb{Z} g_{0}+\mathbb{Z} b_{1}$ and a basis $b_{0}^{\prime}, g_{0}^{\prime}$ of $\mathbb{Z} g_{0}+\mathbb{Z} b_{1}$ such that

$$
\lambda_{0}^{\prime}+\mathbb{Z} g_{0}^{\prime} \subset \operatorname{supp}\left(V_{\Lambda_{0}+\mathbb{Z} g_{0}+\mathbb{Z} b_{1}}\right)
$$

From (3.43) with $t=0$ we know that $g_{0}^{\prime} \notin \mathbb{Z} g_{0}$. Hence by (3.44)

$$
\lambda_{0}^{\prime}+\mathbb{Z} g_{0}^{\prime}+G_{0} \subset \operatorname{supp}(V) \cup\{0\}
$$

and $\mathbb{Z} b_{0}^{\prime}+\left(\mathbb{Z} g_{0}^{\prime}+G_{0}\right)=G$, which contradicts Claim 1. This completes the proof of the theorem.

Acknowledgments

The authors thank sincerely Professor Volodymyr Mazorchuk and the referee for scrutinizing all steps in the old version of the paper, pointing out several inaccuracies, and making valuable suggestions to improve the paper. The second author expresses his thanks to Professor D.Z. Djokovic for helping with the final version.

References

[1] Y. Billig, K. Zhao, Weight modules over exp-polynomial Lie algebras, J. Pure Appl. Algebra 191 (2004) 23-42.
[2] D.Z. Djokovic, K. Zhao, Derivations, isomorphisms, and second cohomology of generalized Witt algebras, Trans. Amer. Math. Soc. (2) 350 (1998) 643-664.
[3] J. Hu, X. Wang, K. Zhao, Verma modules over generalized Virasoro algebras Vir[G], J. Pure Appl. Algebra 177 (1) (2003) 61-69.
[4] V.G. Kac, K.A. Raina, Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras, World Scientific, Singapore, 1987.
[5] I. Kaplansky, Seminar on simple Lie algebras, Bull. Amer. Math. Soc. 60 (1954) 470-471.
[6] O. Mathieu, Classification of Harish-Chandra modules over the Virasoro algebra, Invent. Math. 107 (1992) 225-234.
[7] V. Mazorchuk, Verma modules over generalized Witt algebras, Compos. Math. (1) 115 (1999) 21-35.
[8] V. Mazorchuk, Classification of simple Harish-Chandra modules over \mathbb{Q}-Virasoro algebra, Math. Nachr. 209 (2000) 171-177.
[9] J.M. Osborn, New simple infinite-dimensional Lie algebras of characteristic 0, J. Algebra 185 (1996) 820835.
[10] D.S. Passman, Simple Lie algebras of Witt type, J. Algebra 206 (1998) 682-692.
[11] J. Patera, H. Zassenhaus, The higher rank Virasoro algebras, Comm. Math. Phys. 136 (1991) 1-14.
[12] R. Ree, On generalized Witt algebras, Trans. Amer. Math. Soc. 83 (1956) 510-546.
[13] H. Strade, Representations of the Witt algebra, J. Algebra 49 (2) (1977) 595-605.
[14] Y. Su, Simple modules over the high rank Virasoro algebras, Comm. Algebra 29 (5) (2001) 2067-2080.
[15] Y. Su, Classification of Harish-Chandra modules over the higher rank Virasoro algebras, Comm. Math. Phys. 240 (2003) 539-551.
[16] Y. Su, K. Zhao, Generalized Virasoro and super-Virasoro algebras and modules of intermediate series, J. Algebra 252 (1) (2002) 1-19.
[17] R.L. Wilson, Classification of generalized Witt algebras over algebraically fields, Trans. Amer. Math. Soc. 153 (1971) 191-210.
[18] X. Xu, New generalized simple Lie algebras of Cartan type over a field with characteristic 0, J. Algebra 224 (1) (2000) 23-58.
[19] H. Zassenhaus, Ueber Lie'sche Ringe mit Primzahlcharakteristik, Hamb. Abh. 13 (1939) 1-100.

[^0]: Research supported by NSERC, and the NSF of China (Grants 10371120 and 10431040).

 * Corresponding author.

 E-mail addresses: rencail@yahoo.com.cn (R. Lu), kzhao@wlu.ca (K. Zhao).

