
Discrete Applied Mathematics 42 (1993) 177-201

North-Holland

177

Directed hypergraphs and
applications*

Giorgio Gallo, Giwstino Longo and Stefano Pallottino

Dipartimento di Informutica, University di Pi&z, Piss, Italy

Sang Nguyen

D@artement d’lnformatique et de Recherche OpCrationneNe. UniversitP de Montreal, MontrPal, Que.,

Canada

Received 8 February 1990

Revised 5 November 1991

Abstract

Gallo, G., G. Longo, S. Palottino and S. Nguyen, Directed hypergraphs and applications, Discrete

Applied Mathematics 42 (1993) 177-20 1,

We deal with directed hypergraphs as a tool to model and solve some classes of problems arising in

operations research and in computer science. Concepts such as connectivity, paths and cuts are defined.

An extension of the main duality results to a special class of hypergraphs is presented. Algorithms to

perform visits of hypergraphs and to find optimal paths are studied in detail. Some applications arising

in propositional logic, And-Or graphs, relational databases and transportation analysis are presented.

1. Introduction

Hypergraphs, a generalization of graphs, have been widely and deeply studied in

[S-7], and quite often have proved to be a successful tool to represent and model

concepts and structures in various areas of computer science and discrete mathe-

matics.

Here we deal with directed hypergraphs. Sometimes with different names such as

“labelled graphs” and “And-Or graphs”, directed hypergraphs have been intro-

Correspondence to: Professor G. Gallo, Dipartimento di Informatica, University of Pisa, Corso Italia 40,

I-56125 Pisa, Italy.

* This research has been supported in part by the “Comitato Nazionale Scienza e Tecnologia dell’In-

formazione”, National Research Council of Italy, under Grant no. 89.00208.12, and in part by research

grants from the National Research Council of Canada.

0166-218X/93/$06.00 0 1993 - Elsevier Science Publishers B.V. All rights reserved

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81159246?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

178 G. Gallo et al.

duced in the literature as a way to deal with particular problems arising in computer

science and in combinatorial optimization (see, for example, [S, 11,16,22,24,25,

29-3 1,341).

Directed hypergraphs have also been explicitly introduced in [12,23,33]. In addi-

tion, particular instances of directed hypergraphs can be found in [2-4,10,14,18,28].

The remaining of the paper is organized as follows. After a general presentation

of directed hypergraphs, Section 3 introduces the concept of connection in hyper-

graphs and defines paths and hyperpaths. Section 4 introduces cuts and cutsets in

relation to connectivity. Sections 5 and 6 develop algorithms to visit hypergraphs

and to solve some classes of minimum path problems defined on hypergraphs.

Several applications are studied in Section 7. In particular, it is shown that hyper-

graph concepts and algorithms are elegant and powerful tools to model and to solve

problems which arise in areas such as propositional logic [lo, 141, And-Or graphs

[16,22,25,3 11, databases [l-3,24,34], and urban transportation [27-291.

2. Directed hypergraphs

A hypergraph is a pair X=(V,&), where W= {u,, vz, v,} is the set of vertices
(or nodes) and & = {Et, El, . . . , E,,, }, with Ej c “Y for i = 1, . . . , m, is the set of hyper-
edges. Clearly, when lEil =2, i= 1, . . . , m, the hypergraph is a standard graph.

While the size of a standard graph is uniquely defined by n and m, the size of

a hypergraph depends also on the cardinality of its hyperedges; we define the size
of ti as the sum of the cardinalities of its hyperedges:

size(M)= c IE;l.
E,EF

It is worth noting that there is a one-to-one correspondence between hypergraphs

and Boolean matrices. Indeed, any n x m matrix A = [au] such that aiie (0, l} may

be considered as the incidence matrix of a hypergraph G%!? where each row i is as-

sociated with a vertex ui and each column j with a hyperedge Ej.

A directed hyperedge or hyperarc is an ordered pair, E= (X, Y), of (possibly

empty) disjoint subsets of vertices; X is the tail of E while Y is its head. In the

following, the tail and the head of hyperarc E will be denoted by T(E) and H(E),

respectively.

A directed hypergraph is a hypergraph with directed hyperedges. In the following,

directed hypergraphs will simply be called hypergraphs. An example of hypergraph

is illustrated in Fig. 1. Note that hyperarc E, has an empty head.

As for directed graphs, the incidence matrix of a hypergraph &is an n x m matrix

[ajj] defined as follows (see Fig. 1):

-1, if oieT(Ej),

Qij = 1, if v;EH(Ej),

0, otherwise.

Directed hypergraphs 179

-1 0 0 0 0

0 -1 0 0 0

1 -1 0 0 0

1 0 0 0 0

1 0 -1 0 0

0 1 0 0 0

0 1 0 0 -1

0 0 1 0 -1

0 0 1 -1 0

0 0 0 -1 0

0 0 0 10

Fig. 1. A hypergraph and its incidence matrix.

Clearly, there is a one-to-one correspondence between hypergraphs and (- 1,0, 1)

matrices.

A backward hyperarc, or simply B-arc, is a hyperarc E = (T(E), H(E)) with

IH(= 1 (Fig. 2(a)). A forward hyperarc, or simply F-arc, is a hyperarc E =
(T(E), H(E)) with /T(E)1 = 1 (Fig. 2(b)).

> Oz-+

Fig. 2. (a) A B-arc. (b) An F-arc.

A B-graph (or B-hypergraph) is a hypergraph whose hyperarcs are B-arcs. An F-
graph (or F-hypergraph) is a hypergraph whose hyperarcs are F-arcs. A BF-graph
(or BF-hypergraph) is a hypergraph whose hyperarcs are either B-arcs or F-arcs.

Given a hypergraph .%‘=(K&), we define its symmetric image the hypergraph

.3?= (%‘:G”) where 8 = {(X, Y): (Y X) E &}. Note that the symmetric image of a B-

graph is an F-graph, and viceversa.

Note that it is always possible to transform a general hypergraph into a BF-graph,

by adding a dummy node to each hyperarc which is neither a B-arc nor an F-arc,

S+-=+M
Fig. 3. Transformation of a hyperarc into a B-arc and an F-arc.

180 G. Gallo et al.

and thus replacing the hyperarc by one backward and one forward hyperarc (see

Fig. 3).

Let FS(u) = {EE 67: u E T(E)} and BS(V) = {EE Q: u E H(E)} denote the forward

star and the backward star of node v, respectively.

B-graphs and F-graphs are of particular relevance in applications. Indeed, they

have been introduced many times in the literature with various names. The labefled
graphs, used by Dowling and Gallier [lo] and Gallo and Urbani [14] to represent

Horn formulae, are B-graphs; B-graphs have been introduced as tools to analyze

deductive databases [2-4,181, and to study Leontiev substitution matrices and

Leontiev flow problems [20]; F-graphs have been studied in the context of urban

transit problems [28,29] and applications of F-graphs to the analysis of And-Or

graphs are reported in [121.

Torres and Araoz [33] introduced hypergraphs and B-graphs, called directed

hypergraphs and rule hypergraphs respectively, to represent deduction properties in

databases as paths in hypergraphs.

3. Paths, hyperpaths and connection

A path PSt of length q, in hypergraph X= (W;&), is a sequence of nodes and

hyperarcs PSt = (ul = s, E,,, ~2, E;,, . . . , Ei,, uq+, = t), where:

SET(E~,), tEH(Eiq), and ujEH(Ei,_,)nT(Eh), j=2 ,..., q.

Nodes s and t are the origin and the destination of P,,, respectively, and we say

that t is connected to s. If t ET(E~,), then P,, is said to be a cycle; this is in par-

ticular true when t = s. In a simple path all hyperarcs are distinct, and a simple path

is elementary if all nodes ui, v2, . . . , vq + , are distinct. Similarly we may define simple
and elementary cycles. A path is said to be cycle-free if it does not contain any sub-

path which is a cycle.

In Fig. 4, node 8 is connected to node 1, while node 9 is not. The elementary path

connecting 8 to 1 is drawn in thick line.

Consider a hypergraph &5’= (“y; E). A B-path (or B-hyperpath) I7,, is a minimal

hypergraph tin = (W,, gn), such that:

Direcfed hypergraphs 181

(iii) XE W, * x is connected to s in tin by means of a cycle-free simple path.

We say that ZJY~= (W,, 8,) is an F-path (or F-hyperpath) from s to t if its sym-

metric image is a B-path from t to S.

A BF-path (or BF-hyperpath) from s to t is a hypergraph which is at the same

time a B-path and an F-path from s to t.

Node y is B-connected (F-connected, BF-connected) to node x if a B-path (F-

path,BF-path) LrXY exists in X.

The hypergraph in Fig. 5(a) is a B-path; note that the cycle (4,E,, 5,E,,4) is not

contained in any simple path from node 1 to node 7. On the contrary, the hyper-

graph in Fig. 5(b) is not a B-path because the only path connecting node 3 to the

origin contains the cycle (2, E,, 4, E2, 3).
The following proposition trivially holds:

Proposition 3.1. Given a B-path I7,, and a hyperarc EEQ,, one has that each
node x E T(E) is B-connected to s.

Given a hyperarc E = (T(E), H(E)), a B-reduction of E is a B-arc E * = (T(E *), {v})

such that T(E) = T(E *) and u E H(E).
A B-reduction of a hypergraph ti is the B-graph Xn obtained from ~6? by re-

placing each hyperarc by one of its B-reductions. Clearly, a hypergraph may have

many B-reductions; we shall denote by L%?(X) the set of all the B-reductions of X.

In an analogous way it is possible to define F-reductions and BF-reductions of

hypergraphs. Note that a BF-reduction of a hypergraph is a standard digraph.

We say that node y is super-connected to node x in hypergraph Y? if y is B-

connected to x in any B-reduction %‘a of ~6’. Then to say that y is not super-

connected to x we need at least one B-reduction in which y is not B-connected to x.

Note that in B-graphs the concepts of B-connection and super-connection co-

incide.

f
(a)

(b)

Fig. 5. (a) A B-path. (b) A B-graph which is not a B-path.

182 G. Gallo et al.

The definitions of connection introduced above can be generalized as follows:
given a set S of nodes, we say that node y is B-connected (F-connected, BF-
connected, super-connected) to S in the hypergraph .X if y is B-connected (F-
connected, BF-connected, super-connected) to s in the hypergraph X’ obtained
from ti by addition of a new origin node s and an arc (s, x) for each x E S. Similarly,
we can define the connection of a set of nodes T to a single origin node x.

4. Cuts and cutsets

Let &= (V, 8) be a hypergraph and s and t be two distinguished nodes, the source
and the sink respectively.

A cut q-,t = (W,, T;) is a partition of W into two subsets % and T such that s E “y,
and t E K. Given the cut 9$, its cutset lZst is the set of all hyperarcs E such that
T(E) c x and H(E) c T. Such a cutset may be empty; see for instance the cut

((1,219 {3,4,5,6,7}) in the B-graph of Fig. 5(b).
The curdinality of a cut is the cardinality of its cutset. In Fig. 6 three cuts are in-

dicated; the cardinality of q; is 2, while qf and @ have cardinality 1. Note that
t is not necessarily disconnected from s by removing the hyperarcs of a cutset. For
example, in Fig. 6 by removing the cutset of gs: we disconnect t from s, by re-
moving the cutset of @ only the B-connection of t to s is lost, while t remains both
connected and B-connected to s when we remove the cutset of .‘Y@.

The following two theorems relate cuts to connection in hypergraphs.

Theorem 4.1. In a B-graph ti= (W; E), a cut J& of cardinality 0 exists if and only
if t is not B-connected to s.

Proof. (*) Assume that a cut K’,t with an empty cutset &St exists and there is a node
u E ^L; B-connected to s. Then a B-arc E = (TQ, {u}) must exist with the property
that every node XET(E) be B-connected to s (see Proposition 3.1). Clearly, as gst
is empty, at least one node u E T(E) must belong to q. By repeating the same argu-
ment on U, we may eventually conclude that s also belongs to v, which is a con-
tradiction.

Fig. 6. Only cut Ts: disconnects source s and sink t.

Directed hypergraphs 183

(=) Now assume that t is not B-connected to s. Define ^y, as the set of all the

nodes B-connected to s and K= “Y\ x. gst is necessarily a cut of cardinality 0, for

the existence of a B-arc E = (T(E), {o}) in the cut, being T(E) L x and u E v, imply

the B-connection of u to s. 0

Theorem 4.2. In a hypergraph X=(W,&) a cut gSf of cardinality 0 exists if and
only if t is not super-connected to s.

Proof. (a) Let .9$ = (%& %$) be a cut of cardinality 0. Consider the B-reduction A?n

of ZJZ? obtained by replacing each hyperarc E with a B-arc (T(E), {u}) with the condi-

tion that if T(E) G q then also u E Ys. This reduction is always possible since for

any hyperarc E with T(E) c “y, at least one node in its head must belong to “y,,

otherwise E belongs to the cutset which, by hypothesis, is empty. By Theorem 4.1,

t is not B-connected to s in tin and therefore t is not super-connected to s in A?.

(-) If t is not super-connected to s, then a B-reduction exists such that t is not

B-connected to s in it, and, by Theorem 4.1, the proof is completed. 0

Theorems 4.1 and 4.2 generalize to hypergraphs the property holding for standard

digraphs that the removal of all the arcs of a cutset disconnects the sink from the

source. Unfortunately, other nice properties do not hold for hypergraphs, even if

we restrict our attention to B-graphs. In particular, it is well known that the two

following equivalent facts hold for standard digraphs:

P,: the minimum cardinality of an s-t path in a digraph is equal to

the maximum number of disjoint s-t cutsets.

P,: the minimum cardinality of an s-t cut in a digraph is equal to

the maximum number of disjoint s-t paths.

Such properties do not hold for hypergraphs, although the following theorems show

that they hold in a weaker form for B-graphs.

Theorem 4.3. In a B-graph X= (W; 6’) the following inequalities hold:

min{ IIZ,, / : 17,, is an s-t B-path} 2 maximum number of disjoint s-t cutsets

Lmin{ IP,, (: PSt is an s-t path).

Proof. The first inequality follows directly from the fact that, due to Theorem 4.1,

a cutset must contain at least a B-arc of every B-path, then the number of disjoint

s-t cutsets cannot exceed the cardinality of any B-path.

The second inequality can be proved as follows. Let Vk denote the set of nodes

{i} for which there exists a path PSi with cardinality I k. Clearly, if h is the

minimum cardinality of the s-t paths, then we have {s} = V,C Vi c ... c Vh c “y;

then (V,,Y\VO),(I/,,“Y\I/~),...,(~~-I,Y\~~-~) are s-t cuts with disjoint cutsets,

184 G. Gallo et al.

for no B-arc with a tail node in I$ and the head in 5 with jri+ 2 may exist, and
thus, no B-arc can belong to more than one cutset. This completes the proof. 0

Theorem 4.4. In a B-graph %‘= (^y; 8) the following inequalities hold:

maximum number of disjoint s-t paths

2 min{ I&sr 1: E,, is an s-t cutset}

2 maximum number of disjoint s-t B-paths.

Proof. Transform x?= (W; 8) into a standard digraph G = (K A) where for each B-
arc (X, y) there is a unique arc (x, r) E A, with x E X. The choice of x E X is arbitrary.
It is easy to check that to any s-t cutset gsr in ti corresponds an s-t cutset C,, in
G with IC,,l 1 I&‘srl; moreover, any set of k disjoint paths in G corresponds to a set
of k disjoint paths in YE’, then the maximum number of disjoint paths in G is not
larger than the maximum number of disjoint paths in ~8. Hence, from the well-
known max flow-min cut theorem for digraphs one has:

maximum number of disjoint s-t paths in ~8’

L maximum number of disjoint s-t paths in G

= min{ I C,, 1: C,, is an s-t cutset in G}

L min{ IESt I: Est is an s-t cutset in ti}.

The second inequality follows directly from the fact that, due to Theorem 4.1,
any cutset must contain one B-arc from each B-path at least, and this completes the
proof. 0

The following examples show that strict inequalities may hold in all cases.
In Fig. 7, a B-graph is presented for which the minimum cardinality of s-t B-paths

is 5, the maximum number of disjoint s-t cutsets is only 4 and the minimum car-
dinality of s-t paths is 3.

In the B-graph of Fig. 8, the maximum number of disjoint s-t paths is 3, the
minimum cardinality of s-t cuts is 2, and the maximum number of disjoint s-t B-
paths is 1.

Fig. I.

Directed hypergraphs 185

Fig. 8.

In Section 7.1 we will show that the problem of finding the minimum cardinality

s-t cut is NP-hard also in the case of B-graphs.

5. Visit of a hypergraph

Here we consider the problem of visiting a hypergraph starting from an origin

node r, i.e., of finding all the nodes which are connected (B-connected, super-

connected) to r.

The simplest case is to find in a hypergraph all the nodes which are connected to

r. Procedure Visit described below finds all such nodes and returns a set of paths

connecting them to r. Such paths, which define a tree rooted at r, are described by

two predecessor functions: Pe(E) points to the node i E T(E) which precedes hyper-

arc E in the path, J%(i) points to the arc E E BS(i) which precedes node i in the path.

Procedure Visit@, SO.

begin

for each i E W do Po[i] := 0;

for each Ej E LT do Pe[Ej] := 0;

Pv[r] := nil; Q := (r};

repeat

select and remove i E Q;

for each Ej E FS(i) such that Pe[Ej] = 0 do

begin

Pe[Ej] := i;

for each h E H(Ej) such that Po[h] = 0 do

begin

Po[h] :=Ej; Q :=QU {h)

end-for

end-for

until Q=0

end-procedure.

186 G. Gal/o et al.

It is easy to check that Procedure Visit runs in O(size(ti)) time. In fact, the in-

itialization phase runs in O(n + m) time and, since each node is inserted and removed

from the candidate set Q at most once, each hyperarc is examined only once, i.e.,

the first time the hyperarc is selected.

Now, consider the case of B-connection. Procedure B-Visit returns a set of B-

paths containing all the nodes B-connected to r. Such B-paths define a B-tree rooted

at r.
Notice that in this case only one predecessor function, Pu, is necessary. In fact,

by the definition of B-path, if hyperarc E belongs to a B-path, then all the nodes

of its tail must belong to the same B-path. Nevertheless, we shall maintain the use

of the second predecessor function, Pe. Such a function defines a particular tree

among the trees contained in the B-tree returned by the procedure. In connection

with the function Pe, a node function, v, is introduced which, for each node h, gives

the cardinality of the path from r to h in the tree defined by Pe and PO. The motiva-

tion of introducing such a function will be made clear in the next section.

A counter kj is used to provide for each hyperarc Ej the number of nodes of its

tail already removed from Q. Note that functions Pe and v are not essential to the

computation of the B-tree.

Procedure B-Visit@, S).

begin

for each iE Y do begin Po[i] :=O; v[i] := 03 end-for;

for each Ej E & do Pe[Ej] := kj := 0;
Pu[r] :=nil; Q := {r); v[r] :=O;
repeat

select and remove i E Q;
for each EjEFS(i) do

begin

kj :=kj+ 1;

if kj= IT(then

begin

Pe[Ej] := i;
for each h E H(Ej) such that PV [h] = 0 do

begin
Po[h] :=Ej; Q :=QU {h}; v[h] :=v[Pe[Ej]] + 1

end-for

end-if

end-for

until Q=0

end-procedure.

Procedure B-Visit runs in O(.size(N)) time. In fact, each hyperarc E is selected

Directed hypergraphs 187

at most IT(E)1 times and only the last time its head is examined. Moreover, each
node is inserted and removed from Q at most once.

In a similar way it is possible to define a Procedure F-Visit which finds a set of
F-paths which have r as terminal node and all the nodes to which r is F-connected.
Note that while Procedure B-Visit starts from the origin of the B-paths, Procedure
F-Visit must start from the destination of the F-paths to retain a linear time com-
plexity.

One can also define a Procedure BF-Visit. Unfortunately, the problem of per-
forming such a visit is not an easy one unless the hypergraph is either a B-graph or
an F-graph; in the former case a BF-path is simply a B-path, while in the latter it
is an F-path.

The following Procedure SuperVisit checks whether a node t is super-connected
to a node s on a general hypergraph.

Procedure SuperVisit(s, t, A?).

begin

superconnected := true;
while superconnected and .!%I(~) # 0 do

begin

select and remove .%a from .?Z?(X’); B-Visit&X&
if Pv[t] = 0 then superconnected := false

end-while

end-procedure.

Procedure SuperVisit runs in O(size(&) . 1 B(.X) I) time, where I LB(%) I =
nEjEe IH(is the number of all possible B-reductions of ~8.

A quite efficient branch and bound scheme to solve this problem can be easily
derived from the second algorithm for the satisfiability problem presented in]14].

6. Weighted hypergraphs

6.1. Weighting functions

A weighted hypergraph is one in which each hyperarc E is assigned a real weight
vector w(E). Depending on the particular application, the components of w(E) may
represent costs, lengths, capacities, etc. For the sake of simplicity, in the following
we shall consider only scalar weights.

Given a B-path I7= (W,, ~3~) from s to t, by weighting function we mean a node
function W, which assigns weights to all its nodes depending on the weights of its
hyperarcs. W,(t) is the weight of the B-path 17 under the chosen weighting func-
tion.

We shall restrict ourselves to weighting functions for which W,(s) =0 and

188 G. Gallo et al.

W,(y), for each y#s, depends only on the hyperarcs which precede y in the B-path

17, i.e., the hyperarcs belonging to all B-paths from s to y contained in 17.

A typical example of this kind of weighting function is cost, C,, defined as the

sum of the weights of all the hyperarcs preceding node y in 17:

C,(s) = 0;

C,(Y)= c w(E), YE %\ 1s).
EElbn,: n,cn}

Clearly, C,(t) = CEEEn w(E) is the cost of n. This function is the usual cost in

the graph setting, and the problem of finding a minimum cost B-path is a natural

generalization of the minimum cost path problem. Note that when the weights are

all equal to 1, the cost of 17 is its curdinality.
A relevant class of weighting functions is the one in which the weight of node y

can be written as a function of both the weights of the hyperarcs entering into y and

that of the nodes in their tails:

%(y)=min{w(E)+F&T(E)): EE~~~BS(Y)}, YE%\@}, (1)

where F,(T(E)) is a function of the weights of the nodes in T(E):

F,(T(E))=F({%(x): xeT(E)}), E~&nr (2)

where F is a nondecreasing function of W,(x) for each XET(E). Such weighting

functions will be called additive weighting functions.
In the particular case of B-graphs, the B-paths have the property that there is only

one B-arc E entering into every node yfs; in this case (1) becomes:

B%(Y) = w(E) + F,(T(E)), Y E %\ (~1. (1’)

Two particular additive weighting functions which have been presented in the

literature in the context of some relevant applications of hypergraphs are the distance
and the value.

Given an s-t B-path Z7= (W,, gn), the distance in 17 from s to all the nodes

y E W,\ {s) which are B-connected to s, Dn(y), is defined by the following recur-

sive equations:

&r(s) = 0;

Dn(y)=min{l(E)+max{D,(x): XET(E)}: EEE~I~BS(~)},

ye%\(s);

(3)

where i(E) is the length of hyperarc E.
For B-graphs, equation (3) becomes:

Dn(y)=I(E)+max{Dn(x>: XET(E)}, YEW,\(S). (3’)

In the case of unit hyperarc lengths, i.e., f(E) = 1 VEE &, the distance will be

called depth. Gallo and Urbani [14] have introduced the depth function on B-graphs

in the context of the satisfiability analysis of propositional Horn formulae. Note

Directed hypergraphs 189

that, in this case, Procedure B-Visit, with the use of function v and a breadth-first

search strategy, finds the minimum depth B-tree in O(size(%?)) time.

The value, V,, defined by Jeroslow, Martin, Rardin and Wang [20] in the con-

text of the Leontiev flow problem for the case of B-graphs, is the solution of the

following recursive equations:

V,(s) = 0;

where c(E) is the cost of B-arc E and, for each E and each XE T(E), a(x, E) is a non-

negative real coefficient.

6.2. Minimum weight B-paths

This section addresses the problem of finding a minimum weight B-path in a

weighted hypergraph. Such a problem can be viewed as a natural generalization of

the shortest path problem for standard digraphs.

Unfortunately, at least in general, the minimum weight B-path problem on hyper-

graphs is NP-hard. In fact, Italian0 and Nanni [18] have proved that the particular

problem of finding minimum cardinality B-paths in a B-graph is NP-hard. Never-

theless, many particular cases exist for which the problem is easy to solve. One

example is when the weighting functions are additive, and this is exactly the case

of the standard shortest path problem in digraphs.

From now on, we shall restrict ourselves to the case of additive weighting func-

tions. Furthermore, we shall assume throughout that arc weights are nonnegative

and that all cycles are nondecreasing. A nondecreasing cycle is a cycle C= { ol, E,,

~2, E,, . . . , or, E,., vl} such that, for any real z:

B’(E,) + F,,,(I+%% 1) + F(u,_l,(.*. + F(uzj(I+‘(Ei) + F,,,,(z))..*)) 22, (5)

where, for each E,, F(,)(w) is the restriction of Fc(T(Ei)) to the case in which all

the nodes of T(E,) have weight zero except node Ui which has weight w.

Condition (5) ensures that no node weight can be decreased through a cycle, and

plays the same role as the nonnegative cycles condition in digraphs.

To provide a deeper understanding of condition (5) we will apply it to both the

distance function and to the value function below. In the first case, since F,(T(Ei))

is the maximum among the weights of the nodes belonging to T(E,), F(,,(w) = w,

and condition (5) becomes:

i W(E,)+z~z,
i=l

from which we get

i W(E;)rO.
i=l

190 G. Gall0 et al.

We have thus derived the nonnegativity condition for cycle weights, which is a

standard assumption when dealing with shortest paths in digraphs.

Quite different is the case of the value function. Here we get:

and
r-1 h-l

w(&)+ c w(E,-h) n a(o,-,&-,) +z fi duj,E;)rz,
h=l I=0 > i=l

which is true for any real z if:

We have thus obtained the “gain-free condition” stated in [20].

Now, consider the problem of finding a set of minimum weight B-paths from

origin r to all the nodes y which are B-connected to r. This is the generalization of

the well-known shortest path tree problem. Such problem is equivalent to that of

finding a solution to the following generalized Bellman’s equations:

W(r) = 0;

W(y)=min{w(E)+F({W(x): xeT(E)}): WEBS}, y~Y\{r}.
(6)

The following procedure SBT finds a solution of (6) together with a minimum

weight B-tree rooted at r, i.e., a cycle-free set of minimum weight B-paths connect-

ing r to all the nodes y which are B-connected to it. If y is not B-connected to r,
Procedure SBT returns W(y) = + 03. As in Procedure B-Visit, the B-tree computed

by Procedure SBT is described by the predecessor function PO.

The counter kj, for each hyperarc Ej, represents the number of nodes belonging

to T(Ej) which have been removed from Q at a previous iteration and are currently

out of Q. The use of the counter permits to reduce substantially the number of up-

dating operations (for each y E H(Ej)...); in fact, for each Ej, instead of checking

the values W(y) of the nodes belonging to H(Ej) every time a node u ET(E~) is

selected from Q, this is done only when the last node u E T(Ej) is removed from Q,

i.e., when kj= (T(E,)(.
The correctness of Procedure SBT directly follows from the fact that, at termina-

tion, equations (6) are satisfied; moreover, the number of iterations is finite since:

(i) each time a weight is updated, a new B-tree is found, and no B-tree can be

found twice;

(ii) the number of consecutive iterations which do not lead to a change in the node

weights is bounded by n.
Clearly, the complexity of Procedure SBT depends on the implementation of the

candidate set Q and on the cost needed to evaluate the function F.

Directed hypergraphs 191

Procedure SBT(r, S).

begin

for each id W do W(i) := +m;

for each Ej E 8 do kj := 0;

Q := {r}; W(r) =O;

repeat

select and remove u E Q;
for each Ej E FS@) do

begin

kj :=kj+ 1;
if kj= IT(then

begin

f := F(T(Ej));
for each y E H(Ej) such that W(y) > w(Ej) + f do

begin

if y@Q then

begin

Q:=QU{Y);
if W(y)< +oo then for each Eh E FS(y) do kh := kh - 1

end-if;

W(Y) := W(Ej)+f; Po[Y] :=Ej

end-for

end-if

end-for

until Q=0

end-procedure.

For the sake of simplicity, we shall assume that F(T(E)) can be computed in
O(IT(E)l) time, which is the case in most applications. As for Q, we shall consider
three different implementations: the queue, with a FIFO selection policy, the un-
ordered list, and the heap, both with the selection of the minimum weight element.
According to the notation introduced in [13] we shall call the corresponding versions
of Procedure SBT: SBT-queue, SBT-Dijkstra and SBT-heap, respectively.

Consider first Procedure SBT-queue. The cost of initialization is O(n + m) time.
Each operation of selection and removal from Q and insertion into Q has unit cost.
As in the classical shortest path algorithms, one can easily prove that if Q is im-
plemented as a queue then each node is selected and processed at most n times. Also
each hyperarc E is examined at most n times; this is due to the fact that the nodes
of H(E) are only examined when all the nodes in T(E) no longer belong to Q. The
scanning of H(E) costs 0(IT(E)/) time for the evaluation of F(T(E)) and 0([H(E)))
time for the testing of condition W(u)> w(E) + F(T(E)), for each ye H(E). Thus,
Procedure SBT-queue runs in O(n - size(s)) time.

It is worth noting that condition (5) on nondecreasing cycles is tighter than what

192 G. Gallo et al.

is actually needed; in fact, for the correctness of Procedure SBT-queue, it is enough
that during its operations no negative cycle is detected, where by negative cycle we
mean a decreasing cycle which actually leads to cyclic improvements of its node
weights. Note that Procedure SBT-queue can be easily modified in order to detect
such negative cycles by simply bounding the number of improvements on the weight
of a single node.

Now, consider the case in which at each iteration a node u such that W(u)=
min{ W(X): XE Q} is selected. In this case, the well-known assumption of nonnega-
tive arc weights for standard digraphs in the Dijkstra Theorem can be generalized
to:

w(E)+F({ W(x): xcT(E)})r W(x), XET(E), EEE.

Under this additional assumption the Dijkstra Theorem can be easily extended to
hypergraphs:

Theorem 6.1. Zf W(u) = min{ W(x): XE Q}, then W(u) is the minimum among the
weights of the B-paths from r to u.

Corollary. Each node u E W is removed from Q at most once.

A consequence of the above Corollary is that statement “if W(y) < +03 then for

each E,, E FS(y) do kh := kh - 1” can be dropped since it is no longer necessary to
decrease the counters.

The complexity for Procedure SBT-Dijkstra and for Procedure SBT-heap directly
follow from the Corollary:

- Procedure SBT-Dijkstra runs in 0(max(n2,size(36’)}) time, as the total cost of
node selections and removals from Q is 0(n2) and the total cost of processing all
hyperarcs E (evaluation of F(T(E)) and scanning of H(E)) is O(size(ti)).

- Procedure SBT-heap runs in O(size(X). log n) time, as each time the value
W(y) of a node y is updated the heap must be updated at cost O(log n).

- In the case of B-graphs, Procedure SBT-heap runs in O(max{m log n, size(X’)})
time, as each B-arc produces at most one weight improvement, thus the overall cost
of updating the heap is O(m log n).

Jeroslow, Martin, Rardin and Wang [20] presented an algorithm to find the op-
timal values of V(y) for each node y in a B-graph. This algorithm generalizes the
Bellman-Ford-Moore algorithm and runs in O(n . size(35)). It is as fast as Procedure
SBT-queue and slower than Procedures SBT-Dijkstra and SBT-heap.

7. Application of hypergraphs

7. I. Satisfiability

Let 9 be a set of n atomic propositions, which can be either true or false, and

Directed hypergraphs 193

denote by t a proposition which is always true, and by f a proposition which is

always false. Let g be a set of m clauses, each of the form:

P1VPZV.“vPrcP,+1AP,+zA...AP,, (7)

where, for i= 1, ..,, q, pi E 9. The meaning of (7) is that at least one of the proposi-

tions pl, . . . , pr must be true when all the propositions pr+ 1, . . . ,pq are true. If this

is the case, the clause is true; otherwise (p,, . . . ,pr are all false, and pr+ ,, . . . ,pq are

true) the clause is false. The disjunction p1 vp2v -.a VP, is also called the conse-

quence of the clause, while the conjunction pr+, AP~+~ A ..* Ap, is called the impii-
cant. We allow for r=O, in which case the consequence is replaced by f, and for

r=q, in which case the implicant is replaced by t.

Clause (7) can be easily converted into disjunctive form:

P1VP,V*-. vP,v~Pr+1v~P~+2v...v~Pq.

A truth evaluation is a function u : .9 --t {false, true}. If there is a truth evaluation

which makes all the clauses true, then Q is said to be satisfiable, otherwise it is un-
satisfiable.

The satisfiability problem (SAT) is defined as follows:

Input: A set .Y of n propositions, and a set @Y of m clauses over 9 U (At};
output: “yes” if F? is satisfiable, “no” otherwise.

Most often, in the case of yes-instances, a truth evaluation which satisfies FZ is

also desired.

A particularly important case is when a clause contains only one atomic proposi-

tion, i.e., r-5 1 in (6). Such clause is called a Horn clause.
It is well known that SAT is NP-complete [9,15]. Either NP-complete, or NP-

hard, are also most of its variants such as k-SAT (each clause contains kz 3 atomic

propositions at most) and Max-SAT (the maximization of the number of satisfied

clauses, or equivalently, the minimization of the number of clauses to be dropped

in order to make the remaining clauses satisfiable). A notable exception is the case

in which 8 contains only Horn clauses. In this case the satisfiability problem

(HORN-SAT) is polynomial: in fact it can be solved in linear time [IO, 171. Unfor-

tunately, Max-HORN-SAT remains NP-hard [191.

HORN-SAT is the set of the instances of SAT whose clauses are Horn clauses.

To any given instance TC E SAT we can associate the hypergraph Xn with one node

for each element of 9 U {J; t} and one hyperarc E with H(E) = {pI,p2, . . . ,p,} and

W)={P~+I,P~+~,..., p,] for each clause p,Vp2V...Vp,+p,,, Ap,,,A.-. Ap,.
Clearly, from the definition, if rc E HORN-SAT then tin is a B-graph. Note that

the labelled graphs introduced by Dowling and Gallier [lo] to represent HORN-SAT

instances have a direct interpretation as B-graphs.

Theorem 7.1. An instance n E SAT is satisfiable if and only if the associated hyper-
graph Xz has a cut &f with cardinality 0.

194 G. Gallo et al.

Proof. (a) If rc is satisfiable, then a truth assignment u exists which makes all the
clauses in rc true. Consider the cut qf= (“L;, “yf) with:

“t;={p: o(p)=true}U{t) and “y={p: o(p)=false}U{f}.

We claim that $&. has cardinality 0; in fact the existence of a hyperarc E with
T(E) c “L; and H(E) c Yr would imply the existence of a clause made false by o.

(-) Let $1 = (“L;, “y) be a cut with 0 cardinality. It is easy to check that the func-
tion:

‘(‘)= L

true, ifpE.“L;,

false, if PET+,

is a truth assignment which makes all the clauses of rc true. q

A direct consequence of Theorem 7.1 and of the results of Sections 4 and 5 is that
HORN-SAT is equivalent to the problem of finding a B-path in a B-graph. Then,
Procedure B-Visit can solve any instance of HORN-SAT in linear time. Actually,
Procedure B-Visit bears a strong resemblance with the linear algorithm for HORN-
SAT proposed by Dowling and Gallier [lo].

Similarly, as one can easily check, Procedure SuperVisit can be used to solve the
instances of SAT.

Another interesting consequence of Theorem 7.1 is that:

Theorem 1.2. Max-SAT can be solved by finding a minimum cardinality t-f cut on
the corresponding hypergraph.

Proof. The proof follows directly from Theorem 7.1 and from the fact that a
minimum cardinality cutset provides the minimum number of hyperarcs to be re-
moved to make f not superconnected to t. 0

Since Max-SAT is NP-hard, Theorem 7.2 implies the NP-hardness of the minimum
cardinality (capacity) cut in hypergraphs.

7.2. And-Or graphs

An And-Or graph is a digraph G = (N, A) where each arc a E A is assigned a label
l(a) with the property that if I(a) = l(b) for two arcs a, b E A, then a and b have a
common tail, i.e., T(a) = T(b).

An arc a is an And arc if it shares its label with some other arc, while an arc a
is an Or arc if l(a) #l(b) for all b #a.

In the literature, different notations have been used by different authors. Par-
ticularly relevant are the work of Nilsson [30], in which the nodes are defined as
being And nodes or Or nodes according to the type of the ingoing arcs, and that
of Martelli and Montanari [25], in which the nodes are defined as being And nodes

Directed hypergraphs 195

or Or nodes according to the type of the outgoing arcs. The definition adopted here
is more general and include the others as particular cases.

A connection from a node x to a node y in an And-Or graph is a minimal set of
arcs A* such that:

(i) SEA* and @‘)=1(a) * a’eA*;
(ii) G* = (N,A*) is the union of paths from x to y.
An And-Or graph can be viewed as an F-graph, with the same set of nodes and

one F-arc for each set of arcs with the same label. It is easy to see that a connection
on an And-Or graph is an F-path in the corresponding F-graph.

Nilsson [30], Martelli and Montanari [25], Levi and Sirovich [22] and Gnesi,
Martelli and Montanari [16] have studied the problem of finding a minimum cost
connection between two nodes in an And-Or graph where each arc is assigned a real
cost. With respect to the present framework, this is the problem of finding a
minimum length F-path on an F-graph considered in Section 6.2.

It is interesting to note that most often the problems considered in the literature
lead to acyclic And-Or graphs. In this case the algorithms presented in Section 6.2
can be further simplified if the (acyclic) F-graph %=(W;&) corresponding to the
And-Or graph is preprocessed in order to renumber its nodes in inverse topological
order such that:

EE&: (T(E)= {i))n(j~H(E)) * (j<i). (8)

Such node preordering can be accomplished by the following Procedure F-Acyclic,
a generalization of the classical procedure described in Knuth [21], proposed by
Longo [23].

Procedure F-Acyclic(S).

begin

for each i E Y do ri := 0;

for each E=((i},H(E))E& do ri :=ri+ IT(E

k:=O; Q:=0;

for each iE%‘do if ri=O then Q:=QU{i};

while Q#0 do

begin

select and remove u E Q;
k:=k+ 1; e, :=k;
for each E = ({i}, H(E)) E BS(u) do

begin ri :=r,- 1; if r;=O then Q := QU {i} end-for

end-while;

if k= n then return “2 is acyclic” else return “Z is not acyclic”
end-procedure.

The number of nodes (with repetitions) which follow node i and are not yet scanned
is maintained in counter Ti. Initially ri is equal to the sum of the cardinalities of the

196 G. GaNo et al.

heads of the F-arcs having node i as tail. When ri = 0, then node i can be inserted
into the set of candidate nodes Q, implemented as a queue. Procedure F-Acyclic
checks whether the F-graph is acyclic or not. In the case it is acyclic, a label e,
satisfying conditions (8) is assigned to each node U.

Since each F-arc is examined only once, the procedure runs in O(size(ti)).
Let ti= (W,&?) be an acyclic F-graph whose nodes satisfy conditions (8). The

following Procedure SFT-Acyclic (Shortest F-Tree for Acyclic F-graphs) is the
adaptation to F-graphs of Procedure SBT described in Section 6.2 in which condi-
tions (8) are exploited; it finds a shortest F-path starting from root node r = 1%” 1,

which is the last one in the ordering.

Procedure SFT-Acyclic@,%?).

begin

for each i E W do

begin

Pu[i] :=o;
if FS(I) = 0 then W(i) := 0 else W(i) := 03

end-for

for each Ej E & do kj := 0;
for i = 1 to 17’ I- 1 do for each Ej = ({ y}, H(Ej)) E BS(I’) do

begin

kj :=kj+ 1;
if kj= IH(then

begin

f := F(H(Ej));
if W(Y) > W(Ej) + f then

begin W(Y) := W(Ej)+f; Pu[Y] :=Ej end-if

end-if

end-for

end-procedure.

Procedure SFT-Acyclic selects all the nodes following the inverse topological
order. An F-arc E = ({ y}, H(E)) is considered for the improvement of the F-path
originating from nodey only when a shortest F-path is known for each node belong-
ing to H(E). Thus, each node and each F-arc are selected at most once leading to
an overall complexity of O(size(X)).

7.3. Relational databases

In the last years a substantial amount of research has been devoted to the analysis
of relational databases using graph related techniques [1,2,24,26,32,34,36].

A relational database (RDB) is often represented by a set of relations over a cer-
tain domain of attribute values, together with a set of functional dependencies.

Directed hypergraphs 197

Functional dependencies have been studied by means of several types of generalized

graphs, such as FD-graphs, implication graphs, deduction graphs, etc.

Let N be the set of attributes of an RDB. A functional dependency F(X, Y), with

both X and Y subsets of N, defines uniquely the value of the attributes in Y once

the value of the attributes in X is given.

A set of functional dependencies together with some inference rules allows us to

derive new facts from that explicitly stored in the database. Typical inference rules

are (see [35,36]):

(i) reflexivity: F(X, Y) if Y C X;

(ii) transitivity: F(X, 2) if F(X, Y) and F(Y, 2);

(iii) conjunction: F(X, Y U 2) if F(X, Y), F(X, 2).
Given a set of functional dependencies, @, we might need to solve problems such

as:

(a) find whether a given functional dependency F(X, Y) $9 can be derived from

$ based on inference rules;

(b) given a set of attributes XE~, find its closure with respect to g, i.e., find the

largest set X* such that F(X, X*) either belongs to or can be derived from @.

Here we show briefly that hypergraphs provide a natural and unifying formalism

to deal with most problems arising in the analysis of functional dependencies in

RDB.

A set S of functional dependencies on the attribute set N can be represented by

a hypergraph ti=(W,&), with W=Nand G={(X, Y\X): F(X, Y)E.~, YgX}. It

is easy to see that a B-path on ti corresponds to a sequence of implications based

on rules (i), (ii) and (iii). For example, the B-path of Fig. 9 corresponds to the

derivation of F({ 1,2,3,4}, (9, 10)) starting from the implication relationships

F({2}, {5}), F({3,4}, {6,7, S}), F({5,7}, (9)) and F((4, S}, {lo}), where attributes are

denoted by natural numbers.

Procedure B-Visit solves problems (a) and (b) in O(size(%‘)) = O(size(9)) time.

In both cases, the set Q used in Procedure B-Visit is initialized to X. Let X’ be the

set of nodes visited by the procedure, i.e., the set of nodes B-connected to X. In

problem (a), the answer is that F(X, Y) is derivable from g if and only if YC X’,

while in problem (b) the answer is X*=X’.

Fig. 9. A B-path representation of a sequence of implications

198 G. Gallo et al.

When the set Y is a singleton, i.e., the functional dependency is of the type F(X, y)
where y E N. The directed hypergraphs representing sets of functional dependencies

of this type are B-graphs. This interesting case has been studied in [2-4,181, where

several problems on sets of functional dependencies are defined, and graph

algorithms for their solution presented. All these algorithms have a natural inter-

pretation in terms of hypergraph algorithms.

7.4. Urban transit application

The analysis of passenger distribution in a transit system is an interesting applica-

tion of F-graphs [27-291.

A transit system can be modelled as a special network in which transit lines are

superimposed on a ground network. Each transit line is a circuit, i.e., a close alter-

nating sequence of nodes representing the line stops and arcs representing the in-
vehicle line segments.

The ground network is formed by nodes representing geographical points (either

stops or zone centroids) in the urban area, and arcs representing walking paths be-

tween centroids and/or stops.

For each stop node i on the ground network, let Li be the set of lines which stop

at i. Each node i will be connected to the corresponding nodes on the lines belonging

to Li by a leaving arc and a boarding arc. An example is given in Fig. 10.

From a local standpoint, consider a passenger waiting at a stop i, who wishes to

reach his/her destination s with the least expected travel time. The problem consists

in determining the optimal subset LT c L;, the so-called attractive set, such that by

always boarding the first carrier of these lines arriving at the stop, the expected

travel time will be minimized.

Consider the following notation:

l Qj, the frequency of line lj E Li;
l @(Li), the “combined” frequency of the lines set L:;
l nj(Li), the probability that a carrier serving line 4 will arrive at stop i before

carriers serving other lines of Li;
l tj, the expected travel time between stop i and the destination, if line lj is used,

not including the waiting time at i;

stop node

Fig. 10. A stop served by three lines.

Directed hypergraphs 199

l w(L:), the average waiting time at stop i.
In general, the travel times tj are composed of walking times, in-vehicle travel

times and waiting times associated with transfers from one line to another which can

occur in the sequel of the trip. These times are the lengths of the associated arcs of

the network; the lengths of in-vehicle arcs are the corresponding carrier travel times,

the lengths of walking arcs are walking times, and the lengths of leaving arcs are

set to 0. The waiting times are associated with boarding arcs; the value of a boarding

arc (i,j) from a stop i to the corresponding line stop of line 5 depends on the subset

of lines Li considered. Moreover, all the boarding arcs of lines belonging to Li have

the same length, which is the average waiting time w(Li).
Under reasonable hypotheses on the distribution of passenger and carrier arrivals

at the stops, the following results are obtained:

@(L:)= C @jj,

1
w(Li) = ~ @j

/IELI 2@(L3 ’
rcj(Li) = -

@(Li) ’

and the expected travel time between stop i and the destination, when the set L: is

selected. is:
1

T(Li.) = w(L;) + c fj7rj(L;.) = -
tj@j

+c---=
3-t &EL; t,q.

I/ELI 2@G) I,ELi @G) @(Li) *

The optimal set LF is the subset of Lj which minimizes the expected travel time:

T(LT) = min{ T(L:): Li C L;}.

When travel times tj for every lj E Li are known, the optimal set LT is easily

found with a local greedy algorithm. This algorithm works as follows: first, sort the

lines in nondecreasing order of travel times, and then iteratively insert the lines one

by one into LT until a line IJ for which tj > T(Lf) is found [27,28].

The global problem is that of determining the least expected travel times 1, for

every origin r and a given destination s. To solve this, the least expected travel times

tj for every IjE Li and the optimal sets LT for all stops i must be computed

simultaneously.

For this purpose, F-graphs have been introduced to represent transit networks;

boarding arcs corresponding to Li may be modelled by a boarding F-arc E(L:) with

length w(L:). The resulting F-graph is said fufl because if there is an F-arc E=
({i}, H(E)), then each E’= (ii}, H(E’)) with E’c Ealso exists. E’is called acontained
F-arc. The contained F-arcs are treated implicitly to keep the size of the F-graph at

a reasonable level.

Let .J%?= (W; &) be the F-graph in which contained F-arcs are omitted. The prob-

lem of finding the least expected travel times for destination s is equivalent to that

of finding shortest F-paths terminating at sin F-graph A!!. In Section 5 we mentioned

that F-visits are easy when they are organized from the destination node towards

origin nodes; this is also true for shortest F-paths. For the above transportation

problem, the following generalized Bellman’s equations can be written, in which the

200 G. Gdo et al.

weighted average distances are defined separately for stops and other nodes. Let W’s
be the set of stops, then:

d,(s) = 0;

d,(x) = min{ txY + d,(y): (x, y) E FS(x)} , x E W \ W,;

d,(x) = min w(&) +
1

c
Yj o HE&))

ds(_Yj)nj(li): E&i) E FS(x)

Similar to Procedure SBT, Shortest F-Tree procedures (SFT) have been developed
to solve the above equations. Both types of SFT-queue and SFT-Dijkstra procedures
are described in [28,29].

References

131

141

[51

[61

[71

181

PI

DOI

[Ill

1121

u31

[I41

[I51

[I61

G. Ausiello, A. D’Atri and D. Sacca, Graph algorithms for functional dependency manipulation,

.I. ACM 30 (1983) 752-766.

G. Ausiello, A. D’Atri and D. Sac&, Strongly equivalent directed hypergraphs, in: G. Ausiello and

M. Lucertini, eds., Analysis and Design of Algorithms for Combinatorial Problems, Annals of

Discrete Mathematics 25 (North-Holland, Amsterdam, 1985) l-25.

G. Ausiello, A. D’Atri and D. Sac& Minimal representation of directed hypergraphs, SIAM J.

Comput. 15 (1986) 418-431.

G. Ausiello, G.F. Italian0 and U. Nanni, Dynamic maintenance of directed hypergraphs, Theoret.

Comput. Sci. 72 (1990) 97-117.

C. Berge, Graphs and Hypergraphs (North-Holland, Amsterdam, 1973).

C. Berge, Minimax theorems for normal hypergraphs and balanced hypergraphs - a survey, in:

Annals of Discrete Mathematics 21 (North-Holland, Amsterdam, 1984) 3-19.

C. Berge, Hypergraphs: Combinatorics of Finite Sets (North-Holland, Amsterdam, 1989).

H. Boley, Directed recursive labelnode hypergraphs: a new representation language, Artificial In-

telligence 9 (1977) 49-85.

S. Cook, The complexity of theorem-proving procedures, in: Proceedings 3th ACM Symposium on

Theory of Computing (1971) 151-158.

W. Dowling and J. Gallier, Linear-time algorithms for testing the satisfiability of propositional

Horn formulae, J. Logic Programming 3 (1984) 267-284.

A.L. Furtado, Formal aspects of the relational model, Inform. Systems 3 (1978) 131-140.

G. Gallo, G. Longo, S. Nguyen and S. Pallottino, Gli ipergrafi orientati: un nuovo approccio per

la formulazione e risoluzione di problemi combinatori, in: Atti AIR0 89 (1989) 217-236.

G. Gallo and S. Pallottino, Shortest path methods: a unifying approach, Math. Programming Stud.

26 (1986) 38-64.

G. Gallo and G. Urbani, Algorithms for testing the satisfiability of propositional formulae, J. Logic

Programming 7 (1989) 45-61.

M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-

completeness (Freeman, San Francisco, CA, 1979).

S. Gnesi, U. Montanari and A. Martelli, Dynamic programming as graph searching: an algebraic

approach, J. ACM 28 (1981) 737-751.

Directed hypergraphs 201

[17] A. Itai and J. Makowsky, On the complexity of Herbrand’s theorem, Tech. Rept. 243, Department
of Computer Science, Israel Institute of Technology (1982).

[18] G.F. Italian0 and U. Nanni, On line maintenance of minimal directed hypergraphs, in: Proceedings
3” Convegno Italian0 di Informatica Teorica, Mantova (World Science Press, 1989) 335-349.

[19] B. Jaumard and B. Simeone, On the complexity of the maximum satisfiability problem for Horn
formulas, Inform. Process. Lett. 26 (1987) 1-4.

[20] R.G. Jeroslow, R.K. Martin, R.R. Rardin and J. Wang, Gainfree Leontiev flows problems, Tech.
Rept., School of Business, University of Chicago, Chicago, IL (1989).

[21] D.E. Knuth, The Art of Computer Programming (Addison-Wesley, Reading, MA, 1968).
[22] G. Levi and F. Sirovich, Generalized And/Or graphs, Artificial Intelligence 7 (1976) 243-259.
[23] G. Longo, Per una nuova teoria degli ipergrafi orientati, tesi di laurea, Dipartimento di Infor-

matica, Universita di Pisa, Pisa (1989).
[24] D. Maier, Minimum covers in the relational data base model, J. ACM 27 (1980) 664-674.
[25] A. Martelli and U. Montanari, Additive AND/OR graphs, Proc. IJCAI 3 (1973) l-11.
[26] J. Martin, Computer Data-Base Organization (Prentice-Hall, Englewood Cliffs, NJ, 1977).
[27] S. Nguyen and S. Pallottino, Assegnamento dei passeggeri ad un sistema di linee urbane: determina-

zione degli ipercammini minimi, Ricerca Operativa 38 (1986) 28-47.
[28] S. Nguyen and S. Pallottino, Equilibrium traffic assignment for large scale transit networks, Euro-

pean J. Oper. Res. 37 (1988) 176-186.
[29] S. Nguyen and S. Pallottino, Hyperpaths and shortest hyperpaths, in: B. Simeone, ed., Com-

binatorial Optimization, Lecture Notes in Mathematics 1403 (Springer, Berlin, 1989) 258-271.
[30] N.J. Nilsson, Problem Solving Methods in Artificial Intelligence (McGraw-Hill, New York, 1971).
[31] N.J. Nilsson, Principles of Artificial Intelligence (Morgan Kaufmann, Los Altos, CA, 1980).
[32] H.C. Smith, Database design: composing fully normalized tables from a rigourous dependency

diagram, Comm. ACM 28 (1985) 826-838.
[33] A.F. Torres and J.D. Araoz, Combinatorial models for searching in knowledge bases, Acta Cient.

Venezolana 39 (1988) 387-394.
[34] J.D. Ullman, Principles of Database Systems (Computer Science Press, Rockville, MD, 1982).
[35] C.C. Yang, Relational Databases (Prentice-Hall, Englewood Cliffs, NJ, 1986).
[36] C.C. Yang, Deduction graphs: an algorithm and applications, IEEE Trans. Software Engrg. 15

(1989) 60-67.

