
Ž .JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 202, 727]746 1996
ARTICLE NO. 0344

Measure Driven Differential Inclusions*

G. N. Silva and R. B. Vinter†

Interdisciplinary Research Centre for Process Systems and Department of Electrical and
Electronic Engineering, Imperial College, London SW7-2BT, England

Submitted by Helene Frankowska´`

Received May 1, 1995

Measure driven differential inclusions arise when we attempt to derive necessary
conditions of optimality for optimal impulsive control problems with nonsmooth
data. We introduce the concept of a robust solution to a measure driven inclusion,
which extends to a multifunction setting interpretations of solutions to measure
driven differential equations provided by Dal Maso and Rampazzo and others.
Closure properties of sets of robust solutions are established, and notions of
relaxation investigated. Implications for optimality conditions for impulsive control
problems are pursued in a companion paper. Q 1996 Academic Press, Inc.

1. INTRODUCTION

Ž .In this paper we study measure driven differential inclusions MDIs of
the type:

w xdx t g F t , x t dt q F t , x t m dt on 0, 1Ž . Ž . Ž . Ž .Ž . Ž .1 2 1.1Ž .½ x 0 s x .Ž . 0

Robust solutions are defined and their closure properties are investigated.
Ž . w x n n w x n nIn 1.1 F : 0, 1 = R « R and F : 0, 1 = R « R are given1 2

multifunctions. The ‘‘driving measure,’’ m, is some non-negative, scalar
w xvalued measure on the Borel subsets of 0, 1 , and the ‘‘initial value,’’ x , is0

a point in R n.
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The significance of dynamical descriptions of this nature has long been
recognized in the singleton valued case

dx t s f t , x t dt q f t , x t m dtŽ . Ž . Ž . Ž .Ž . Ž .1 2 1.2Ž .½ x 0 s xŽ . 0

w x n n w x n nin which f : 0, 1 = R ª R and f : 0, 1 = R ª R are given func-1 2
wtions. In engineering applications, arising principally in flight mechanics 5,

x6 , the driving measure is an idealization of a non-negative, scalar valued
control which enters ‘‘linearly’’ into the dynamics and which takes large

Ž .values over small intervals an ‘‘impulse control’’ . Such controls are
applied in midcourse guidance, and correspond to ‘‘rapid fuel burn’’ to
redirect the motion.

Ž .For the measure m to be so regarded, we require that solutions to 1.2 ,
corresponding to m, are ‘‘close’’ to solutions of a conventional differential

Ž .equation in which m is approximated by a conventional control u t ,
Ž .interpreted as the measure u t dt.

These considerations have given rise to concepts of robust solutions of
measure driven differential equations, developed by Dal Maso and Ram-

w xpazzo 3 and having their roots in reparameterization techniques of Rishel
w x w x7 and Warga 10 . Our goal is to show that there is an analogous concept
of robust solutions for measure driven differential inclusions with associ-
ated closure properties. The primary motivation for considering ‘‘set

w xvalued’’ dynamics is their applications to optimal control 8 . If we are to
derive first order optimality conditions for impulse control problems with
nondifferentiable data, we must give meaning to the relationship governing
the costate function which is a measure driven differential inclusion and
also be able to analyse the effects of limit taking. But measure driven
differential inclusions also provide a convenient framework for formulating
optimal control problems involving conventional and impulse controls
when we wish to focus attention on state trajectories rather than on the
controls from which they originate.

There follows a brief description of some notational conventions ad-
hered to in this paper.

Žw x n.B denotes the open unit ball in Euclidean space. C 0, 1 ; R denotes
n w xthe vector space of continuous R -valued functions on 0, 1 with supre-

Žw x n.mum norm, and C* 0, 1 ; R its topological dual.
qŽw x n. Žw x n.C 0, 1 ; R ; C* 0, 1 ; R is the cone of functionals taking non-

negative values on non-negative functions.
Žw x n. nAC 0, 1 ; R is the space of absolutely continuous R -valued functions

w xon 0, 1 .
qŽw x n. nBV 0, 1 ; R denotes the vector space of R -valued functions on

w x0, 1 of bounded variation and which are continuous from the right on
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Ž . qŽw x n.0, 1 . The total variation of an element x g BV 0, 1 ; R is written
5 5 qŽw x n.x . The Borel measure associated with some x g BV 0, 1 ; R isT.V.

denoted dx.
For the sake of brevity we often do not distinguish between elements in
Žw x n.C* 0, 1 ; R and the Borel measures which represent them.

qŽw x n.The weak* topology on BV 0, 1 ; R refers to the weak* topology on
Ž n Žw x n..R = C 0, 1 ; R * under the isomorphism

x ª x 0 , dx .Ž .Ž .

Ž . Ž . Ž . ŽThus ‘‘x ª x weakly* ’’ indicates that x 0 ª x 0 and dx ª dx weakly*i i i
Žw x n.. Ž . Žw x 1.in C* 0, 1 ; R . For simplicity we write C 0, 1 in place of C 0, 1 ; R ,

Ž . Žw x 1.C* 0, 1 in place of C* 0, 1 ; R , and so on.
w x kLL denotes the Lebesgue subsets of 0, 1 and BB the Borel sets in R

and LL = BB the product s-field.

2. CHANGE OF VARIABLES

We describe a change of variables technique, previously used in Rishel
w x w x w x7 , Warga 10 , Dal Maso and Rampazzo 3 , and elsewhere, which will
provide a representation of robust solutions to measure driven differential
inclusions in terms of solutions to conventional differential inclusions.

qŽ .Fix a measure m g C 0, 1 . Let D be its distribution function

H m dt , t g 0, 1Ž . Žw0 , t xD t [Ž . ½ 0 if t s 0.

Define the reparameterization function h corresponding to m to be

w xt q H m dt r 1 q m 0, 1 , t g 0, 1Ž . ŽŽ .Ž .Ž .w0 , t xh t [Ž . ½ 0 if t s 0.

qŽw x n.Evidently, h is an element in BV 0, 1 ; R which is non-negative and
w x w x w xstrictly increasing on 0, 1 . Now define u : 0, 1 ª 0, 1 to be

w xu s [ sup t : s G h t ;s g 0, 1 .� 4Ž . Ž .
w xtg 0, 1

� 4 Ž w X Y x.Let t be an enumeration of the atoms of m, and let S s s , s be thei i i i
y1Ž� 4.subintervals S [ u t for i s 1, 2, . . . . Now define the function g :i i
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w x q0, 1 ª R to be

¡D u sŽ .Ž .
`w xif s g 0, 1 _D Sis1 i

X~ s y sŽ .g s [Ž . i yD t q D t y D tŽ . Ž . Ž .Ž .Y Xi i is y sŽ .i i¢ for s g S , i s 1, 2, . . . .i

Ž Ž . Ž y. Ž q. Ž . .In this formula D t y D t is interpreted as D 0 y D 0 if t s 0.i i i
w x Ž .Following Dal Maso and Rampazzo 3 , we call the function u , g :

w x Ž q. 20, 1 ª R the graph completion of the measure m. This is because it
results from ‘‘filling in’’ with straight line segments the graph of D and
reparameterizing the resulting curve in R 2.

Properties of the graph completion, listed in the following proposition,
Ž . Ž . w x Ž . Ž .will be required. Items i and iv are proved in 3 . Items ii and iii are

wconsequences of the standard change of variables lemma 4, Theorem 6.9,
xp. 155 ; the connection is provided by the observation that m can be

w x Ž .interpreted as the measure on the Borel subsets of 0, 1 induced by g s ds˙
under the mapping u .

. qŽ .PROPOSITION 2.1. Let u , g be the graph completion of m g C 0, 1 .
Then

Ž .i u and g are Lipschitz continuous, non-negatï e functions and

˙ w xu s q g s s 1 q m 0, 1 LL-a.e.Ž . Ž . Ž .˙

Ž .ii For any Borel measurable, m integrable function h and Borel set
w xT ; 0, 1 we ha¨e

h u s g s ds s h t m dt .Ž . Ž . Ž . Ž .Ž .˙H H
y1Ž .u T T

Ž . w x Ž .iii For any LL-integrable function g and Borel set S ; 0, 1 , u S is
also a Borel set and

˙g u s u s ds s g t dt .Ž . Ž . Ž .Ž .H H
Ž .S u S

Ž . qŽ . �Ž .4iv Let m be a sequence of elements in C 0, 1 and let u , g bei i i
Ž .the corresponding graph completions. Suppose that m ª m weakly* , theni

˙ ˙ 1Ž . Ž . Ž . Ž .u , g ª u , g uniformly and u , g ª u , g weakly in L .˙ ˙i i i i
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3. ROBUST SOLUTIONS

Consider the measure driven differential inclusion of Section 1:

w xdx t g F t , x t dt q F t , x t m dt on 0, 1Ž . Ž . Ž . Ž .Ž . Ž .1 2 3.1Ž .½ x 0 s xŽ . 0

w x n n w x n nin which, as before, F : 0, 1 = R « R and F : 0, 1 = R « R are1 2
given malfunctions.

Ž .It is natural to define solutions to 3.1 via the related integral inclusion

t
x t g x q F t , x t dt q F t , x t m dtŽ . Ž . Ž . Ž .Ž . Ž .H H0 1 2

w .0 0, t

Ž .taken in a ‘‘selector’’ sense . However, a choice must be made regarding
interpretation of the final term on the right; what this should be is not
immediately clear, since x is possibly discontinuous at the atoms of m.
A simple choice is

F t , x ty m dtŽ . Ž .Ž .H 2
w x0, t

Ž y.involving the ‘‘left limit’’ x t . This however does not provide a concept
of solution which, in general, has the sought-for closure properties. An

Ž Ž y..alternative approach is to substitute in place of F t , x t a multifunc-2
tion which more effectively takes account of the interaction between the
instantaneous changes in the state and the atoms of m. Bearing this in

˜ n nw x w .mind we define F : 0, 1 = R = 0, ` « R to be the multifunction2

y1 1 n˜ w xF t , ¨ ; a [ a j 1 y j 0 : j g AC 0, 1 ; R ,Ž . Ž . Ž . Ž .�2

j̇ s g aF t , j s a.e., and j 0 s ¨Ž . Ž . Ž .Ž . 42

if a ) 0 and

F̃ t , ¨ ; 0 s F t , ¨ .Ž . Ž .2 2

qŽw x n.DEFINITION 3.1. We say that a function x g BV 0, 1 ; R is a robust
Ž . Ž qŽ . n. Ž .solution to 3.1 corresponding to m g C 0, 1 and x g R if x 0 s x0 0

and there exists an LL-integrable function f and m-integrable function f1 2
such that

f t g F t , x t LL-a.e.Ž . Ž .Ž .1 1

˜ y � 4f t g F t , x t ; m t m-a.e.Ž . Ž . Ž .Ž .2 2
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and

t
x t s x 0 q f t d t q f t m dt for all t g 0, 1 .Ž . Ž . Ž . Ž . Ž . Ž . ŽH H1 2

w x0 0, t

4. REPARAMETERIZATION

The following theorem provides the link between robust solutions of the
Ž .measure driven differential inclusions 3.1 and ordinary differential inclu-

sions.

Ž .THEOREM 4.1. Suppose that the data for 3.1 satisfy the hypotheses:

v F has ¨alues closed sets and is LL = BB measurable and1

v F has ¨alues closed sets and is Borel measurable.2

qŽ . Ž .Fix a measure m g C 0, 1 and an initial state x . Let u , g be the graph0
completion of m and h the reparameterization function.

Ž . Ž . qŽw x n. Ž . Ži Suppose x ? g BV 0, 1 ; R is a robust solution to 3.1 corre-
. Ž . Žw x n.sponding to m and x . Then there exists a solution y ? g AC 0, 1 ; R to0

˙y s g F u s , y s u s q F u s , y s g sŽ . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .˙ ˙1 2 4.1Ž .½ y 0 s xŽ . 0

for which

w xx t s y h t for all t g 0, 1 . 4.2Ž . Ž . Ž .Ž .

Con¨ersely,
Ž . Ž . Žw x n. Ž .ii Suppose y ? g AC 0, 1 ; R is a solution to 4.1 . Then there

Ž . qŽw x n. Ž . Ž .exists a robust solution x ? g BV 0, 1 ; R to 3.1 for which 4.2 is
satisfied.

Ž . Ž . Ž .iii Take any robust solution x to 3.1 . Let y be a solution to 4.1
Ž .such that 4.2 is satisfied. Then

5 5 5 5x F yT.V. T.V.

Ž .In the above, solutions to 4.1 are taken in the ‘‘selector’’ sense, i.e.,
Ž .there exist Lebesgue measurable functions c , c such that c s g1 2 1
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˙Ž Ž . Ž .. Ž . Ž Ž . Ž ..F u s , y s and c s g F u s , y s , LL-a.e., c u and c g are inte-˙1 2 2 1 2
grable, and

y s s y 0Ž . Ž .˙
s

˙ w xq c s u s q c s g s ds for all s g 0, 1 .Ž . Ž . Ž . Ž .˙Ž .H 1 2
0

A proof of the theorem is given in Section 6.
The significance of this result is that known properties of solutions to

differential inclusions translate into analogous properties of solutions to
measure driven differential inclusions via the ‘‘reparameterized’’ differen-

Ž .tial inclusion 4.1 . We have, for example, an existence theorem applying
under the following hypotheses:

Ž . Ž .H1 F and F ha¨e ¨alues closed con¨ex sets, F ?, x is LL-measura-1 2 1
Ž .ble, and F ?, ? is Borel measurable.2

Ž . Ž . 1H2 There exist c ? g L and c g R such that1 2

< < < <F t , x ; c t 1 q x B and F t , x ; c 1 q x BŽ . Ž . Ž . Ž . Ž .1 1 2 2

n w xfor all x g R , t g 0, 1 .

Ž . Ž . 1H3 There exist k ? g L and k g R such that1 2

< < nF t , x ; F t , y q k t x y y B for all x , y g RŽ . Ž . Ž .1 1 1

and
< < nF t , x ; F t , y q k x y y B for all x , y g R .Ž . Ž .2 2 2

w x nCOROLLARY 4.2. Suppose that the multifunctions F , F : 0, 1 = R ª1 2
n Ž . Ž . qŽ .R satisfy hypotheses H1 ] H3 . Fix a measure m g C 0, 1 and an initial

Ž . Žstate x . Then there exists a robust solution to 3.1 corresponding to m and0
.x .0

Ž .Proof. The data for the reparameterized inclusion 4.1 are easily
shown to satisfy the hypotheses under which existence of solutions is

Ž w x.assured see, e.g., 1 . This yields a solution y to the reparameterized
Ž .inclusion. But then 3.1 has a robust solution by Theorem 4.1.

5. CLOSURE PROPERTIES

In this section conditions are given under which robust solutions to
Ž .perturbations of a nominal measure driven differential inclusion 3.1 yield

a solution to the nominal differential inclusion in the limit. Under these
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conditions, then, robust solutions are truly ‘‘robust.’’ The perturbations we
allow include changes to the driving measure and also to the multifunction
F . Perturbations of this nature need to be considered in the derivation of1
necessary conditions of optimality for optimal control problems involving
measure driven differential equations.

Consider a sequence of measure driven differential inclusions

Ž i. w xdx t g F t , x t dt q F t , x t m dt on 0, 1Ž . Ž . Ž . Ž .Ž . Ž .i 1 i 2 i i 5.1Ž .i½ x 0 s x ,Ž .i 0

i s 1, 2, . . . approximating a nominal measure differential inclusion

w xdx t g F t , x t dt q F t , x t m dt on 0, 1Ž . Ž . Ž . Ž .Ž . Ž .1 2 5.2Ž .½ x 0 s x .Ž . 0

Ž i. w x n n w x n nHere F : 0, 1 = R « R , i s 1, 2, . . . , F : 0, 1 = R « R , and F :1 1 2
w x n n0, 1 = R ª R are given multifunctions. m , i s 1, 2, . . . , and m arei

qŽ . ielements in C 0, 1 , and x , i s 1, 2, . . . , and x are n-vectors.0 0
The associated reparameterized equations are

Ž i. ˙y s g F u s , y s u s q F u s , y s g s a.e.Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .˙ ˙i 1 i i i 2 i i i 5.3Ž .
i½ y 0 s xŽ .i 0

and

˙y s g F u s , y s u s q F u s , y s g s a.e.Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .˙ ˙1 2 5.4Ž .½ y 0 s x .Ž . 0

Ž . Ž .Here, u , g is the graph completion of m , i s 1, 2, . . . , and u , g is thei i i
graph completion of m. We shall refer also to the reparameterization

w x w xfunction h : 0, 1 ª 0, 1 of m , i s 1, 2, . . . , and the reparameterizationi i
function h of m.

THEOREM 5.1. Consider multifunctions F , F Ž i., i s 1, 2, . . . , and F with1 1 2
w x n ndomain 0, 1 = R and taking ¨alue compact subsets of R . Assume that

v
Ž i. Ž i.Ž . Ž .F t, ? , i s 1, 2, . . . , and F t, ? ha¨e closed graphs and F i s1 1 1

1, 2, . . . , and F are LL = BB measurable.1

v
nŽ . Ž . w xF t, x is con¨ex for all t, x g 0, 1 = R .1

v Ž .F ?, ? has closed graph and ¨alues con¨ex sets.2

Assume further that

v
Ž i.� Ž . Ž .4LL-measure t: F t, ? / F t, ? ª 0, as i ª `.1 1
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� i 4 n � 4 qŽ .Take a sequence x in R and a sequence m in C 0, 1 , and elements0 i
n qŽ . � 4 qŽw x n.x g R and m g C 0, 1 . Take also a sequence x g BV 0, 1 ; R0 i

Ž .such that x is a robust solution to 5.1 for each i, andi

x Ž i. ª x and m ª m weakly* as i ª `.Ž .0 0 i

Ž . 1 Ž i.Ž Ž ..Assume that there exists b t g L and c ) 0 such that F t, x t ;1 i
Ž . Ž Ž ..b t B a.e. and F t, x t ; cB for all t.2 i

� 4 Žw x n.Then there exists a sequence y ; AC 0, 1 ; R such that y is a solutioni i
Ž . Ž . Ž .to 5.3 for each i, a solution y to 5.4 , and a solution x to 5.2 such that

w xx t s y h t for all t g 0, 1Ž . Ž .Ž .i i i

and

w xx t s y h t for all t g 0, 1 .Ž . Ž .Ž .
Along a subsequence we ha¨e

x ª x weakly*Ž .i

w x � 4x t ª x t for all t g 0, 1 _ MM j 0, 1Ž . Ž . Ž .i m

Ž .where MM denotes the atoms of m andm

w x ny ª y strongly in C 0, 1 ; R .Ž .i

A proof of Theorem 5.1 is given in Section 7.
The above theorem, specialized to the case when perturbations only in

the driven measures and initial condition are considered, permits us to
investigate the closure properties of sets of robust solutions.

ŽConsider again the measure driven differential inclusion now labelled
.‘‘S’’ :

w xdx t g F t , x t dt q F t , x t m dt on 0, 1 . SŽ . Ž . Ž . Ž . Ž .Ž . Ž .1 2

By analogy with known properties of differential inclusions, we can
Ž .expect that limits of robust solutions to S are identified with robust

Ž .solutions of a ‘‘relaxed’’ measure driven inclusion in which F t, x and1
Ž .F t, x are replaced by their convex hulls:2

w xdx t g co F t , x t dt q co F t , x t m dt on 0, 1 . SŽ . Ž . Ž . Ž . Ž .Ž . Ž .1 2 relaxed

Such an identification is possible, as is now shown.
n Ž .Fix a compact set C g R an endpoint constraint set and a weak*

qŽ . Ž .compact set M ; C 0, 1 a constraint set for the driving measures , and
define

q w x nx g BV 0, 1 ; R : x ? is a robust solution to SŽ . Ž .Ž .
SS [ ½ 5corresponding to some m g M such that x 0 g CŽ .



SILVA AND VINTER736

and

q w x nx g BV 0, 1 ; R : x ? is a robust solution to SŽ . Ž .Ž . relaxed
SS [ .Žrelaxed. ½ 5corresponding to some m g M such that x 0 g CŽ .

w x nCOROLLARY 5.2. Assume that the multifunctions F , F : 0, 1 = R «1 2
n Ž . Ž .R satisfy hypotheses H1 ] H3 of Section 4. Then

Ž . qŽw x n.i SS is a weak* compact subset of BV 0, 1 ; RŽrelaxed.

Ž . � 4ii weak* closure SS s SS .Žrelaxed.
ŽWe refer the reader to Section 1 for a definition of the weak* topology on

qŽw x n. .BV 0, 1 ; R .

Proof. We note from the outset that co F and co F inherit from F1 2 1
and F the measurability, ‘‘closedness,’’ and linear growth hypotheses2
required for the application of Theorems 4.1 and 4.2. These theorems may

Ž .therefore be applied to the relaxed inclusion S . Since M is a weak*relaxed
compact set, the m’s generating elements in SS are bounded in totalŽrelaxed.
variation. The admissible initial states too are bounded, because of the
compactness hypothesis on C. Using these properties and the growth

Ž .hypothesis H2 , and applying Gronwall’s lemma to the reparameterized
relaxed differential inclusions, we deduce that solutions y to reparameter-
ized relaxed differential inclusions corresponding to elements in SSŽrelaxed.
are uniformly bounded in the supremum norm. It follows from the growth
hypothesis that the velocities y are uniformly bounded in total variation.˙
We conclude from Theorem 4.1 that elements in SS themselves areŽrelaxed.
uniformly bounded in the supremum norm and in total variation. In view

Ž .of the growth hypothesis, this implies in particular the existence of b t g
L1 and c ) 0 such that

co F t , x t ; b t B a.e. and co F t , x t ; cB ,Ž . Ž . Ž .Ž . Ž .1 2

for all x g SS . This is the critical condition which we must check forŽrelaxed.
application of Theorem 5.1 below.

Ž .i Since, as we have seen, elements in SS are uniformlyŽrelaxed.
bounded in total variation, and the weak* topology relativized to subsets of

qŽw x n.BV 0, 1 ; R bounded in total variation is metrizable, we need only
check sequential compactness. However this is proved by applying Theo-
rem 5.1, when co F is substituted in place of F Ž i., i s 1, 2, . . . , and of F ,1 1 1
and co F in place of F , and by appealing to the compactness hypotheses2 2
on C and M.

Ž .ii Take any x g SS . Since the relativized weak* topology isŽrelaxed.
metrizable and SS ; SS , to check that SS is the weak* closureŽrelaxed. Žrelaxed.
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� 4of SS we have only to construct a sequence x ; SS such thati

q w x nx ª x weakly* in BV 0, 1 ; R .Ž .i

Ž .Let m g M be the driving measure associated with x, and denote by
Ž .u , g its graph completion. Define the multifunction

˜ ˙F s, y [ F u s , y u s q F u s , y g s .Ž . Ž . Ž . Ž . Ž .Ž . Ž .˙1 2

Since F and F take value compact sets,1 2

˜ ˙co F s, y s co F u s , y u s q co F u s , y g sŽ . Ž . Ž . Ž . Ž .Ž . Ž .Ž . Ž .˙1 2

Ž . w x nfor all s, y g 0, 1 = R . By Theorem 4.1 however there exists a solution
Žw x n.y g AC 0, 1 ; R to

˜y s g co F u s , y sŽ . Ž . Ž .Ž .˙½ y 0 s x 0Ž . Ž .

such that

w xx t s y h t for all t g 0, 1 .Ž . Ž .Ž .
˜Now F satisfies the measurability, growth, and Lipschitz continuity

hypotheses under which y can be approximated uniformly by solutions to
Ž w x.the nonconvexified differential inclusion see, e.g., 2 . To be precise,

� 4 Žw x n.there exists a sequence y in AC 0, 1 ; R such that y solvesi i

˙y s g F u s , y s u s q F u s , y s g sŽ . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .˙ ˙i 1 i 2 i½ y 0 s xŽ .i 0

for i s 1, 2, . . . and

y ª y uniformly.i

� 4By Theorem 4.1, x , defined byi

x t s y h t for all t g 0, 1Ž . Ž . ŽŽ .i i
5.5Ž .

x 0 s x 0 ,Ž . Ž .i

Ž . Ž .is a sequence of robust solutions to S corresponding to m . The
Ž . Ž .sequence lies in SS , since x 0 s x 0 for each i. We deduce from thei

Ž Ž .. Ž . Ž .weak* compactness of SS and the fact that by 5.5 x t ª x t forŽrelaxed. i
w x qŽw x n.all t g 0, 1 _ MM that x ª x weakly* in BV 0, 1 ; R . This confirmsm i

that SS is the weak* closure of SS .Žrelaxed.
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6. PROOF OF THEOREM 4.1

Ž . Ž . Ž .i We take x ? to be a robust solution to 3.1 corresponding to m and
� 4 w X Y xx . Let t be an enumeration of the atoms of m, and set I s s , s s0 i i i i

y1Ž� 4.u t , for i s 1, 2, . . . . Let f , f be selectors corresponding to xi 1 2
˜Ž .see Definition 3.1 . By definition of F , for each i there exists j g2 i

Žw x n.AC 0, 1 ; R such that

˙ w x� 4j s g m t F t , j s a.e. on 0, 1Ž . Ž .Ž . Ž .i i 2 i i
y½ j 0 s x tŽ . Ž .i i

and
y1� 4f t s m t j 1 y j 0 .Ž . Ž . Ž .ŽŽ .2 i i i i

Define

w xx u s when s g 0, 1 _D IŽ .Ž . i i
y s [ 6.1Ž . Ž .X Y X½ j s y s r s y s when s g I , i s 1, 2, . . . .Ž . Ž .Ž .i i i i i

Ž . Ž Ž . Ž ..Choose e ? to be a measurable selector of F u s , y s . Set A [1
˙� Ž . 4s: u s s 0 . We now define

e s if s g D I j AŽ . Ž .i i
c s [Ž .1 ½ w xf u s if s g 0, 1 _ D I j A .Ž . Ž .Ž . Ž .1 i i

We claim that the LL-measurable function c satisfies1

w xc s g F u s , y s a.e. s g 0, 1 . 6.2Ž . Ž . Ž . Ž .Ž .1 1

Ž .By the nature of e, this inclusion holds a.e. on D I j A. To completei i
Ž .the verification we note that by the properties of f1

x f t dt s 0,Ž .Ž .H F Žt , xŽt .. 11w x0, 1

in which x denotes the indicator function of the set A. The change ofA
variables lemma now gives

˙x f u s u s ds s 0.Ž . Ž .Ž .ŽH F Žu Ž s. , xŽu Ž s... 11w x0, 1

Ž . Ž Ž ..Since y s s x u s a.e. on the complement of D I , we conclude thati i
Ž Ž .. Ž Ž .. Ž Ž . Ž .. w x wŽ .f u s s c s g F u s , y s for almost every s g 0, 1 _ D I j1 1 1 i i

x Ž .A . We have shown 6.2 to be true.
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� Ž . 4 � Ž X Y . ŽŽ X. Ž Y X..Set S [ s: g s s 0 and J [ s g s , s : drdsj s y s r s y s˙g i i i i i i i
4 Ž . Ž Ž . Ž ..exists . Let f ? be any measurable selector of F u s , y s and set2

y1X Y X¡ w xdrdsj s y s r s y s 1 q m 0, 1Ž . Ž . Ž .Ž .Ž .i i i i

if s g J , i s 1, 2, . . .i~c s [Ž .2 f s if s g S _ D JŽ . g i i¢ w xf u s if s g 0, 1 _ S j D J .Ž . Ž .Ž . Ž .2 g i i

Now we claim that the LL-measurable function c satisfies2

w xc s g F u s , y s a.e. s g 0, 1 . 6.3Ž . Ž . Ž . Ž .Ž .2 2

Ž Ž ..This is clearly the case for almost every s g S j D J . Note howeverg i i
that

x y f t dt s 0.Ž .Ž .˜H F Žt , xŽt . ; mŽ�t 4.. 22w x0, 1

By the change of variables lemma, Proposition 2.1,

x y f u s g s ds s 0.Ž . Ž .Ž .Ž .˙˜H F Žu Ž s. , xŽu Ž s. . ; mŽ�u Ž s.4.. 22w x0, 1

w x Ž Ž ..But for almost all points s in the set 0, 1 _ S j D J we have thatg i i
y ˜Ž� Ž .4. Ž Ž . . Ž . Ž Ž . Ž . Ž� Ž .4..m u s s 0 and x u s s y s ; consequently F u s , y s ; m u s2

Ž Ž . Ž .. w x Ž Ž .. Ž .s F u s , y s . For almost all points in 0, 1 _ S j D J then c s2 g i i 2
Ž Ž Ž ... Ž Ž . Ž .. Ž .s f u s g F u s , y s . The relationship 6.3 is established.2 2

Ž . Ž .It is not difficult to show that y ? defined by 6.1 is Lipschitz continu-
ous. We now show that y solves the differential equation

˙ w xy s s c s u s q c s g s , a.e. on 0, 1 . 6.4Ž . Ž . Ž . Ž . Ž . Ž .˙ ˙1 2

It suffices to check that equality holds at points s in the set of full measure
Ž .DD j D E , wherei i

˙s9 g 0, 1 _ D I : s9 is a Lebesgue point of s ª c u s u sŽ . Ž . Ž .Ž .i i 1
DD [ ,½ 5and of s ª c u s g s , and y s9 existsŽ . Ž . Ž .Ž .˙ ˙2

and

˙E [ .w x� 4s9 g int I : y s9 exists, u s9 s 0, g s9 s 1 q m 0, 1Ž . Ž . Ž . Ž .Ž˙ ˙½ 5i i

Take first a point s g DD. We may choose h x0 such that s q h gj j
Ž .0, 1 _D I for all j. For s9 s s and s9 s s q h , j s 1, 2, . . . , we havei i j
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Ž . Ž Ž ..y s9 s x u s9 . By the change of variables lemma, Proposition 2.1, then

y1 y1y s s lim h y s q h y y s s lim h x u s q h y x u sŽ . Ž . Ž .Ž .˙ Ž . Ž .Ž .j j j j
j j

Ž .u sqh jy1 y1s lim h f t dt q h f t dm tŽ . Ž . Ž .H Hj 1 j 2
j Ž . w Ž . Ž .xu s u s , u sqh j

sqh sqhj jy1 ˙s lim h f u s u s ds q f u s g s dsŽ . Ž . Ž . Ž .Ž . Ž .˙H Hj 1 2
j s s

˙ ˙s f u s u s q f u s g s s c s u s q c s g sŽ . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .˙ ˙1 2 1 2

as required.
Take next any i and s g E . We now havei

X Y X w xy s s drdsj s y s r s y s s c s ? 0 q 1 q m 0, 1 c sŽ . Ž . Ž . Ž . Ž .Ž .Ž . Ž˙ i i i i 1 2

˙s c s u s q c s g s .Ž . Ž . Ž . Ž .˙1 2

Ž .We have shown that y satisfies the differential equation 6.4 .
Ž . Ž Ž .. w xIt remains to show that x t s y h t for all t g 0, 1 . This is certainly

Ž x � 4 Ž .true for t g 0, 1 _ j t , by 6.1 , and t s 0 by definition. On the otheri i
Ž y. Ž X.hand, for any integer i such that t ) 0 we have x t s y s . Accordingi i i

Ž .to 6.1 however
y � 4 Xx t s x t q f t m t s y s q j 1 y j 0Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .i i 1 i i i i i

X Y X Ys y s q y s y y s s y s s y h t .Ž . Ž . Ž . Ž . Ž .Ž .i i i i i

This shows that equality holds also on the atoms of m, and therefore
w xeverywhere on 0, 1 .

Ž . Ž .ii Now take a solution y to 4.1 . There exist bounded Borel measur-
able functions c , c such that1 2

˙y s s x q c s u s dsŽ . Ž . Ž .H0 1
w x0, s

w xq c s g s ds for all s g 0, 1 ,Ž . Ž .˙H 2
w x0, s

c s g F u s , y s a.e., 6.5Ž . Ž . Ž . Ž .Ž .1 1

c s g F u s , y s a.e. 6.6Ž . Ž . Ž . Ž .Ž .2 2

Define

w xx t [ y h t for all t g 0, 1Ž . Ž .Ž .
w xf t [ c h t for all t s 0, 1Ž . Ž .Ž .1 1
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and

w x � 4c h t for t g 0, 1 _D tŽ .Ž .2 i i
f t [Ž . y12 Y X½ s y s H c s ds for t s t , i s 1, 2, . . .Ž . Ž .i i I 2 ii

˙Ž .From 6.5 , and since u s 0 a.e. on D I ,i i

˙0 s x f u s u s dsŽ . Ž .Ž .Ž .H F Žu Žs . , xŽu Ž s... 11w x0, 1

s x f t dt .Ž .Ž .H F Žt , xŽt .. 11w x0, 1

Ž . Ž Ž . .This tells that f t g F t , x t , a.e.1 1
It is easy to check that, for each i,

y1� 4f t s m t j 1 y j 0Ž . Ž . Ž .Ž . Ž .2 i i i i

˙ yŽ� 4. Ž . Ž . Ž .for some j satisfying j g m t F t , j and j 0 s x t . Otherwisei i i 2 i i i
expressed,

˜ y � 4 � 4f t g F t , x t ; m t for t g t . 6.7Ž . Ž . Ž .Ž .Ž . D2 2 i
i

Ž .We note also that, by 6.6 ,

x f u s g s ds s 0.Ž . Ž .Ž .Ž .˙H F Žu Žs . , xŽu Žs ... 22w x0, 1 _D Ii i

A further change of variables yields

x f t m dt s 0.Ž . Ž .Ž .H F Žt , xŽt .. 22w x � 40, 1 _ ti

˜ yŽ . Ž Ž .. Ž Ž . Ž� 4. w x � 4By 6.7 , and since F t , x t s F t , x t ; m t on 0, 1 _D t , we2 2 i i
arrive at

˜ y � 4f t g F t , x t ; m t m-a.e.Ž . Ž .Ž Ž .2 2
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Now take any t ) 0. We have

x t y xŽ . 0

s y h t y xŽ .Ž . 0

˙s c s u s ds q q c s g s dsŽ . Ž . Ž . Ž .˙H H1 2
w Ž .x w Ž .x0, h t 0, h t

˙s f u s u s ds q f u s g s dsŽ . Ž . Ž . Ž .Ž . Ž .˙H H1 2
w Ž .x w Ž .x0, h t 0, h t _D Ii i

q f u s g s dsŽ . Ž .Ž .˙H 2
D Ii i

Ž Ž . Žw x. .since g ? ' 1 q m 0, 1 on D I˙ i i

s f t dt q f t m dt .Ž . Ž . Ž .H H1 2
w x w x0, t 0, t

Ž . Ž . Ž Ž ..This confirms that x ? , defined by x t [ y h t , is a robust solution to
Ž .3.1 .
Ž . Ž . Ž . Ž . Ž .iii Take a robust solution x ? to 3.1 and a solution y ? of 4.1

Ž .satisfying 4.2 .
� 4 w x Ž .Let t , t , . . . , t be an arbitrary finite partition of 0, 1 . Then, by 4.2 .0 1 N

N N

x t y x t s y h t y y h tŽ . Ž . Ž . Ž .Ž . Ž .Ý Ýi iy1 i iy1
is1 is1

N

F y s dsŽ .˙Ý H
Ž Ž . Ž ..h t , h tiy1 iis1

1
F y s dsŽ .˙H

0

Ž Ž Ž . Ž .. .since the intervals h t , h t are non-overlappingiy1 i

5 5s y T.V.

But the partition was arbitrary. So

x ? F y ?Ž . .Ž .T.V. T.V.
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7. PROOF OF THEOREM 5.1

� 4Since m is a weak* convergent sequence, there is a number d suchi
that

5 51 q m F d for all i . 7.1Ž .Ž .T.V.i

Ž . Ž .By Lemma 2.1, u , g ª u , g uniformly as i ª `. We also know thati i
Ž . Ž . Žw x . � 4 Žh t ª h t as i ª `, for all points t g 0, 1 _ MM j 0, 1 . MM , wei m m

.recall, is the set of atoms of m.
Ž .According to Theorem 4.1 we can choose a solution y to 5.3 such thati

Ž . Ž Ž .. w xx t s y h t for all t g 0, 1 , for i s 1, 2, . . . . We claim that the y ’s arei i i i
uniformly bounded both in the L1 norm and in total variation, and their

� 4derivatives y are uniformly integrably bounded. To see this, we concludei̇
Ž .first from condition 7.1 and Proposition 2.1 that for any Borel set

w xS ; 0, 1 and any i,

˙y s ds F b u s u s ds q c g s dsŽ . Ž . Ž . Ž .Ž .˙ ˙H H Hi i i i
S S S

5 5 � 4s b t dt q c 1 q m ? LL-meas S . 7.2Ž . Ž .Ž .Ž .H T.V.i
Ž .u Si

w x Ž Ž . w x.Setting S s 0, 1 in which case u S s 0, 1 , we see that the y ’s are˙i i
uniformly bounded in the L1 norm. That the y ’s are uniformly boundedi
both in total variation and in the supremum norm follows from this

Ž .estimate and the uniform boundedness of the y 0 ’s. On the other hand,i
Ž .estimate 7.2 , coupled with the observation that

5 5 � 4LL-meas u S F 1 q m ? LL-meas S ,� 4Ž . Ž .Ž .T.V.i i

< Ž . <tells us that for any e ) 0 we can choose d ) 0 such that H y s ds - e ,˙S i
� 4 � 4for i s 1, 2, . . . , whenever LL-meas S - d . In other words, y is a uni-i̇

formly integrably bounded sequence.
According to the Dunford]Pettis Theorem, then, there exists an abso-

lutely continuous function y such that, following extraction of a subse-
quence,

y ª y uniformly.i

Since the y ’s are bounded in total variation it follows from Theorem 4.1,i
Ž .part iii , that the x ’s too are bounded in total variation. The x ’s are alsoi i

bounded in the supremum norm. These properties imply the existence of a
qŽw x n.countable set AA and an element x g BV 0, 1 ; R such that, following
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a further subsequence extraction, we have

x ª x weakly*i

and

w x � 4x t ª x t for all t g 0, 1 _ AA j 0, 1 .Ž . Ž . Ž .i

Ž .We now show that we can substitute MM the atoms of m in place of AA inm

Ž . Ž Ž ..the above relationship. We have x t s y h t for i s 1, 2, . . . . Sincei i i
Ž . Ž .convergence of the y ’s is uniform and h t ª h t as i ª ` for t taken toi i

be 0, 1, or any element in the complement of some countable set, it follows
Ž . Ž Ž .. � 4 � 4that x t s y h t on a dense subset of points containing 0 j 1 . We

Ž . Ž Ž ..conclude from the continuity from the right of x ? and y h ? that

w xx t s y h t for t g 0, 1 .Ž . Ž .Ž .

w xBut then, for each i and t g 0, 1 , we have

x t y x t F y h t y y h t q y h t y y h t .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .Ži i i i i

Ž . Ž . Žw x . � 4Since y ª y uniformly and h t ª h t for all t g 0, 1 _ MM j 0, 1 ,i i m

we conclude that

w x � 4x t ª x t for all t g 0, 1 _ MM j 0, 1Ž . Ž . Ž .i m

as claimed.
For i s 1, 2, . . . there exists a Borel measurable function c i and a1

i i ˙bounded, Borel measurable function c such that c u is LL-integrable,2 1 i

i ˙y s s x q c s u s dsŽ . Ž . Ž .Hi 0 1 i
w x0, s

i w xq c s g s ds for all s g 0, 1 , 7.3Ž . Ž . Ž .˙H 2 i
w x0, s

i Ž i. ˙c s g F u s , y s u s , LL-a.e.Ž . Ž . Ž . Ž .Ž .1 1 i i i
7.4Ž .

c i s g F Ž i. u s , y s g s , LL-a.e.Ž . Ž . Ž . Ž .Ž .˙2 2 i i i

˙Ž Ž .. � Ž . 4by Theorem 4.1. Noting that s s h u s a.e. on s : u s / 0 andi i i
w xapplying Lemma 2.1 we deduce that for each s g 0, 1

i ˙ i ˙ ic s u s ds s c h s u s ds s f t dtŽ . Ž . Ž . Ž . Ž .Ž .H H H1 i 1 i i 1
w x w x w Ž .x0, s 0, s 0, u si

7.5Ž .
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iŽ . iŽŽ Ž .. Žwhere f t [ c h t . Arguing as in the proof of Theorem 4.1 part1 1 i
Ž .. Ž .ii we conclude from 7.4 that

f i t g F Ž i. t , x t LL-a.e.Ž . Ž .Ž .1 1 i

Ž . Ž .We know however that x t ª x t on a subset of full Lebesguei
� Ž i.Ž . Ž .4 Ž .measure and LL-meas t : F t , ? / F t , ? ª 0 as i ª `. Since F t , ?1 1 1

has closed graph and F is integrably bounded and has values closed
convex sets, we deduce via standard ‘‘weak* convergencerseparating hy-

Ž w x.perplane techniques’’ cf. 2, Proof of Theorem 3.1.7 that, following
extractions of subsequences,

i w xf t dt ª f t dt for all s g 0, 1 , 7.6Ž . Ž . Ž .H H1 1
w Ž .x w Ž .x0, u s 0, u si

for some Lebesgue integrable function f satisfying1

f t g F t , x t LL-a.e.Ž . Ž .Ž .1 1

Ž Ž ..Next, arguing as in the proof of Theorem 4.1 part i , we show that
˙their exists a Borel measurable function c such that c u is LL-integrable,1 1

c s g F u s , y s LL-a.e.Ž . Ž . Ž .Ž .1 1

and

˙ w xf t dt s c s u s ds for all s g 0, 1 .Ž . Ž . Ž .H H1 1
w Ž .x w x0, u s 0, s

Ž . Ž . w xBy 7.5 and 7.6 , then, for all s g 0, 1 we have

i ˙ ˙c s u s ds ª c s u s ds as i ª `. 7.7Ž . Ž . Ž . Ž . Ž .H H1 1 1
w x w x0, s 0, s

ŽThe usual ‘‘weak* convergencerseparating hyperplane’’ arguments cf.
w x .9, Lemma 4.5 , in this case also establish that, following a further
subsequence extraction,

c i s g s ds ª c s g s ds as i ª `, 7.8Ž . Ž . Ž . Ž . Ž .˙ ˙H H2 i 2
w x w x0, s 0, s

w xfor all s g 0, 1 , for some bounded, Borel measurable function c satisfy-2
ing

c s g F u s , y s LL-a.e.Ž . Ž . Ž .Ž .2 2
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Ž Ž . .The fact that F ?, ? is upper-semicontinuous is crucial here. Passing to2
Ž . Ž . Ž .the limit across 7.3 with the help of 7.7 and 7.8 we obtain

˙y s s x q c s u s dsŽ . Ž . Ž .H0 1
w x0, s

w xq c s g s ds , for all s g 0, 1 .Ž . Ž .˙H 2
w x0, s

We have shown that y is a solution of the ‘‘limiting’’ reparameterized
Ž .inclusion 5.4 . Since x s y(h and by Theorem 4.1, x is a robust solution

Ž .of the limiting measure driven differential inclusion 5.2 , the proof of the
theorem is complete.

REFERENCES

1. J. P. Aubin and A. Celina, ‘‘Differential Inclusions,’’ Springer-Verlag, Berlin, 1984.
2. F. H. Clarke, ‘‘Optimization and Nonsmooth Analysis,’’ Wiley, New York, 1983.
3. G. Dal Maso and F. Rampazzo, On systems of ordinary differential equations with

Ž .measures as controls, Differential Integral Equations 4 1991 , 739]765.
4. J. F. C. Kingman and S. J. Taylor, ‘‘Introduction to Measure and Probability,’’ Cambridge

Univ. Press, Cambridge, 1966.
5. D. F. Lawden, ‘‘Optimal Trajectories for Space Navigation,’’ Butterworth, London, 1993.
6. J. P. Marec, ‘‘Optimal Space Trajectories,’’ Elsevier, AmsterdamrNew York, 1979.
7. R. W. Rishel, An extended Pontryagyn principle for control systems whose control laws

Ž .contain measures, SIAM J. Control 3 1965 , 191]205.
8. G. N. Silva and R. B. Vinter, Necessary conditions for optimal impulsive control

problems, Siam J. Control Optim., to appear.
9. R. B. Vinter and G. Pappas, A maximum principle for nonsmooth optimal control

Ž .problems with state constraints, J. Math. Anal. Appl. 89, No. 1 1982 , 212]232.
10. J. Warga, ‘‘Optimal Control of Differential and Functional Equations,’’ Academic Press,

New York, 1972.


