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1. INTRODUCTION

We consider the Dynkin diagram .»/,, whose consecutive vertices are
labelled 1, 2,...,m, and we denote by Q,, = («,, 2) the graph .+, with a
given orientation £2 for its edges. We call @, a “quiver” of type .+,.

Let K be a field. For every d= (d,,...,d,) € N™ we consider the variety
L, of all the representations over K of the quiver Q,, of dimension d. Let V,,
i=1,.,m, be a vector space over K of dimension d;; the group
G=T7/,GL(V;) acts naturally on L, and the number of orbits of this
action is finite, each orbit 7,, (4 € L,) corresponding to an isomorphism
class [4] of the previous representations (cf. [2-5]).

Let4 =(4,,..,4,)€ L,. In this paper we introduce a set of non-negative
integers N* = {N%}, 1 < u < v < m which are ranks of maps deduced from
the 4;’s and depend on the orbit ¢7, (cf. Proposition 2.2).

First we prove that, through the set N“, we can compute the indecom-
posable representations appearing in 4 and their multiplicities (cf. (2.6)).
Moreover we find a system of inequalities which give a necessary and
sufficient condition for a set of non-negative integers N = {N,,} to determine
an isomorphism class of representations of @,, (cf. (2.7)).

Next we study the problem of the degenerations for the representations of
Q,, of given dimension. Given any orbit (7, < L, we want to characterize the
orbits @ <L, such that %</, (7, the closure of ¢7,), i.e. the
degenerations of /7,.

We prove that %, /7, if and only if N2, < N%, for every u, v,
l<ugv<m (cf. Theorem 5.2, the part that states the equality of the
orderings <, and <,).

! Both authors belong to the group GNSAGA of CNR.
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Moreover we prove that if &, @, and &, is open in &, — &, then there
exists a submodule 4’ = 4 (we think of the representations as modules) such
that B~A' @ A/A’, (cf. Theorem 5.2, the part that states the equality of the
orderings <, and <,).

The simple case where the Dynkin diagram .« is equioriented, has been
treated in [1].

2. A SET oF RANK PARAMETERS FOR THE ORBIT &7,

Let @, = (+/,,f2) as in Section 1. The orientation 2 determines an
increasing sequence of integers 1=s,<s,< - <s,<5s,,,=m, ie., the
sequence of sources and sinks of @, and, as soon as we know s, to be a
source (or a sink) then s, is a source or a sink according to the parity of the
index ¢.

Conversely an increasing sequence {s;}, i=0,.,v+1, so=1, 5, ,=m
determines the orientation of .7, up to duality, i.e., reversing all the arrows.
As we will not need to know if s, is a source or a sink we identify £ with the
sequence {s;} and we will call the s;’s “critical points” for the orientation.

Let A=(A4,,.,4,,_,) € L, be a given representation of Q,, and consider
any pair of indices u, v such that 1 <u < v <m. For the induced oriented
graph starting at u and ending at v, u and v are either sources or sinks, and
between u and v there will be a subsequence (possibly empty) of the
sequence {s;}.

Let ¢, denote the linear map going from the direct sum of the spaces
relative to all the sources to the one relative to all the sinks between u and v
in the induced representation, (i.e., included # and v), whose components are

-V
t

Vst—l@ VSH] s
(z,2")> (“Tt—l.tz _ZH—l,tz,)

where 4. oo P=1t—1, t+ 1, is the composition of all the maps A4, going from

the sources s,_, or s,, , to the sink s,.
To each representation 4 we associate the set of non-negative integers
A __ A .

N =Ny} cucvem as follows:

DEFINITION 2.0.
NA =rked, if u<v,
Ni,=dimV,=d,.

In the rest of this section we want to show some properties of the set N*; in
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particular we want to show that if 4, B € L, are representations of Q,, and
@, =[A], &= |B] denote the corresponding orbits (i.e., the isomorphism
classes of representations (4], [B]) then we have Ni = N2 for every (u,v)
if and only if &, =,.

We recall first the fact that the indecomposable representations of
Q,, = (+,,,8) are in 1 —1 corresponence with the positive roots of the
Dynkin diagram .7, independently from the orientation 2 (cf. [2-5]). It
follows that we have an indecomposable representation, denoted by E,, for
each pair (p,q) with 1 <p<g<m, ie., for each dimension d = (d;) € N"
with d; =1 for p <j < g and d; = 0 otherwise.

We can visualize E,, as the integer segment | p, g] on which we have put a
dot for each integer j, p <Jj < g; each dot j representing a base vector in the

one dimensional vector space V.

EXAMPLE. FE,;:

If we consider E,, as an indecomposable reéresentation of Q,, = (+,, 2),
2 ={s;}, then the pair (p, g) uniquely determines the pair of integers (a, b)
such that

Sa—1<p<sa’ sb<q<sb+l

or, equivalently, the interval [p,q| determines the subsequence
{Sg5Sq4 1> 85_125,} (possibly empty) of the critical points of 2

{Sqs Sqriss Sp_1sSpt =[P g N Q.
From this point of view the indecomposables E,, of Q,, are of two types:

(1) [p,q] contains an even number of critical points, and we will say
that E,, or [p, q] is of “even type.”

(2) |p.q] contains an odd number of critical points, and we will say
that £, or [p, q] is of “odd type.”

If we refer ourselves to the pair of integers (a, ) then we have that the
even type corresponds to a pair (a, b) of integers with different parity (i.e.,
one of the two is odd and the other is even); the odd type corresponds to a
pair (a, b) of integers with the same parity (both odd or both even numbers).

EXAMPLE.
p Sa Sp q
(1) —e—o—f—+ o o s...0—0o—@—o o

p Sa Sy q

(2) — o4 oo o o o...0—— @0 o 4§ o

(we have denoted by A, @ critical points of different nature, therefore in



QUIVER OF TYPE &7, 379

Example (1), a and b have opposite parity; in Example (2), a and b have the
same parity).

Remark 2.1. As soon as we know if s, is a source or a sink and the type
of the indecomposable E,,, we can read from the corresponding segment if
the base vector j, p <j< g is senttoj— 1 orj+ 1 or to zero, and if j is or is
not the image of j+ 1 or j — 1.

Let A€L, be a given representation of Q, = (%/,,2). Then the
isomorphism class [4] =%, determines and is determined by the set of non-
negative integers e” = {ej.}, , < < such that

(2.2) A= @ e, E,.

I<pLgsm

If we represent each E,, via the segment [ p, g], then [A] is represented by
a collection of segments, each segment |p, g] having multiplicity e;’q. We
call this collection of segments the “diagram” of the isomorphism class of
the representation A.

Let us introduce now the set of non-negative integers n* = {n
associated to 4 and defined by

s}
rsilgr<s<m

(2.3) nii= > en,.
p<rs<q

nj is the number of the segments of the diagram of [4| which contain the

integers r, s. It follows that we have
A A
(2.4) e:q:npq_n;-l.q_np.qﬂ +n;‘~1.q+l

where we set ni,=0if r<Oor s >m+ 1.

As (2.3) and (2.4) are one the inverse of the other we deduce that the set
n* is determined by the orbit %, and it determines an orbit if an only if the
numbers n;,‘q satisfy the inequalities obtained by setting the right hand side of
(2.4) bigger or equal to 0.

PROPOSITION 2.5. Let u<v and s, ,<u<s,, s3<v<8,,,, then we
have

A __ .4 A A A
Nuv = s, + Ry sai +-- My 1sp + L
A A A
- nusa+l nsasa+2 ot nsB*lU
A A A
(25) + n“-5a+2 + bsa3a+3 +oeet nsﬂ—zl’

+ (—l)ﬁ_a+l nﬁv'

481/93/2-10
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Proof. Ifu=v or a=pf+ 1 the proof is trivial as (2.5) reduces to

rko,, if u<v
d

N, =n},= .

weome u if u=v.
Suppose a =+ 1,i.e.,5,_, <u <S$,, S5 <vSy,, and assume s, is a sink,
i.e., u is a source in the induced representation (a similar argument holds if
s, is a source). Consider

V,ev=V,® v, ®V, @ )"’_‘/‘45 V., @V, @ =W
we have
05 D) = Ay, (2) + 07D, z€EV,, IEV.
Note that

N4 = rkiusu + rko; , — dim(Im Zusa NImg{ )
=nj, +N: —dim(Imd, NIme; ).

— Mus,

By induction assume

A _ A A
Nsav =0 5001 toeee + nsav
A A
nsasn+2 n:BAlv

+ (_I)B_a nsav'
Then we only need to prove that

dim(Im /Tusaﬁ Img; )= > D"y, + (=1)*"*n,,.

Sa+1K8q 1<V

As Im A us, © Vs,= W we only need to count the number of base vectors
inlmd4,, N"(Img; NV, )

The number of base vectors in Im (pfﬂvﬂ ;, is counted by the number of
indecomposable E,, with p<s,<$,,1<q<5,12 DK <8<
g <S,.4» and so on (cf. Remark 2.1). Therefore the number of base
vectors in Im4,; NIm (pg‘nv is counted by the number of E,, in 4 with
PLULS, 11 SG<Sq425 P < u_< Sa43< G <Sgpqre L€, nﬁsM, - n;:s,,“;

4 —nd ;.. and the claim is proved.
a+3 a+4

The linear system of equations (2.5) for 1 u<vm consists of
recursive relations, therefore it is invertible over the integers. By substituting
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(2.3) in (2.5), we express the N74,’s as linear functions of the multiplicities e,
and the linear system is invertible over the integers, i.e., we have

(2.6) €pq =JSpadViur)
and explicitly
el = (=1’

A A A A
pq_Np—l,q Np.q+1 +Np—l.qul)

if s, <p<s$,41s $5<q< 55,
e?aqz(_l)b_a+l(NA - N N?a+1’q+1+N?a_l'q+l)

Sa+1+9 Sa—la
if §,<q<85,0»
4 _ b—asnd A A A
epsb_ (_1) (Np,sb‘l _Np‘l,s,,_, _Np,sb+1 +Np—l,sb+1)
lf sa<p<sa+1’
— N4

Sa412Spt+1 +N?a—l,sb+1)-
If A4 is a given representation of @, i.e., in suitable bases, 4 is assigned
through the set of matrices (4,,...,4,,_,), then we can compute the ranks
Ni, and from (2.6) we deduce the multiplicities of the indecomposable
factors of [4]=¢7,. Conversely if 4 is given through (2.2) then (2.3) and
(2.5) allow us to find the set of rank parameters N*.
Moreover we have the following:

(2.6)

eA :(_l)bva+l(NA __NA

SaSy Sa4195p-1 Sa—1.sp—1

PROPOSITION 2.7. A set of non-negative integers N={N,}, 1<u<
v < m, Iis the set of rank parameters for an isomorphism class of represen-
tations of Q,, = (#, 2) if and only if they satisfy the inequalities obtained
setting the right hand side of (2.6) bigger or equal to 0.

This last proposition allows us to parametrize bijectively the isomorphism
classes of representations of Q,, by the sets of rank parameters N = {N,,}
subject to the stated conditions.

ProposiTioN 2.8. If A,B€ L, are such that &, < &,, then N®, < N4,
Jorevery lu<ovm

Proof. It is trivial; in fact, in a degeneration ranks cannot increase.

Remark 2.9. We have displayed the n;‘q’s appearing in the expressions
(2.5) of N4, on rows and columns; on each column we have an alternated
sign starting with 4, and the column index is p and p € {u, 5,,..., 53}

Remark 2.10. From now on we will display the rank parameters N,
(1<um, 1<v<m) of the representation 4 in a matrix (¥ and v are
respectively the row and the column index), which will still be denoted by
N* = {Ny,}).
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3. ELEMENTARY DEGENERATIONS

We introduce here some operations on the indecomposables E,, of
Q,, = (+,,2) called “elementary degenerations” which will generate a
preorder relation in the set of orbits of given dimension.

We will use the definition of indecomposable E,, (or segment [p, q]) of
even or odd type given in Section 2.

(e) For each pair of indecomposables E,,, E,, such that A < r<t <k
and [r, t] is of even type we associate the pair E,,, E,,, i.e., we consider the
operation

Dy Ex®@E, > Ey@E,.

EXAMPLE.
h k h Sd ¢
. . . @
s
r t r k
—hA—@— —h——————————
S¢ Sq S¢

(¢’) For each indecomposable E,, and each integer ¢ such that
h < t < k we consider the operation

e
hik: Ene = Epg @ E, 4 1y

EXAMPLE.
h Sd 41 Sd+il k h S ¢
—@— & @

(o) For each pair of indecomposables E,,, E,, with A <r<t <k and
[r, ] of odd type, we consider the operation

Dt Efy OE > Ey DE,,.

EXAMPLE.
h Sd ¢ h k
k oo h X
AN
r k r t
= —h——h—
Se Se Sd

Remark 3.1. The operation (e’) can be considered as a special case of
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(e) if we introduce the convention that E, | , is the 0 representation for every
t and in (e¢) we allow the index r to be equal to ¢+ 1 (note that with our
conventions E, ., , is of even type). Therefore we will refer, from now on, to
the elementary operations of types (e) and (o), and we call them resp. even
or odd operation.

These three types of operations generate a preorder relation in the set of
isomorphism classes of representations of @, of given dimension d. We will
see in (3.3) that this is in fact an ordering which we call the “combinatorial
ordering” and denote by <. The definition is the following:

DErINITION 3.2. Given 4, B € L; we say that ¢ <. (7, if and only if the
set of indecomposable factors of B is obtained from the one of 4 with a finite
number of elementary operations of types (e) and (o).

Let us denote by < the geometrical ordering of the orbits given by
"y <7 if and only if /7 = 7, (i.e., if % is a degeneration of 7).

ProposITION 3.3. For A,BEL,, if " <. then (T <, 7.

Proof. Recall that if 0+ M’'—> M is an injection of modules, then the
module N=M'@® M/M' is a degeneration of M (i.e., N belongs to the
closure of the isomorphism class of M). Therefore we only need to find such
injections or projections for the elementary operations (e), (0).

Case (e). Suppose s, , <r<s,, §,<t<s,,, and s5,_, is a sink. As
Hom(E,,,E,,)~ K, let us denote by ¢:FE, — E,, the morphism corre-
sponding to 1 in the previous isomorphism. Let ¢’: E,, — E,, the analogous
morphism. Then the morphism ¢ — ¢': E,, — E,, ® E,, is an injection and
(Ew®E,)E, ~E,. If s,_, is a source we have an injective map
E, .~ E,, @ E,, and the quotient is E,,.

Case (0). Can be treated with the same kind of argument.
According to what we have just proved in (3.3), we will refer to the result
of an elementary operation as to an “elementary degeneration” (e), (0).

4. OBSTRUCTIONS TO AN ELEMENTARY DEGENERATION

Let A, BE L, and suppose B is obtained from A4 performing one
elementary degeneration. Propositions 3.3 and 2.7 imply that N5, < N, for
every I u<ovm

We first want to describe a way to compute for which pairs (u, v) the
corresponding N,, has in fact decreased its value, i.e., N3, < Nj,.
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Note that if B is obtained from A4 performing the operation
Dy Ey®E,,» Ey ®E, thenn?_, , ,=ni_, ., —1 and therefore

nt =nt —1 for h<p<r—1, t+1<g<k

pa— Mpg ™
(4.1) . herd
N, =Ny, otherwise.

If the operation is D}, :E, ®E,+— E,®E, then n’ 6 =
ni_, ;1 + 1 and therefore

42) Moy =N, + 1 for h<p<Lr—1, t+1<g<k

B __ A :
g = Ny otherwise.

R

Then from the expression (2.5) of N, (cf. Remark 2.9) and (4.1) or (4.2)
we deduce that Ny, =Nj, —1 if in (2.5) there is an odd number of n,,
altered by the degeneration; N, = N, otherwise. With the notation of (2.5)
we have:

PropPosSITION 4.3. Let z, w be respectively the number of elements of the
sequence {u, S, ..., Sz, v} which lie in the intervals |h,r — 1] and [t + 1, k],
then have N&,= N, — 1 if and only if the product z - w is odd; N% = N*,
otherwise.

Proof. 1t is trivial since z represents the number of columns in (2.5) on
which some 7,, has changed its value, and in each such a column exactly w
consecutive elements present a variation. ‘

Let 4 € L, and suppose we perform an elementary degeneration on its
indecomposable factors. We will soon see that the N4, which “change” under
the effect of the operation are the elements of a submatrix of all rank
parameters N* (cf. Remark 2.10). We call this submatrix the “obstruction
matrix” of a 4 relative to the performed operation and we use the notation
ob*(D%,,) or ob?(D3, ). The reason we use the term “obstruction” is the
following: suppose 4 is given via the set of its rank parameters (satisfying
the inequalities stated in (2.7)). Can we perform on 4, for example, the
operation E,, — E, ® E, , ,? The answer cannot be positive if some of the
entries of 0ob”(Dy,,) are zero (which means that there are no factors E,, in 4
on which the operation can be performed).

Next we use Proposition 4.3 to list explicitly in four different cases the
row and column indices of the various obstruction matrices one can get, as
we will need them in the proof of (5.3).

Assume h, r, t, k are integers such that 1 <A <r<t<k (orr=¢t+1and
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h <t < k as we want to consider simultaneously the operations (e) and (e’)).
In the given orientation 2 = {s,},_, .., they satisfy the inequalities

Sact <hK S,y Se_ KT8y 5y<E<S,05 S <k <8y,
for suitable a, ¢, d, b.

Case (I). If |h,r—1] and [t+ 1,k] are of odd type, then for the
corresponding obstruction matrix 0b*(D%,,) or ob*(D},,) we have
{ley B — 158,00 851 — L3 8.5y ¥ — 1} row indices
{t4 Loy Sy 158042+ Loy Sgp g5 Sp_y + L, 855k + Lo, m}

column indices.

Case (II). If [h,r— 1] is of even type and [z + 1, k] is of odd type then
we have

{Ayres 8 = 13854 1900es Sqp2 — 1303 8¢ _ 1oy ¥ — 1} row indices
{64 Loy Sy 158a02+ Ly Sy gses Sy + Lo, sy b+ 1, m)

column indices.

Case (II1). If |h,r — 1] is of odd type and [t + 1, k] is of even type, then
we have

(s B — 138,500y S oy — 1503 Sy 5y F — 1} rOw indices

{t+ Loy Sgi158a102 + Loesy Sgp g5 8, + 1oy k} column indices.

Case (IV). If [, r— 1] and |t + 1, k] are of even type, then we have

{Ayens Sg = 1585 4 1900y Sgyn — 153 8¢ {4y ¥ — 1} rOW indices

{t+ Ly Sgp 1585402+ Loy Sg4 33003 8, + 1., k} column indices.

Note that we are prescribing the type of A, r — 1] and [¢ + 1, k], therefore,
as the operations D5, or Dj ,, prescribe the type of [r, ¢] we can deduce the
type of the indecomposables on which we perform the operation. Each case
contains therefore two different situations (up to duality) each one
corresponding to an operation of type (e), (0).

All the possible situations concentrated in Cases I, I, III, IV are listed in
the following table. In the last column we use the following:
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NotaTiON 4.4. Let {x;};_1;,..,» {¥Vilji=1,2,....q be two sets of non-
negative integers. The symbol

(15 Xgseens Xy | Y1 Yasens Vg)

denotes that the x;’s have the same parity, different from the one of the y/’s.

Case D Indecomposables on which D acts Parities
A Sq Sc—1 Sd+1 Sp k
——0—
I Dju (a.d|b,c)
—h——

r Se Sq ¢

h Sq Sc—1t Sd ¢

—h A — @
I Dju (@ b|c d)
— A& & —
r Sc Sd+1 sp k
h Sa Se—1 Sd+1 Sp k
—h—@
I D r (@, b,c|d)
—h—0—
S Sq !
h Sq Se—1 g4 ¢
@ —4h ———@—
0
Il hrtk r (a’ ¢ d l b)
— @ ———h—h—
Sc Sa+1 S K
h Saq Se_t Sd+1 Sp k
—o—@
I Dy, (a,b,d|c)
-y ——o
r S Sq4 t
h Saq Sc—1 Sd ¢
—h—A———O—
11 Zrtk (b’ ¢ d I a)
————A—O—
r Se Sd41 Sp k
h Sa Se—1 Sd +1 Sp k
—h———
v D;rtk (a’ ¢ I bs d)
—h—O—
roos. Sq ot
h Sq Sc—1 Sqa ¢
——aA ——0—
v Zrtk (a’ b’ ¢ d')
—————A—0—
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Remark 4.5. (i) If in Case III or IV we have k =m =s,, the index m
does not appear as a column index, the last index of the list is in fact 5,_;.
This fact will be used in the proof of (5.3) (cf. Section 7).

(ii) If[A,r—1] (resp. [t+ 1,k]) does not contain any point of the
sequence {s;} = £2, then the corresponding row indices (resp. column indices)
need to be contracted to {A,...,r — 1} (resp. {¢ + 1,..., k}).

5. STRATEGY AND SKETCH OF THE PROOF OF THE MAIN THEOREM

For the quiver Q, = (%/,,,f) we consider the space L:=L, of the
isomorphism classes of representations of fixed dimension d.

As we have recalled in the Introduction, an isomorphism class [4],
A € L, corresponds to the orbit <7, under the action of G on L.

In (3.2) we have defined an ordering on the orbit set, denoted by <, and in
(3.3) we have compared it with the geometrical ordering denoted by <,.
Next we define a “rank ordering” in the same set, denoted by <,, as follows:

DEerFINITION 5.1. Given 4, BEL, we say <, if and only if
NE KN4 for Iugv<m.

Proposition 2.8 says that if % <, /7, then @ <, &,. The theorem we want
to prove is the following:

THEOREM 5.2. The three orderings <., <, <, coincide.

We only need to compare the orderings <, and <, and the strategy we will
use is described by Proposition 5.3.

To simplify to notations, from now on we will write B {4 instead of
<, 0.

PrRoOPOSITION 5.3. Let A, BE L such that B < A. Then there exists a
C € L obtained from A via an elementary degeneration and such that
BLC<A.

Note that Proposition 5.3 (and Theorem 5.2) has been proved in [1] in the
case the Dynkin diagram is equioriented, i.e., in the case v=0 (cf. [1,
Theorem 3.2). Therefore, from now on we will assume v > 0.

We will say that “an elementary operation on A is allowed by B” if the
operation on A gives rise to a C such that B C < 4.

If B < A and we perform an elementary degeneration D on 4, we do get a
C < A, but if the entries N4, of the obstruction matrix ob*(D) are not strictly
greater then the corresponding N2’s, we do not have B C < 4. This
explains once more the term “obstruction matrix.”
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Let Q,,_, be the quiver obtained from @, erasing the last vertex.
Therefore the vertices of Q,_, are labelled by 1...., m — 1; the sequence of
sources and sinks is 1=s5,<s;<:--<s,<s,,,=m—1. Similarly we
define Q) _,, erasing the first vertex.

To any representation 4 =(4,,4,,.,4,,_5,4,,_,;) of @, corresponds
the representation 4’ =(4,,4;,..,4,_,) of Q! _, (resp. A" =A4,,...,4,,_,)
of Q_ 1) In particular to the indecomposable representation E

pq’
1 <psg<m—1, of Q, corresponds the indecomposable representation
. of Qs to the 1ndecomposable E,,l1<p<m—1,of Q, corresponds

the indecomposable E, ,,_, of Q _,. It follows that to an elementary
degeneration D,,,, on A (of odd or even type, cf. Section 3) corresponds the
same elementary degeneration on A’ (resp. odd or even), if k< m—1; if
k=mandt<m-—1to D,,, (odd or even) corresponds D,,,, , (resp. odd
or even).

Let 4= ZKKKMeMEM be a representation of @, and A'=
Y icres<m—1€0 E, the corresponding one in Q) ,, then for the rank

parameters and for the multiplicities we have the relations

(5.4) N4 =N1, I<ugo<m—1 (resp. Ni =N . 2<ugv<m),
(5.4)" Ga=ep 1<p<g<m—1
€om—1 = €1+ Epms I<p<m—1

Remarks and Terminology 5.5. 1If e}, >0, i.e., A’ contains a factor (a
direct summand), E,;,, and kK <m —1 then from (5.4)" we deduce that
ea = €5 > 0, ie, 4 contains a factor E,,. In this case we will say that “the
factor E,, of A’ (of odd or even type, cf. Section 2), lifts to the factor E,, of
A (resp. of odd or even type)” (we will also say that “E,, is the lifting to A4
of the same factor in 4’”).

If e,_;>0,ie, E,,_, is a factor of A’, then e} ,_, + €}, >0 (cf.
(5.4)'). It follows that either e ,_, >0 and E,,,_, is a factor of 4, or
esn >0 and E,, is a factor of 4. In this case we will say that “the factor
E, m_, of A’ lifts either to a factor E, ,_, or to a factor E,, of A” (the
lifting need not be unique!). Note that E, ,, _, has the same type odd or even
(cf. Section 2) in Q;,_, and Q,, if and only if s=m - 1;E, ,,_, in Q,,_, and
E,, in Q, have the same type odd or even if and only if 5, <m — 1.

In any case a factor E,, can be lifted to 4. Therefore if in 4’ we can
perform the elementary degeneration D' =D,,,,k <m—1, then in A we
can perform D =D, ,; if in A’ we can perform D' =D,,,.,_, then in 4 we
can perform either D=D,,,. _, or D=D,, or both. In any case we will
say that “the elementary degeneration D’ performed on A’ lifts to an
elementary degeneration D performed on A” (or equivalently "D is a lifting
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of D’ from A’ to A”). Note that if D’ is an even operation (resp. odd) then
D is an even operation (resp. odd) but, if D’ is of type I (resp. II, III, IV)
(cf. Section 4), then D need not to be of type I (resp. II, IIL, IV).

Remark 5.6. Suppose we can perform an elementary degeneration D’ on
A’ allowed by B’, i.e., there are no obstructions in Q/,_,; when we lift D' to
a degeneration D on A new obstructions can arise, if we require the
degeneration to be allowed by B, and these correspond to the column index
m in ob*(D).

DEefFINITION 5.7. We will say that the lifting D of D’ from 4’ to 4 is
trivial if 0b*(D) = ob?'(D").

To see if a lifting is trivial or not it is enough to look at the lists of row
and column indices given in Section 4 (Cases I to IV).

Sketch of the proof of 5.3. Given A, BE L, if B < A4 then B’ <A’ and
B"”  A". The proof 5.3 will be done in two steps.

Step 1. If B’ <A’ (or B” < A") we proceed by induction on the length
of the quiver, the initial case being trivial. We know by induction that there
exists an elementary degeneration on A’ allowed by B’ (resp. 4" allowed by
B"), and we show that we can lift this degeneration to one on A4 allowed
by B.

Step 2. If B'=A’ and B" = A" then we are in the case N% < N4 and
all the other rank parameters for B and A are equal; in this case we directly
exibit an elementary degeneration on A allowed by B.

In order ro realize this program we will need some lemmas.

6. LEMMAS

Let A €L be a given representation. We want to produce here some
inequalities satisfied by the set of rank parameters N* which we will need for
the proof of (5.3). As the representation 4 is supposed to be fixed, we omit it
in our notations.

Let w =15, + v be any index such that s, < w < s,,, and let d be such that
z<d<v (where m=s,, ). In the expression (2.5) of N,,, we can collect

first the terms corresponding to N, . and N, _ .. i.e., we write

N,,=N,. +N

sq41.m — (sOme other terms).

WiSd+1

If the number of columns in N,, ;  is even we can collect the other terms
in pairs of consecutive columns; otherwise we will collect the terms relative
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to the column w alone and all the other ones paired together. With this idea
in mind we introduce the following notations:

NortaTioN 6.1. (i) Letj<hands,<h<s,,,, we set

p—e+1

Ry,=n;,—n + Z (-1 nj.seH:(njh—nj.seH)
t=12

J JsSes1

+ (n Sers ™ nj‘sM) + ...

(i) Leti<j<hands,<h<s,,.,, weset

v—e+1
Sijn=p—nyp—n;  + Nis,.)+ Z (_1)1("j,s,.,+,‘ Ris..)
(=2

= (nﬁ' Ry — nj-SeH + ni'se+l) + (”j-senw ni-5e+z

— M, R, )t

hSe+3
(ili) Let i <j<f, we set

Typ=ny—ny.

We deduce the following decompositions for N, ., ,,

st‘“—’-m = N5z+'-"sd+l + NSdH'm - <R51+Vv5d+2

+ Z SSnAl'savsdﬁ»Z)

(62)l a=2+2,z2+4,...,d
if z and 4 have the same parity, i.c., 5, and 5, are both
sources or sinks.

st“hm = st+v-sd+1 + N5d+]vm B (Ssz*vvsz+l’sd+2

)
+ > Sd)

(6.2)2 a=z+3,2+5,....d
if z+ 1 and d have the same parity, i.e., if s,,, and s, are
both sources or sinks.

For any pair of indices s, + v and e such that s, + v <e and 5, <e <m,
we have instead the following decompositions:

-
Ns,+v,m"Ns,+v.e_ (Rs,+v.e+ Z Ssa_,,sa,e>
a=z+2,2+4,...,0

(6.3),
if z and v have same parity
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or

Ns,+v,m:st+v,e— (Ssz+,y.s,+|,e+ Ss(,,l,sn.e’)

a=z+3,2+5,..., v

(6.3),
if z + 1 and v have the same parity.

Remark 6.4. Clearly we have: (i) R;,>0 since each summand in
parenthesis for its expression is non-negative. In fact n; ; —n; counts
the number of factors E,, (in 4) with p < Jj, 5o, <q <Seppiys Mjp— Ny,
counts the number of factors E,, with p<j, h<q <s,,,.

(ii) S;»>0 since each summand of its expression is non-negative.
Note that n; n +n; counts the number of factors

. Jv5e+5— l'-Se+t_nJ'ySe+t+1 isSetry
E o wWth i <P, Sest <G <Seyyqrssimilarly forny —ny—n; o +ny g

(iii) T;>0. In fact T, counts the number of factors E,, with
iI<p<Lj, g2/

We deduce the following:

LemMA 6.5. (i) Rj, >0 if and only if there exists (in A) a factor E,,

withp<jand Q€ {Ayiy S — 15 50155008, 35— L3

(i) Ifj<f<h then n;>R;, and the equality holds if and only if
there are no factors E,, (in A) with p<j, € {fos B — 15 54 1500 S — 15
Sep3rmes Serg— Li)

(iii) Sy, >0 if and only if there exists (in A) a factor E,, with
I<p<jand Q€ (R, Sopy — 15 Sop g Seyy — i

(iv) Ifi<j<f< hthen T, > S, and the equality holds if and only if
there are no factors E,, (in A) with i<p<j, q€{fosh—1;

SeyrresSers— Ls}.

LEMMA 6.6. Consider the indices s,+r, s,+t, s.+w such that
1<s,+r<s, +t<s.+w<m with s, <S;+71<Sg,3 Sp<Sp+1 <55,
S, <8, +w<Ks,,,. We have the following inequalities:

(1) Nsa+r,m_Nsb+t,m>Nsa+r.sc+w_Nsb+t,sc+w l.f b and c have the
same parity.

(ll) Nsa+r,m_Nsb+t.m<Ns,,+r,sc+w_Nsb+t,sc+w lf b and c have
opposite parity.
Moreover

(iii) The equality holds both in (i) and (ii) if and only if there are no
E,, (inA) with: p€ {l,.,5,+7; Sop 1+ L Ss 0505 Sp_a+ Ly Sp_15
Sy + 1., 8, + t} if a and b have different parity; or p€ {5, +r + 1,..., S5, 13
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Sasat Loy Sgpgses Sp_a+ Ly 8y_y5 Sy + Loy s, + £} if a and b have the
same parity; and q € {S, + Wy, S,y — 15 8oy g0y Sy — Lo

Proof. (i) The following computations are based directly on (2.5)
(where we collect together the contribution of ¥, ., ,— N, ., ., and the
one of Ny, . +w— Ny, +1,m), and on the notation (6.1).

Suppose the parity of a is different from the one of b and c:

(Nsa+r,m _Nsb+t,m) - (Nsa+r,sc+w _Nsb+t,sc+w)

:——Rsa‘“’vscﬂ— Z Ssissi+1»5c+l_Ssb’sb"'tvscﬂ
i=a+1,a+3,....,b—-2

-
+ nsa+r,sc+w + }_, Ts,-,s,u,],sc+w + st,sb+t,sc+w

=(ns,,+r,sc+w—Rs,,+r,sc+l)+ Z (Tsi,si+|.sc+w

i=a+1,...,b-2

- Ssissi+lvsc+l) + (TSb-SbHch‘rW - S5b~5b+’vsc+1)'

The statement follows now from Lemma 6.5(ii), (iv). If a has the same parity
as b and ¢ we have

(Ns"+r,m _Nsb+l,m) - (Nsa+r.sc+w _Nsb+l.sc+w)
= (T

atTsSayisSctw S5a+’vsa+ls5c+1)

+ Z (TS1»5i+1sSc+W _Ssio5i+l‘5c+l)

i=a+2,a+4,....b~2
+ (st,sb+t.sc+w - Ssb.s,,+t,sc+1)

and we get the same conclusion.

(ii) Is similar to (i) once one notices that under the new assumptions
the signs in the various summands have been changed into their opposite.

(iii) We just read Lemma 6.5(ii), (iv) in the case when equalities hold.

7. PROOF OF PROPOSITION 5.3, STEP 1

For Step 1 (cf. Section 5) our assumption will be:

(*) There is no elementary degeneration on 4’ allowed by B’ which
admits a trivial lifting to 4.

Otherwise the required C we are looking for is trivially found.
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Suppose B’ < A’. By induction we know that there is an elementary
degeneration on A’ allowed by B’ which can be either

Dy Eny ®E,,—E,®E,, or D} ,.E,,®E,—E,DE,,

with 1<h<r<t<k<{m—1l(orr=t+land 1<h<t<km—1)and
Sa 1 <h<Ss,s 5., <r<s,, 5, <8q, 1, 5, <k <5, . We only need to
analyze and prove Step 1 for all possible elementary degeneration on A4’
which cannot be trivially lifted to A; clearly they are listed in Section 4
Cases I and II where the column index m do appear, and some “limit case”
for Cases III and IV, i.e., when k =m — 1 (cf. Remark 4.5(i)).

1.1,. The Case 1 for an Even Degeneration

We assume that the elementary degeneration on A’ allowed by B’ is
D}y Eyi ®E,,—~E,,®E,,, k<m-—1 (CaseI).

From Section4 Casel we read that the row indices in ob*'(D%,,) are
{LuyB—15 540y Sgiy — Ly So_jses ¥ — 1} =t H, the column indices are
{E+ Ly Sgiqs Sqpat Ly Sgi35es Sy + Lusyy k+1u,m—1} =K
(where K={t+ 1,...,m—1}ifk=m+ 1 and d=v).

We know that D3, can be lifted to 4 (cf. Remark 5.5) and we collect in
Table I, the non-trivial liftings which can occur in 4.

Remark 1,. In TableI, we have not listed all the possible liftings of
E, n_, from A’ to A4, but the missing ones give rise to degenerations which
are trivial liftings, against (*). In fact if in (ii) we assume that the
degeneration lifts to

h Sq Se—1 Sd+1 Sy m

0—-.——‘
s s (Case III)
—aph——

r t

or if in (iil) we assume that the degeneration lifts to

h Sa Se—1 Sd+1 Sy m—1

—o—@
se 4 (Case III)
— A

r !

by Remarks 4.5(i), (5.6) and (5.7) we have a trivial lifting.

Moreover if d =v we must have k = m — 1, otherwise the degeneration in
A’ does not belong to Case I and in (iv) we can repeat the same argument as
in (i) or (iii).
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TABLE I,
Column 1 Column 2
D}, ind’: Casel Non-trivial lifting of Dj,,, in A Case
()
h sa Sc-1 sd+1 Sb &k h Sd Ssc—1 sd+1 Sb k
d#v
Sc¢ Sd S¢ 5d I
k<m—1
r t r t
(11) h Sa Se—-1 sd+1 m-1 h Sa sc—1 sd+1 m-—1
d+v
Sp Sp I
S¢ Sd ¢ Sd
k =m— 1= su o—‘—.—o 0—‘—'—0
r t r !
(iif)
h 52 Sc-1 Sd+1 sy m—1 h Sa Sc-1} Sd+1 Sp m
d+v
S¢ Sd Se Sd !
k=m—1%#s, . e -
r t r t
(iv)
h Sa Sc-1 m-—1 h Sa Sc—1 m
d=v
S¢Sy S¢ Sv I
k=m-—1
r t r t

For all the possibilities listed in column 2 of TableI, we have new
obstruction indices relative to the column index m and row indices p € H.
We claim that

(**) Ni . >NE for every p€ H.

From this claim, once proved, it will follow that if we assume the
representation C to be obtained from 4 via the degeneration of column 2,
then A > C > B and the Proposition 5.3 is proved.

To prove (**) assume by contradiction that there exists an index
p=s5,+vEH(s,<5,+v<s,,,), and such that

(7'1) Ngz+v,m=Ngz+v,m'

The index p =s, 4+ v can be of two types:

(1) s, + v is such that z has the same parity as d,
(2) s, +v is such that z + 1 has the same parity as d.
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We analyze first the case d # v, i.e., (i), (ii) and (iii) of Table I,. We have
NferMd+l > N‘S’zﬂ,,sd+l as the degeneration on 4" is
(7.2) allowed by B’ (cf. 5.4),

N, w2 Ny as B < 4.

Sd41.mm
We discuss separately the cases g =s, + v of type (1) or (2).

If p=s, + v is of type (1), we use the decomposition (6.2), for both sides
of (7.1) and from (7.2) and (6.4) we deduce

(7'3)1 R?z+v,sde + Z S?n—lvsn’sd+2 > 0.

From Lemma 6.5(i), (iii) it follows that 4 contains a factor (a direct
summand) E;; with

PE{ Ly s, + 0585, .14 Ly 8, 5505841 + Ly S5 =t Py,

FE Sy 20 Sg03— 1580, 490 Sgps— Lo}

and a fortiori with

GeE{t+ 1,85 — 138a0 05 Sq03— L3} =1 Q.

Wesets; , <p<s;,5,<q<s,;,, for every pE P,, § € Q. Note that j and d
have the same parity, therefore if §=m=s,,, then v+ 1 and d have the
same parity. We do not know a priori the parity of the index i, therefore the
known parities are (we use the Notation 4.4)

(a,d, z,j|c).

We choose now a factor E,, of 4 such that pEP,, g€ Q and p is
minimum in P,. Note that p#r, in fact if p<s,+v we have p <r; if
P> S, + v then i and ¢ have opposite parity.

If p <r we have p < r <t < q and we can perform on A the degeneration
Dy E,y®E, — E, ®E,,. We claim that i and d have the same parity,
otherwise the degeneration Dj,,, is of type IV and we have a trivial lifting,
against (*) (the argument holds also for g = m, cf. Remark 4.5(i)). It follows

that the parities are

(a,d,z,j,i|c)

481/93/2-11
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and we can perform on A the degeneration

p Si Sc—1 Sd+1 Sj q
D}y —O—@
s Sq (Case III)

—A O —

r t

and & < p (not to contradict (*)).
If p>r then i and d have the same parity; on A we can perform the

degeneration

r Se Si-1 Sq t
—h—Ah————— 00— (Case (III)
Dgptll . s; Sd+1 s;
p q

and the parities are
(a,d.z,j,i|c)

We compare now the two obstruction matrices

ob*(D%,,, and ob*'(D%,,1) if h<p<r
or
ob*(D%,) and  ob*(D5.) if p>r

In ob* there are new entries relative to the row indices {&,..., 5, — 1; 5, 1 yorer
Sa+2— L3y Si_ysep—1}=:W and column indices {f+ I,..5,, ;
Sgi2t Ly 844353 5+ Lo, g} =: ¥ (cf. Cases III and I, and there must be
a pair of indices s;+u€W, s, +we€V, s;<sptHu<sq,
$, < S, +w<S,,,, such that

(74) . fo+u,sg+w = N?f+u,sg+w (Sg +w< m)

(otherwise the degeneration Dy, (resp. Dj,,,) on A will be a trivial lifting of

the same operation performed on 4’). Note that s, + w < m even if g = m, as
in this case s;=s,,, = m. The parities of the indices involved are

(a.d,z,j,i,g|c.f)

and s,+u # 5, + v (as z and f have different parity).
We claim that

A4 — N4 N4
st+u,m_st+v.s!+w st+u,sg+w’

(1.5) N4

s;to.m

as a consequence of Lemma 6.6(iii).
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In fact if s,+v <s;,4+u in A there is no factor E,, 5, , <x<K5,,
53y <Sgyq, With

XE (LS, + 058, + Ly 8, 405058, + L, S+ 1l

VES, 4+ Wty S 01— 158, 2500 8y 3 — L}

(note that if in 4 we have E, ,, with a and f of the same parity, then
x < s, + v < r, we can perform D% ,, (Case IV) and we contradict (*), if in 4
we have E,,, with a and f of opposite parity then x <s,+u <p and we
contradict the minimality of p). If s, + v > 5,4 u we interchange the role of
these two indices and again (7.5) holds.

We also have

(76) N: +vs+w>Ngz+u,sg+w’

in fact s, + u € H, s, + w € K (note that if g = m then s; =s,,, = m, the last
index in Vis 5;_, and V' c K).

We use now (7.4), (7.1) and (7.6) to deduce from (7.5) and Lemma 6.6(i)
or (ii) applied to B the following
(17 Niiom—Nisum=Ng

A B
st+u Ssg+w >st+v,sg+w

Sp+u,m N
=N ris w2 NG o= Ny

It follows

(7.8) N4 < N

sf+um sf+u m?*

a contradiction to the assumption B < 4.
If p=s5,+v is of type (2) then s, +v < h; we use the decomposition
{(6.2), for both sides of (7.1) and from (7.2) and (6.4) we deduce

(7'3)2 S?ﬁ-v Srp1s8d+1 + Z S?n 1:5aSd+2 > 0.

a=z+3,2+5,...,d

From Lemma 6.5(i), and (iii) it follows that 4 contains at least a factor

E; - 8 1 <P<KSy, 85K d <8544, with

.3
PE{s, 40+ Ly 8,158,402 — L S, 035003801 + Ly S4} =1 Py,
GE{t+ 1y Sy 10— 1385, 2008403~ 15} =0

and the parities are

(a,d.j,ilc, z).
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Also in this case we choose a factor E,,, of 4 such that p€ P,, g€ Q and p
is minimum in P,. p#r as i and ¢ have opposite parity.
If p < r, we can perform on A the degeneration

Si Sc—1 Sd+1 Sj q

D . '
D¢ : s. g (Case III)
prig .

r t

and & < p (not to contradict (*)).
If p > r we can perform on A the degeneration

r Se¢ Si—1 Sq ¢
—Ah—A——O—
Dy ¢ e g (Case III)
14 q

We proceed now as for g=s, + v of type (1). Using the same argument
and the same notations, we see that (7.4) must hold for s,+u€ W,
s, +w € V. The parities are

(a,d,j,i,glc, z,f)

and we have s, + v < h 5,4 u. Again we claim (7.5), as a consequence of
Lemma 6.6(iii). In fact in A4 there is no factor E, ,, 5, | <XKS$,,
S5 <Y < 85,1, With

XE{s, +v+ Ly 8, 138,00+ Ly S, 35003 S5+ L, 5+ Ul
VE S+ Woes S 1 — 1585 00000 Sg 3 — L3}

asx€P,,yeQand xs,+u<p.

Using again (7.4), (7.1) and (7.6) from (7.5) we deduce (7.7) and the
contradiction (7.8) to B < 4.

It follows that (**) is proved for d # v.

If d=v, we examine (iv) of TableI,, and still claim (**). By
contradiction we assume (7.1), but (7.2) does not hold. We use instead the
following

(72)’ Ng,+v,t+l > Nl;,+v,t+1

as t + 1 < m and the operation on 4’ is allowed by B’. We cannot use the
decompositions (6.2), we use instead (setting e=1¢+ 1) (6.3); or (6.3),,
according to the type (1) or (2) for the index g=s, + v, for both sides of
(7.1) and from (7.2)" we deduce

(731 RS it > S5 rrsart+1 > 0,

a=z+2,z+4,..., v
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or

(73)5 S;‘,+v.s,+1,t+l + Z Sls‘,,gl,s,,,Hl > 0

a=z+3,2+5,...,v

From now on the discussion is the same as for the case d # v, we only
point out that

Q={t+lm—1}, V={t+1,.4q}

and s, + wE€ V is such that g=v. From (7.4), (7.5) and (7.6) we deduce
(7.7) and the contradiction (7.8). (**) is now completely proved.

Remark. Note that the line of this proof of Casel, goes like this: By
contradiction we assume (7.1) and from (6.2) (or (6.3)) and (7.2) (or 7.2)")
we deduce (7.3) (or (7.3)'). This gives us in 4 a subset of indecomposables
{E5 ;} in which we choose E, , with some properties (p minimum, the parity
of some indices, etc.) in such a way that (7.4) holds. Next we prove (7.5)
and from the assumptions (7.2) and (7.6) we deduce (7.7) and (7.8), i.e., a
contradiction to B < A4.

In all the remaining cases we will follow the same line, using the same
notations of case I, when possible.

7.1, The Case 1 for an Odd Degeneration

We assume that the elementary degeneration on 4’ allowed by B’ is
DYy Ey®E > E ®E,, k<m—1 (Case I).

The row and column indices in 0b*'(D§,,) are the same as for the even
operation (cf. Subsection 7.1,), i.e., the row indices are {l,..,k—1; 5,,..,
Sgp1— Loy Sc_ysesr—1}=H, the column indices are {f+4 I,.., §;.,;
Sgr2t Loy Sgpases Spog+ LSy k+ 1,.,m—1} =K.

We collect in Table I, the non-trivial liftings which can occur in 4.

Remark 1,. In TableI, we have not listed all the possible liftings of
E, .., from A’ to A, but the missing ones give rise to trivial liftings which
are against (*). Moreover if d =v then k =m — 1. The argument is exactly
the same as in Remark I,.

For all the possibilities listed in column 2 of TableI,, we have new
obstruction indices relative to the column index m, and the row index p € H,
where H is the same set defined for the Case I, as the obstruction indices do
not depend on the type even or odd of the operation.

Again we claim (**) (cf. Subsection 7.1,).

To prove it we use the same notations as for the even operation of type I
and by contradiction we assume (7.1). Then again the index g =5, + v can
by of type (1)or (2).
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TABLE 1,
Column 1 Column 2
Dj inA’: Casel Non-trivial lifting of D}, in 4 Case
0]
h Sa Sc—1 sd ¢ h sa Sc-1 sd ¢t
d+v
sc sd+1 sb s¢ sd+1 S
k+m—1
r k r k
(i)
h Sa Sc—1i 5d ¢ h Sa Sc-1 sd ¢t
d#v —h— A — kA
Sc Sd+1 Sp Se sd+1 Sv
k=m—1=s,
r m—1 r m—1
(iii)
h Sa Sc-1 sd ¢ h Sa Sc-1 sd t
d+v
sc sd+1 sp se sd+1 Sp
k=m—1#s,
r m—1 r m
(iv)
h Sa Sc—1 Svo o h Sa Sc—1 Syt
d=v —h——Ah———
S¢ S¢
k=m-—1 ——A ——A
r m—1 r m

Assume first d v, then we can reproduce the same argument as in
Subsection 7.1,, up to the choice of a factor E, , of 4 with (p,q) €EP X Q
(r=1,2), and p minimum in P,. At this point the argument is similar, but
not equal, to the one given in Subsection 7.I,, and we develop it for the
convenience of the reader.

We claim that p# Ah. In fact, for =1, if p <s,+ v we have p < h; if
p>s,+v then i and a have opposite parity; for 7 =2 again i and a have
opposite parity.

We cannot have p < h, otherwise we could perform on A4 the degeneration

phtat Epqg @ Ep— E, @ E,, which is a trivial lifting (if p = s, + v is of type
(1) the operation is of type Il or IV, if g =s, + v is of type (2) the operation
is of type III), against the assumption (*).

If p> A then i and d have the same parity and we can perform on A the
degeneration D}, which is of type III. Not to contradict (*) we must also
have p > r. We compare the two obstruction matrices:

ob*(Djpg)  and  0b(Dj.)  (p>r).

In 0b*(Dj,,,) there are new entries relative to the row indices {r,...,s. — I}
Seyrres Sepz— lsws Si_jsp—1}=:W' and the column indices
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{t+ Loy Sgp15 Sqya+ Ly Sgp 3505 8; + Loy g} = V and there must be a pair
of indices s,+u € W', s, + w € ¥ such that (7.5) holds. Note that here we
have s, + v < s;+ u and we can proceed, as for the even operation, up to the
inequality (7.8), against the assumption B < 4. Therefore the claim (**) is
proved for d#v. If d=v we use (7.2)’ and deduce (7.3){ or (7.3); and the
proof of (**) is the same as for the case d+#v, with obvious changes
(compare also the cases d v and d = v for the even operation).

111, The Case Il for an Even Degeneration

We assume that the degeneration on A4’ allowed by B’ is Dj,,:
Ep®E, ~Ep®Ey, k<m—1 (Case II),
From Section 4, Case II we read that the row indices in 0b*'(D5,,,) are

{Pyees Sy — 158454 1oes Sgpz— i3 Se_yges F = 1} =1L,

the column indices are

{4 Ly Sgi13 Sqpat Ly Sgpgsees Spog 4 Ly Sp3

k+l,m—1}=K

(where K= {t+ l,..,m+ 1} if k=m—1 and d=v).

In Table II, we collect all the non-trivial liftings of Dg,,, which can occur
inA.

Note that if d = v then k =m — 1, otherwise the degeneration on 4’ is not
of type II. Moreover all the liftings which do not appear in column 2 are of
type 1V, and have been eliminated, as we assume (*).

For all the possibilities listed in column 2 we have new obstruction indices
relative to the column index m and row indices p € L.

As in Case I we claim (**), i.e.,

(**) Ni.>N2 for every p € L.

To prove (**) assume by contradiction that there exists an index
pg=s,+v€EL,s,<s,+v<s,,,, such that

s;+o,m*

(1.1) N

s:+o.m

The index pg=s,+v €L is such that z and a have the same parity.
Therefore, from Table II, we deduce the parities

(a,c|d,z).
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TABLE II,
Column 1 Column 2
Dj,, inA’: Casell Non-trivial lifting of D%, in 4 Case
)
h Sa Sc—1 Sd+1 Sb k h Sa Sc-1 Sd+1 Sb k
d+#v
S¢ Sg Sc  Sa II
k#+xm—1 —h-—
r t r t
(ii)
h Sa Sc—1 Sd+1  Sp h Sa Sc—1 Sd+1 Sp
d+v
S¢  Sa m-1 se Sd m II
k=m—1=s, —A— A
r t r t
(iii)
kR Sa Sc—1 Sd+1 Sy m—1 k Sa Sc—1 Sd+1 Spom
d#v
s¢ sd sc sd I
k=m—1+#s, —h—— —h
r t r t
(iv)
h Sa Sc-1 m—1 h Sa Sc—1 m
d=v
11
S¢ Svp S¢ Sp
k=m-—1
r f r t

We analyze first the case d = v. We have

(7 2) Nl;z-irv.sd“ > Ngz+v
' NA > NP

Sd+1,m Sd+1,m’

WSd+1?

We use (6.2), for both sides of (7.1) and from (7.2) and (6.4) we deduce

(73)1 R?z+v,sd+z + Z S > 0.

Sa—1:5a+54+2
a=z+2,z+4,...,d

From Lemma 6.5(i) and (iii) it follows that 4 contains at least a factor
E; ; with

PE{L s, +vi8s,  + Ly S, 353841 + L, 84} =Py,
FGE{t+ Ly sz — LiSgi00m Sqp3— L) = 0.

We set s;_; <Pp<s;55;,<G <S$;,,. Clearly we have

(a,c|d, z,j).
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(0) Assume that in 4 we have factors E; ;, p€ P,, 4 € Q, such that

(a,c,i|d,z,)).

Then p < s, + v and among the factors E; ; satisfying (o) we choose a factor
E, , with p maximum in P,. We have p <5, + v < r and we can perform on
A degeneration

S Sc—1 Sd+1 Si q

D}, se Sq (Case IV)
We compare the two obstruction matrices
0b*(Dgyy)  and  0b*'(D,4)

(Cases IV and II); not to go against (*) we must have p < A. Then in

ob*(D3,,,) there are new entries relative to the row indices

{(Does Si— 138010 S0 — Loy Sy A— 1} =2 U
and the column indices
{4 Ly Sg, 138g50+ Ly Sgiass 854+ Ly gb =V

and not to go against (*) there must be a pair of indices s,+u€ U,
5, +WEV, 5, <85+ u<Spp 5 85, <S5, + WK, such that
(7.4) N;‘ﬁ-u,sg-‘rw = le?,+u,sg+w (s +w <m).

The parities now are

(a, C,il d, Z’j’f; g)

and s;+u<h<gs,+v.
We claim that (7.5) hold:

~ N4 = N4 — N

Sptu,m S,tUsgtw Sptu,sg+w’

(1.5) N4

s, +o.m

The claim follows from Lemma 6.6(iii); in fact in 4 there is no factor E,,
Sa 1 <XK Sy, S5y <583,,, with

XESp+u+ Loy Sey 153840+ Ly S5y 35038, + Ly s, + 0},

VE {8+ Woey Sy — 15854 95000 Sg 3 — i}
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as xEP,,yEQ, x>s,4 u>p, a has the parity of i, § has the parity of j
and p has been chosen maximum. We also have (7.6)

4 B
(76) st+v,sg+w>Ns,+v,sg+w’

in fact s, + v € L and s, + w € K (note that if g =m, then s;=s,,, =m, the

last index in V is 5;_, and in any case V' < K). As in 7.1 we get now the

contradiction (7.8) to B < A and (**) is proved under the assumption (o).
We may now assume that:

(00) All the factors E;; ; of A such that p € P,, § € Q satisfy also the
parity condition

(a,cld, z,i,)).

Among them we choose E, ,, with p minimum in P,. We have p# r and
p# h as i has parity different from the one of a and c.
If h < p <r we can perform on A4 the degeneration

p S Se—1 Sd+1 si q
D¢, Case 111
prig - Se Sd ( ase )

r t

If p > r on A4 we can perform the degeneration

r S¢ Si—1 Sq ¢
— A A ————@—
Dipig 5; Sdrt i (Case III)
o 4 o -
p q

We compare 0b*'(D§,,) with ob?(D%,,) and with ob*(D?,,) (Cases Il

rptq
and III); for both cases in 0ob* we have new entries relative to the row
indices
(L h = 158,00 8q0 1 — Loy Si_ oy p— 1} =2 U
and to the column indices

{1+ sy 1380,0+ Ly Sgy 3508+ L, g =2V

and not to go against (*) there must be a pair of indices s,+u€ U’,
S +WEV, s, Ksp+ U < Spy g, S <5+ WK s, for which (7.4) holds.
We have the parities

(a,cld, z,i,j,8)
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and we claim that (7.5) holds, independently from the parity of £, as a conse-
quence of Lemma 6.6(iii). In fact if f and a have opposite parity there
s;ruh—1<s,+v and in A there is no factor E, ,, s, ; <x<S5,,
§3 Ky < Spyy, With

XE{s,tu+ LySe 38m0+ Lo Sp 35038, + L s, + 0},
VE s+ Waes Sg 1 — 158, 55y S5 — Linefs

as XE P, y€ Q and a and a have the same parity (cf. (00)).
If f and a have the same parity and s,+ <s, + v, then in 4 there is no
factor E, ,, So_ 1 <X K58, 53Ky < 85,4, With

XE { Ly S+ U3 Sp 1+ Loy 5055038, + Ly 5, 04,

VE S, + Wy S, 1~ 138, 10500y 53— 1. h

as xE€P,, yEQ, a and a need to have opposite parity (cf. (co), which
implies x <s,+u<p and p has been chosen minimum in P,. If
$;+u > s, + v we interchange the role of these two indices and the argument
is the same.

If p < h we can perform on A the degeneration

p Si Sc—1 Sd+1 Sj q
D}, s Sq (Case 11I)

r !

Proceeding as before we have new obstruction indices
Myes D= 15 800 S5y — Vi3 Sg_y s A= 1} = U7,
{t+ Lo Sg1s8Sg.0+ L5433 8+ Lo gl =¥,

and a pair if indices s,+v € U”, s, + w € V such that (7.4) holds. We have
the parities

(a,cld,z,i,j, &)

and we claim that (7.5) holds, independently from the parity of £, as a conse-
quence of Lemma 6.6(iii). In fact if f and a have opposite parity, then in 4
there is no factor E, ,, s,_; < X< S,, 55 <Y < S5, With

XE{sp+u+ Loy Sppy5eei 5, + Ly 5, + 0},
YE Sy + Waeey Sgi 130}

as x € P,, y€ Q and a and a have the same parity (cf. (00)). If f and a have
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the same parity then s,+u<p—1 and in 4 the is no factor E, ,,
sa—l <x<sa9 sg<y<sg+|

XE Ly St a3 8,y + Ly Spy 05058, + Ly s, + 0},
YE S+ Woeess Sp iy 3o by

as x€P,, yeQ, o and a need to have opposite parity (cf (00)) which
implies x <s;+ u < p and p has been chosen minimum in P,.

We also have (7.6), independently from the fact that A <p <r,orp>r, or
p<h, as s,+vEL and 5, +w€E K. Therefore we get a contradiction to
B <4 (cf. 7.1,) and (**) is fully proved in the case d +# v.

If d=v we still claim (**); to prove it we assume (7.1) for an index
p=s,+v €L and we have (7.2)' (cf. 7.1,). Using (6.3), we also get (7.3);
and from Lemma 6.5(i) and (ii) it follows that A contains at least a factor
E;;, with pE P, and g€ {t —1,...,m— 1} = Q. At this point we proceed
exactly as in the case d # v we have just treated, the only difference being
that the set V' in the actual case is V= {t + 1,...,q} and s, + w € V is such

that g =v.

1.11, The Case 11 for an Odd Degeneration

We assume that the degeneration on A’ allowed by B’ is Dj,.,:
E,®E ~E,,®E,, k<m—1 (CaselIl). The row and column indices of
0b*'(D$, ) belong respectively to the sets L and K (cf. Subsection IL,).

We list in Table II, all the non-trivial liftings of Dj,,, which can occur in
A (the liftings which do not appear in column 2 belong to Case IV and are
trivial).

For all the possibilities listed in column 2 we have new obstruction indices
relative to the column index m and the row index p € L, and as in the even
case we claim (**) (cf. SubsectionIl,). To prove (**) we assume, by
contradiction, (7.1), and the parities are

(a,c,d|z).

Assume d # v, then we have (7.2). We use (6.2), for both sides of (7.1) and
from (7.2) and (6.4) we deduce

(73)2 S?z+vy5z+lvd+2 + X S?a—lvsavsd+2 > 0.
From Lemma 6.5(iii) it follows that 4 contains at least a factor E;;,
5; 1 <P, 5K G <554, with
PeEs, v+ 1,8, 158,52+ Ly 8,0 3505841 + Ly 54} = Py,
FE{t+ 1oy Sy 1 — 15 Sg,200 84403 — Lt} =0,
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TABLE 1I,
Column 1 Column 2
D;, inAd': Casell Non-trivial lifting of D},,, in A Case
(i)
h sa Sc—1 5d ¢t h  Sa Sc-1 sd
d#v
I
s sd+1 Sh s sd+1 Sb
k#+m—1 > . >
r k r k
(ii)
h sa Sc-1 sd ¢ h Sa Sc—-1 sd ¢
d#v
k=m— 1 =sv Sc Sd+1 sp S¢ sd+1 Sv II
r m-—1 r m—1
(iii)
d¢v h Sa Sc—1 sd ¢ h Sa S¢-1 sd
S¢ Sd+1 Sp K Sd+1 So II
k=m—1+#s, >
r m—1 r m
(iv)
d=v h Sa Se—1 Sv h Sa Sc—i Sp
11
5 $
k=m-—1 ‘—.t———ﬁ ‘—.C-——A
r m—1 m

The parities are

(a,c,d,i,j|z)

and among these factors we choose E, ,, with p minimum in P,. We note
that p > s, + v > h. We can perform on A the degeneration

h Sqg  Si-1 Sd

o .
hptq * S Sd+1 Si'

(Case IV)

and not to contradict (*) we must have p > r. It follows that in 0b*(Dj,,,,)
there are new entries relative to the new indices

{res Sc = 15804 150y Seya — L3 8;_ gy p— 1} =2 U™

and column indices

{t+ Lusg 13 8g:2+ L Sgp 3503 854 Ly g}

vV
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and not to go against (*) there must be a pair of indices s,+u &€ U",
s, + w € V such that (7.4) holds. The parities are

(aa c, d’ i’jsg | Z,f)

and we claim (7.5) (cf. Subsection 7.11,) s a consequence of Lemma 6.6(iii).
In fact we have s, + v <r <s,+ u and in A there is no factor E, , with

XE{S, v+ Luys, 13800+ Lo S, aa S+ Lo s, + U},
YE S+ Woes o1 — 1585000 S0 3 — L},
as XE€ P,, yE Q, x<S5;+u <p and p has been chosen minimum in P,. We
proceed now as in Subsection 7.1 or 7.II, up to the contradiction (7.8), and
(**) is proved for d # v.
If d = v we have to use (7.2)' and (6.3), and the proof of (**) is the same.
1.1I1. The Case 111 for an Even or Odd Degeneration

Assume that the elementary degeneration on 4’ allowed by B’ is of type
III and either it is

D Eng @ E, = Ep @ Epy (Case 111)
or it is
DY EyOE - ELDE, (Case III).

We claim that k = m — 1, otherwise both operations on 4’ lift to 4 to the
same operation performed on the same indecomposables, and we have trivial
liftings, agains (*).

We collect the only possible non-trivial liftings which can occur in 4 in
Table 111, for the even operation and in Table III, for the odd one.

TABLE 111,
Column 1 Column 2
Dy, in A: Case 111 Non-trivial lifting of D§,,,,_,in4 Case
(i
h Sa Sc-1 sd+1 Sp om—1 h Sa Sc—1 sd+1 Sy m-1
d#v
sc sd s¢  sd 1
k=m—1+#s, — A
r t r !
(i)
k:m—l:sv h Sa Sc—1 sd+1  sp h Sa Sc-} Sd+1 Se om
m—1 1

s¢ Sd sc Sd
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TABLE 1II,
Column 1 Column 2
D}, A’ Case 111 Non-trivial lifting of D},,,,_, in 4 Case
®
h Sa Sc—1 sd ¢ h Sa Sc—1 sd ¢
d#v
k:m—l:,&su Sc Sd+1 Sp S¢ Sd+1 Sp I
" m—1 r m—1
(ii)
h Sa Sc-1 sd ¢ h Sa Ssc—1 sd ¢
d#v —h—h——— —h—h———— @
Se Sd+1 Sp Sc Sd+1 Sv I

k=m—-1=s,

In 0b*'(Dypym— ) (for the even or odd operation) the row indices are
(L h— 15840y 80— Lty So_ e, T — 1} = H,
the column indices are

{t+ L Sgi1s8q2+ Ly Sgpais Sy 4+ Loy s} =1 K/
if k=m—1+#s,,
{4 L, Sy, 138402+ L Sgp 33038, o+ Ly s, ) =: K"

if k=m—1=s,,

and for the liftings listed in column 2 (for the even or odd operation) we
have new obstruction indices relative to the column index m and the row
indices p € H (compare Cases III and I).

As in Subsection 7.I, (resp. 7.I,) we claim (**) and the proof of it is
exactly the same, as the argument in Subsection 7.1, (resp.7.I,) is
independent from the value of k, which in CaseIll need to be k=m —1
(note also that in the actual case d # v).

7.IV. The Case IV for an Even or Odd Degeneration

Assume that the degeneration on 4’ allowed by B’ is of type IV. As in
Subsection 7.III we claim that k& = m — 1, independently from the fact the
degeneration is even or odd. In fact if kK =m — 1 the operations on 4’ lift to
A to the same operation performed on the same indecomposables and we
have trivial liftings, against (*).

We collect the only possible non-trivial liftings in 4 in Table IV, for the
even operation, and in Table IV, for the odd one.
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Column 1 Column 2
D§,ym_onA4’: Case IV Non-trivial lifting of D},,,,_, on 4 Case
()
h Ssa Sc-—1 Sd+1 Sp m-—1 Sa S¢—} Sd+1 Sv m~—1
d#v
11
sd
k=m~—1%#s, NS N
r t r t
(ii)
h Sa Sc—1 Sd+1 Sv h Sa Sc—1 sd+1 sy m
d#v Ak o———— 4@
m-1 1
S¢ sd Se Sd
k=m—1l=s, Ao A
r ! r t
In 0b* (D 4m_ 1) (for the even or odd operation) the row indices are
(oo S — 13804 1oees Sgyr — L33 Soysn F— 1} = L3
the column indices are
{t+ Tos Sgi138au2+ Loy Sgyasens Sy + Ly 5,} =K'
if k=m—1%#s,,
{t+ 1,80, 158452+ Lies Sgip33es Sy + Luys, 1} =K"
if k=m—-1=s,.
For the liftings listed in column 2 (for the even or odd operation) we have
new obstruction indices relative to the column index m and the row indices
p € L (compare Case IV and II).
TABLE IV,
Column 1 Column 2
Dym_0nA’: Case IV Non-trivial lifting of D3, , on 4 Case
®)
h Sa Sc-1 sd ¢ h Sa Sc-1 sd ot
d+v
Sc Sd+1 Sp sc Sd+1 Sp I
k=m—1#s, ———h—Ah—O ————dr—h—
r m—1 r m—1
(i)
h Sa Sc~1 sd ¢t h Sa Sc—1 sd ¢
d+v ——Ah—0— ———h———0—
k:m—l:sv Sd+1 Sp S¢ sd+1 Sp 1
r m
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As in Subsection 7.I1, (resp. 7.I1,) we claim (**) and the proof of it is the
same, as the argument in Subsection 7.II, (resp. 7.11,) is independent from
the value of k.

Step 1 is now completely proved.

8. PROOF OF PROPOSITION 5.3, STEP 2

We are in the case 4 > B, A’ =B’, A" = B", i.e., N{,, > N}, and N{, = N7,
for (i,7)+# (1, m). As both A and B are the direct sum of indecomposables
and the ranks are additive, we can assume: (**): no indecomposable E, ,
appears simultaneously in A and B. We deduce that in the decompositions of
A and B no E, ;, with k <m—1 can appear as for these indices we have
el =efr=e=el; no E,  can appear with r > 2 as we have e}, = e}, =
e?' =¢2 . It follows that in A or B the only indecomposables which can
appear are

(8.1) Eimts  Eims Eypoys  Eap

It is easily seen using the assumptions A’ =B’, A” = B” and (**), that only
two configurations are possible:

(i) B is the direct sum of p copies of (E,,_, ®E,,) and 4 is the
direct sum of p copies of (E,, ® E,,,_1)

(ij) B is the direct sum of p copies of (E,, ®E,,_,) and 4 is the
direct sum of p copies of (E,,_, ®E,,). If v is even we have the decom-
position of type (6.2),:

Nlmlesl,-f'Ns,,mﬂ X Ss,_ls,m‘
Moreover both for 4 and B we have

Wl
}_ Ss,_,s,m=0’ Slslm :eZm
erey 1

(cf. Lemma 6.5(iii), and (8.1)).

As N{,> N5, Ni, =N} ,Ni, =N; it follows ej, > e3, >0 and we
have the configuration (j). In 4 we can now perform the degeneration
En@®E, y P E| n @ E,, (cf. Casel). If v is odd we have the decom-

position

Nlmles,,+Ns,,rn— <elm+ Z Ss,_ls,m)'
1

t=2,4,...,0—

481/93/2-12
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Moreover we have ', ., . ., 1S ;m=0 both for 4 and B (cf.
Lemma 6.5(iii) and (8.1)). From the assumptions it follows e%, > ef, >0
and we have the configuration (jj). In 4 we can now perform the
degeneration E,,,_, ® E, ,\— E,, ®E,, _, (cf. Casel).
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