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Abstract

In the computation of a Gr¨obner basis using Buchberger’s algorithm, a key issue for improving
the efficiency is to produce techniques for avoiding as many unnecessary critical pairs as possible. A
good solution would be to avoidall non-minimal critical pairs, and hence to process only aminimal
set of generatorsof the module generated by the critical syzygies. In this paper we show how to
obtain that desired solution in the homogeneous case while retaining the same efficiency as with the
classical implementation. As a consequence, we get a new optimized Buchberger algorithm.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Ever since practical implementations of Buchberger’s famous algorithm for computing
Gröbner bases became feasible (Buchberger, 1965), it has been clear that, in order to
improve the efficiency of this algorithm, one needs to avoid the treatment of as many
critical pairs as possible.Buchberger(1979) studied this problem for the first time, and
later in Buchberger(1985) andGebauer and M¨oller (1987) his results were substantially
improved and expanded. Nevertheless,Gebauer and M¨oller (1987) showed that their
method did not always produce a minimal set of generators of the module generated by
the critical syzygies. However, their method was very efficient and yielded analmost
minimal set of critical pairs. Since then, many kinds of optimizations of Buchberger’s
algorithm have been found, in particular by implementers of computer algebra systems.
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But the problem of efficiently minimalizing the critical pairs has gone largely unnoticed
and seems to be overdue for a solution. Indeed, that is the main objective of this paper.

To achieve our goal, we proceed as follows. First and foremost, we need a detailed
understanding of the entire process of computing Gr¨obner bases, in particular in the
homogeneous case. An algorithm for simultaneously computing a Gr¨obner basis and a
minimal system of generators contained in it is fine-tuned when the input is a reduced
Gröbner basis. Then this result is applied to critical syzygies, using the fact that we show
how the old criteriaM(i , j ) and F(i , j ) of Gebauer and M¨oller (1987) yield a reduced
Gröbner basis of the module of syzygies of the leading terms. Besides, when applied to
this special case, the algorithm admits many subtle optimizations. In the end, we really
achieve the goal of minimalizing the critical pairs efficiently.

Now, why do we think that what we achieved is important?

The first reason is theoretical curiosity. It is common knowledge among the
implementers of Buchberger’s algorithm that the criteria of Gebauer and M¨oller almost
produce a minimal set of critical pairs. We wanted to see whether thatvox populiis really
true. Of course one could use a standard minimalization process to produce minimal sets
of critical pairs, but this method could only handle small examples. Instead, we observed
that, after applying two of the criteria of Gebauer and M¨oller, a reduced Gr̈obner basis
of the module of syzygies of the leading terms is obtained. Then we were able to see
the difference between the reduced Gr¨obner basis and a minimal set of generators of this
module, and how this difference depends on the size of the example.

Another important reason is that we wanted to be able to compute a minimal set of
generators of this module with thesame efficiencyas in the usual application of the
Gebauer–M¨oller criteria. And we wanted to do it while computing a Gr¨obner basis, so
that we can replace the Gebauer–M¨oller criteria by our procedure. As we show in the final
sections, we achieved this goal.

A third reason is that our results hold in full generality, namely for Gr¨obner bases
of modules over positively (multi-) graded rings. Other optimizations of Buchberger’s
algorithm, e.g. ideas using trivial syzygies (see for instanceFaugère(2002)), do not hold
in this generality. Moreover, we would like to point out that the pairs we discard are truly
useless, whereas pairs between elements in a reduced Gr¨obner bases which reduce to zero
can still be useful for the computation of syzygies.

Finally, the readers should know that the basic terminology is taken from the book of
the second and third authors (Kreuzer and Robbiano, 2000).

2. Some background material

Since we are interested in optimizing Buchberger’s algorithm in the homogeneous
case, we start by saying which gradings we consider. From now on letK be a field and
P = K [x1, . . . , xn] a polynomial ring overK . Moreover, letW ∈ Matm,n(Z) be anm× n
matrix with integer entries. Then there exists exactly oneZm-grading onP such that every
termt = xα1

1 · · · xαn
n is homogeneous of degree degW(t) = W · (α1, . . . , αn)tr. We say that
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P is (multi-) graded by W. The matrixW is called thedegree matrix and its rows are
called theweight vectors.

For instance, the grading onP given byW = (1, . . . , 1) is the standard grading. For
everyd ∈ Zm, the homogeneous component of degreed of P is PW,d = ⊕degW(t)=dK · t .
Givenδ1, . . . , δr ∈ Zm, the graded freeP-moduleF = ⊕r

i=1P(−δi ) inherits aZm-grading
from P in the natural way. Again we say thatF is graded by W.

In order to be able to use these gradings in our algorithms, we need some positivity
assumptions.

Definition 1. Let P be graded byW, and letw1, . . . , wm be the rows ofW.

(a) The grading given byW is calledweakly positive if there exist integersa1, . . . , am

such thata1w1 + · · · + amwm has all entries strictly positive.
(b) The grading given byW is calledpositive if rk(W) = m, if no column ofW is zero,

and if the first non-zero entry in each column ofW is positive.

Proposition 2. Let P be weakly positively graded by W, and let M be a finitely generated
graded P-module.

(a) We have PW,0 = K anddimK (MW,d) < ∞ for every d∈ Zm.

(b) The graded version of Nakayama’s lemma holds: homogeneous elements
v1, . . . , vs ∈ M generate the module M if and only if their residue classes
v1, . . . , vs generate the K -vector space M/(x1, . . . , xn)M. In particular, every
homogeneous system of generators of M contains a minimal one, and all non-
redundant homogeneous systems of generators of M have the same number of
elements which is denoted byµ(M).

The proof of this proposition uses standard computer algebra methods and is
contained inKreuzer and Robbiano(in preparation). For practical computations we need
the somewhat stronger notion of a positive grading. The usefulness of positive gradings
is illustrated by the following characterizations. Recall that a module orderingσ on the
set of termsTn〈e1, . . . , er 〉 of the graded free moduleF is calleddegree compatible or
compatible with degW if the inequality degW(tei ) >Lex degW(t ′ej ) implies tei >σ t ′ej

for all t, t ′ ∈ Tn and alli , j ∈ {1, . . . , r }.
Proposition 3. Let P be graded by W, where W hasZ-linearly independent rows and
non-zero columns. Then the following conditions are equivalent.

(a) The grading on P given by W is positive.

(b) The restriction ofLex to the monoidΓ = {d ∈ Zm | PW,d �= 0} is a well-ordering,
i.e. every non-empty subset ofΓ has a minimal element with respect toLex.

(c) The restriction ofLex to the monoidΓ = {d ∈ Zm | PW,d �= 0} is a term ordering,
i.e. every element d∈ Γ satisfies d>Lex 0.

(d) There exists a term orderingτ onTn which is compatible withdegW.

(e) There exists a module term orderingσ on Tn〈e1, . . . , er 〉 which is compatible with
the grading given by W.



1172 M. Caboara et al. / Journal of Symbolic Computation 38 (2004) 1169–1190

Again we refer the reader toKreuzer and Robbiano(in preparation) for a proof of
this proposition. As a consequence, it follows that positive gradings are weakly positive.
Moreover, in a positively graded setting, we can prove the finiteness of various algorithms
in the usual way, i.e. by using the fact that there is no infinite sequence of homogeneous
elements of strictly decreasing degrees.

In the remaining part of this section, we use truncated Gr¨obner bases to prove two very
important technical tools, namelyCorollaries 8and10. We shall from now on assume that
P is positively graded byW ∈ Matm,n(Z). Moreover, we letδ1, . . . , δr ∈ Zm, we let M
be a finitely generated graded submodule of the graded freeP-moduleF = ⊕r

i=1P(−δi ),
and we letσ be a module term ordering onTn〈e1, . . . , er 〉, the set of terms inF .

The following notation will turn out to be convenient. Given a subsetS of a graded
P-module andd ∈ Zm, we let S≤d = {v ∈ S | v homogeneous, degW(v) ≤Lex d} and
Sd = {v ∈ S | v homogeneous, degW(v) = d}.
Definition 4. Assume thatG = {g1, . . . , gs} is a homogeneousσ -Gröbner basis ofM,
and letd ∈ Zm. Then the setG≤d is called ad-truncated Gröbner basis of M, or a
Gröbner basis ofM which has beentruncated in degree d.

For truncated Gr¨obner bases, we now prove a characterization which is analogous to the
Buchberger criterion in the usual case. To this end, we need to explain what we mean by
critical pairs and critical syzygies.

Given homogeneous elementsg1, . . . , gs ∈ M\{0}, we let di = degW(gi ) for i =
1, . . . , s, and we letF ′ be the graded freeP-module⊕s

i=1P(−di ). The canonical basis of
F ′ will be denoted by{ε1, . . . , εs}. Notice that we have degW(εi ) = di for i = 1, . . . , s.
Moreover, we write LMσ (gi ) = ci ti eγi , whereci ∈ K\{0}, whereti ∈ Tn, and where
γi ∈ {1, . . . , r }.
Definition 5. A pair (i , j ) ∈ {1, . . . , s} such that 1≤ i < j ≤ s andγi = γ j is called a
critical pair of (g1, . . . , gs). The set of all critical pairs of(g, . . . , gs) is denoted byB. For
every critical pair(i , j ) ∈ B, the elementσi j = (lcm(ti , t j )/ci ti )εi − (lcm(ti , t j )/cj t j )ε j

is a syzygy of the pair(LMσ (gi ), LMσ (gj )). It is called thecritical syzygy associated with
the critical pair(i , j ). The set of all critical syzygies is denoted byΣ .

Clearly, a critical syzygyσi j is a homogeneous element ofF ′ whose degree is precisely
degW(σi j ) = degW(lcm(ti , t j )) + δγi . This degree equals the degree of the corresponding
S-vectorSi j = (lcm(ti , t j )/ci ti )gi − (lcm(ti , t j )/cj t j )gj in F .

For every critical pair(i , j ) ∈ B, we call degW(σi j ) the degree of the critical pair.
Then it makes sense to consider the setB≤d for every givend ∈ Zm, and we observe
that degW(σi j ) ≥Lex max{di , dj } for all (i , j ) ∈ B. Finally, we remind the reader that
NRσ,G(v) denotes the normal remainder, i.e. the result of the division algorithm, as in
Kreuzer and Robbiano(2000, Definition 1.6.7). At this point, we are ready to formulate
and prove the following characterization of truncated Gr¨obner bases.

Proposition 6 (Characterization of Truncated Gr¨obner Bases).Let P be positively graded
by W ∈ Matm,n(Z), let G = {g1, . . . , gs} be a set of non-zero homogeneous vectors which
generates a graded submodule M of⊕r

i=1P(−δi ), and let d ∈ Zm. Then the following
conditions are equivalent.
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(a) The set G≤d is a d-truncatedσ -Gröbner basis of M.
(b) For every homogeneous elementv ∈ M≤d\{0}, we have the relationLTσ (v) ∈

〈LTσ (g) | g ∈ G≤d〉.
(c) For all pairs (i , j ) ∈ B≤d, we haveNRσ,G≤d(Si j ) = 0, whereG≤d is the tuple

obtained fromG = (g1, . . . , gs) by deleting the elements of degree greater than d.

Proof. Without loss of generality, we may assume thatG≤d = {g1, . . . , gs′ } for some
s′ ≤ s. It is clear that (a) implies both (b) and (c). Now we show that (b) implies (a). By
the assumption, we can find termst ′s′+1, . . . , t ′s′′ of degree greater thand such that the set
{LTσ (g1), . . . , LTσ (gs′)}∪{t ′s′+1, . . . , t ′s′′ } is a system of generators of LTσ (M). We choose
homogeneous elementshs′+1, . . . , hs′′ in M such that LTσ (hi ) = t ′i for i = s′ + 1, . . . , s′′.
Then the set{g1, . . . , gs′, hs′+1, . . . , hs′′ } is a homogeneousσ -Gröbner basis ofM with
truncationG≤d.

It remains to prove that (c) implies (b). Letv ∈ M≤d be a homogeneous non-zero

element. Since{g1, . . . , gs′} generates〈M≤d〉, we can representv as v = ∑s′
i=1 fi gi ,

where fi is homogeneous of degree degW(v) − degW(gi ) ≤Lex d. In order to prove
LTσ (v) ∈ 〈LTσ (g1), . . . , LTσ (gs′)〉, it is enough to proceed as in the proof of Proposition
2.3.12 ofKreuzer and Robbiano(2000), replacingG by G≤d. �

This characterization has several useful applications.

Corollary 7. Let G = {g1, . . . , gs} be a homogeneousσ -Gröbner basis of the module M,
and let d∈ Zm. Then G≤d is a d-truncatedσ -Gröbner basis of the module〈M≤d〉.
Proof. SinceG is a set of generators ofM, the setG≤d generates the module〈M≤d〉.
From Buchberger’s criterion we know that NRσ,G(Si j ) = 0, for all pairs(i , j ) ∈ B. If we

have degW(Si j ) ≤Lex d here, the elements ofG involved in the reduction stepsSi j
G

0
all have degrees less than or equal tod. Hence we see that NRσ,G≤d(Si j ) = 0, and the
proposition yields the claim. �

Corollary 8. Let d ∈ Zm, let the elements of the tupleG = (g1, . . . , gs) form a
d-truncatedσ -Gröbner basis of M, and let gs+1 ∈ F be a homogeneous element of degree
d such thatLTσ (gs+1) /∈ 〈LTσ (g1), . . . , LTσ (gs)〉. Then{g1, . . . , gs+1} is a d-truncated
Gröbner basis of M+ 〈gs+1〉.
Proof. In order to prove the claim, we check condition (c) of the proposition. For 1≤
i < j ≤ s such that degW(Si j ) ≤Lex d, we have NRσ,G(Si j ) = 0 by the assumption and
by Proposition 6. For i ∈ {1, . . . , s} such that degW(Si s+1) = d, the fact that the pair
(i , s+ 1) has degreed implies that LTσ (gs+1) is a multiple of LTσ (gi ), in contradiction to
the hypothesis. �

In the last part of this section, we prove an analogue of the preceding corollary for
minimal generators. Recall thatProposition 2(b) guarantees that all minimal systems of
generators have the same length in the positively graded situation.

Proposition 9. Let P be positively graded by W∈ Matm,n(Z), let M be a
graded P-module generated by homogeneous elements{g1, . . . , gs}, and assume that
degW(g1) ≤Lex degW(g2) ≤Lex · · · ≤Lex degW(gs).
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(a) The set{g1, . . . , gs} is a minimal system of generators of M if and only if we have
gi /∈ 〈g1, . . . , gi−1〉 for i = 1, . . . , s.

(b) The set{gi | i ∈ {1, . . . , s}, gi /∈ 〈g1, . . . , gi−1〉} is a minimal system of generators
of M.

Proof. First we prove (a). If{g1, . . . , gs} is a minimal set of generators ofM, then
no relation of typegi ∈ 〈g1, . . . , gi−1〉 holds, since otherwise we would haveM =
〈g1, . . . , gi−1, gi+1, . . . , gs〉. Conversely, if{g1, . . . , gs} is not a minimal set of generators
of M, then there exists an indexi ∈ {1, . . . , s} such thatgi ∈ 〈g1, . . . , gi−1, gi+1, . . . , gs〉.
Using Corollary 1.7.11 ofKreuzer and Robbiano(2000), we obtain a representation
gi = ∑

j �=i f j gj , where f j ∈ P is homogeneous of degree degW(gi ) − degW(gj ) for
j ∈ {1, . . . , i − 1, i + 1, . . . , s}.

Since degW( f j ) ≥Lex 0 for f j �= 0, we see that degW(gi ) <Lex degW(gj ) implies
f j = 0. Thus there are two possibilities. Either we have degW(gi ) >Lex degW(gj ) for
all j such that f j �= 0 or there exist some indicesj such that degW(gj ) = degW(gi ).
In the first case, those indicesj satisfy j < i by the assumption that the multidegrees
of g1, . . . , gs are ordered increasingly, and therefore we getgi ∈ 〈g1, . . . , gi−1〉. In the
second case, thef j corresponding to those indicesj are inK\{0}. Let jmax = max{ j ∈
{1, . . . , s} | f j ∈ K\{0}}. We get the relationgjmax ∈ 〈g1, . . . , gjmax−1〉. In both cases, we
arrive at a contradiction to our hypothesis.

Now let us show (b). The setS = {gi | i ∈ {1, . . . , s}, gi /∈ 〈g1, . . . , gi−1〉} is a system
of generators ofM, because an elementgi such thatgi ∈ 〈g1, . . . , gi−1〉 is also contained
in 〈gj ∈ S | 1 ≤ j ≤ i − 1〉. The fact that this system of generators is minimal follows
from (a). �

The following version is an immediate consequence of part (a) of the proposition.

Corollary 10. Let N be a graded P-module, let M be a submodule of N, let{g1, . . . , gs}
be a minimal homogeneous system of generators of M, and let gs+1 ∈ N\M be a homo-
geneous vector whose degree satisfies the inequalitydegW(gs+1) ≥Lex max{degW(gi ) |
i = 1, . . . , s}. Then {g1, . . . , gs+1} is a minimal system of generators of the module
M + 〈gs+1〉. In particular, we haveµ(M + 〈gs+1〉) = µ(M) + 1.

3. Minimal generators in a reduced Gröbner basis

From here on we use the following assumptions. LetK be a field, and letP =
K [x1, . . . , xn] be a polynomial ring overK which is positively graded by a matrix
W ∈ Matm,n(Z). Then letr ≥ 1, let δ1, . . . , δr ∈ Zm, and letM be a graded submodule
of F = ⊕r

i=1P(−δi ) which is generated by a set of non-zero homogeneous vectors
{v1, . . . , vs}. Furthermore, we choose a module term orderingσ on the monomodule of
termsTn〈e1, . . . , er 〉 in F , and we letV = (v1, . . . , vs).

Our first goal is to describe an algorithm which computes a homogeneousσ -Gröbner
basis ofM degree by degree and a variant of this algorithm which also yields a minimal
system of generators ofM contained inV . This part is classical and more or less “well
known”. Then we make good use of it inTheorem 15for minimalizing reduced Gr¨obner
bases.
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To ease the notation, we shall use the following convention: whenever a vectorgi

appears, we write LMσ (gi ) = ci ti eγi , whereci ∈ K\{0}, whereti ∈ Tn, and where
γi ∈ {1, . . . , r }. For two indicesi , j such thatγi = γ j , we letσi j = (lcm(ti , t j )/ci ti )εi −
(lcm(ti , t j )/cj t j )ε j andSi j = (lcm(ti , t j )/ci ti )gi − (lcm(ti , t j )/cj t j )gj .

Theorem 11 (The Homogeneous Buchberger Algorithm).In the above situation, con-
sider the following instructions.

(1) Let B = ∅, W = V , G = ∅, and let s′ = 0.
(2) Let d be the smallest degree with respect toLex of an element of B or ofW . Form

Bd andWd, and delete their entries from B andW , respectively.
(3) If Bd = ∅, continue with step(6). Otherwise, chose a pair(i , j ) ∈ Bd and remove it

from Bd.
(4) Compute the S-vector Si j and its normal remainder S′i j = NRσ,G(Si j ). If S′

i j = 0,
continue with step(3).

(5) Increase s′ by one, append gs′ = S′
i j to the tupleG, and append the set{(i , s′) | 1 ≤

i < s′, γi = γs′ } to the set B. Continue with step(3).
(6) If Wd = ∅, continue with step(9). Otherwise, choose a vectorv ∈ Wd and remove

it from Wd.
(7) Computev′ = NRσ,G(v). If v′ = 0, continue with step(6).
(8) Increase s′ by one, append gs′ = v′ to the tupleG, and append the set{(i , s′) | 1 ≤

i < s′, γi = γs′ } to the set B. Continue with step(6).
(9) If B = ∅ andW = ∅, return the tupleG and stop. Otherwise, continue with step(2).

This is an algorithm which returns aσ -Gröbner basisG of M, where the tupleG consists
of homogeneous vectors having non-decreasing multidegrees.

The proof of this theorem is standard computer algebra and is for instance contained in
Kreuzer and Robbiano(in preparation).

Remark 12. Let us add some observations about this algorithm.

(a) If we interrupt its execution after some degreed0 is finished, the tupleG is a
d0-truncated Gr¨obner basis ofM. Consequently, we can compute truncated Gr¨obner
bases efficiently. Moreover, in this case it suffices to append only the pairs{(i , s′) |
1 ≤ i < s′, γi = γs′, degW(σis′) ≤Lex d0} to the setB in steps (5) and (8). The
reason is that pairs of higher degree are never processed anyway, since we stop the
computation after finishing degreed0.

(b) It is not required thatσ is a degree compatible module term ordering. The reason
is that, during the computation of the Gr¨obner basis, only comparisons of terms in
the support of a homogeneous vector are performed. Thus these terms have the same
degree, and it does not matter whetherσ is degree compatible or not.

(c) The homogeneous Buchberger algorithm can also be viewed as a special version of
the usual Buchberger algorithm where we use a suitable selection strategy.

The following variant of the homogeneous Buchberger algorithm computes a minimal
system of generators ofM contained in the given set of generators while computing a
Gröbner basis. It provides an efficient method for finding minimal systems of generators.
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Corollary 13 (Buchberger Algorithm with Minimalization).In the situation of the theo-
rem, consider the following instructions.

(1′) Let B = ∅, W = V , G = ∅, s′ = 0, andVmin = ∅.
(2) Let d be the smallest degree with respect toLex of an element of B or ofW . Form

Bd andWd, and delete their entries from B andW , respectively.
(3) If Bd = ∅, continue with step(6). Otherwise, chose a pair(i , j ) ∈ Bd and remove it

from Bd.
(4) Compute the S-vector Si j and its normal remainder S′i j = NRσ,G(Si j ). If S′

i j = 0,
continue with step(3).

(5) Increase s′ by one, append gs′ = S′
i j to the tupleG, and append the set{(i , s′) | 1 ≤

i < s′, γi = γs′} to the set B. Continue with step(3).
(6) If Wd = ∅, continue with step(9). Otherwise, choose a vectorv ∈ Wd and remove

it fromWd.
(7) Computev′ = NRσ,G(v). If v′ = 0, continue with step(6).
(8′) Increase s′ by one, append gs′ = v′ to the tupleG, appendv to the tupleVmin, and

append{(i , s′) | 1 ≤ i < s′, γi = γs′} to the set B. Continue with step(6).
(9′) If B = ∅ andW = ∅, return the pair(G,Vmin) and stop. Otherwise, continue with

step(2).

This is an algorithm which returns a pair(G,Vmin) such thatG is a tuple of homogeneous
vectors which are aσ -Gröbner basis of M, andVmin is a subtuple ofV of homogeneous
vectors which are a minimal system of generators of M.

Proof. In view of the theorem, we only have to show that the elements inVmin are a
minimal set of generators ofM. Since the algorithm is finite, it operates in only finitely
many degreesd. Therefore it suffices to prove by induction ond that Vmin contains
a minimal system of generators of〈M≤d〉 after the algorithm has finished working on
elements of degreed.

This is clearly the case at the outset. Suppose it is true for the last degree treated
befored. Inductively, we can show that the elements ofG continue to be contained in
the module〈M<d〉 while we are looping through steps (3), (4), and (5) of the algorithm.
That is, every time an element of the form NFσ,G(Si j ) is added toG, it is clearly contained
in the module generated by the previous elements ofG. Furthermore, by part (a) of the
remark followingTheorem 11, the elements of the tupleG form a d-truncated Gr¨obner
basis of〈M<d〉 after we have finished looping through steps (3), (4), and (5), i.e. when we
have treated all pairs of degreed.

Now letWd = (w1, . . . , w�), and let the numbering of these vectors correspond to the
order in which they are chosen in step (6). We show that, for each application of steps (6),
(7), and(8′), the elements ofVmin continue to be a minimal system of generators of the
module they generate, and that this module always agrees with the one generated by the
elements ofG. Furthermore, the elements ofG are always ad-truncatedσ -Gröbner basis
of that module.

When a new vectorv = wi is chosen in step (6), there are two possibilities. Ifv′ = 0
in step (7), thenv is already contained in the moduleM ′ generated by the elements
of Vmin. Otherwise, the vectorv′ is not contained inM ′, since the elements ofG are
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a d-truncatedσ -Gröbner basis and we can apply the submodule membership test (see
Kreuzer and Robbiano, 2000, Proposition 2.4.10.a). In that case, the elements ofVmin,
together withv, form a minimal system of generators of the moduleM ′ + 〈v〉 = M ′ + 〈v′〉
by Corollary 10. Moreover, the elements ofG, together withv′, form a d-truncated
σ -Gröbner basis ofM ′ + 〈v′〉 by Corollary 8.

Altogether, it follows that, after degreed is finished, the elements ofVmin are a minimal
system of generators of〈M≤d〉, as we wanted to show.�
Remark 14. Let us collect some observations about this algorithm.

(a) If we are only interested in a minimal system of generators ofM (and not in a
Gröbner basis), we can stop the algorithm after we have completed degreedmax =
max{deg(vi ) | 1 ≤ i ≤ s}. In this case it suffices to append only the pairs
{(i , s′) | 1 ≤ i < s′, γi = γs′, degW(σis′) ≤Lex dmax} to the setB in steps (5)
and(8′).

(b) In addition, we could alter step(8′) and append the vectorv′ instead ofv to the list
Vmin. ThenVmin would still contain a minimal homogeneous set of generators ofM
when the computation ends. These generators would not be contained in the initial
tupleV any longer, but they would have the additional property that each vector is
fully reduced against the previous ones.

The final part of the section is devoted to a result which will be essential for our
discussion of the minimalization of the critical pairs. Namely, we are going to apply the
algorithm ofCorollary 13to a reduced Gr¨obner basis and improve it significantly in that
case. The main differences between the two algorithms occur in step (7), where it suffices to
compare terms instead of computing normal remainders, and in step (8), where we append
v to bothG andVmin.

Theorem 15 (Minimal Generators in a Reduced Gr¨obner Basis).In the situation of
Theorem11, let V = (v1, . . . , vs) be the reducedσ -Gröbner basis of M. Consider the
following instructions.

(1) Let B = ∅, W = V , G = ∅, s′ = 0, andVmin = ∅.
(2) Let d be the smallest degree with respect toLex of an element of B or ofW . Form

Bd andWd, and delete their entries from B andW , respectively.
(3) If Bd = ∅, continue with step(6). Otherwise, choose a pair(i , j ) ∈ Bd and remove

it from Bd.
(4) Compute S′i j = NRσ,G(Si j ). If S′

i j = 0, continue with step(3).
(5) Increase s′ by one, append gs′ = S′

i j to the tupleG, append the following set
{(i , s′) | 1 ≤ i < s′, γi = γs′ } to B, and continue with step(3).

(6) If Wd = ∅, continue with step(9). Otherwise, choosev ∈ Wd and remove it from
Wd.

(7) If LTσ (v) = LTσ (g) for some g∈ G, then replace the element g inG byv. Continue
with step(6).

(8) Increase s′ by one, append gs′ = v to the tuplesG andVmin, and append{(i , s′) |
1 ≤ i < s′, γi = γs′} to the set B. Continue with step(6).

(9) If B = ∅ andW = ∅, returnVmin and stop. Otherwise, continue with step(2).
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This is an algorithm which computes a subtupleVmin of V such thatVmin is a minimal
system of generators of M.

Proof. It suffices to show that this procedure has the same effect as running the algorithm
of Corollary 13onV .

First we use induction ond to show that, after we have finished some degreed, the tuple
G has the same elements asV≤d. Every element ofVd is appended toG at some point in
step (7) or (8). On the other hand, if an elementgs′ is put intoG in step (5), it has a leading
term which is not a multiple of an element ofV<d. Hence it is swapped out ofG at some
point in step (7).

Next we note that, after we have finished cycling through steps (3), (4), and (5) in
degreed, the tupleG is ad-truncated minimalσ -Gröbner basis ofM<d.

Now we turn our attention to the loop described in steps (6), (7), and (8). Notice
that the effect of steps (7) and (8) is independent of the order in which we choose the
elementsv ∈ Wd in step (6). Hence we can assume for the purposes of this proof that we
always choose the vectorv in Wd which has the minimal leading term with respect toσ .
With this assumption, we show inductively that when we run steps (7) and (8) for some
elementv ∈ Wd, at each point the elements inG are a minimalσ -Gröbner basis of the
module they generate, and the elements ofVmin are a minimal system of generators of that
module.

For the induction step, we have to consider two cases: eitherv is swapped intoG in step
(7) or appended to bothG andVmin in step (8). In the first case, it suffices to show that the
module generated by the elements ofG does not change when we perform the swap, i.e.
that the differencev − g is contained in this module. This follows from the observations
that LTσ (v − g) <σ LTσ (v) and all elements̃v in V such that LTσ (ṽ) <σ LTσ (v)

are already inG. Sincev − g
V

0, we havev − g
G

0. In the second case, it
is clear thatG continues to be a minimal Gr¨obner basis of the module it generates by
Corollary 8, andVmin continues to be a minimal system of generators of that module by
Corollary 10.

Finally, we note that in step (8) we can appendv to G without passing to the normal
remainder, sincev is an element of a reduced Gr¨obner basis and thus irreducible.�

Remark 16. Let us make some observations about the preceding algorithm.

(a) The proof of the proposition shows that the algorithm reconstructs the given reduced
Gröbner basis insideG, and thatG≤d has the same elements asV≤d after some degree
d is finished.

(b) Moreover, we note that in step (4) it is not necessary to compute the normal
remainder NRσ,G(Si j ). Rather, it suffices to perform a full leading term reduction.

(c) The different elements NRσ,G(Si j ) computed in step (4) and the elementsv ∈ Vd

which are swapped intoG by step (7) are in 1–1 correspondence, since every new
element computed in step (4) must have a new leading term in the leading term
module ofM. This new leading term must be the leading term of an element in the
reduced Gr¨obner basis, hence it is swapped.
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4. Minimalizing the critical syzygies

In this section we continue to use the assumptions and notation of the previous section.
If we look atTheorem 11and its proof, we can see that instead of treating all pairs(i , j )
such thatσi j is contained in the set of critical syzygiesΣ , it would be enough to treat
those pairs corresponding to a subsetΘ ⊆ Σ which is a minimal system of generators of
SyzP(c1t1eγ1, . . . , cstseγs).

In order to findΘ , we observe that the application of two of the rules for killing critical
pairs given inGebauer and M¨oller (1987) produces a minimal Gr¨obner basis of the module
SyzP(c1t1eγ1, . . . , cstseγs) contained in the setΣ . From this we derive the idea of finding
Θ by applyingTheorem 15. We need the following definition.

Definition 17. On the set of termsTn〈ε1, . . . , εs〉 in ⊕s
i=1P(−di ) we define a relationτ

by letting

tεi ≥τ t ′ε j ⇔
{

t ti eγi >σ t ′t j eγ j , or
t ti eγi = t ′t j eγ j and i ≥ j

for t, t ′ ∈ Tn andi , j ∈ {1, . . . , s}. As in Kreuzer and Robbiano(2000, Lemma 3.1.2), it
follows thatτ is a module term ordering. It is called the term orderinginduced by the tuple
(t1eγ1, . . . , tseγs) and byσ .

By Kreuzer and Robbiano(2000, Proposition 3.1.3), the setΣ is a τ -Gröbner basis
of the module SyzP(c1t1eγ1, . . . , cstseγs). Moreover,σi j is a homogeneous element of
⊕s

i=1P(−di ) of degree degW(σi j ) = deg(lcm(ti , t j ))+δγi . For alli , j ∈ {1, . . . , s}, we let
ti j = (lcm(ti , t j )/ti ). Now the main result ofGebauer and M¨oller (1987) reads as follows.

Proposition 18. Consider the following instructions.

RULE 1. Delete in Σ all elementsσ j k such that there exists an index i in the set
{1, . . . , j − 1} such that tki divides tkj . Call the resulting setΣ ′.

RULE 2. Delete in Σ ′ all elementsσik such that there exists an index j in the set
{i + 1, . . . , k − 1} such that tkj properly divides tki . Call the resulting setΣ ′′.

RULE 3. Delete in Σ ′′ all elementsσi j such that there exists an index k in the set
∈ { j + 1, . . . , s} such that tik properly divides ti j and tjk properly divides tj i . Call
the resulting setΣ ′′′.

Then the setΣ ′′′ still generatesSyzP(c1t1eγ1, . . . , cstseγs).

Remark 19. Let us interpret the previous proposition in another way. For 1≤ i < j ≤ s
such thatγi = γ j , we have LTτ (σi j ) = t j i ε j . Hence Rules 1 and 2 can be restated as
follows.

RULE 1′. Delete inΣ all elementsσi j such that there exists an elementσi ′ j such that
LTτ (σi j ) is a proper multiple of LTτ (σi ′ j ).

RULE 2′. If, among the remaining elements, there are elementsσi j , σi ′ j such that
LTτ (σi j ) = LTτ (σi ′ j ), then delete the one having the larger index max{i , i ′}.

From Rules 1′ and 2′ it follows that the setΣ ′′ is a minimalτ -Gröbner basis of the module
SyzP(c1t1eγ1, . . . , cstseγs), i.e. the leading terms of the elements ofΣ ′′ minimally generate
the leading term module.
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In general, it is not true thatΣ ′′ is a minimal system of generators of the module
SyzP(c1t1eγ1, . . . , cstseγs), as our next example shows. (For another example, see
Gebauer and M¨oller (1987, 3.6.).)

Example 20. Let P = Q[x, y, z] be standard graded; letr = 1, s = 4 andt1 = x3z2,
t2 = x3y4, t3 = y5z2, t4 = x2y5z. Then we getσ12 = y4ε1 − z2ε2, σ13 = y5ε1 − x3ε3,
σ14 = y5ε1 − xzε4, σ23 = yz2ε2 − x3ε3, σ24 = yzε2 − xε4, andσ34 = x2ε3 − zε4. By
applying Rules 1 and 2, we get the minimalτ -Gröbner basisΣ ′′ = {σ12, σ24, σ34, σ13}
of SyzP(t1, t2, t3, t4), since LTτ (σ23) = LTτ (σ13) and LTτ (σ14) = z · LTτ (σ24). Now
we use Rule 3 and findΣ ′′′ = Σ ′′, but Σ ′′′ is not a minimal system of generators of
SyzP(t1, t2, t3, t4), since we haveσ13 = yσ12 + zσ24 − xσ34.

Before continuing, let us introduce a new notion. If we have an elementσi j and perform

a reduction stepσi j
ctσi ′ j c′t ′εi +c′′t ′′εi ′ , wherec, c′, c′′ ∈ K andt, t ′, t ′′ ∈ Tn, we call this

ahead reduction step. (Notice that thej -indices have to match!) Similarly, we can define

a tail reduction step as follows:σi j
ctσi ′ i c′t ′εi ′ + c′′t ′′ε j . It is clear that a tail reduction

step does not change the leading term of the element.

Proposition 21. The set̃Σ = {−cj ·σi j | σi j ∈ Σ ′′} is the reducedτ -Gröbner basis of the
moduleSyzP(c1t1eγ1, . . . , cstseγs).

Proof. Since passing fromΣ ′′ to Σ̃ is equivalent to normalizing the leading coefficients,
and sinceΣ ′′ is a minimalτ -Gröbner basis, it remains to show that no tail reductions are
possible among the elements ofΣ̃ . But if we perform a tail reduction on some element of
Σ̃ , we get an element of the form̃ct̃σi ′ j such thati ′ < i . Here we have to havẽt = 1, since
σi j is part of a minimal Gr¨obner basis. Now we obtain a contradiction to the minimality of
i in Rule 2′. �

Remark 22. Let us apply the algorithm ofTheorem 15to the setΣ̃ . We make the
following observations.

(a) A pair of pairs, i.e. a critical pair between two elementsσi j , σi ′ j ′ yields anS-vector
S((i, j ),(i ′, j ′)) = ctσi j − c′t ′σi ′ j ′ such thatc, c′ ∈ K andt, t ′ ∈ Tn and j = j ′, since
the two leading terms have to cancel. Without loss of generality, leti < i ′. Then the
result isc̃t̃σi i ′ for somec̃ ∈ K andt̃ ∈ Tn. The degree of such a pair of pairs is

degW(S((i, j ),(i ′, j ))) = degW(t̃) + degW(σi i ′ )

= degW

(
lcm(ti , ti ′ , t j )

t j

)
+ degW(ε j )

= degW(lcm(ti , ti ′ , t j )) + δγ j .

(b) During the course of the algorithm, a new Gr¨obner basis element can only be
obtained from a pair of pairs if̃t = 1. This is equivalent to gcd(ti j , ti ′ j ) = 1.

Now we are ready to optimize the minimalization of the critical syzygies. To ease the
notation, we shall minimalize the setΣ ′′ instead of̃Σ . The lack of the normalization of the
leading coefficients is clearly of no consequence. We need the following lemma.
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Lemma 23. Let 1 ≤ i < j < m ≤ s and i′ ∈ {1, . . . , j − 1}\{i }. Suppose there are terms
t, t ′, t ′′ ∈ Tn\{1} such thatσi j = σi i ′ + tσi ′ j = t ′σim − t ′′σ jm andσi ′m = tσi ′ j + t ′′σ jm.
Then t, t′, and t′′ are pairwise coprime.

More precisely, givenκ ∈ {1, . . . , n}, we defineα = degxκ
(ti ), α′ = degxκ

(ti ′ ),
β = degxκ

(t j ), andγ = degxκ
(tm). Then one of the following four cases occurs.

(1) We haveα = γ > β andα > α′.
(2) We haveα′ = β > γ andα′ > α.
(3) We haveα = α′ > β andα > γ .
(4) We haveα = α′ = β > γ or α = β = γ > α′ or α′ = β = γ > α.

Proof. Comparing coefficients in the given equations yields the following equalities:
lcm(ti , t j ) = lcm(ti , ti ′ ) = lcm(ti ′ , tm) = t lcm(ti ′ , t j ) = t ′ lcm(ti , tm) = t ′′ lcm(t j , tm).
Thus the exponent ofxκ in these terms satisfies max{α, β} = max{α, α′} = max{α′, γ } =
degxκ

(t)+max{α′, β} = degxκ
(t ′)+max{α, γ } = degxκ

(t ′′)+max{β, γ }. We distinguish
the following four cases.

Case1. Suppose thatxκ dividest . In this case, max{α, α′} > max{α′, β} yieldsα > α′
andα > β. Thenα = max{α, α′} = max{α′, γ } showsα = γ , i.e. we have the inequalities
stated in case (1) of the claim. Furthermore, it follows thatγ = max{α, γ } = max{β, γ },
i.e. thatxκ divides neithert ′ nor t ′′.

Case2. Suppose thatxκ dividest ′. In this case, max{α, α′} > max{α, γ } yieldsα′ > α

andα′ > γ . Then max{α, β} = max{α, α′} showsα′ = β, i.e. we have the inequalities
stated in case (2) of the claim. Furthermore, it follows thatβ = max{α′, β} = max{β, γ },
i.e. thatxκ divides neithert nor t ′′.

Case3. If xκ dividest ′′, we argue analogously and obtain the inequalities stated in (3)
as well as the fact thatxκ divides neithert nor t ′.

Case4. If xκ divides neithert nor t ′ nor t ′′, an easy case-by-case argument yields the
possibilities listed in (4). �
Proposition 24 (Minimalization of the Critical Syzygies).LetΣ ′′ be theτ -Gröbner basis
of SyzP(c1t1eγ1, . . . , cstseγs) defined inProposition18. Consider the following instruc-
tions.

(1) LetB∗ = ∅, W = Σ ′′, A = ∅, andΘ = ∅.
(2) For all σi j , σi ′ j ∈ Σ ′′ such that1 ≤ i < i ′ < j ≤ s, form the S-vector

S((i, j ),(i ′, j )) = t̃σi i ′ , wheret̃ ∈ Tn. If t̃ = 1, appendσi i ′ to B∗.
(3) Let d be the smallest degree with respect toLex of an element ofB∗ or W . FormB∗

d
andWd, and delete their entries fromB∗ andW , respectively.

(4) If B∗
d = ∅, continue with step(11). Otherwise, choose an elementσi j ∈ B∗

d and
remove it fromB∗

d.
(5) If LTτ (σi j ) ∈ LTτ (Ad), then continue with step(4).
(6) If LTτ (σi j ) = LTτ (σi ′ j ) for some elementσi ′ j ∈ Wd, then removeσi ′ j from Wd,

append it toA, and continue with step(4).
(7) Find σi ′ j ∈ A<d such that tj i is a multiple of tj i ′ . Then perform the head reduction

stepσi j
σi ′ j t̃σk�, wheret̃ ∈ Tn, where k= min{i , i ′}, and where� = max{i , i ′}. If

t̃ �= 1, continue with step(4).
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(8) If LTτ (σk�) ∈ LTτ (Ad), then continue with step(4).
(9) If LTτ (σk�) = LTτ (σk′�) for some elementσk′� ∈ Wd, then remove the elementσk′�

fromWd, append it toA, and continue with step(4).
(10) If σk� ∈ B∗

d, then deleteσk� in B∗
d and continue with step(7), applied to this element.

Otherwise continue with step(4).
(11) AppendWd to A and toΘ .
(12) If B∗ = ∅ andW = ∅, returnΘ and stop. Otherwise, continue with step(3).

This is an algorithm which computes a subsetΘ ⊆ Σ ′′ such thatΘ is a minimal system of
generators ofSyzP(c1t1eγ1, . . . , cstseγs).

Proof. It suffices to show that the given instructions define an optimization of the
application of Theorem 15to the setΣ ′′. The tupleA corresponds toG there, Θ
corresponds toVmin, andB∗ corresponds toB.

The first significant difference occurs in step (2). Instead of producing the pairs of pairs
inductively each time we find a new Gr¨obner basis element, we precompute them all at
once. This is possible, since we know fromTheorem 15that we are merely recomputing
the Gröbner basisΣ ′′. Moreover, we do not store the pairs of pairs, but theS-vectors they
generate, and we do not storeS-vectors which are clearly useless by part (b) of the remark
following Proposition 21.

The main difference occurs in steps (5) through (10). Instead of computing the normal
remainder of theS-vector, we perform leading term reductions only and check the result
after each reduction step. When we choose an elementσi j in step (4), it is not contained
in Ad, since if an elementσk� is appended toA in step (11) it cannot be contained inB∗

d
by step (10). But the elementσi j could have a leading term in LTσ (Ad) without being

contained inAd. We claim that, in this case, we knowσi j
A

0, i.e. thatσi j produces no
new Gröbner basis element.

To prove this claim, we first note that clearlyA is a subtuple ofW at all times. Since
the elements ofW are fully interreduced, the tail ofσi j cannot be a leading term of an
element ofAd. On the other hand, if LTτ (σi j ) = LTτ (σi ′ j ) for σi ′ j ∈ Ad, then the leading
term of the result of the reduction ofσi j by σi ′ j is the tail ofσi j . Henceσi j can be tail
reduced usingA<d. By applying the same argument to the result of this tail reduction step,
we conclude that after several tail reductions usingA<d, we reach an element ofAd, and
the claim follows.

The next possibility forσi j is that it is head irreducible with respect toA. In this case
its leading term is equal to LTτ (σi ′ j ) for someσi ′ j ∈ Wd. Now Theorem 15says that we
should put NRτ,A(σi j ) into A and later swap it forσi ′ j . But, as we just saw, we can tail
reduceσi j usingA<d until we reachσi ′ j . Thus the normal remainder isσi ′ j and is put
intoA immediately, i.e. without actually performing the tail reductions and without a later
swap.

The last possibility for LTτ (σi j ) is that it can be reduced usingA<d. This reduction step
is performed in step (7). Let us discuss the possible outcomes.

If the result is of the form̃tσk� with t̃ ∈ Tn\{1}, thenσk� has a lower degree and satisfies

σk�
A

0, becauseA contains a truncated Gr¨obner basis. Consequently, we haveσi j
A

0
and step (4) of15 tells us to try the nextS-vector.
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If the result of the head reduction step has one of the new leading terms provided by the
elements ofWd, we notice this in step (8) or (9). In the first case, the element ofVd has
already been swapped intoA and nothing needs to be done. In the second case, we perform
the swap in step (9).

If the result is an elementσk� of degreed which can be further head reduced, we check
in step (10) whetherσk� ∈ B∗

d. In that caseσi j andσk� have the same reductions and it
suffices to treatσk� in step (7). Otherwise, we claim thatσk� is one of the elements ofB∗

d
which has been dealt with already, i.e. that we can go back to step (4) and treat the next
element ofB∗

d.
To prove this claim, we first useσi j ∈ B∗

d in order to writeσi j = t ′σim + t ′′σ jm

with t ′, t ′′ ∈ Tn\{1} and j < m ≤ s. Secondly, by step (7), we have the equality
σi j = tσi ′ j ± σk�, whereσk� = ±σi ′ i and t ∈ Tn\{1}. By looking at the coefficient of
ej in the equationσi i ′ = t ′σim − tσi ′ j − t ′′ σ jm, we see thatt lcm(ti ′ , t j ) = t ′′ lcm(t j , tm).
This term is a multiple ofti ′ and oftm. Hence it is of the form̃t lcm(ti ′ , tm) for somet̃ ∈ Tn,
and we haveσi i ′ = t ′σim − t̃σi ′m. If t̃ �= 1, thenσk� is a pair of pairs, i.e. it is either inB∗

d
or it is one of the elements ofB∗

d treated before. Hence the claim follows if we can show
that t̃ = 1 does not happen.

Suppose that̃t = 1. Then we are in the situation of the lemma. Since the conditions of
steps (8) and (9) did not apply, it follows thatσk� can be further head reduced usingA<d.
Hence there existu, u′ ∈ Tn and j ′ < max{i , i ′} such thatσi ′ i = uσi ′ j ′ + u′σ j ′i andu �= 1
or u′ �= 1, depending on whetheri > i ′ or i < i ′.

Now we show thatu′ �= 1 is impossible. We use the notation of the lemma and let
δ = degxκ

(t j ′), wherexκ is one of the indeterminates occurring int , i.e. where case (1)
of the lemma holds. Then the equation lcm(ti ′ , ti ) = u lcm(ti ′ , t j ′) = u′ lcm(ti , t j ′) shows
max{α, α′} > max{α, δ}. This impliesα′ > α andα′ > δ, in contradiction to case (1) of
the lemma. Similarly, we can show thatu �= 1 is impossible. This concludes the proof of
the claim.

Altogether, it follows that steps (5)–(10) implement the full reduction ofσi j together
with the swapping procedure of step (7) of15. Hence the remaining elements ofWd

are precisely the minimal generators of degreed we are looking for, and they have to
be appended toΘ in step (11). �

Let us apply this algorithm in the situation ofExample 20.

Example 25. Our task is to minimalizeW = Σ ′′ = {σ12, σ13, σ24, σ34}, where we have
degW(σ12) = 9, degW(σ13) = 10, and degW(σ24) = degW(σ34) = 9.

In step (2), the algorithm constructs the setB∗. The pair of pairs((2, 4), (3, 4)) yields
S((2,4),(3,4)) = zσ24 − xσ34 = −yz2ε2 + x3ε3 = σ23, and this is the only element ofB∗.
Notice that it has degree 10.

In step (3), the algorithm starts to operate in degreed = 9. SinceB∗
9 = ∅, it appends

σ12, σ24, andσ34 to A andΘ in step (11).
Next we process degree 10. In step (4), we chooseσ23 ∈ B∗

10 and setB∗
10 = ∅. Then, in

step (6), we find LTτ (σ23) = x3ε3 = LTτ (σ13), whereσ13 ∈ W10. Henceσ13 is removed
fromW10 and appended toA in step (6).
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Thus we haveB∗ = ∅ and W = ∅ at this point, and step (12) returns the set
Θ = {σ12, σ24, σ34}. We note that this is the correct answer, and there is an improvement
over the application ofProposition 18coming from the fact that in step (6) we merely
check LTτ (σi j ) ∈ LTτ (Wd) rather thanσi j ∈ Wd.

The following example provides a case where it is actually necessary to do one head red-
uction step in (7) in order to find a previously undiscovered non-minimal critical syzygy.

Example 26. Let P = Q[x1, . . . , x5] be standard graded; letr = 1 ands = 4. The
termst1 = x2

2x6
3x4x2

5, t2 = x8
1x2x4x4

5, t3 = x8
1x2

2x6
3, andt4 = x8

1x6
3x4

5 yield the critical
syzygiesσ12 = x8

1x2
5ε1 − x2x6

3ε2, σ13 = x8
1ε1 − x4x2

5ε3, σ14 = x8
1x2

5ε1 − x2
2x4ε4,

σ23 = x2x6
3ε2−x4x4

5ε3, σ24 = x6
3ε2−x2x4ε4, andσ34 = x4

5ε3−x2
2ε4. Here steps (1) and (2)

of Proposition 18discardσ23 andσ14, because we have LTτ (σ23) = x4x4
5ε3 = x2

5 LTτ (σ13)

and LTτ (σ14) = x2
2x4ε4 = x2LTτ (σ24). Thus we haveΣ ′′ = {σ12, σ13, σ24, σ34}. We note

that we have degW(σ12) = 21, degW(σ13) = 19, and degW(σ24) = degW(σ34) = 20. But
Σ ′′ is not minimal, since we haveσ12 = x2

5σ13 − x2σ24 + x4σ34.

Now we apply our algorithm. In step (2), we have to computeS((2,4),(3,4)) = x2σ24 −
x4σ34 = x2x6

3ε2 − x4x4
5ε3 = σ23. Thusσ23 is appended toB∗. It has degree degW(σ23) =

21. No further pairs of pairs are found.

In step (3), the algorithm starts to operate in degreed = 19. We haveB∗
19 = ∅ and

W19 = (σ13). Thus we appendσ13 to A andΘ in step (11). Next we pass to degree
d = 20. We still haveB∗

20 = ∅, but now we getW20 = (σ24, σ34). In step (11),σ24 and
σ34 are put intoA andΘ .

When we start processing degreed = 21, we have to chooseσ23 ∈ B∗
21 and setB∗

21 = ∅
in step (4). The leading term LTτ (σ23) = x4x4

5ε3 is not equal to one of the leading terms
of the elements ofA21 or W21. But we can perform a head reduction step in (7), namely

σ23
σ13 −σ12. Here step (8) does not apply, but in step (9) we have LTτ (σ12) ∈ LTτ (W21).

Thus we continue by removingσ12 fromW21 and appending it toA.

Finally, we getB∗ = ∅ andW = ∅. The algorithm returnsΘ = {σ13, σ24, σ34}.
As mentioned above, the non-minimal critical syzygyσ12 was discovered after one head
reduction step in (7).

5. An optimized Buchberger algorithm

In this section we combine the results obtained so far. We continue to use the notation
and conventions of the previous sections. In particular, we letP = K [x1, . . . , xn] be a
polynomial ring over a fieldK which is positively graded by a matrixW ∈ Matm,n(Z),
and we letM be a graded submodule of a graded freeP-moduleF = ⊕r

i=1P(−δi ) which
is generated by a tupleV = (v1, . . . , vs) of homogeneous vectors. Furthermore, we letσ

be a module term ordering onTn〈e1, . . . , er 〉.
In the following theorem the sets of critical pairs corresponding to the sets of critical

syzygies considered earlier are denoted by the normal letters corresponding to their
calligraphic versions.



M. Caboara et al. / Journal of Symbolic Computation 38 (2004) 1169–1190 1185

Theorem 27 (Optimized Buchberger Algorithm).In the above situation, consider the
following sequence of instructions.

(1) LetW = V , A = ∅, B = ∅, B∗ = ∅, G = ∅, and let s′ = 0.
(2) Let d be the smallest degree w.r.t.Lex of an element of B orW . Form Bd, B∗

d, Wd,
and delete their entries from B, B∗, andW , respectively.

(3) ApplyMinPairs(A, Bd, B∗
d).

(4) If Bd = ∅, then continue with step(7). Otherwise, choose a pair(i , j ) in Bd, delete
it from Bd, and append it to A.

(5) Compute Si j and S′i j = NRσ,G(Si j ). If S′
i j = 0, then continue with(4).

(6) Increase s′ by one, append gs′ = S′
i j toG, performUpdate(B, B∗, gs′), and continue

with step(4).
(7) If Wd = ∅ then continue with(10). Otherwise, choosev ∈ Wd and delete it inWd.
(8) Computev′ = NRσ,G(v). If v′ = 0, continue with step(7).
(9) Increase s′ by one, append gs′ = v′ to G and performUpdate(B, B∗, gs′). Then

continue with step(7).
(10) If B = ∅ andW = ∅, then returnG and stop. Otherwise, continue with step(2).

Here the procedureUpdate(B, B∗, gs′) is defined as follows.

(U1) Form the set C= {(i , s′) | 1 ≤ i < s′, γi = γs′ }.
(U2) Delete from C all pairs( j , s′) for which there exists an index i in the set{1, . . . , j −1}

such that ts′i divides ts′ j .
(U3) Delete from C all pairs(i , s′) for which there exists an index j in the set{i +

1, . . . , s′ − 1} such that ts′ j properly divides ts′i .
(U4) Find in C all pairs (i , s′) and ( j , s′) such that1 ≤ i < j < s′ and such that

gcd(tis′ , t js′) = 1. For each of these, check whether(i , j ) is already contained in B∗
and append it if necessary.

(U5) Append the elements of C to B and stop.

Furthermore, the procedureMinPairs(A, Bd, B∗
d) is defined as follows.

(M1) If B∗
d = ∅, then stop. Otherwise, choose a pair(i , j ) in B∗

d and remove it from B∗d.
(M2) If t j i = t j i ′ for some pair(i ′, j ) ∈ A, then continue with step(M1).
(M3) If t j i = t j i ′ for some pair(i ′, j ) ∈ Bd, then remove this pair from Bd and append it

to A. Continue with step(M1).
(M4) Find (i ′, j ) ∈ A such that tj i ′ divides tj i . Let k = min{i , i ′}, and let� = max{i , i ′}.

If gcd(ti j , ti ′ j ) �= 1, then continue with(M1).
(M5) If t�k = t�k′ for some pair(k′, �) ∈ A, then continue with(M1).
(M6) If t�k = t�k′ for some pair(k′, �) ∈ Bd, then delete this pair in Bd, append it to A,

and continue with(M1).
(M7) If (k, �) ∈ B∗

d, then delete(k, �) in B∗
d and continue with(M4), applied to this pair.

(M8) Continue with step(M1).

Altogether, we obtain an algorithm which computes a tupleG whose elements form a
homogeneousσ -Gröbner basis of M. Moreover, the set of pairs which are treated at some
time in steps(4)–(6)of the algorithm corresponds to a minimal system of generators of the
moduleSyzP(c1t1eγ1, . . . , cs′ ts′eγs′ ).



1186 M. Caboara et al. / Journal of Symbolic Computation 38 (2004) 1169–1190

Proof. The main algorithm of this theorem agrees with the homogeneous Buchberger
algorithm (seeTheorem 11), except for the introduction of the procedureMinPairs
(A, Bd, B∗

d) in step (3) and the alteration of the enlargement ofB in steps (5) and (8)
of Theorem 11which is now performed by the procedureUpdate(B, B∗, gs′).

The foundation for these changes is the material presented above, especially
Proposition 24. In steps (4)–(6) we want to treat only those pairs(i , j ) for which the
corresponding elementsσi j are contained in the minimal system of generatorsΘ of the
gradedP-module SyzP(c1t1eγ1, . . . , cs′ ts′eγs′ ).

ProcedureUpdate(B, B∗, gs′) applies Rules (1) and (2) of Gebauer and M¨oller in steps
(U2) and (U3), respectively. Moreover, notice that step (U4) computes all pairs of pairs
which satisfy the condition of part (b) ofRemark 22, and stores the pairs corresponding to
the resultingS-vectors inB∗.

Thus, in order to minimalize the critical pairs we process, we need to apply
Proposition 24to the set of critical syzygies corresponding to the set of critical
pairs B, where we can refrain from computing the pairs of pairs, because they have
already been generated and stored inB∗. This task is performed by the procedure
MinPairs(A, Bd, B∗

d). Its steps (M1)–(M8) are easy translations of steps (4)–(10) of
Proposition 24into the language of pairs. Notice that we have LTτ (σi j ) = LTτ (σk�) if and
only if j = � and t j i = t�k. Altogether,Update(B, B∗, gs′) andMinPairs(A, Bd, B∗

d)

make sure that only the pairs corresponding toΘ are treated at some point in steps (3)–(6).
Finally, we remark thatA is used to keep track of the pairs(i , j ) for which σi j is in

that part of the minimalτ -Gröbner basisΣ ′′ of SyzP(c1t1eγ1, . . . , cs′ ts′eγs′ ) which has
been computed so far. Thus it is updated when a non-minimal element ofΣ ′′ is found in
step (M3) or step (M6), and when a pair corresponding to an element ofΘ is chosen for
treatment in step (3). �

Let us illustrate the performance of this algorithm by a simple example. It shows that
cases likeExample 20occur naturally during actual Gr¨obner basis computations.

Example 28. Let P = Q[x, y, z] be standard graded, letσ = DegLex, let r = 1, and
let M ⊆ P be the homogeneous ideal generated by the polynomialsv1 = x3z2 + x2y2z,
v2 = x3y8, andv3 = y10z2. Then the leading terms aret1 = x3z2, t2 = x3y8, and
t3 = y10z2. Let us follow the steps of the optimized Buchberger algorithm.

The first degree isd = 5. SinceB5 = ∅, the first actions are to choosev1 ∈ W5 in
step (7) and appendg1 = v1 to G in step (9). Then we continue withd = 11 and choose
v2 ∈ W11 in step (7). Sincev′ = NRσ,G(v2) = v2, we appendg2 = v2 to G in step (9)
and update the set of pairs. The result isB = {(1, 2)} andB∗ = ∅. Now we have to treat
the degreed = 12. Notice that the degree of the pair(1, 2) is 13. HenceB12 = ∅ and we
have to choosev3 ∈ W12 in step (7). Sincev′ = NRσ,G(v3) = v3, we appendg3 = v3
to G in step (9) and update the set of pairs. In step (U1), we formC = {(1, 3), (2, 3)}.
In step (U2), we obtaint31 = x3 = t32, and therefore(2, 3) is deleted inC. The result
is B = {(1, 2), (1, 3)} and B∗ = ∅. This completes degree 12, and we continue with
degree 13.

We choose the pair(1, 2) in step (4) and append it toA. Then we computeS12 =
y8g1 − z2g2 = x2y10z andS′

12 = NRσ,G(S12) = x2y10z. Thus we have a new Gr¨obner
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basis elementg4 = x2y10z and need to update the pairs again. In step (U1), we form
C = {(1, 4), (2, 4), (3, 4)}. Step (U2) does not apply, but in step (U3) we remove the pair
(1, 4) from C, sincet42 = x properly dividest41 = xz. Now we check thatt24 = y2z
properly dividest23 = y2z2 andt34 = x2 properly dividest32 = x3. Hence the pair(2, 3)

is appended toB∗.
At this point we have finished degree 13, and we have the following situation:A =

{(1, 2)}, B = {(1, 3), (2, 4), (3, 4)}, B∗ = {(2, 3)}, G = {g1, . . . , g4}, ands′ = 4. The
next degree isd = 14, where we have to deal with the pairs inB14 = {(2, 4), (3, 4)}. Since
B∗

14 = ∅, we choose(2, 4) in step (4) and append it toA. Then we computeS24 = 0 and
continue by choosing(3, 4) in B14 and adding it toA. Again S34 = 0, and degree 14 is
finished.

Now we start degree 15 by performingMinPairs(A, B15, B∗
15), where we haveA =

{(1, 2), (2, 4), (3, 4)}, B15 = {(1, 3)}, andB∗
15 = {(2, 3)}. In step (M1), we choose(2, 3).

In step (M3), we discovert32 = x3 = t31, where(3, 1) ∈ B15. Hence(1, 3) is deleted in
B15 and appended toA. Then the procedure is finished, and the facts thatB15 = ∅ as well
asW15 = ∅ allow us to returnG and stop.

As in Example 20, we have found one useless pair, namely the pair(1, 3) in degree 15,
which would not have been discovered by the Gebauer–M¨oller Installation, and which we
were able to discard by a simple combinatorial check.

Remark 29. Let us discuss the efficiency of the algorithm ofTheorem 27.

(a) Steps (U2) and (U3) of this algorithm correspond to Rules (1) and (2) of the
Gebauer–M¨oller installation. However, Rule 3 is not performed by the procedure
Update(. . .), but by step (M2) of the procedureMinPairs(. . .). In fact, step (M2)
gets rid of more pairs than Rule 3, because Rule 3 requires(i , j ) ∈ B∗

d ∩ Bd,
whereas we only need a pair(i , j ) ∈ B∗

d such that LTτ (σi j ) = LTτ (σi ′ j ) for some
(i ′, j ) ∈ Bd.

(b) A potential drawback of our approach is that the number of pairs of pairs considered
in step (U4) is quadratic in the number of elements ofC surviving steps (U2)
and (U3). But that number is usually fairly small. Hence the cost of (U4) and the
cardinality ofB∗ tend to be rather small. On the other hand, we do not need to check
Rule 3 for all elements of the listB which is usually rather long. Our experiments
suggest that, on average, the overheads of the two approaches are comparable.

(c) Our procedureMinPairs(. . .) is very efficient in treating the elements ofB∗
d . Each

time we loop through steps (M2)–(M8), we delete one pair inB∗
d , andB∗

d is never
enlarged. In practice, we find that the listsB∗

d are generally small. Hence our
algorithm harnesses the full power and efficiency of the Gebauer–M¨oller installation,
while it simultaneously killsall unnecessary pairs at a comparatively small cost.

6. Experimental data and conclusions

In this section we want to provide the reader with some experimental numerical data
which illustrate the performance of the optimized Buchberger algorithm27 as well as
technical observations coming from an implementation in an experimental version of the
“CoCoA 5” library in C+ + (seeCoCoA, 2001).
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In the following table, we compare the application of Rules (1)–(3) ofProposition 18
to our proceduresUpdate(. . .) andMinpairs(. . .) in Theorem 27, i.e. to the algorithm
of Proposition 24. Let us point out that our procedure always minimalizes the critical
pairs, independent of the order of the underlying terms. (Non-minimal critical pairs are
recognized at different steps, though.) For the Gebauer–M¨oller installation, however, the
number of undiscovered non-minimal critical pairs depends strongly on this order.

To aid the reader in understanding this table, let us explain the meaning of the symbols.

• #(G) is the cardinality of the reduced Gr¨obner basis of the corresponding ideal.
• #(Σ ) is the total number of pairs, i.e. #(Σ ) = (#(G)

2

)
.

• #(Σ ′′) is the number of pairs surviving Rules (1) and (2), i.e. the cardinality of the
reduced Gr¨obner basis of pairs.

• B is the number of pairs killed by Rule (3), the Gebauer–M¨oller “Backwards”
criterion.

• M23 is the number of pairs killed by steps (M2) and (M3) inTheorem 27.
• M48 is the number of pairs killed by steps (M4)–(M8) inTheorem 27.
• Gain = M23+ M48− B, i.e. the number of newly discovered non-minimal critical

pairs.
• #(Θ) is the cardinality of a minimal system of generators of the syzygies of the

leading terms. Hence we have #(Θ) = #(Σ ′′) − M23− M48.

#(G) #(Σ ) #(Σ ′′) B M23 M48 Gain #(Θ)

Tˆ51 83 3,403 250 7 7 0 0 243
Twomat3 109 5,886 741 15 26 1 12 714
Alex3 211 22,155 684 54 56 1 3 627
Gaukwa4 267 35,511 1,772 101 113 3 15 1,656
Kin1 306 46,665 3,411 70 172 0 102 3,239
Wang (Lex) 317 50,086 1,457 60 61 7 8 1,389
Cyclic 7 443 97,903 2,651 17 17 0 0 681
Hairer-2 506 127,765 5,305 150 152 4 6 5,149
Hom-Gonnet 854 364,231 11,763 587 648 27 88 11,088
Mora-9 4131 8530,515 46,395 1930 1914 23 7 44,458

The rows of this table correspond to standard examples of Gr¨obner basis
computations. A file containing a description of every example can be downloaded at
ftp://cocoa.dima.unige.it/papers/CaboaraKreuzerRobbiano03.cocoa

Moreover, a file containing the list of leading terms of the reduced Gr¨obner basis for
each example can be downloaded at
ftp://cocoa.dima.unige.it/papers/CaboaraKreuzerRobbiano032.cocoa

Technical note: In the well known example “Cyclic 7” we have homogenized using a new
smallestindeterminate (see the file mentioned above).

For the readers who would like to run their own tests, we note that #(G), #(Σ ), and #(Θ)

are invariants of the reduced Gr¨obner basis. But the effect of both the Gebauer–M¨oller
installation and our optimized Buchberger algorithm depend strongly on the order in which
the elements ofΣ are produced during a Gr¨obner basis computation. For instance, this
means that it depends on the chosen selection strategy. In our implementation, pairs are
kept ordered in increasingDegLex ordering, reductors are kept in the order in which they

ftp://cocoa.dima.unige.it/papers/CaboaraKreuzerRobbiano03.cocoa
ftp://cocoa.dima.unige.it/papers/CaboaraKreuzerRobbiano03protect global let OT1	extunderscore unhbox voidb@x kern .06emvbox {hrule width.3em}OT1	extunderscore 2.cocoa
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are produced, reductors of the same degree are kept interreduced, and the reduction strategy
is full reduction.

The following table shows some timings. It compares Singular 2.0.0 with the current
experimental version of CoCoA 5 using the GM and CKR pair handling algorithms.
Timings are in seconds for Linux running on an Athlon 2000+ CPU with 1.5 GB RAM.
All computations are over the rationals where the timings of the base field operations in
Singular and CoCoA seem to be comparable.

Technical note: The reason that we include a comparison with Singular is an explicit
request made by a referee, who suggested comparing our timings with “another efficient
implementation”. The table below indicates that both Singular and CoCoA 5 have efficient
implementations of the Buchberger algorithm, and that our new algorithm has at least the
same efficiency.

Singular 2.0.0 CoCoA 5 GM CoCoA 5 CKR

Tˆ51 (Lex) 149.32 7.28 7.14
Twomat3 1.21 8.66 8.50
Alex3 �1 0.54 0.56
Gaukwa4 80.30 99.31 98.57
Kin1 407.09 89.25 87.41
Wang (Lex) >1200 382.86 379.31
Cyclic 7 >1200 76.61 76.65
Hairer-2 79.36 141.83 139.76
Hom-Gonnet 3.97 4.55 4.95
Mora-9 30.53 86.17 89.75

7. Conclusions

First of all, let us collect some technical observations based on our implementation of
the optimized Buchberger algorithm.

(a) When we apply Rules 1 and 2 ofProposition 18, the remaining set of pairsΣ ′′ is
usually almost a minimal system of generators of the module SyzP(c1t1eγ1, . . . ,

cs′ ts′eγs′ ). Thus both Rule 3 and our algorithm kill comparatively few pairs.
Nonetheless, over the rationals (or other costly fields), the saving is worthwhile
because the treatment of each single pair can take a long time.

(b) Steps (M5)–(M7) in the optimized Buchberger algorithm are independent. Hence it
is possible to order them in such a way that the computational cost is minimized.
This may be important if there are a large number of elements inB∗

d to be processed,
since the operations may have substantially different computational costs.

(c) All operations in our proceduresUpdate(...) and MinPairs(...) have been
greatly eased by memorizing the termsti j , t j i , and lcm(ti , t j ) directly in the pair
data type.

(d) When a search is performed on the pairs inA, B, or Bd, full advantage can be taken
of the fact that we may rely on data structures which allow logarithmic search costs.

Looking at the timings above, we see that, on average and with comparable imple-
mentations, our new algorithm is faster than the Gebauer–M¨oller installation. In some
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examples, the gains are relatively small, and in exceptional cases, the structure of
the combinatorial data produces a larger overhead for our algorithm than for the
Gebauer–M¨oller installation.
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