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Abstract

In the computation of a @Bner basis using Buchberger’s algorithm, a key issue for improving
the efficiency is to produce techniques for avoiding as many unnecessary critical pairs as possible. A
good solution would be to avoial non-minimal critical pairs, and hence to process ontyiaimal
set of generator®f the module generated by the critical syzygies. In this paper we show how to
obtain that desired solution in the homogeneous case while retaining the same efficiency as with the
classical implementation. As a consequence, we get a new optimized Buchberger algorithm.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Ever since practical implementations of Buchberger’s famous algorithm for computing
Grobner bases became feasibBu¢hberger1965, it has been clear that, in order to
improve the efficiency of this algorithm, one needs to avoid the treatment of as many
critical pairs as possibléBuchberge (1979 studied this problem for the first time, and
later in Buchberge(1985 and Gebauer and Mller (1987 his results were substantially
improved and expanded. Neverthele&ebauer and Mller (1987 showed that their
method did not always produce a minimal set of generators of the module generated by
the critical syzygies. However, their method was very efficient and yieldedlranst
minimal set of critical pairs. Since then, many kinds of optimizations of Buchberger’s
algorithm have been found, in particular by implementers of computer algebra systems.
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But the problem of efficiently minimalizing the critical pairs has gone largely unnoticed
and seems to be overdue for a solution. Indeed, that is the main objective of this paper.

To achieve our goal, we proceed as follows. First and foremost, we need a detailed
understanding of the entire process of computinglBEer bases, in particular in the
homogeneous case. An algorithm for simultaneously computingabr@r-basis and a
minimal system of generators contained in it is fine-tuned when the input is a reduced
Grébner basis. Then this result is applied to critical syzygies, using the fact that we show
how the old criteriaM (i, j) and F(i, j) of Gebauer and Mller (1987 vyield a reduced
Grébner basis of the module of syzygies of the leading terms. Besides, when applied to
this special case, the algorithm admits many subtle optimizations. In the end, we really
achieve the goal of minimalizing the critical pairs efficiently.

Now, why do we think that what we achieved is impoftant

The first reason is theoretical curiosity. It is common knowledge among the
implementers of Buchberger's algorithm that the criteria of Gebauer asiteiMilmost
produce a minimal set of critical pairs. We wanted to see whethewthapopuliis really
true. Of course one could use a standard minimalization process to produce minimal sets
of critical pairs, but this method could only handle small examples. Instead, we observed
that, after applying two of the criteria of Gebauer andllér, areduced Gdbner basis
of the module of syzygies of the leading terms is obtained. Then we were able to see
the difference between the reduced@mér basis and a minimal set of generators of this
module, and how this difference depends on the size of the example.

Another important reason is that we wanted to be able to compute a minimal set of
generators of this module with theame efficiencys in the usual application of the
Gebauer-Mller criteria. And we wanted to do it while computing adBrier basis, so
that we can replace the Gebauemidi criteria by our procedure. As we show in the final
sections, we achieved this goal.

A third reason is that our results hold in full generality, namely fool@rer bases
of modules over positively (multi-) graded rings. Other optimizations of Buchberger's
algorithm, e.g. ideas using trivial syzygies (see for instafmegre (2002), do not hold
in this generality. Moreover, we would like to point out that the pairs we discard are truly
useless, whereas pairs between elements in a reduckh&riases which reduce to zero
can still be useful for the computation of syzygies.

Finally, the readers should know that the basic terminology is taken from the book of
the second and third authotsréuzer and Robbian@000.

2. Some background material

Since we are interested in optimizing Buchberger’s algorithm in the homogeneous
case, we start by saying which gradings we consider. From now df te¢ a field and
P = K[X4, ..., Xn] @ polynomial ring oveK . Moreover, letW € Maty n(Z) be anm x n
matrix with integer entries. Then there exists exactly BRegrading onP such that every
termt = x;* - - - xn" is homogeneous of degree ¢gd) = W - (a1, . .., an)"". We say that
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P is (multi-) graded by W. The matrixW is called thedegree matrix and its rows are
called theweight vectors.

For instance, the grading dd given byW = (1, ..., 1) is the standard grading. For
everyd € Z™, the homogeneous component of degies P is Py g = @deg, ()=dK - t.
Givendy, ..., & € Z™, the graded fre®-moduleF = @;_; P(—4;) inherits aZ™-grading
from P in the natural way. Again we say thhtis graded by W.

In order to be able to use these gradings in our algorithms, we need some positivity
assumptions.

Definition 1. Let P be graded by, and letws, ..., wm be the rows oiV.

(a) The grading given bW is calledweakly positive if there exist integeray, ..., am
such thaywi + - - - + amwm has all entries strictly positive.

(b) The grading given bV is calledpositiveif rk (W) = m, if no column ofW is zero,
and if the first non-zero entry in each columnWfis positive.

Proposition 2. Let P be weakly positively graded by W, and let M be a finitely generated
graded P-module.

(a) We have R0 = K anddimk (Mw,q) < oo for every de Z™M.

(b) The graded version of Nakayama's lemma holds: homogeneous elements
v1,...,Us € M generate the module M if and only if their residue classes
v1,...,Us generate the K-vector space /KKi, ..., Xn)M. In particular, every
homogeneous system of generators of M contains a minimal one, and all non-
redundant homogeneous systems of generators of M have the same number of
elements which is denoted pyM).

The proof of this proposition uses standard computer algebra methods and is
contained inKreuzer and Robbian¢n preparatioh For practical computations we need
the somewhat stronger notion of a positive grading. The usefulness of positive gradings
is illustrated by the following characterizations. Recall that a module orderiog the
set of termsT"(ey, ..., &) of the graded free modulg is calleddegree compatible or
compatible with degy, if the inequality deg,(te) >rex degy(t'ej) impliestg >, t'e;
forallt,t’ e T"and alli, j € {1,...,r}.

Proposition 3. Let P be graded by W, where W hZdinearly independent rows and
non-zero columns. Then the following conditions are equivalent.

(a) The grading on P given by W is positive.

(b) The restriction ofLex to the monoid” = {d € Z™ | Pw,g # O} is a well-ordering,
i.e. every non-empty subsetiohas a minimal element with respectitex.

(c) The restriction ofLex to the monoid™” = {d € Z™ | Pyw.g4 # O} is a term ordering,
i.e. every element & I" satisfies d>pex O.

(d) There exists a term orderingon T" which is compatible witldeg,,.

(e) There exists a module term orderiagon T"(e1, ..., &) which is compatible with
the grading given by W.
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Again we refer the reader tireuzer and Robbian¢in preparatioh for a proof of
this proposition. As a consequence, it follows that positive gradings are weakly positive.
Moreover, in a positively graded setting, we can prove the finiteness of various algorithms
in the usual way, i.e. by using the fact that there is no infinite sequence of homogeneous
elements of strictly decreasing degrees.

In the remaining part of this section, we use truncatech®er bases to prove two very
important technical tools, name@orollaries 8and10. We shall from now on assume that
P is positively graded byV € Maty n(Z). Moreover, we le#y, ..., 5 € Z™, we letM
be a finitely generated graded submodule of the gradecPfre®duleF = @;_, P(-4),
and we letb be a module term ordering dif'(ey, . . ., &), the set of terms k.

The following notation will turn out to be convenient. Given a subSetf a graded
P-module andd € Z™, we letScq = {v € S| v homogeneouslegy (v) <rex d} and
S = {v € S| v homogeneouslegy (v) = d}.

Definition 4. Assume thalG = {g1, ..., gs} is a homogeneous-Grébner basis oM,
and letd € Z™. Then the seGq is called ad-truncated Grobner basis of M, or a
Grobner basis oM which has beetruncated in degreed.

For truncated Gobner bases, we now prove a characterization which is analogous to the
Buchberger criterion in the usual case. To this end, we need to explain what we mean by
critical pairs and critical syzygies.

Given homogeneous elemergs, ..., 0s € M\{0}, we letd; = degy(g) fori =
1,...,s,and we letF’ be the graded freB-module®?®_, P(—d;). The canonical basis of
F’ will be denoted byey, .. ., ¢s}. Notice that we have deg(si) = di fori = 1,...,s.
Moreover, we write LM (gi) = citie,,, wherec; € K\{0}, wheret; € T", and where
yefl....r}.

Definition 5. A pair (i, j) € {1,...,s} suchthat 1< i < j < sandy; = yj is called a
critical pair of (g1, ..., gs). The set of all critical pairs afg. . . . , gs) is denoted byB. For
every critical pair(i, j) € B, the element;; = (Iem(tj, tj)/citi)si — (Iem(t, tj)/cjtj)e;j
is a syzygy of the paifLM ; (g), LM, (gj)). Itis called thecritical syzygy associated with
the critical pair(i, j). The set of all critical syzygies is denoted by

Clearly, a critical syzygysj is a homogeneous element®fwhose degree is precisely
deg (ij ) = degy(lcm(tj, tj)) + §8,,. This degree equals the degree of the corresponding
Svector§; = (lem(tj, tj)/citi)gi — (lem(t, tj)/cjtj)g; in F.

For every critical pairi, j) € B, we call degy(cij) the degree of the critical pair.
Then it makes sense to consider the Bey for every givend € Z™, and we observe
that degy (0ij) >rex MmaxXd;, d;} for all (i, j) € B. Finally, we remind the reader that
NR, g(v) denotes the normal remainder, i.e. the result of the division algorithm, as in
Kreuzer and Robbian(200Q Definition 1.6.7). At this point, we are ready to formulate
and prove the following characterization of truncate®i@rér bases.

Proposition 6 (Characterization of Truncated &btier Bases)Let P be positively graded
by W € Matn n(Z), let G = {gs, . . ., gs} be a set of non-zero homogeneous vectors which
generates a graded submodule M@f_, P(—3§;), and let d e Z™. Then the following
conditions are equivalent.
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(a) The set Ggq is a d-truncatedr-Grobner basis of M.

(b) For every homogeneous elemente M-g4\{0}, we have the relationT,(v) €
(LTo(9) | g € Gea).

(c) For all pairs (i, j) € B<d, we haveNR, g_,(Sj) = 0, whereGq is the tuple
obtained fromg = (g1, ..., gs) by deleting the elements of degree greater than d.

Proof. Without loss of generality, we may assume tlatq = {d1, ..., gy} for some

s’ < s. Itis clear that (a) implies both (b) and (c). Now we show that (b) implies (a). By
the assumption, we can find terrtgs_,,rl, ..., t,, of degree greater thashsuch that the set
{(LT5(g1), ..., LT, (gsf)}u{téurl, ..., t,,} is a system of generators of LTM). We choose
homogeneous elemertig_ 1, ..., hg in M such that LT, (hj) =t/ fori =s'+1,...,s".
Then the setgs, ..., dy, hy11, ..., hg} is @ homogeneous-Grébner basis oM with
truncationG <g.

It remains to prove that (c) implies (b). Let € M<gq be a homogeneous non-zero
element. Sincdgs, ..., dy} generatesM<q), we can represent asv = Ziil figi,
where f; is homogeneous of degree ¢g@) — degy(gi) <rex d. In order to prove
LT, (v) € (LT5(g1), ..., LT4(gy)), it is enough to proceed as in the proof of Proposition
2.3.12 ofKreuzer and Robbian@000, replacingg by G<q. O

This characterization has several useful applications.

Corollary 7. Let G= {01, ..., gs} be a homogeneousGrobner basis of the module M,
and let de Z™. Then Gy is a d-truncatedr-Grobner basis of the modul®/iq).

Proof. SinceG is a set of generators dfl, the setG<y generates the moduldq).
From Buchberger’s criterion we know that BR(Sj) = 0, for all pairs(i, j) € B. If we

have deg,(Sj) <rex d here, the elements @ involved in the reduction ste(f; S, 0
all have degrees less than or equatitcHence we see that NR;_,(Sj) = 0, and the
proposition yields the claim. O

Corollary 8. Let d € Z™, let the elements of the tupl@ = (g1,...,ds) form a
d-truncatedr-Grobner basis of M, and letsg1 € F be a homogeneous element of degree
d such thatl T, (gs+1) ¢ (LT5(g1),...,LT+(Qs)). Then{qs, ..., gs+1} is a d-truncated
Grobner basis of M+ (gs+1).

Proof. In order to prove the claim, we check condition (c) of the proposition. Fer 1
i < j < ssuchthatdeg(Sj) <rex d, we have NB ¢(S;) = 0 by the assumption and
by Proposition 6 Fori € {1,..., s} such that deg(Ss+1) = d, the fact that the pair
(i, s+ 1) has degred implies that LT, (gs+1) is a multiple of LT, (g;), in contradiction to

the hypothesis. O

In the last part of this section, we prove an analogue of the preceding corollary for
minimal generators. Recall th&roposition 2b) guarantees that all minimal systems of
generators have the same length in the positively graded situation.

Proposition 9. Let P be positively graded by We Matnn(Z), let M be a
graded P-module generated by homogeneous elenfgnts. ., gs}, and assume that
degy(91) <rex degy(g2) <rex - <Lex degy(Js).



1174 M. Caboara et al. / Journal of Symbolic Computation 38 (2004) 1169-1190

(a) The set{gs, ..., gs} is a minimal system of generators of M if and only if we have
O ¢{(91,...,0—1)fori=1,...,s.
(b) Thesetlg |i €{1,...,s}, G ¢ (01,...,0-1)} is a minimal system of generators
of M.
Proof. First we prove (a). If{gi1,..., gs} is a minimal set of generators dfl, then
no relation of typegi € (gi1,...,0i—1) holds, since otherwise we would haké =
(01, -..,0i-1, Gi+1, - - - » Gs). Conversely, if g1, .. ., gs} is not a minimal set of generators
of M, then there exists an indéx {1, ..., s} suchthat; € (g1,...,0-1, Gi+1,.--, Js)-

Using Corollary 1.7.11 ofKreuzer and Robbian¢2000, we obtain a representation
g = > ;4 figj, wheref; € P is homogeneous of degree ¢e@i) — degy(g;) for
jef{d,...,i—1i+1,...,8.

Since deg,(fj) >rex O for fj # 0, we see that dgg(gi) <rex degy(gj) implies
fj = 0. Thus there are two possibilities. Either we haveg@®) >rex degy(gj) for
all j such thatf; # 0 or there exist some indicgssuch that deg(gj) = degy(g)).

In the first case, those indicgssatisfy j < i by the assumption that the multidegrees
of g1, ..., gs are ordered increasingly, and therefore we get (g1, ..., gi—1). In the
second case, thg corresponding to those indicgsare inK\{0}. Let jmax = maxj €
{1,...,s}| fj € K\{0}}. We get the relatioj .« € (J1, - . .. Jjmac—1)- IN bOth cases, we
arrive at a contradiction to our hypothesis.

Now let us show (b). Thes&={gi |i € {1,...,S},0 ¢ (d1,...,0i—1)} IS a system
of generators oM, because an elemegt such thaig; € (g1, ..., gi—1) is also contained
in(gj € S| 1< j <i—1). The fact that this system of generators is minimal follows
from (a). O

The following version is an immediate consequence of part (a) of the proposition.

Corollary 10. Let N be a graded P-module, let M be a submodule of N{ggt. . ., gs}

be a minimal homogeneous system of generators of M, and letggN\M be a homo-
geneous vector whose degree satisfies the inequiiy (gs+1) >rex maxdegy(gi) |

i = 1,...,s}. Then{gs, ..., gs+1} is a minimal system of generators of the module
M + (gs+1). In particular, we havet(M + (Qs+1)) = u(M) + 1.

3. Minimal generatorsin areduced Grobner basis

From here on we use the following assumptions. Ketbe a field, and letP =
K[X1, ..., Xn] be a polynomial ring oveK which is positively graded by a matrix
W € Matn n(Z). Then letr > 1, letés, ..., 8 € Z™, and letM be a graded submodule
of F = @]_,P(=4i) which is generated by a set of non-zero homogeneous vectors
{v1, ..., vs}. Furthermore, we choose a module term ordetingn the monomodule of
termsT™(ey, ..., &) in F,and we letV = (vy, ..., vs).

Our first goal is to describe an algorithm which computes a homogere@rsbner
basis ofM degree by degree and a variant of this algorithm which also yields a minimal
system of generators dfl contained inV. This part is classical and more or less “well
known”. Then we make good use of it theorem 15or minimalizing reduced Gatiner
bases.
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To ease the notation, we shall use the following convention: whenever a \gctor
appears, we write LM(gi) = citie,,, wherec; € K\{0}, wheret; € T", and where
vi €{1,...,r}. Fortwo indices, j such that; = y;, we letoj; = (Icm(tj, tj)/citi)ei —
(Iem(tj, tj)/cjtjej andS§; = (lem(ti, tj)/Giti)gi — (lem(t, tj)/cjtj)g;.

Theorem 11 (The Homogeneous Buchberger Algorithnhj. the above situation, con-
sider the following instructions.

(1) LetB=9¢,W=V,G=0,andlet$=0.

(2) Let d be the smallest degree with respectéa of an element of B or ofV. Form
Bq andWjy, and delete their entries from B anf, respectively.

(3) If Bq = @, continue with stef6). Otherwise, chose a paif, j) € Bq and remove it
from By.

(4) Compute the S-vectofjSand its normal remainder{JS= NR, g(Sj). If S/j =0,
continue with ste3).

(5) Increase $hy one, appendg= Sj to the tupleg, and append the s¢ti,s') | 1 <
i <9, = vy} tothe set B. Continue with stép).

(6) If Wy = @, continue with stef§9). Otherwise, choose a vectore Wy and remove
it from Wy.

(7) Computey’ = NR; g(v). If v/ = 0, continue with stef6).

(8) Increase by one, appendg= v’ to the tupleg, and append the séti,s) | 1 <
i <9, % = yy]} to the set B. Continue with stép).

(9) If B =@ andW = @, return the tuple; and stop. Otherwise, continue with st&).

This is an algorithm which returns @-Grobner basigj of M, where the tupl€ consists
of homogeneous vectors having non-decreasing multidegrees.

The proof of this theorem is standard computer algebra and is for instance contained in
Kreuzer and Robbian@n preparatioh

Remark 12. Let us add some observations about this algorithm.

(a) If we interrupt its execution after some degmkgeis finished, the tuplgj is a
do-truncated Gobner basis oM. Consequently, we can compute truncatedifper
bases efficiently. Moreover, in this case it suffices to append only the{ggisd) |
1<i <9,y = yy, degy(ois) <rex do} to the setB in steps (5) and (8). The
reason is that pairs of higher degree are never processed anyway, since we stop the
computation after finishing degrelg.

(b) 1t is not required that is a degree compatible module term ordering. The reason
is that, during the computation of the @rier basis, only comparisons of terms in
the support of a homogeneous vector are performed. Thus these terms have the same
degree, and it does not matter whethas degree compatible or not.

(c) The homogeneous Buchberger algorithm can also be viewed as a special version of
the usual Buchberger algorithm where we use a suitable selection strategy.

The following variant of the homogeneous Buchberger algorithm computes a minimal
system of generators dfl contained in the given set of generators while computing a
Grobner basis. It provides an efficient method for finding minimal systems of generators.
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Corollary 13 (Buchberger Algorithm with Minimalization)In the situation of the theo-
rem, consider the following instructions.

(1) LetB=@,W=V,G =0,5 =0,andVmin = 0.

(2) Let d be the smallest degree with respectéa of an element of B or ofV. Form
By and Wy, and delete their entries from B am¥, respectively.

(3) If Bq = @, continue with stef6). Otherwise, chose a paif, j) € Bq and remove it
from By.

(4) Compute the S-vectok;Sand its normal remainder{JS= NR, g(Sj). If S/j = 0,
continue with steg3).

(5) Increase by one, appendg= Sj to the tupleg, and append the séti,s') | 1 <
i <9, %1 = yg}tothe set B. Continue with st¢p).

(6) If Wy = @, continue with steig9). Otherwise, choose a vectore Wy and remove
it from Wy.

(7) Computey’ = NR, g (v). If v = 0, continue with stel6).

(8) Increase Sby one, appendg= v’ to the tupleG, appendv to the tupl€Vmin, and
append((i,s) |1 <i < ¢,y = yy} to the set B. Continue with stép).

(9) If B =¢andW = @, return the pair(G, Vmin) and stop. Otherwise, continue with
step(2).

This is an algorithm which returns a paig, Vmin) such thatg is a tuple of homogeneous
vectors which are @ -Grobner basis of M, an®mn is a subtuple ol of homogeneous
vectors which are a minimal system of generators of M.

Proof. In view of the theorem, we only have to show that the elementg,in are a
minimal set of generators dfl. Since the algorithm is finite, it operates in only finitely
many degreesl. Therefore it suffices to prove by induction @hthat Vi, contains
a minimal system of generators 0M-q) after the algorithm has finished working on
elements of degree:

This is clearly the case at the outset. Suppose it is true for the last degree treated
befored. Inductively, we can show that the elementsdtontinue to be contained in
the module{M_q4) while we are looping through steps (3), (4), and (5) of the algorithm.
That is, every time an element of the form )\NgH(S;j ) is added ta7, it is clearly contained
in the module generated by the previous element§.dfurthermore, by part (a) of the
remark followingTheorem 11the elements of the tuplé form a d-truncated Gobner
basis of(M_.q) after we have finished looping through steps (3), (4), and (5), i.e. when we
have treated all pairs of degrde

Now let Wy = (w1, ..., wy), and let the numbering of these vectors correspond to the
order in which they are chosen in step (6). We show that, for each application of steps (6),
(7), and(8), the elements o¥min continue to be a minimal system of generators of the
module they generate, and that this module always agrees with the one generated by the
elements ofj. Furthermore, the elements Gfare always al-truncated>-Grébner basis
of that module.

When a new vector = wj is chosen in step (6), there are two possibilitie)I&= 0
in step (7), therw is already contained in the moduM’ generated by the elements
of Vmin. Otherwise, the vector’ is not contained inM’, since the elements @f are
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a d-truncatedo-Grébner basis and we can apply the submodule membership test (see
Kreuzer and Robbian®00Q Proposition 2.4.10.a). In that case, the element¥qf,
together withw, form a minimal system of generators of the moduMle+ (v) = M’ + (V')
by Corollary 10 Moreover, the elements df, together withv’, form a d-truncated
o-Grébner basis oM’ + (v’) by Corollary 8

Altogether, it follows that, after degrekis finished, the elements ¥y, are a minimal
system of generators ¢M-q), as we wanted to show.[

Remark 14. Let us collect some observations about this algorithm.

(a) If we are only interested in a minimal system of generator8ofand not in a
Grobner basis), we can stop the algorithm after we have completed dégyee-
maxdegvi) | 1 < i < s}. In this case it suffices to append only the pairs
{(,8) | 1 <i < 9,% = ys,dedy(0is) <rLex dmax t0 the setB in steps (5)
and(8).

(b) In addition, we could alter stgi8’) and append the vectof instead ofv to the list
Vmin- ThenVnin would still contain a minimal homogeneous set of generatoid of
when the computation ends. These generators would not be contained in the initial
tuple V any longer, but they would have the additional property that each vector is
fully reduced against the previous ones.

The final part of the section is devoted to a result which will be essential for our
discussion of the minimalization of the critical pairs. Namely, we are going to apply the
algorithm ofCorollary 13to a reduced Gatiner basis and improve it significantly in that
case. The main differences between the two algorithms occur in step (7), where it suffices to
compare terms instead of computing normal remainders, and in step (8), where we append
v to bothG andVnin.

Theorem 15 (Minimal Generators in a Reduced@rier Basis).In  the situation of
Theoremll, letV = (v1, ..., vs) be the reduced-Grobner basis of M. Consider the
following instructions.

(1) LetB=@,W=V,G =0,5 =0, andVmin = 0.

(2) Let d be the smallest degree with respectéa of an element of B or ofy. Form
B4 andWjy, and delete their entries from B anf, respectively.

(3) If Bq = @, continue with stei6). Otherwise, choose a pair, j) € By and remove
it from By.

(4) Compute § =NR, g(Sj). If S/j = 0, continue with stef3).

(5) Increase § by one, appendg = Sj to the tupleg, append the following set
{(,9) |1 <i <9, ¥ = yg} to B, and continue with sted).

(6) If Wy = @, continue with steff9). Otherwise, choose € Wy and remove it from
Wiy

(7) If LT, (v) = LT, (g) for some ge G, then replace the element g ¢hbyv. Continue
with step(6).

(8) Increase Sby one, appendg = v to the tuplesf and Vnin, and append(, s) |
1<i <9,y = yg) tothe set B. Continue with st€p).

(9) If B =0 andW = ¢, return Vmin and stop. Otherwise, continue with st&).
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This is an algorithm which computes a subtuplg, of V such thatVyin is @ minimal
system of generators of M.

Proof. It suffices to show that this procedure has the same effect as running the algorithm
of Corollary 13on V.

First we use induction od to show that, after we have finished some deglébe tuple
G has the same elementssy. Every element ol is appended tg at some point in
step (7) or (8). On the other hand, if an elemggts put intog in step (5), it has a leading
term which is not a multiple of an element Bt4. Hence it is swapped out ¢f at some
pointin step (7).

Next we note that, after we have finished cycling through steps (3), (4), and (5) in
degred, the tupleg is ad-truncated minimad -Grébner basis oM _g.

Now we turn our attention to the loop described in steps (6), (7), and (8). Notice
that the effect of steps (7) and (8) is independent of the order in which we choose the
elementa € Wy in step (6). Hence we can assume for the purposes of this proof that we
always choose the vectorin YWy which has the minimal leading term with respectto
With this assumption, we show inductively that when we run steps (7) and (8) for some
elementv € Wy, at each point the elements ¢hare a minimab -Grébner basis of the
module they generate, and the elementB@h are a minimal system of generators of that
module.

For the induction step, we have to consider two cases: aitleswapped intd@; in step
(7) or appended to botf andVmin in step (8). In the first case, it suffices to show that the
module generated by the elementgjofloes not change when we perform the swap, i.e.
that the difference — g is contained in this module. This follows from the observations
that LT, (v — g) <o LT,(v) and all elementd in V such that LT (7) <, LT, (v)

are already inG. Sincev — g RN 0, we havev — g i 0. In the second case, it
is clear thatG continues to be a minimal @bher basis of the module it generates by
Corollary 8 andVnin continues to be a minimal system of generators of that module by
Corollary 10

Finally, we note that in step (8) we can appantb G without passing to the normal
remainder, since is an element of a reduced @mier basis and thus irreduciblel]

Remark 16. Let us make some observations about the preceding algorithm.

(a) The proof of the proposition shows that the algorithm reconstructs the given reduced
Grobner basis insidg, and thatj<q has the same elementslag after some degree
d is finished.

(b) Moreover, we note that in step (4) it is not necessary to compute the normal
remainder NR 5 (S;j). Rather, it suffices to perform a full leading term reduction.

(c) The different elements NR;(S;) computed in step (4) and the elementg Vy
which are swapped intg by step (7) are in 1-1 correspondence, since every new
element computed in step (4) must have a new leading term in the leading term
module of M. This new leading term must be the leading term of an element in the
reduced Gobner basis, hence it is swapped.
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4. Minimalizing thecritical syzygies

In this section we continue to use the assumptions and notation of the previous section.
If we look atTheorem 11and its proof, we can see that instead of treating all p&irp)
such thatojj is contained in the set of critical syzygi€s it would be enough to treat
those pairs corresponding to a sub®ec X which is a minimal system of generators of
Syzp(Cit1€y,, . . ., Csts€)y).

In order to find®, we observe that the application of two of the rules for killing critical
pairs given inGebauer and Mller (1987 produces a minimal @bner basis of the module
Syzs(citie,,, . . ., Csts€),) contained in the seX’. From this we derive the idea of finding
6 by applyingTheorem 15We need the following definition.

Definition 17. On the set of term&"(¢1, ..., &s) in @_; P(—d;) we define a relation
by letting

_ , ttie, >, t'tje,;, or
tei ZrtSJ < {ttiem :t/tjeyj and i > J
fort,t’ € T" andi, j € {1,..., s}. As in Kreuzer and Robbian(200Q Lemma 3.1.2), it
follows thatr is a module term ordering. It is called the term orderimduced by the tuple

(t1&),, . .., ts€)) and byo.

By Kreuzer and Robbian(200Q Proposition 3.1.3), the séf is a t-Grobner basis
of the module Syg(citie,,, ..., Cstse,,). Moreover,ojj is a homogeneous element of
@®;_, P(—di) of degree deg (cij ) = deglem(ti, tj))+38,,. Foralli, j € {1, ..., s}, welet
tij = (lem(ti, tj)/t). Now the main result oBebauer and Mller (1987 reads as follows.

Proposition 18. Consider the following instructions.

RULE 1. Delete in X' all elementsojk such that there exists an index i in the set
{1,..., ] — 1} such thatg; divides k;j. Call the resulting sef.”.

RULE 2. Delete in X’ all elementsoix such that there exists an index j in the set
{i +1,...,k—1} such thatg; properly dividesy;. Call the resulting set”.

RULE 3. Delete in X" all elementsoj; such that there exists an index k in the set
e {j +1,...,s} such that k properly divides;§ and tjx properly divides ;. Call
the resulting sef.””.

Then the seL”” still generatesSyzp (Cit1e),, . . ., Csts€),).

Remark 19. Let us interpret the previous proposition in another way. Feril< j <'s
such thaty; = yj, we have LT (0ij) = tjiej. Hence Rules 1 and 2 can be restated as
follows.

RULE 1. Delete inX all elementsojj such that there exists an element such that
LT (aij ) is a proper multiple of LT (oj- ).

RULE 2. If, among the remaining elements, there are elemeftsoij such that
LT (0ij) = LT+ (0i/j), then delete the one having the larger index fhax}.

From Rules 1and 2 it follows that the sef’” is a minimalz-Grébner basis of the module
Syzp(Citiey,, ..., Cstsey,), i.e. the leading terms of the elementssf minimally generate
the leading term module.
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In general, it is not true thab” is a minimal system of generators of the module
Syzp(citie),, ..., Csts€,), as our next example shows. (For another example, see
Gebauer and Mdiler (1987 3.6.).)

Example 20. Let P = Q[X, Y, z] be standard graded; let= 1,s = 4 andt; = x322,

to = x3y%, t3 = y°7%, t4 = x2y°z. Then we get1r = yte1 — 722, 013 = Y2e1 — X¢3,
014 = y581 — XZgy, 023 = y2282 — X383, 024 = YZe3 — X&4, and034 = X283 — Z&4. By
applying Rules 1 and 2, we get the minimalGrébner basisy” = {012, 024, 034, 013}

of Syzp (i1, to, t3, ta), since LT (o23) = LT, (013) and LT;(c14) = Z - LT, (024). Now
we use Rule 3 and find”” = X”, but X’ is not a minimal system of generators of
Syzp (11, to, t3, ta), Since we have13 = yo12 + Zo24 — X034.

Before continuing, let us introduce a new notion. If we have an elemgeand perform

a reduction stepjj Cti;‘ c't’'ej+c"t"¢ir, wherec, ¢/, ¢’ € K andt, t’, t” € T", we call this
ahead reduction step. (Notice that thej -indices have to match!) Similarly, we can define
atail reduction step as follows:aj; i e + c’t"ej. Itis clear that a tail reduction
step does not change the leading term of the element.

Proposition 21. The sets = {—cj -ajj | oij € X"} is the reduced-Grobner basis of the
moduleSyz, (cit1e),, . . ., Csts€),).

Proof. Since passing fronX” to Yis equivalent to normalizing the leading coefficients,
and sinceX” is a minimalr-Grobner basis, it remains to show that no tail reductions are
possible among the elements.Bf But if we perform a tail reduction on some element of
Y, we get an element of the foréiio;/; such that’ < i. Here we have to havie= 1, since

aij is part of a minimal Gobner basis. Now we obtain a contradiction to the minimality of
iinRule2. O

Remark 22. Let us apply the algorithm offheorem 15to the setY. We make the
following observations.

(@) Anpair of pairs i.e. a critical pair between two elemenig, oj-j- yields anS-vector
S, j).a.j) = Ctaij — c't'o/j such that, ¢’ € K andt, t’ € T" andj = j’, since
the two leading terms have to cancel. Without loss of generalitiy,4et’. Then the
result is¢foi- for some¢ € K andf € T". The degree of such a pair of pairs is

dedy (S j.i.jy) = degy (D) + degy (oii’)

= deg, <7lcm(tit’_ti,’ tj)) + degy (¢j)
j
= degy(Iem(ti, tir, tj)) + 8y, .

(b) During the course of the algorithm, a newoBnéer basis element can only be
obtained from a pair of pairs ff= 1. This is equivalent to g&t)j , ti/j) = 1.

Now we are ready to optimize the minimalization of the critical syzygies. To ease the
notation, we shall minimalize the s&t’ instead ofY. The lack of the normalization of the
leading coefficients is clearly of no consequence. We need the following lemma.
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Lemma?23. Letl<i <j<m<sandie({l,...,j—1}\{i}. Suppose there are terms
t, ', t” € T"\{1} such thatijj = oji’ + toi’j = t'oim —t"ojm andoim = toi'j +t"ojm.
Thent, t, and t’ are pairwise coprime.

More precisely, givenx € {1,...,n}, we definen = deg (ti), «' = deg_ (i),
B = deg (tj), andy = deg, (tm). Then one of the following four cases occurs.

(1) We havex = y > g anda > o'.
(2) We havex’ = B8 > y anda’ > a.
(3) We haver = o’ > B anda > y.
4) Wehavex =o' =B >yora=B=y>d ord =8=y > a.

Proof. Comparing coefficients in the given equations yields the following equalities:
lem(ti, tj) = lem(t, tir) = lem(ti, tm) = tlem(t, tj) = t'lem(t, tm) = t” lem(tj, tm).
Thus the exponent o, in these terms satisfies max 8} = maxa, o’} = maXea’, y} =
deg, (1) +max{e’, B} = deg, (t') + maxa, y} = deg, (") +maxp, y}. We distinguish

the following four cases.

Casel. Suppose that, dividest. In this case, may, o’} > maxXca’, B} yieldsa > o’
anda > B. Thena = maxXa, o'} = max{o’, y} showsx = y, i.e. we have the inequalities
stated in case (1) of the claim. Furthermore, it follows that max{«, y} = max3, y},

i.e. thatx, divides neithet’ nort”.

Case2. Suppose that, dividest’. In this case, m&x, o’} > maxa, y} yieldsa’ > o
anda’ > y. Then maXe, B} = maxXa, '} showsa’ = 8, i.e. we have the inequalities
stated in case (2) of the claim. Furthermore, it follows fhiat maxa’, 8} = max{g, y},

i.e. thatx, divides neithet nort”.

Case3. If x, dividest”, we argue analogously and obtain the inequalities stated in (3)
as well as the fact thad, divides neithet nort’.

Case4. If x, divides neithet nort’ nort”, an easy case-by-case argument yields the
possibilities listed in (4). O

Proposition 24 (Minimalization of the Critical Syzygies).et 2. be ther-Grobner basis
of Syzp(citie),, . .., Cstse,) defined inProposition18. Consider the following instruc-
tions.

(1) LetB*=0,W=2X", A=0,andO = {.

(2) For all ojj,0ij € X" suchthatl < i < i’ < j < s, form the S-vector
Sa.j.a.jy = toiir, wheret € T. If { = 1, appendb;j’ to B*.

(3) Letd be the smallest degree with respedtéa of an element oB* or W. Form B}
andWy, and delete their entries frol8* and W, respectively.

(4) If By = ¢, continue with stef§11). Otherwise, choose an element < Bj and
remove it from3y.

(5) If LT (aij) € LT;(Aqg), then continue with stef®).

(6) If LT (0ij) = LT:(0j/j) for some elementj;; € Wy, then removes; j from Wy,
append it ta4, and continue with stef#).

(7) Find ojrj € A_q suchthatf; is a multiple of §;.. Then perform the head reduction

stepaij 25 toxe, wheref € T", where k= min{i, i’}, and wherel = maxi,i’}. If
t # 1, continue with stejj4).
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(8) If LT, (oke) € LT (Ag), then continue with stef@).
(9) If LT (ok¢) = LT (ow¢) for some elementy, € Wy, then remove the element,
from Wy, append it ta4, and continue with stef).
(10) If oke € B, then deletey, in B; and continue with stef¥), applied to this element.
Otherwise continue with stg@).
(11) AppendWV4to A andtoO.
(12) If B* = @ andW = ¢, return © and stop. Otherwise, continue with st&).

This is an algorithm which computes a subéet. ~” such thato is a minimal system of
generators 0Byzp (Cit1€,, . . ., Csts€)).

Proof. It suffices to show that the given instructions define an optimization of the
application of Theorem 15to the setX”. The tuple A corresponds taj there, ©
corresponds t®min, andB* corresponds td.

The first significant difference occurs in step (2). Instead of producing the pairs of pairs
inductively each time we find a new @bher basis element, we precompute them all at
once. This is possible, since we know frarheorem 15hat we are merely recomputing
the Giobner basist”. Moreover, we do not store the pairs of pairs, but8weectors they
generate, and we do not stdbasectors which are clearly useless by part (b) of the remark
following Proposition 21

The main difference occurs in steps (5) through (10). Instead of computing the normal
remainder of thes-vector, we perform leading term reductions only and check the result
after each reduction step. When we choose an elemgein step (4), it is not contained
in Aq, since if an elementy, is appended tod in step (11) it cannot be contained i
by step (10). But the elementj could have a leading term in LTAq) without being

contained indq. We claim that, in this case, we knaxy i 0, i.e. thatsjj produces no
new Giobner basis element.

To prove this claim, we first note that cleatl/is a subtuple o#V at all times. Since
the elements o¥V are fully interreduced, the tail afij cannot be a leading term of an
element of4q. On the other hand, if L(oij ) = LT (0j/j) for oi/j; € Aqg, then the leading
term of the result of the reduction ef; by oj/; is the tail ofoj;. Henceo;j can be tail
reduced usingd 4. By applying the same argument to the result of this tail reduction step,
we conclude that after several tail reductions usihg, we reach an element ofq, and
the claim follows.

The next possibility fowj; is that it is head irreducible with respect.tb In this case
its leading term is equal to L{oj/j) for someosi/; € Wg. Now Theorem 15ays that we
should put NR 4(aij) into A and later swap it fosi ;. But, as we just saw, we can tail
reduceo;j using.A.q until we reachoj/j. Thus the normal remainder ig/; and is put
into A immediately, i.e. without actually performing the tail reductions and without a later
swap.

The last possibility for LT (ojj ) is that it can be reduced usitd).q. This reduction step
is performed in step (7). Let us discuss the possible outcomes.

If the result is of the fornioy, with € T™\{1}, thenoy, has a lower degree and satisfies

Oke i» 0, becausel contains a truncated @Gbher basis. Consequently, we hawei 0
and step (4) ol5tells us to try the nex&-vector.



M. Caboara et al. / Journal of Symbolic Computation 38 (2004) 1169-1190 1183

If the result of the head reduction step has one of the new leading terms provided by the
elements oiVy, we notice this in step (8) or (9). In the first case, the elemeydhas
already been swapped intband nothing needs to be done. In the second case, we perform
the swap in step (9).

If the result is an elemeniy, of degreed which can be further head reduced, we check
in step (10) whethesy, € Bj. In that caseyjj andoy, have the same reductions and it
suffices to treaty, in step (7). Otherwise, we claim thag, is one of the elements @&}
which has been dealt with already, i.e. that we can go back to step (4) and treat the next
element of3}.

To prove this claim, we first usej; € Bj in order to writeojj = t'oim + t"ojm
with t’,t” € T"\{1} andj < m < s. Secondly, by step (7), we have the equality
oij = toyj £ ok, Whereox, = Foj;; andt € T"\{1}. By looking at the coefficient of
gj in the equatiomij: = t'oim — toj’j — t” ojm, we see thatlem(t/, tj) = t” lem(t;, tm).

This term is a multiple of, and ofty,. Hence itis of the forni lcm(t;/, ty,) for somef e T",

and we havesjj; = t'oim — foim. If £ # 1, thenoy, is a pair of pairs, i.e. itis either iB}

or it is one of the elements A} treated before. Hence the claim follows if we can show
thatt = 1 does not happen.

Suppose that = 1. Then we are in the situation of the lemma. Since the conditions of
steps (8) and (9) did not apply, it follows that, can be further head reduced usidgy.
Hence there exist, u’ € T" andj’ < maxi, i’} such thabi; = uoj/j» + U'oj; andu # 1
oru’ # 1, depending on whethér> i’ ori <i’.

Now we show that/ # 1 is impossible. We use the notation of the lemma and let
§ = deg, (tj), wherex, is one of the indeterminates occurringtini.e. where case (1)
of the lemma holds. Then the equation lgmt;) = ulcm(t/, tj)) = u’lem(t;, tj) shows
maxa, o’} > maxa, §}. This impliesa’ > « anda’ > §, in contradiction to case (1) of
the lemma. Similarly, we can show that# 1 is impossible. This concludes the proof of
the claim.

Altogether, it follows that steps (5)—(10) implement the full reductiomipftogether
with the swapping procedure of step (7) 6. Hence the remaining elements Wy
are precisely the minimal generators of degdewe are looking for, and they have to
be appended t® in step (11). O

Let us apply this algorithm in the situation Bkample 20

Example 25. Our task is to minimalizéV = X" = {012, 013, 024, 034}, Where we have
dedy (012) = 9, degy(o13) = 10, and deg,(024) = degdy (034) = 9.

In step (2), the algorithm constructs the £&t The pair of pairg(2, 4), (3, 4)) yields
S(2.4),(3,4)) = 2024 — X034 = —y2282 + X383 = o3, and this is the only element &F*.
Notice that it has degree 10.

In step (3), the algorithm starts to operate in degtee 9. SinceB5 = ¢, it appends
012, 024, andoz4 to A and @ in step (11).

Next we process degree 10. In step (4), we chegse 3], and set3], = . Then, in
step (6), we find LT (023) = x3¢3 = LT, (013), Whereo1s € Wio. Henceo1s is removed
from Wip and appended td in step (6).
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Thus we have3* = ¢ and W = ¢ at this point, and step (12) returns the set
O = {012, 024, 034}. We note that this is the correct answer, and there is an improvement
over the application oProposition 18oming from the fact that in step (6) we merely
check LT; (gij) € LT (Wjy) rather thari; € Wy.

The following example provides a case where it is actually necessary to do one head red-
uction step in (7) in order to find a previously undiscovered non-minimal critical syzygy.

Example26. Let P = Q[Xy, ..., xs] be standard graded; let= 1 ands = 4. The

termsty = x2x$xax2, t2 = xSxoxaxd, t3 = x8x2x$, andts = x¥x5x yield the critical
8u2 6 8 2 8,2 2

syzygiesmz = X{Xg€1 — X2X3£2, 013 = X{€1 — X4X5€3, 014 = X X5€1 — X5X4€4,
023 = X2X§82—X4X§83, 024 = ngz—X2X484, and034 S Xg83—X§84. Here steps (l) and (2)
of Proposition 18liscardo,3 andoy4, because we have kTo23) = XaXgez = X2 LT (013)
and LT; (o14) = X22X484 = XoLT;(024). Thus we havel” = {012, 013, 024, 034}. We note
that we have dgg(o12) = 21, degy(o13) = 19, and deg,(024) = degy (o34) = 20. But
X is not minimal, since we havei» = X2013 — X2024 + X4034.

Now we apply our algorithm. In step (2), we have to compgig4),(3,4)) = X2024 —
X4034 = X2X§82 — X4X§83 = o23. Thusoz3 is appended t@*. It has degree dgg(o23) =
21. No further pairs of pairs are found.

In step (3), the algorithm starts to operate in degfee 19. We haveBjy = ¥ and
Wig = (013). Thus we appendi3 to A and @ in step (11). Next we pass to degree
d = 20. We still haveB3;, = #, but now we geW,o = (024, 034). In step (11) 24 and
o34 are putintod ande.

When we start processing degike- 21, we have to chooses € B3, and set35; = ¢
in step (4). The leading term LTo23) = X4x§83 is not equal to one of the leading terms
of the elements 0fd>1 or W»1. But we can perform a head reduction step in (7), namely
023 23 — 015, Here step (8) does not apply, but in step (9) we havg &) € LT, (Wa21).
Thus we continue by removing 2> from W>1 and appending it tol.

Finally, we getB* = @ and W = @. The algorithm return®® = {013, 024, 034}.
As mentioned above, the non-minimal critical syzygy was discovered after one head
reduction step in (7).

5. An optimized Buchberger algorithm

In this section we combine the results obtained so far. We continue to use the notation
and conventions of the previous sections. In particular, wélet K[x1,...,Xpn] be a
polynomial ring over a fieldK which is positively graded by a matriW e Matm n(Z),
and we letM be a graded submodule of a graded fReenoduleF = @_, P(—§;) which
is generated by a tupl = (v1, ..., vs) of homogeneous vectors. Furthermore, weslet
be a module term ordering aif'(ey, ..., &).

In the following theorem the sets of critical pairs corresponding to the sets of critical
syzygies considered earlier are denoted by the normal letters corresponding to their
calligraphic versions.
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Theorem 27 (Optimized Buchberger Algorithm)in the above situation, consider the
following sequence of instructions.

(1) LetWw=V,A=0,B=0,B*=0,G=¢,andlet$=0.

(2) Let d be the smallest degree w.Lex of an element of B ovV. Form By, Bj, W,
and delete their entries from B,*Band W, respectively.

(3) ApplyMinPairs(A, By, BY).

(4) If By = 0, then continue with stefy). Otherwise, choose a pair, j) in By, delete
it from By, and appenditto A.

(5) Compute $ and Sﬁ =NR, g(Sj). If S{j = 0, then continue witlf4).

(6) Increase sby one, appendg= S’j to G, performUpdate(B, B*, gy), and continue
with step(4).

(7) If Wa = ¢ then continue witl{10). Otherwise, choose € Wy and delete it inVy.

(8) Computey’ = NR; g(v). If v/ = 0, continue with stef§7).

(9) Increase §by one, appendg = v’ to G and performUpdate(B, B*, gy). Then
continue with stef7).

(10) If B = @ andW = ¢, then returnG and stop. Otherwise, continue with st).

Here the procedurgpdate(B, B*, gy) is defined as follows.

(Ul) FormthesetC={(i,s) |1<i <9,y = ys}.

(U2) Delete from C all pairgj, s') for which there exists anindexi inthe &t. .., j—1}
such that; divides ;.

(U3) Delete from C all pairs(i, s') for which there exists an index j in the sgt+
1,...,8 — 1} suchthaty; properly dividesd;.

(U4) Find in C all pairs (i,s') and (j,s) such thatl < i < j < s and such that
gcdtis, tjsr) = 1. For each of these, check whetligrj) is already contained in B
and append it if necessary.

(U5) Append the elements of C to B and stop.

Furthermore, the procedunéinPairs(A, By, BY) is defined as follows.

(M1) If Bj = ¢, then stop. Otherwise, choose a pédirj) in B} and remove it from B.

(M2) Iftji = t;ji for some pairi’, j) € A, then continue with ste{1).

(M3) Iftji = t;i- for some pairi’, j) € Bg, then remove this pair fromBand append it
to A. Continue with stefM1).

(M4) Find (i’, j) € A such that f divides §i. Let k= min{i,i’}, and let¢ = max{i, i'}.
If gcd(tij , ti/j) # 1, then continue witlfM1).

(M5) If tx = tew for some paink’, £) € A, then continue witiM1).

(M6) If tex = to for some pair(k’, £) € By, then delete this pair in & append it to A,
and continue withM1).

(M7) 1If (k, £) € Bj, then deletek, £) in B} and continue witt{M4), applied to this pair.

(M8) Continue with stegM1).

Altogether, we obtain an algorithm which computes a tupl&hose elements form a
homogeneous-Grobner basis of M. Moreover, the set of pairs which are treated at some
time in stepg4)—(6)of the algorithm corresponds to a minimal system of generators of the
moduleSyzp (Cit1€y,, - . ., Cyty €y ).
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Proof. The main algorithm of this theorem agrees with the homogeneous Buchberger
algorithm (seeTheorem 1}, except for the introduction of the procedurénPairs

(A, By, BY)) in step (3) and the alteration of the enlargemenBoin steps (5) and (8)

of Theorem 1which is now performed by the procedurgdate(B, B*, gy).

The foundation for these changes is the material presented above, especially
Proposition 24 In steps (4)-(6) we want to treat only those pdirsj) for which the
corresponding elements; are contained in the minimal system of generat@rsf the
gradedP-module Syz(citiey,, ..., Cyty€y, ).

Procedur@pdate(B, B*, gy) applies Rules (1) and (2) of Gebauer andIMi’in steps
(U2) and (U3), respectively. Moreover, notice that step (U4) computes all pairs of pairs
which satisfy the condition of part (b) &emark 22and stores the pairs corresponding to
the resultingS-vectors inB*.

Thus, in order to minimalize the critical pairs we process, we need to apply
Proposition 24to the set of critical syzygies corresponding to the set of critical
pairs B, where we can refrain from computing the pairs of pairs, because they have
already been generated and storedBf. This task is performed by the procedure
MinPairs(A, By, BY). Its steps (M1)—(M8) are easy translations of steps (4)—(10) of
Proposition 24nto the language of pairs. Notice that we have (dfj ) = LT, (ok,) if and
only if j = ¢ andtjj = tx. Altogether,Update(B, B¥, gsy) andMinPairs(A, Bq, Bj)
make sure that only the pairs correspondin@tare treated at some point in steps (3)—(6).

Finally, we remark that is used to keep track of the paifs j) for which gj; is in
that part of the minimak-Grébner basis¥” of Syz,(citie,,, ..., Cytsy€,,) which has
been computed so far. Thus it is updated when a non-minimal elemérit &f found in
step (M3) or step (M6), and when a pair corresponding to an elemefitisfchosen for
treatment in step (3). O

Let us illustrate the performance of this algorithm by a simple example. It shows that
cases likeExample 20occur naturally during actual @bher basis computations.

Example28. Let P = Q[x, YV, z] be standard graded, let = DeglLex, letr = 1, and
let M C P be the homogeneous ideal generated by the polynomiais x3z° + x2y?z,
v = x3y8 andvs = y'072 Then the leading terms ate = x°2%, t, = x3y®, and
t3 = y1072. Let us follow the steps of the optimized Buchberger algorithm.

The first degree isl = 5. SinceBs = §, the first actions are to choosg € Ws in
step (7) and appengy = v1 to G in step (9). Then we continue with= 11 and choose
v2 € Wiy in step (7). Since’ = NR, g(v2) = vz, we appendy, = v2 to G in step (9)
and update the set of pairs. The resulBis= {(1, 2)} andB* = . Now we have to treat
the degreel = 12. Notice that the degree of the pélr, 2) is 13. HenceB12 = ¢ and we
have to chooses € Wi» in step (7). Since’ = NR, g(v3) = v3, we append;z = v3
to G in step (9) and update the set of pairs. In step (U1), we f@rma {(1, 3), (2, 3)}.
In step (U2), we obtaitts; = x3 = tzp, and thereford2, 3) is deleted inC. The result
is B = {(1,2),(1,3)} and B* = @. This completes degree 12, and we continue with
degree 13.

We choose the paifl, 2) in step (4) and append it td. Then we computes; =
y8o1 — g = x?y!%zandS, = NR, ¢(S12) = x?y%. Thus we have a new Gbher
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basis elementiy = x?y19z and need to update the pairs again. In step (U1), we form
C={(149), 2 49, (3, 4)}. Step (U2) does not apply, but in step (U3) we remove the pair
(1,4) from C, sincets, = x properly dividests1 = xz Now we check thatyy = y?z
properly dividestoz = y?z2 andtss = x2 properly dividegs, = x3. Hence the pai¢2, 3)

is appended t®*.

At this point we have finished degree 13, and we have the following situatios:
{(1,2},B =1{(1,3),24, 3,49}, B* ={2,3},G = {01,...,04}, ands’ = 4. The
next degree isl = 14, where we have to deal with the pairdBiy = {(2, 4), (3, 4)}. Since
B, = ¥, we choosé2, 4) in step (4) and append it tA. Then we comput&, = 0 and
continue by choosing3, 4) in B14 and adding it toA. Again S34 = 0, and degree 14 is
finished.

Now we start degree 15 by performibgnPairs(A, Bis, Bjs), where we haveA =
{(1,2),(2,4), (3,4}, Bis = {(1, 3)}, andBj; = {(2, 3)}. In step (M1), we choose, 3).

In step (M3), we discovets, = x3 = t3;, where(3, 1) € Bys. Hence(l, 3) is deleted in
B1s and appended té. Then the procedure is finished, and the facts Bagt= ¢ as well
asWis = @ allow us to returrg and stop.

As in Example 2Qwe have found one useless pair, namely the (dai8) in degree 15,
which would not have been discovered by the Gebauetlaviinstallation, and which we
were able to discard by a simple combinatorial check.

Remark 29. Let us discuss the efficiency of the algorithmTdfeorem 27

(a) Steps (U2) and (U3) of this algorithm correspond to Rules (1) and (2) of the
Gebauer—Mller installation. However, Rule 3 is not performed by the procedure
Update(...), but by step (M2) of the proceduranPairs(...). In fact, step (M2)
gets rid of more pairs than Rule 3, because Rule 3 requitgy < Bj N By,
whereas we only need a pdit j) € Bj such that LT (0ij) = LT (0j/j) for some
(’,j) € By.

(b) A potential drawback of our approach is that the number of pairs of pairs considered
in step (U4) is quadratic in the number of elementsGofurviving steps (U2)
and (U3). But that number is usually fairly small. Hence the cost of (U4) and the
cardinality of B* tend to be rather small. On the other hand, we do not need to check
Rule 3 for all elements of the lid8 which is usually rather long. Our experiments
suggest that, on average, the overheads of the two approaches are comparable.

(c) Our proceduréinPairs(...) is very efficient in treating the elements Bf. Each
time we loop through steps (M2)—(M8), we delete one paiBj and B} is never
enlarged. In practice, we find that the lisB; are generally small. Hence our
algorithm harnesses the full power and efficiency of the GebaualieMristallation,
while it simultaneously killall unnecessary pairs at a comparatively small cost.

6. Experimental data and conclusions

In this section we want to provide the reader with some experimental numerical data
which illustrate the performance of the optimized Buchberger algori2iiras well as
technical observations coming from an implementation in an experimental version of the
“CoCoA 5” library in C+ + (seeCoCoA 2001).
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In the following table, we compare the application of Rules (1)—(3pafposition 18
to our procedureSpdate(...) andMinpairs(...) in Theorem 27i.e. to the algorithm
of Proposition 24 Let us point out that our procedure always minimalizes the critical
pairs, independent of the order of the underlying terms. (Non-minimal critical pairs are
recognized at different steps, though.) For the GebauelieMinstallation, however, the
number of undiscovered non-minimal critical pairs depends strongly on this order.

To aid the reader in understanding this table, let us explain the meaning of the symbols.

e #(G) is the cardinality of the reduced @bher basis of the corresponding ideal.

e #(2) is the total number of pairs, i.e(¥) = (*3).

o #(X") is the number of pairs surviving Rules (1) and (2), i.e. the cardinality of the
reduced Gobner basis of pairs.

e B is the number of pairs killed by Rule (3), the GebaueoHst” “Backwards”
criterion.

e M23 is the number of pairs killed by steps (M2) and (M3)imeorem 27

e M48 is the number of pairs killed by steps (M4)—(M8)Tiheorem 27

e Gain = M23+ M48— B, i.e. the number of newly discovered non-minimal critical
pairs.

e #(O) is the cardinality of a minimal system of generators of the syzygies of the
leading terms. Hence we have®) = #(X") — M23 — M48.

#G) #( D) ) B M23 M48 Gain #(O)
T°51 83 3,403 250 7 7 0 0 243
Twomat3 109 5,886 741 15 26 1 12 714
Alex3 211 22,155 684 54 56 1 3 627
Gaukwa4 267 35,511 1,772 101 113 3 15 1,656
Kinl 306 46,665 3,411 70 172 0 102 3,239
Wang (Lex) 317 50,086 1,457 60 61 7 8 1,389
Cyclic 7 443 97,903 2,651 17 17 0 0 681
Hairer-2 506 127,765 5,305 150 152 4 6 5,149
Hom-Gonnet 854 364,231 11,763 587 648 27 88 11,088
Mora-9 4131 8530,515 46,395 1930 1914 23 7 44,458

The rows of this table correspond to standard examples obbi@r basis
computations. A file containing a description of every example can be downloaded at
ftp://cocoa.dima.unige.it/papers/CaboaraKreuzerRobbiano03.cocoa

Moreover, a file containing the list of leading terms of the reduceab@ef basis for
each example can be downloaded at
ftp://cocoa.dima.unige.it/papers/CaboaraKreuzerRobbiaBa@® oa

Technical noteln the well known example “Cyclic 7" we have homogenized using a new
smallestindeterminate (see the file mentioned above).

For the readers who would like to run their own tests, we note @&y}, #(Y), and # O)
are invariants of the reduced @ier basis. But the effect of both the GebauepHét™
installation and our optimized Buchberger algorithm depend strongly on the order in which
the elements of’ are produced during a @bner basis computation. For instance, this
means that it depends on the chosen selection strategy. In our implementation, pairs are
kept ordered in increasirgpgLex ordering, reductors are kept in the order in which they
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are produced, reductors of the same degree are keptinterreduced, and the reduction strategy
is full reduction.

The following table shows some timings. It compares Singular 2.0.0 with the current
experimental version of CoCoA 5 using the GM and CKR pair handling algorithms.
Timings are in seconds for Linux running on an Athlon 260€PU with 1.5 GB RAM.

All computations are over the rationals where the timings of the base field operations in
Singular and CoCoA seem to be comparable.

Technical note The reason that we include a comparison with Singular is an explicit
request made by a referee, who suggested comparing our timings with “another efficient
implementation”. The table below indicates that both Singular and CoCoA 5 have efficient
implementations of the Buchberger algorithm, and that our new algorithm has at least the
same efficiency.

Singular 2.0.0 CoCoA5GM CoCoA 5 CKR

T°51 (Lex) 149.32 7.28 7.14
Twomat3 1.21 8.66 8.50
Alex3 «1 0.54 0.56

Gaukwa4 80.30 99.31 98.57
Kinl 407.09 89.25 87.41
Wang (Lex) >1200 382.86 379.31
Cyclic 7 >1200 76.61 76.65

Hairer-2 79.36 141.83 139.76
Hom-Gonnet 3.97 4.55 4.95
Mora-9 30.53 86.17 89.75

7. Conclusions

First of all, let us collect some technical observations based on our implementation of
the optimized Buchberger algorithm.

(a) When we apply Rules 1 and 2 Bfoposition 18the remaining set of pair§” is
usually almost a minimal system of generators of the module&ytie,,, ...,
Cyty€,, ). Thus both Rule 3 and our algorithm kill comparatively few pairs.
Nonetheless, over the rationals (or other costly fields), the saving is worthwhile
because the treatment of each single pair can take a long time.

(b) Steps (M5)—(M7) in the optimized Buchberger algorithm are independent. Hence it
is possible to order them in such a way that the computational cost is minimized.
This may be important if there are a large number of elemerisg ito be processed,
since the operations may have substantially different computational costs.

(c) All operations in our proceduréfpdate(...) andMinPairs(...) have been
greatly eased by memorizing the termys tji, and lcm;, tj) directly in the pair
data type.

(d) When a search is performed on the pairé\jrB, or By, full advantage can be taken
of the fact that we may rely on data structures which allow logarithmic search costs.

Looking at the timings above, we see that, on average and with comparable imple-
mentations, our new algorithm is faster than the GebauelieMinstallation. In some



1190 M. Caboara et al. / Journal of Symbolic Computation 38 (2004) 1169-1190

examples, the gains are relatively small, and in exceptional cases, the structure of
the combinatorial data produces a larger overhead for our algorithm than for the
Gebauer—Mller installation.
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