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We construct discrete symmetry transformations for deformed relativistic kinematics based on group 
valued momenta. We focus on the specific example of κ-deformations of the Poincaré algebra with 
associated momenta living on (a sub-manifold of) de Sitter space. Our approach relies on the description 
of quantum states constructed from deformed kinematics and the observable charges associated with 
them. The results we present provide the first step towards the analysis of experimental bounds on the 
deformation parameter κ to be derived via precision measurements of discrete symmetries and CPT.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Discrete symmetries play a fundamental role in our understand-
ing of the microscopic constituents of matter and their interac-
tions. The CPT theorem is one of the pillars of local quantum 
field theory and tests of CPT invariance can be performed with 
extraordinary sensitivity using neutral kaon systems [1–3]. Such 
sensitivity can be used to put stringent constraints on scenarios in 
which the postulates at the basis of the CPT theorem are altered 
like, for example, in models featuring Lorentz symmetry violation. 
It is thus quite natural to ask what is the fate of CPT symme-
tries in scenarios in which the structure of the Poincaré group, 
instead, is altered in a way which renders possible the introduc-
tion of an invariant Planckian energy scale. Such models have been 
suggested as a ‘flat-spacetime limit’ [4], or the “relative locality 
limit” of quantum gravity [5], describing Planck-scale deformations 
of relativistic kinematics. Even though their direct connection with 
quantum gravity has not yet been decisively proved, these mod-
els have played a prominent role as a test-bed for quantum gravity 
phenomenology. Most of such phenomenology has focused on the 
role of Planck-scale deformations of the energy–momentum dis-
persion relation and its impact on the time-of-flight of high energy 
particles from astrophysical sources (see e.g. [6]). In this note we 
discuss how discrete symmetries can be defined in a specific class 
of models of deformed symmetries based on non-abelian momen-
tum group manifold. Our analysis should be seen as a first theoret-
ical step towards the use of high sensitivity tests of CPT invariance 
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in neutral kaon systems to set bounds on the energy scale charac-
terizing the curvature of momentum space.

The key property of models of deformed relativistic symme-
tries we will consider is that ordinary flat Minkowski momentum 
space is replaced by a curved, non-abelian group manifold [7]. In par-
ticular for the so-called κ-deformed Poincaré symmetries [8–10], 
the momentum space is the AN(3) group, a subgroup of the 
four-dimensional de Sitter (or the five-dimensional Lorentz) group 
SO(4, 1). Geometrically such space describes a submanifold of four 
dimensional de Sitter space. If one considers four-dimensional de 
Sitter space of radius κ , being a (hyper)-surface in the five dimen-
sional Minkowski space defined by

−P 2
0 + P 2

1 + P 2
2 + P 2

3 + P 2
4 = κ2 , (1)

the AN(3) manifold is the submanifold of (1) identified by the in-
equality

P0 + P4 > 0 . (2)

Here we assume that P4 is given by the positive root of

P4 =
√

κ2 + P 2
0 − P2 .=

√
κ2 + M2 , (3)

where .= means equality on-shell, P 2
0 − P2 = M2.

There is a natural action of the Lorentz group SO(3, 1) on the 
manifold (1) (it just leaves P4 invariant and Pμ transform as com-
ponents of a four-vector). The orbits of SO(3, 1) on the AN(3)

group will span positive and negative energy mass-shells. Notice 
however that the condition (2) is clearly not Lorentz invariant, for 
the standard Lorentz action. A solution to this problem was sug-
gested in [11], where it was pointed out that the Lorentz action on 
negative energy states has to be modified to involve the notion of 
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‘antipode’. Here we would like to point out that such modification 
should not be seen as an ‘ad hoc’ prescription. Indeed, as in usual 
QFT, states with support on the negative mass-shell are elements 
of the complex conjugate one-particle Hilbert space, which is nat-
urally isomorphic to the dual Hilbert space [12]. Thus the action of 
symmetry generators on states with support on the negative mass 
shell is determined by the dual representation of the deformed Lie 
κ-Poincaré algebra, which, as discussed in more detail below, is 
defined through the antipode map of the generators. As we will 
see this will play a crucial role in our description of the charge 
conjugation operator.

In preparation for our discussion of discrete symmetries for 
AN(3)-valued momenta let us recall some basic facts about the 
κ-Poincaré algebra. With a choice of translation generators given 
by the ‘embedding coordinates’ defined by (1) the Lorentz algebra 
is not modified and reads

[Ni, P j] = iδi j P0 , [Ni, P0] = i P i

[Mi, M j] = iεi jk Mk , [Mi, N j] = iεi jk Nk ,

[Ni, N j] = −iεi jk Mk . (4)

All the non-trivial features due to the group structure of momen-
tum space appear in the way one defines dual and tensor product 
representations of the algebra [13], as we discuss below. Let us 
notice here that the algebra structure (4) is invariant under an 
arbitrary linear transformation of the generators Ti → A j

i T j , in 
particular under transformations of the form Ti → −Ti for some 
or all generators. If there is no scale available such linear trans-
formations exhaust all the possible isomorphism of the algebra. If, 
however, a scale is available, as is the case when momentum space 
has curvature, we can replace all the generators by the antipodal 
map.

In order to introduce such structure let us recall (the known 
fact) that the states of an ordinary massive scalar relativistic par-
ticle in Minkowski space belong to unitary irreducible representa-
tions of the Poincaré group. These can be identified with smooth 
functions on the positive mass-shell and, in the usual textbook 
treatment, such states are denoted by kets |k〉, being eigenstates of 
translation generators Pμ|k〉 = kμ|k〉. The action of such generators 
on dual states and on tensor product states is given, respectively 
by the dual and the tensor product representation of the algebra of 
translation generators: Pμ〈k| = −kμ〈k| = 〈k|(−Pμ) ≡ 〈k|S(Pμ) and 
Pμ(|k1〉 ⊗ |k2〉) = Pμ|k1〉 ⊗ |k2〉 + |k1〉 ⊗ Pμ|k2〉 ≡ �Pμ|k1〉 ⊗ |k2〉. 
We introduced the antipode S(Pμ) = −Pμ and co-product �Pμ =
Pμ ⊗ 1 + 1 ⊗ Pμ , borrowing notation and terminology from the 
theory of Hopf algebras.

When the linear space of the momentum four-vectors is re-
placed by the group AN(3) we can define one-particle states in 
a straightforward fashion: as in the ordinary Minkowski space 
case, we denote such states with kets |h〉 labelled by group ele-
ments belonging to a given orbit of SO(3, 1) on AN(3). For any 
parametrization of momentum space we can define a set of four-
momentum observables Pμ which associate four-vectors to eigen-
kets Pμ|h〉 = pμ(h)|h〉. For the action on dual states the non-
trivial structure of momentum space comes into play and one has 
that

Pμ 〈h| = pμ(h−1)〈h| ≡ 〈h|S(Pμ) , (5)

indicating that the eigenvector associated to such states ‘reads 
off’ the coordinates of the inverse momentum h−1 and in general 
pμ(h−1) �= −pμ(h). Likewise for tensor product states Pμ(|h1〉 ⊗
|h2〉) = pμ(h1h2)|h1〉 ⊗ |h2〉 ≡ �Pμ|h1〉 ⊗ |h2〉. The non-abelian 
group multiplication is reflected in a non-trivial co-product for Pμ

so that the total four-momentum of the composite state |h1〉 ⊗|h2〉
is given by the coordinates of the product group element h1h2 and 
implies a non-abelian composition law

pμ(h1h2) = pμ(h1) ⊕ pμ(h2) , (6)

which in our case takes the form(
p(1) ⊕ p(2)

)
0
= 1

κ
p(1)

0

(
p(2)

0 + p(2)
4

)
+ κ p(2)

0

(
p(1)

0 + p(1)
4

)−1

+
(

p(1)
0 + p(1)

4

)−1
p(1) · p(2) (7)

(
p(1) ⊕ p(2)

)
i
= 1

κ
p(1)

i

(
p(2)

0 + p(2)
4

)
+ p(2)

i . (8)

Let us stress that this momentum composition rule implies that 
the “inverse” momentum is defined by pμ(h−1), which is the 
eigenvalue of the operator S(Pμ). In what follows, rather than to 
the unusual composition rule (6), we will turn our attention to the 
antipodes of the generators of the κ-Poincaré algebra, since they 
will play a key role in the definition of discrete symmetries. In 
particular for translation generators associated to the embedding 
coordinates defined by (1) the antipodal map for momenta takes 
the form

S(P )0 = −P0 + P2

P0 + P4
= −P4 + κ2

P0 + P4
,

S(P )i = − κ Pi

P0 + P4
. (9)

Notice that in the limit κ → ∞, S(p)0 = −P0 and S(p)i = −Pi . 
Also S(P0) < 0 for P0 positive, and S(P )2

0 − S(P )2
i = P 2

0 − P 2
i so 

the antipode mapping preserves the mass shell condition (it maps 
a positive energy state into the negative energy one of the same 
mass).

Inspecting eqs. (9) we notice that the antipodes of momenta 
are bounded from above, for example

−S(P )0 = P4 − κ2

P0 + P4

.=
√

κ2 + M2 − κ2

P0 + √
κ2 + M2

<
√

κ2 + M2. (10)

This seems to be very puzzling at the first sight, because it follows 
from (10) that the energy of antiparticles is bounded. However one 
should remember that the deformed particle kinematics we are 
discussing here is intended as a possible approximation of a full 
quantum gravity theory at energies below the Planck scale, and 
thus features of the deformed theory should be taken seriously 
below the onset of full quantum gravity regime, i.e., far below the 
Planck scale. For this reason it is convenient to write down the 
leading order contributions to eq. (9), which are useful for phe-
nomenological analyses, to wit

S(P )0 = −P0 + P2

κ
+ O

(
1

κ2

)
,

S(P )i = −Pi + P0 Pi

κ
+ O

(
1

κ2

)
. (11)

For Lorentz generators the antipodes are given by

S(M)i = −Mi , S(N)i = − 1

κ
(P0 + P4)Ni + 1

κ
εi jk P j Mk , (12)

with the leading order expansion

S(N)i = −Ni + 1

κ

(−P0Ni + εi jk P j Mk
) + O

(
1

κ2

)
. (13)

Since the κ-Poincaré algebra is a Hopf algebra, the antipode sat-
isfies the Hopf algebra-defining axioms making it consistent with 
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the algebra and co-algebra structure. First, it can be verified by di-
rect calculation that the antipodes (9) and (12) map the Lorentz 
algebra into itself, exactly as it was in the classical case

[S(N)i, S(P ) j] = −iδi j S(P )0 , [S(N)i, S(P )0] = −i S(P )i ,

[S(M)i, S(M) j] = −iεi jk S(M)k

[S(M)i, S(N) j] = −iεi jk S(N)k , [S(N)i, S(N) j] = iεi jk S(M)k .

(14)

As a consequence of this the Casimir is invariant under the opera-
tion of taking antipodes.

Further, let us notice that the Hopf algebraic consistency condi-
tion between the antipode and coproduct

·(S ⊗ id) ◦ � = ·(id ⊗ S) ◦ � = 0

has a simple physical interpretation in the case of momenta. 
Namely if |h〉 is a one particle state with momentum Pμ|h〉 =
pμ(h)|h〉, then the eigenvalue of S(P )μ , given by S(P )μ|h〉 =

pμ(h)|h〉 ≡ pμ(h−1)|h〉, is the inverse momentum, i.e. (
p) ⊕ p =
p ⊕ (
p) = 0. It can be also checked by explicit calculation that, 
as in the undeformed case, for Pμ and Mi the composition of 
two antipode operations (9), (12) is an identity S2 = 1. This prop-
erty is obvious for rotations, since Mi are undeformed and not 
surprising for group valued momenta for which the momentum 
obtained by the action of the antipode is given by the inverse 
group element 
pμ(h) = pμ(h−1), and it follows that S2 = 1. The 
situation is different for boosts, however. Indeed using the anti-
homomorphism property of the antipode, S(ab) = S(b)S(a), one 
finds that

S2(Ni) = − 1

κ
S(Ni) S(P0 + P4) + 1

κ
εi jk S(Mk) S(P j)

= Ni + 3

κ
S(Pi) , (15)

where S(Pi) is given by (9). This is a particular case of the general 
formula quoted in [14].

We can now turn to the discussion of discrete transformations. 
Our strategy will be to focus on the physical states of the quantum 
system and derive discrete transformations as symmetries involv-
ing the quantum charges carried by such states.1

2. Space and time reflection

Our starting point will be space reflection or parity. This sym-
metry can be discussed using the simplest quantum states, those 
of a scalar neutral particle, which can be fully characterized by 
the (on-shell) energy and momentum they carry. The one-particle 
Hilbert space H can be viewed as a unitary irreducible repre-
sentation of the Poincaré algebra (like for an undeformed parti-
cle) [16] and it is spanned by kets given by |k〉 ≡ |ωP, P〉, with 
ωP = √

P2 + M2. Given the striking similarity with the undeformed 
case one might be tempted to stick to the ordinary definition of 
space inversion which leaves unaffected the particle’s energy ωP
while inverting its spatial momentum P → −P. There is, however, 
a crucial property of the usual formulation of particle kinematics 
that must still hold in the deformed setting. Namely that the total 
linear momentum of a particle and of its parity image must van-
ish. This must hold true even when their momentum belong to a 

1 After completing this note we learned from G. Amelino-Camelia that the idea 
that deformed discrete symmetries might require the concept of antipode for their 
description appeared a while ago, in a preliminary form, in [15].
non-abelian Lie group as is the case of deformations we are con-
sidering. Indeed a non-vanishing momentum will mean that the 
pair moves in a specific direction thus violating the very notion of 
parity symmetry. We are thus led to adopt the antipode in our def-
inition of parity transformed translation generators P : Pi → S(P )i . 
An important point is that if we want to use the antipode we must 
use it for all the generators in order to preserve the form of the in-
variants, like the mass Casimir, and the form of the algebra. Thus 
we are led to define the following action for the parity operator P
on κ-Poincaré generators

P(Pi) = S(P )i, P(P0) = −S(P )0

P(Mi) = −S(M)i, P(Ni) = S(N)i . (16)

The action of P on rotation generators is obtained from the re-
quirement that in the undeformed limit parity does not change 
spin and thus does not change the sign of Mi . Similarly for the ac-
tion of P on boosts, which in the undeformed limit switches their 
signs. Notice the ordinary behaviour of boosts under parity can be 
easily understood if one recalls that, in the co-adjoint orbit pic-
ture of a particle phase space [17], boost generators can be used 
to parametrize space coordinates and thus must change sign under 
parity. Thus parity can be fully characterized in a purely algebraic 
fashion using the generators of the (deformed) Poincaré algebra.

The same holds true for time inversion. Such symmetry is again 
a map of one-particle states into themselves and again we can 
start by the physical requirement that time reflection T is such 
that the particle and its time-reflected image have total vanish-
ing momentum. Thus we must have again the generator of spatial 
translation to be mapped into its antipode T(Pi) = S(P )i and all 
the other transformations must involve the antipodes. As in the 
case of parity we can derive the action of T on the other genera-
tors by requiring that its net effect will be to map the algebra (4)
into (14) and that in the κ → ∞ we recover the usual action of 
the time reversal operator. Thus in such limit rotation generators 
should flip sign since time reversal inverts spin and boost and time 
translation generators should remain unaffected. Thus the full set 
of time reflected generators is given by

T(Pi) = S(P )i, T(P0) = −S(P )0

T(Mi) = S(M)i, T(Ni) = −S(N)i . (17)

Notice that it follows from (16) and (17) that the combination of 
deformed parity and time reversal PT is actually undeformed for 
momenta and rotations, as a result of the fact that for them the 
antipode map is an involution, i.e. S2 = 1, but it becomes non-
trivial for boost, as a consequence of (15).

3. Charge conjugation

In order to understand charge conjugation we need to consider 
a system which possesses a ‘charge’ quantum number associated 
to a complex structure defined on its Hilbert space. This calls for a 
brief detour to review how such Hilbert space is constructed from 
the classical system. The phase space of a classical real scalar field 
can be equivalently described in terms of the space of solutions 
of the Klein–Gordon equation, in coordinate space, or by com-
plex functions on the mass-shell, in momentum space. Both spaces 
carry a representation of the Poincaré group. The Hilbert space de-
scribing the states of the associated quantum field can be obtained 
constructing a unitary irreducible representation out of the classi-
cal phase space. This is achieved via the introduction of a complex 
structure which amounts to a choice of time direction or posi-
tive energy [18]. Put it plainly such structure dictates the way we 
multiply a function on the mass shell by a complex number. For 
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functions on the positive mass shell we multiply by the complex 
number while for functions on the negative mass shell we multi-
ply by its complex conjugate (this ensures that, for a complex field, 
antiparticle states have positive energy). Thus, if functions on the 
positive mass-shell, appropriately equipped with a positive definite 
inner product, give us the one-particle Hilbert space H, functions 
on the negative mass shell are naturally associated to the com-
plex conjugate space H̄. It is a known fact that H̄ is isomorphic 
to the dual Hilbert space H∗ and thus, if we denote states in H
by kets |k〉, the bras 〈k| are naturally seen as elements of H∗ � H̄. 
If we characterize such states in terms of their quantum charges 
associated to translation generators, given the definition of dual 
representation of a Lie algebra, one can identify 〈−k| ≡ |k〉 which 
is nothing but a reflection of the familiar reality condition for the 
field φ̄(−k) = φ(k) which provides a natural isomorphism between 
H and H̄.

For complex fields the Hilbert spaces H and H̄ can no longer 
be identified via the reality condition and, in fact, they represent 
the one-particle and one-antiparticle Hilbert spaces respectively. 
Now the map C : φ(k) → φ̄(−k) relates such two spaces and it 
corresponds to the ordinary charge conjugation, a map swapping 
particles with antiparticles. How can this picture be extended to 
states in which momentum labels are coordinates on a group man-
ifold? The key is the isomorphism between H̄ and H∗ which tells 
us that once again our map involves the antipode. Indeed charge 
conjugation will again map states in H to states in H̄ and accord-
ing to the isomorphism above this will map a representation of 
the Lorentz generators into its dual and thus all generators will 
have to be mapped once again into their antipodes. To find the 
correct form of the map, however, we must keep in mind that, as 
explained above, antiparticle states are multiplied by the complex 
conjugate of a complex number. Thus the deformed charge conju-
gation operator will have again to be such that the algebra (4) is 
mapped into (14) but now all the generators in the κ → ∞ limit 
should remain unchanged. This fixes the transformation to the fol-
lowing form

C(Pi) = −S(P )i, C(P0) = −S(P )0

C(Mi) = −S(M)i, C(Ni) = −S(N)i . (18)

Such map exchanges the role of deformed particle and anti-particle 
and it can be easily showed that it exchanges the roles of the 
deformed U (1) charges carried by particle and antiparticle states 
derived in [11] for a complex scalar field. Notice also that since the 
antipode preserves the mass-shell relation, particles and antiparti-
cles have the same masses, as in ordinary QFT.

4. Summary

We provided the first formulation of discrete symmetries in 
a model of deformed relativistic symmetries defined on a group 
manifold momentum space. We focused, in particular, on the 
κ-Poincaré algebra, a widely studied example of deformed rel-
ativistic kinematics based on de Sitter momentum space. Even 
though for definiteness we restricted to such particular model, it 
should be noted that our construction is based on general features 
of relativistic kinematics with group valued momenta and as such 
it can be applied to other, structurally similar, frameworks.

A key ingredient of our construction was the use of the “clas-
sical basis” of the κ-Poincaré algebra whose algebraic sector (4)
is described by an ordinary Lie algebra. This makes it possible for 
us to use the ordinary minus “-” in the definition of the discrete 
transformation action. In other, nonlinear bases this minus will 
have to be replaced by a nontrivial, nonlinear operation. We will 
address the question of the form of discrete symmetries in other 
κ-Poincaré bases in a forthcoming work.
Our main aim was to provide a starting point and the basic 
tools for an analysis of possible phenomenological signatures of 
κ-deformations and similar models in high sensitivity tests of dis-
crete symmetries and of CPT invariance. As it is clear from the 
construction above the action of the CPT operator is ‘deformed’, 
albeit in a subtle way. Indeed it follows from the discussion above 
that

CPT(Pi) = −S(P )i, CPT(P0) = −S(P )0

CPT(Mi) = S(M)i, CPT(Ni) = S(N)i + 3

κ
Pi . (19)

Notice that such departure from the ordinary CPT map is universal, 
it is related to a non-trivial geometry of momentum space and 
as such it affects all matter and interactions. The next step beyond 
the basic analysis we reported here, will be to provide a systematic 
investigation of the unconventional behaviour of all three discrete 
symmetries and their combinations, in various phenomenological 
frameworks which can be sensitive to the corrections introduced 
by the (Planckian) curvature of momentum space. We defer this to 
upcoming works.
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