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Abstract We survey results and open problems in hamiltonian graph theory centered
around two conjectures of the 1980s that are still open: every 4-connected claw-free
graph (line graph) is hamiltonian. These conjectures have lead to a wealth of interesting
concepts, techniques, results and equivalent conjectures.
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1 Introduction

Before we are going to introduce the necessary terminology for understanding the
sequel, let us start by presenting the two conjectures that will play the main role
throughout our exposition.

Zdeněk Ryjáček and Petr Vrána were supported by project 1M0545 and Research Plan MSM 4977751301
of the Czech Ministry of Education.

H. J. Broersma (B)
Faculty of Electrical Engineering, Mathematics and Computer Science,
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
e-mail: h.j.broersma@utwente.nl
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Z. Ryjáček · P. Vrána
Institute for Theoretical Computer Science, Charles University, Univerzitní 8,
306 14 Pilsen, Czech Republic
e-mail: vranap@kma.zcu.cz

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81158903?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


58 Graphs and Combinatorics (2012) 28:57–75

Most of the results in this survey paper are inspired by the following two conjectures
that were tossed in the 1980s, and later appeared in the cited papers. The first conjecture
is due to Matthews and Sumner [50].

Conjecture 1 Every 4-connected claw-free graph is hamiltonian.

The second conjecture due to Thomassen was posed in [60], but was already men-
tioned in 1981 on page 12 of [6], and also appeared in [1].

Conjecture 2 Every 4-connected line graph is hamiltonian.

The above two highly related conjectures and their relationship to other open prob-
lems and results have been the subject of a number of specialized small scale workshops
between 1996 and 2011 in Enschede, Nečtiny (twice), Hannover, Hájek and Domažlice
(twice). In order to make the material available to a larger community we decided to
compose this survey paper that contains most of the relevant material related to these
intriguing open conjectures.

The presented material involves—apart from line graphs and claw-free graphs—
cubic graphs, snarks, and concepts like Hamilton cycles, Hamilton-connectedness,
dominating closed trails (circuits), and dominating cycles, and techniques involving
closures, collapsible graphs, and edge-disjoint spanning trees.

The paper is organized as follows. We first continue in the next section by explaining
the necessary terminology to understand the above statements and their relationship.
Next we will introduce the tools that show that the two conjectures are in fact equiv-
alent, and we analyze what the statement of the latter conjecture would mean for the
root graph of the line graph. Then we will present a sequence of seemingly weaker
but equivalent conjectures, and of seemingly stronger but equivalent conjectures. We
finish with a survey of some of the existing partial solutions to the conjectures, and
discuss how far we are from either proving or refuting the conjectures.

2 Basic Terminology and Concepts

All graphs in this survey are finite, undirected and loopless, and the majority is simple
(in some results we allow multiple edges). We refer to [10] for standard terminology
and notation.

We denote a (simple) graph G as G = (V, E), where V = V (G) is the vertex set
and E = E(G) is the edge set.

Adopting the terminology of [10], a graph is called hamiltonian if it contains a Ham-
ilton cycle, i.e., a cycle containing all its vertices, i.e., a connected spanning 2-regular
subgraph.

If H is a graph, then the line graph of H , denoted by L(H), is the graph on vertex
set E(H) in which two vertices in L(H) are adjacent if and only if their corresponding
edges in H share an end vertex (with a straightforward extension in case of multiple
edges).

A graph G is a line graph if it is isomorphic to L(H) for some graph H .
Which graphs are line graphs (of simple graphs) and which are not? This question

was answered by a forbidden subgraph characterization due to Beineke [5].
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Fig. 1 The nine forbidden subgraphs for line graphs of simple graphs

Theorem 3 A graph G is a line graph if and only if G does not contain a copy of any
of the graphs of Fig. 1 as an induced subgraph.

Let G be a graph and let S be a nonempty subset of V (G). Then the subgraph
of G induced by S, denoted by G[S], is the graph with vertex set S, and all edges
of G with both end vertices in S. H is an induced subgraph of G if it is induced in
G by some subset of V (G). G is H-free if H is not an induced subgraph of G. In
particular, a graph G is claw-free if G does not contain a copy of the claw K1,3 as an
induced subgraph. Direct inspection of Beineke’s result shows that every line graph
is claw-free.

3 A Handful of Conjectures and More

Since line graphs are claw-free, Conjecture 1 is stronger than Conjecture 2. Or are they
equivalent? (A question Herbert Fleischner posed during the EIDMA workshop on
Hamiltonicity of 2-tough graphs, Hotel Hölterhof, Enschede, November 19-24, 1996
[8].)

To answer the question affirmatively, Zdeněk Ryjáček introduced a closure concept
for claw-free graphs at the same workshop which was published in [53]. It is based on
adding edges without destroying the (non)hamiltonicity (similar to the Bondy–Chvátal
closure [9] for graphs with nonadjacent pairs with high degree sums).

The edges are added by looking at a vertex v and the subgraph of G induced by
N (v): the neighborhood of v.

If G[N (v)] is connected and not a complete graph, all edges are added to turn
G[N (v)] into a complete graph.

This procedure is repeated in the new graph, etc., until it is impossible to add any
more edges. By the following theorem due to Ryjáček [53], the closure cl(G) we
obtain this way is a well-defined graph.

Theorem 4 Let G be a claw-free graph. Then

– the closure cl(G) is uniquely determined,
– cl(G) is hamiltonian if and only if G is hamiltonian,
– cl(G) is the line graph of a triangle-free graph.
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The above theorem also shows that Conjectures 1 and 2 are equivalent. Moreover,
it gives the opportunity to translate questions on hamiltonicity in claw-free graph to
questions on hamiltonicity in line graphs, and results on line graphs to results on the
more general class of claw-free graphs. We come back to this later when we discuss
partial solutions to the two conjectures. Variants on the above closure technique and
extensions are discussed in [18].

Here we follow the line of reasoning by turning our attention to what the statements
of the conjectures entail for the root graph of the line graph.

Whenever we consider a line graph G, we can identify a graph H such that G =
L(H). If G is connected this H is unique, except for G = K3: then H can be K3 or
K1,3 (this is different for multigraphs, where we could also have three parallel edges,
or two parallel edges and one additional incident edge; and there are other pairs of
connected multigraphs with isomorphic line graphs). If we restrict ourselves to simple
graphs and take K1,3 in this exceptional case, we can talk of a unique graph H as the
root graph of the connected line graph G isomorphic to L(H). What is the counterpart
in H of a Hamilton cycle in G? A closed trail (sometimes referred to as a circuit in
the literature) is a connected eulerian subgraph, i.e., a connected subgraph in which
all degrees are even. A dominating closed trail (DCT for short) is a closed trail T such
that every edge has at least one end vertex on T . Note that this notion of domination
is not equivalent to the usual notion of domination meaning that every vertex not on
the trail has a neighbor on the trail; in our case of a DCT T in a graph H , the graph
H − V (T ) is edgeless. Also note that a DCT might consist of only one vertex (in case
the graph H is a star; then L(H) is a complete graph).

There is an intimate relationship between DCTs in H and Hamilton cycles in L(H),
a result due to Harary and Nash-Williams [30] that is known since the 1960s.

Theorem 5 Let H be a graph with at least three edges. Then L(H) is hamiltonian if
and only if H contains a DCT.

What is the counterpart in H of 4-connectivity in L(H)? Note that 4-edge-connec-
tivity is not the right answer, because edge-cuts in H that consist of all edges incident
to a single vertex v of H do not correspond to vertex-cuts in L(H) if H − v has at
most one component containing edges. A graph H is essentially 4-edge-connected if
it contains no edge-cut R such that |R| < 4 and at least two components of H − R
contain an edge. It is not difficult to check that L(H) is 4-connected if and only if H
is essentially 4-edge-connected. The previous results and observations imply that the
following conjecture is equivalent to Conjectures 1 and 2.

Conjecture 6 Every essentially 4-edge-connected graph has a DCT.

If H is cubic, i.e., 3-regular, then a DCT becomes a dominating cycle (abbreviated
DC). H is cyclically 4-edge-connected if H contains no edge-cut R such that |R| < 4
and at least two components of H − R contain a cycle. It is not difficult to show that a
cubic graph is essentially 4-edge-connected if and only if it is cyclically 4-edge-con-
nected. Hence the following conjecture due to Ash and Jackson [2] is a specialization
of Conjecture 6 to cubic graphs.
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Conjecture 7 Every cyclically 4-edge-connected cubic graph has a DC.

Plummer [52] observed that Conjecture 7 is equivalent to the following two
specializations of Conjecture 1.

Conjecture 8 Every 4-connected 4-regular claw-free graph is hamiltonian.

Conjecture 9 Every 4-connected 4-regular claw-free graph in which each vertex lies
on exactly two triangles is hamiltonian.

Fleischner and Jackson [25] proved that Conjecture 7 is in fact also equivalent to
the others. First note that one can transform an essentially 4-edge-connected graph
into one with minimum degree at least three by first deleting the vertices with degree 1,
and then replacing the paths with internal vertices with degree 2 by edges (suppressing
vertices with degree 2). The main ingredient in their proof is a nice trick to replace
vertices with degree more than 3 in the obtained graph by cycles without affecting the
essentially 4-edge-connectivity.

Let H be an essentially 4-edge-connected graph of minimum degree δ(H) ≥ 3 and
let v ∈ V (H) be of degree d(v) ≥ 4. Delete v and add a cycle on d(v) new vertices,
and join the new vertices to the original neighbors of v by a perfect matching. The
resulting graph is called a cubic inflation of H at v. It is not unique, since it depends
on the choice of the matching edges joining the new vertices to the original neighbors
of v. Fleischner and Jackson [25] proved that by a suitable choice of these edges, some
cubic inflation of H at v results in an essentially 4-edge-connected graph. By repeating
this procedure, the resulting graph will eventually be cubic and still essentially (and
hence cyclically) 4-edge-connected.

Before we continue with imposing further restrictions on the cubic graphs under
consideration, we would like to mention the following two related conjectures that
have been stated in [25] and are due to Jaeger and Bondy, respectively.

Conjecture 10 Every cyclically 4-edge-connected cubic graph G has a cycle C such
that G − V (C) is acyclic.

Conjecture 11 Every cyclically 4-edge-connected cubic graph G on n vertices has a
cycle of length at least cn, for some constant c with 0 < c < 1.

It is obvious that Conjecture 7 implies Conjecture 10, and it is not difficult to
show that Conjecture 10 implies Conjecture 11. We are not aware of any attempts to
establishing the equivalence of these conjectures, and we leave it as an open problem.

A further restriction to cyclically 4-edge-connected cubic graphs that are not
3-edge-colorable, is due to Fleischner [24] who posed the following conjecture.

Conjecture 12 Every cyclically 4-edge-connected cubic graph that is not 3-edge-col-
orable has a DC.

Kochol [39] proved that Conjecture 12 is equivalent to the others, by a constructive
approach. By assuming a counterexample to Conjecture 7 and using this as a black
box building block, he was able to construct a counterexample to Conjecture 12, using
an auxiliary gadget that is almost cubic and not 3-edge-colorable. We skip the details.
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For our final restriction on the cyclically 4-edge-connected cubic graphs under
consideration, we now turn to snarks. In this paper a snark is defined as a cyclically
4-edge-connected cubic graph of girth at least 5 that is not 3-edge-colorable. Here the
girth of a graph G is the length, i.e., the number of edges or vertices, of a shortest
cycle in G. In the literature one can find several variants on this definition where
either the restriction on the cyclically edge-connectivity or on the girth or on both
are relaxed. Snarks turn up as the ‘difficult’ objects in many open problems in graph
theory, including conjectures on double cycle covers and nowhere zero flows. These
are beyond the scope of this survey. We refer to the books of Zhang [66] and [67] for
more details and background.

The next conjecture has appeared independently at different places.

Conjecture 13 Every snark has a dominating cycle.

Conjecture 13 is also equivalent to the others, as shown in [13], using the construc-
tive approach together with the concept of contractible subgraphs. We will explain
some of the key ingredients here but refer to [13] for more details. The first step in the
proof of the equivalence is based on a refinement of a technique introduced in [56].

In [56], the notion of A-contractible graphs is introduced. For a graph H and a sub-
graph F of H , H |F denotes the graph obtained from H by contracting F to a single
vertex and adding some new vertices and edges in order to keep the same number of
edges. This is done by identifying the vertices of F as one new vertex vF , replacing
the edges between vertices of F and vertices of V (H) \ V (F) by the same number
of edges between vF and the adjacent vertices of V (H) \ V (F), and by replacing the
created loops (i.e., one for each edge of F) by pendant edges, i.e., edges incident with
vF and one other newly added incident vertex of degree 1. Note that H |F may contain
multiple edges but has the same number of edges as H . A vertex of F is a vertex of
attachment if it has a neighbor in V (H) \ V (F). The set of vertices of attachment of
F with respect to H is denoted by AH (F).

For a subset X ⊂ V (H), and a partition A of X into subsets, E(A ) denotes the
set of all edges a1a2 (not necessarily in H ) such that a1, a2 are in the same element
(i.e., the same equivalence class) of A . Now HA denotes the graph with vertex set
V (HA ) = V (H) and edge set E(HA ) = E(H) ∪ E(A ) (where E(H) and E(A )

are considered to be disjoint, so if e1 = a1a2 ∈ E(H) and e2 = a1a2 ∈ E(A ), then
e1 and e2 are parallel edges in HA ).

Let F be a graph and A ⊂ V (F). Then F is A-contractible, if for every even subset
X ⊂ A (i.e., with |X | even) and for every partition A of X into two-element subsets,
the graph FA has a DCT containing all vertices of A and all edges of E(A ). Note
that the case X = ∅ implies that an A-contractible graph has a DCT containing all
vertices of A.

The importance of A-contractible graphs lies in the fact proved in [56] that a con-
nected graph F is A-contractible if and only if, for any H such that F ⊂ H and
AH (F) = A, H has a DCT if and only if H |F has a DCT. In fact, the authors of
[56] proved the stronger result that the (extended) contraction (as defined above) of an
A-contractible subgraph of a graph H does not affect the maximum number of edges
dominated by a closed trail in H . Note that this number corresponds to the length of
a longest cycle in L(H).
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In [13], the following slightly weaker notion of a weakly A-contractible graph
plays an essential role. The difference with the above notion is that only nonempty
even subsets X ⊂ A are required to have the above property. This means that a weakly
A-contractible graph is not required to have a DCT containing all vertices of A. Using
this weaker notion, one of the key auxiliary results proved in [13] yields that for a
2-connected cubic graph H with a weakly AH (F)-contractible subgraph F of H , H
has a DC if and only if H |F has a DCT. This obviously imposes structural restrictions
on possible minimal counterexamples to the conjectures on the existence of a DC in
certain cubic graphs. This is combined in [13] with a second step in which it is shown
that replacing a subgraph of a cubic graph does not affect the (non)existence of a DC
if certain compatible mappings are respected. Without going into the technical details
of explaining what these mappings entail, this enables the replacement of 4-cycles
in a possible counterexample to Conjecture 7 in order to construct a counterexample
with girth at least 5 (Note that the only cyclically 4-edge-connected cubic graph with
triangles is K4). This is then further combined in [13] with techniques that were pre-
viously used in [39] in order to construct a snark without a DC under the assumption
of a counter example to Conjecture 7.

We like to bring the following two conjectures that were posed in [13] to the reader’s
attention. The first of these two conjectures was shown to be equivalent to the other
conjectures.

Conjecture 14 Every cyclically 4-edge-connected cubic graph contains a weakly
contractible subgraph F with δ(F) = 2.

The following statement, also posed as a conjecture in [13], implies the above, but
we do not know whether it is equivalent to the above conjecture.

Conjecture 15 Every cyclically 4-edge-connected cubic graph G contains a weakly
contractible subgraph F with |AG(F)| ≥ 4.

To date Conjecture 13 is the seemingly weakest conjecture on the existence of a
DC in certain cubic graphs that is equivalent to Conjectures 1 and 2. All snarks up to
36 vertices were tested for the existence of a DC by Brinkmann et al. [11]. Due to the
role snarks play in other areas we would like to pose the following two open questions.

– Is there a link to conjectures on Double Cycle Covers?
– Is there a link to conjectures on Nowhere-Zero Flows?

Taking a slightly different approach, we continue with presenting some other seem-
ingly weaker conjectures. Kochol [40] proved equivalence with seemingly weaker
versions, using a concept called sublinear defect. As an example, he proved that Con-
jecture 2 is equivalent to the following conjecture.

Conjecture 16 There are sublinear functions f1(n) and f2(n) such that every 4-con-
nected line graph G of order n contains ≤ f1(n) paths that cover ≥ n − f2(n) vertices
of G.

Similar techniques were introduced and applied in [3] to obtain equivalent versions
of the 2-tough conjecture, and in [4] successfully applied with suitable small gadgets
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to obtain counterexamples to the 2-tough conjecture. Although the 2-tough conjecture
restricted to claw-free graphs is equivalent to Conjecture 1, it is beyond the scope of
this survey. We refer the reader to [12] for more details. Inspired by these techniques,
independently of [39] it has been shown in [14] that Conjectures 1 and 2 are equivalent
to seemingly weaker conjectures in which the conclusion is replaced by a conclusion
similar to the one in Conjecture 16. We use the term r-path-factor for a spanning
subgraph consisting of at most r paths. A 2-factor is a set of vertex-disjoint cycles
that together contain all the vertices of the graph, i.e., a 2-regular spanning subgraph.

Theorem 17 Let k ≥ 2 be an integer, and let f (n) be a function of n with the property
that limn→∞ f (n)

n = 0. Then the following statements are equivalent.

(1) Every k-connected claw-free graph is hamiltonian.
(2) Every k-connected claw-free graph on n vertices has an f (n)-path-factor.
(3) Every k-connected claw-free graph on n vertices has a 2-factor with at most f (n)

components.
(4) Every k-connected claw-free graph on n vertices has a spanning tree with at most

f (n) vertices of degree one.
(5) Every k-connected claw-free graph on n vertices has a path of length at least

n − f (n).

The key ingredient for proving the above equivalences is the auxiliary result proved
in [14] that the existence of a k-connected nonhamiltonian claw-free graph G on n
vertices implies the existence of such a graph G∗ on at most 2n − 2 vertices that
contains a k-clique, i.e., a set of k mutually adjacent vertices. This result enables the
construction of k-connected claw-free graphs on at most (2r + 1)(2n − 2) vertices
without an r -path-factor, assuming that there is a k-connected nonhamiltonian claw-
free graph G on n vertices, by simply taking 2r + 1 vertex-disjoint copies of G∗ and
adding all edges between the k-clique vertices of all the copies.

By results in [32], where it has been shown that a claw-free graph G has an r -path-
factor if and only if cl(G) has an r -path-factor, and in [55], where it has been shown
that a claw-free graph G has a 2-factor with at most r components if and only if cl(G)

has such a 2-factor, the equivalence of statements (1), (2) and (3) in the above theorem
also holds for line graphs.

In this section we have presented a sequence of gradually seemingly weaker con-
jectures that turned out to be equivalent. In the next section we are going to present
some seemingly stronger conjectures.

4 Seemingly Stronger Versions for Cubic Graphs

Fouquet and Thuillier [27] considered a seemingly stronger version than the Ash-Jack-
son-Conjecture (Conjecture 7). Although the next conjecture is equivalent to Conjec-
ture 7, the conclusion is stronger in the sense that it requires a DC containing any two
given disjoint edges, as follows.

Conjecture 18 In a cyclically 4-edge-connected cubic graph any two disjoint edges
are on a DC.
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Establishing equivalent conjectures with stronger conclusions might help in an
attempt to refute the conjectures. The above equivalence was extended by Fleischner
and Kochol [26] by requiring a DC through any two given edges.

Conjecture 19 In a cyclically 4-edge-connected cubic graph any two edges are on a
DC.

Brinkmann et al. [11] have verified Conjecture 19 for all not 3-edge-colorable cycli-
cally 4-edge-connected cubic graphs with girth at least 4 up to 34 vertices, and for all
snarks on 36 vertices.

There are several further equivalent versions involving other subgraphs of cubic
graphs, like Conjecture 14. We present two others here without going too much into
the technical details. Interested readers are invited to consult the sources [43] and [45],
respectively. We need some additional terminology. Let H be a graph with minimum
degree δ(H) = 2 and suppose that the set V2(H) of all vertices with degree 2 in H has
four elements. We say that H is V2(H)-dominated if the graph H + {e1, e2} arising
from H after adding two new edges e1 = xy and e2 = wz (possibly creating multiple
edges) such that {x, y, w, z} = V2(H) has a dominating closed trail containing e1
and e2. We say that H is strongly V2(H)-dominated if H is V2(H)-dominated and
moreover the graph H +e obtained from H by adding the new edge e has a dominating
closed trail containing e for any newly added edge e = uv for {u, v} ⊂ V2(H).

The following two conjectures appeared in [43] and [45], respectively.

Conjecture 20 Any subgraph H of an essentially 4-edge-connected cubic graph with
δ(H) = 2 and |V2(H)| = 4 is V2(H)-dominated.

Conjecture 21 Any subgraph H of an essentially 4-edge-connected cubic graph with
δ(H) = 2 and |V2(H)| = 4 is strongly V2(H)-dominated.

We now turn to seemingly stronger versions than Conjecture 2 for line graphs.
Adopting the terminology of [10], a graph is called Hamilton-connected (sometimes
called hamiltonian-connected in the literature) if it admits a Hamilton path between
any two distinct given vertices. It is easy to check that any Hamilton-connected graph
on at least 4 vertices is necessarily 3-connected.

Kužel and Xiong [46] established the equivalence of Conjecture 2 with the follow-
ing conjecture.

Conjecture 22 Every 4-connected line graph of a multigraph is Hamilton-connected.

Ryjáček and Vrána [58] further extended the equivalence to claw-free graphs by
proving that the following conjecture is equivalent to Conjecture 22.

Conjecture 23 Every 4-connected claw-free graph is Hamilton-connected.

One of the key ingredients in their equivalence proof is a result from [57] that
extends the closure technique used in [53] to establish the equivalence of Conjec-
tures 1 and 2. In this new version of the closure technique, the 2-closure, edges are
added to a noncomplete neighborhood in a claw-free graph G if this neighborhood
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Fig. 2 The seven forbidden subgraphs for line graphs of multigraphs

induces a 2-connected subgraph instead of just a connected one. Then it is proved that
the new graph G ′ is Hamilton-connected if and only if G is Hamilton-connected. We
note here that it is not always true that a Hamilton path between two vertices u and
v exists in G if and only if it exists in G ′. Successively adding edges to a claw-free
graph G according to this new version yields a unique graph denoted cl2(G). One of
the serious difficulties in this approach is that the successive application of this new
closure operation to 2-connected neighborhoods does not always result in a line graph
(of a multigraph). One of the structures that can appear in cl2(G) is the square of
a cycle, i.e., the graph obtained from a cycle by adding edges between nonadjacent
vertices that have a common neighbor. The closure operation defined in [58] deals
with these squares of cycles separately (by adding all the edges to turn them into
complete graphs on the same vertex set) and defines an additional closure operation
on good walks in the graph cl2(G) if it is not the square of a cycle. We will not explain
the details involved in the handling of these good walks, but we conclude here with
the statement that this extension guarantees that the resulting multigraph closure is
a unique graph clM (G), and that it is the line graph of a multigraph. Moreover, this
new graph clM (G) is Hamilton-connected if and only if the original graph G is Ham-
ilton-connected. For convenience, we add the counterpart of Fig. 1 which shows the
forbidden induced subgraphs of line graphs of multigraphs. These are illustrated in
Fig. 2.

5 A Link to the P Versus NP Problem

At present the seemingly strongest version of the conjectures for line graphs is by
Kužel, Ryjáček and Vrána [45].

Adopting the terminology of [45], a graph G is called 1-Hamilton-connected if
for any vertex x of G there is a Hamilton path in G − x between any two vertices,
and G is called 2-edge-Hamilton-connected if the graph G + X has a Hamilton cycle
containing all edges of X for any X ⊆ {xy|x, y ∈ V (G)} with 1 ≤ |X | ≤ 2. It is easy
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to check that for both properties 4-connectedness is a necessary condition (except for
complete graphs on at most 4 vertices).

Using the equivalence of Conjecture 2 and Conjecture 21, in [45] it is proved that
the following conjecture is equivalent to Conjecture 2.

Conjecture 24 Every 4-connected line graph of a multigraph is 1-Hamilton-con-
nected (2-edge-Hamilton-connected).

This version strongly suggests that Conjecture 2 (and all equivalent versions) might
fail, for the following reasons. If the above conjecture is true, it implies that a line graph
is 1-Hamilton-connected (2-edge-Hamilton-connected) if and only if it is 4-connected.
It is well-known that the connectivity of a (line) graph can be determined in polynomial
time. It is an NP-complete problem to decide whether a line graph is hamiltonian (see,
e.g., [7]). It is not difficult to show that deciding whether a given graph is 1-Hamilton-
connected is also NP-complete. It seems not unlikely that deciding whether a given
graph is 1-Hamilton-connected remains NP-complete when restricted to line graphs.
If one would be able to show this, however, it would imply that Conjecture 2 cannot
be true, unless P=NP. In other words, the validity of Conjecture 2 would imply poly-
nomiality of both 1-Hamilton-connectedness and 2-edge-Hamilton-connectedness in
line graphs.

We add here as a side remark that, on the other hand, it is an easy exercise to show
that a result of Sanders (see [59, p. 342]) implies that every 4-connected planar graph
is 1-Hamilton-connected. Thus for a given planar graph one can decide in polynomial
time whether it is 1-Hamilton-connected or not, whereas deciding whether a planar
graph is hamiltonian is an NP-complete problem.

6 One Step Beyond

Very recently, the closure techniques of [57,58] have been strengthened and adapted
to work for the stronger notion of 1-Hamilton-connectivity. In [44], the concept of
multigraph closure is further strengthened in such a way that this adapted closure of
a claw-free graph is the line graph of a multigraph with at most two triangles or at
most one double edge. In [54], this is used to obtain a closure that turns a claw-free
graph into a line graph of a multigraph while preserving the property of (not) being 1-
Hamilton-connected. This yields the following currently seemingly strongest version
of the conjectures.

Conjecture 25 Every 4-connected claw-free graph is 1-Hamilton-connected.

7 Positive Results Related to the Conjectures

The gap between the conjecture(s) and the positive results is narrowing, in the following
sense. If we look at the connectivity conditions in Conjectures 1 and 2, then the first nat-
ural question is whether one can prove a theorem on hamiltonicity of claw-free graphs
or line graphs if one imposes a stronger connectivity condition. The earliest result in
this direction is due to Zhan [65] (and was independently proved by Jackson [33]).
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Theorem 26 Every 7-connected line graph (of a multigraph) is hamiltonian.

In fact, Zhan proved the stronger result that such graphs are Hamilton-connected.
For this purpose, he slightly generalized Theorem 5 to formulate an equivalent result
on the existence of dominating trails between pairs of edges in the root graph H of
a line graph G = L(H) such that each edge of H is dominated by an internal vertex
of the trail. He then used an approach that is typical for most of the results in this
section. We will present some of the ingredients here, starting with a classic result on
the existence of k edge-disjoint spanning trees due to Nash-Williams [51] and Tutte
[61].

Theorem 27 A graph G has k edge-disjoint spanning trees if and only if for every
partition P of V (G) we have ε(P) ≥ k(|P| − 1), where ε(P) counts the number
of edges of G joining distinct parts of P .

Kundu [42] observed that Theorem 27 has the following consequence.

Theorem 28 Every k-edge-connected graph has at least (k − 1)/2� edge-disjoint
spanning trees.

The use of the existence of two edge-disjoint spanning trees for obtaining a spanning
eulerian subgraph was observed by several researchers independently, and appeared
in a paper by Jaeger [36].

Theorem 29 Every graph with two edge-disjoint spanning trees has a spanning eule-
rian subgraph.

The intuition behind this result is that the vertices of odd degree in one of the trees
can be paired and connected by edge-disjoint paths in the other tree to form a spanning
eulerian subgraph (a spanning closed trail).

Combining the above results, we immediately obtain the next corollary.

Corollary 30 (i) Every 4-edge-connected graph has a spanning eulerian subgraph.
(ii) Every 4-edge-connected graph has a hamiltonian line graph.

On the other hand, we know that Conjecture 2 is equivalent to the conjecture (see
Conjecture 6) that every essentially 4-edge-connected graph has a hamiltonian line
graph. At first sight the gap between Corollary 30(i) and Conjecture 6 does not look that
large. Moreover in Corollary 30(i) we obtain a spanning eulerian subgraph, whereas
we would only need a DCT, i.e., a dominating eulerian subgraph in order to prove
Conjecture 6. Nevertheless Conjecture 6 and all the equivalent conjectures seem to
be very hard. As a side remark and a possible approach to solving the conjectures,
we would like to present another conjecture, that would clearly imply Conjecture 6,
and was put up by Jackson [34]. It resembles the way one can prove that 4-connected
planar graphs are hamiltonian by proving assertions on the existence of certain cycles
(paths) in 2-connected planar graphs.

Conjecture 31 Every 2-edge-connected graph G has an eulerian subgraph H with
at least three edges such that each component of G − V (H) is linked by at most three
edges to H.

Vrána [63] recently observed that Conjecture 31 is equivalent to Conjecture 2.
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We continue with sketching the approach to proving Theorem 26 and similar results.
Similarly to the way we have been proving the equivalence of many of the conjectures
mentioned earlier, the first step is to consider the root graph of the line graph, and
the equivalent property one has to establish, e.g., the existence of a DCT or of a trail
between two given edges that internally dominates all edges of the root graph. In the
next step the root graph is usually reduced by deleting the vertices with degree one (or
with only one neighbor in the case of multigraphs) and suppressing the vertices with
degree two. In the third step the degree and connectivity properties of the reduced
graph are used to establish the existence of a spanning eulerian subgraph (or trail
between two given edges). In this step the existence of two disjoint spanning trees (or
something slightly more sophisticated) is usually the intermediate goal.

Theorem 26 has been extended to results on 6-connected line graphs with some
additional conditions. The proof in [65] together with Theorem 4 immediately implies
that every 6-connected claw-free graph G with δ(G) ≥ 7 is hamiltonian. More careful
considerations show that the condition δ(G) ≥ 7 can be weakened to ‘at most 33
vertices have degree 6’ (Li [8]) or ‘the vertices of degree 6 are independent’ (Fan [8]).
Further extensions to 6-connected line graphs with some additional conditions and the
conclusion Hamilton-connected, but following basically the same method as in [65],
can be found in [31]. Even further extensions can be found in [64], but they still need
an additional condition bounding the number of vertices with degree 6 to at most 74 or
the structure they induce to at most 8 disjoint K4s (for 6-connected claw-free graphs
to be hamiltonian) or bounding the number of vertices with degree 6 to at most 54 or
the structure they induce to at most 5 disjoint K4s (for 6-connected line graphs to be
Hamilton-connected). The proofs in [64] use a similar approach as in the above sketch,
but combined with a powerful reduction technique based on collapsible graphs intro-
duced by Catlin [19]. Since this technique and its refinements play an important role
in obtaining results on the existence of spanning closed trails and DCTs, we will give
a brief outline of the basics involved. Before doing so, we first present the currently
best connectivity result related to Conjectures 1 and 2 due to Kaiser and Vrána [37].

Theorem 32 Every 5-connected claw-free graph with minimum degree at least 6 is
Hamilton-connected.

The proof of Theorem 32 is very technical and too complicated and long to present
here. Basically, the proof is along the same lines as the proofs of the other results in
this section. However, instead of finding two edge-disjoint spanning trees the authors
use a far more sophisticated approach to find quasitrees with tight complements in
hypergraphs associated with the root graphs. They apply this to prove that an essen-
tially 5-edge-connected graph in which every edge has at least 6 neighboring edges
contains a connected eulerian subgraph spanning all the vertices of degree at least 4.
This suffices to prove Theorem 32 for line graphs and with the conclusion hamiltonian.
Refinements of the techniques then show the validity of the more general statement.
The authors state in their concluding section of [37] that it is conceivable that a further
refinement in some parts of their analysis might improve the result a bit, perhaps even
to all 5-connected line (claw-free) graphs. On the other hand, they believe that the
4-connected case would require major new ideas. For instance, the root graph H of a
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4-connected line graph may be cubic, in which case it is not clear how to associate a
suitable hypergraph with H in the first place.

To finish this section we give the basic definitions and results related to the technique
of collapsible graphs. We refer to [20] for a survey on applications of the technique.

A graph is called supereulerian if it contains a spanning eulerian subgraph. A graph
H is collapsible if for every even subset X of V (H), H has a subgraph HX such that
H − E(HX ) is connected and X is the set of odd degree vertices of HX . As examples,
it is easy to see that a cycle of length 3 (or an edge of multiplicity 2 in a multigraph) is
a collapsible graph and it is not difficult to show that a graph containing two edge-dis-
joint spanning trees is a collapsible graph. But also many graphs that are only a few
edges short of having two edge-disjoint spanning trees are collapsible (see, e.g., [21]).
The importance of collapsible graphs is immediate from the following result proved
by Catlin [19].

Theorem 33 If H is a collapsible subgraph of a graph G, then G is supereulerian
(collapsible) if and only if G/H is supereulerian (collapsible).

Here G/H is the graph obtained from G by contracting all edges of H and remov-
ing all loops. The theorem gives a powerful reduction method for studying supere-
ulerian graphs because one can contract any collapsible subgraph without affecting
this property. It was shown in [19] that any (multi)graph G has a unique collec-
tion of maximal collapsible subgraphs, so contracting them yields a well-defined
unique graph called the reduction of G. Apart from applications in the area of our
survey, there are many applications of the above reduction method in the study of
cycle double covers, nowhere-zero 4-flows, etc. These are beyond the scope of this
survey.

Motivated by the idea to modify the above technique to the study of DCTs instead
of spanning closed trails, Veldman [62] refined Catlin’s technique by handling vertices
of degree 1 and 2 in a special way (since degree 1 vertices cannot occur on any closed
trail, and the two neighbors of a degree 2 vertex are on any DCT). This refinement
can be described in the following way. For a simple graph H , let D(H) = {v ∈
V (H)|dH (v) = 1, 2}. For an independent set X of D(H), let IX (H) be the graph
obtained from H by contracting one edge incident with each vertex of X . Veldman
then defined H as X-collapsible if IX (H) is collapsible in the Catlin sense. Also this
refined reduction technique is a powerful tool for studying hamiltonicity of line graphs,
in particular for dense graphs. However, the main drawback of Catlin’s and Veldman’s
techniques is that the search for maximal collapsible subgraphs is very difficult. In this
context, a natural question is whether the claw-free closure concept can be strength-
ened by using line graph techniques or by combining them with closure techniques.
A first attempt in this direction was done in [17], but the major work was done in
[56], where it was shown that the reduction techniques of Catlin and Veldman can be
reformulated in terms of a closure technique for line graphs. This closure technique
might be more convenient to use since it avoids the necessity of a search for maximal
collapsible subgraphs. It is based on the concept of A-contractible graphs that was
introduced earlier. We refer to [56] for more details and to [18] for a survey on closure
techniques (this survey does not contain the work of [56]).
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8 Related Results with a Weaker Conclusion

First of all, if we drop the connectivity condition of the 2-regular spanning subgraph,
we move from a Hamilton cycle to a 2-factor. Enomoto et al. [22] proved that every
2-tough graph contains a 2-factor. Since 2k-connected claw-free graphs are k-tough
by a result in [50], this implies the following.

Theorem 34 Every 4-connected claw-free graph has a 2-factor.

It does not seem easy to use this as a starting point to show that there is a 2-factor
with only one component, although there are some results that give upper bounds on
the number of components (see, e.g., [15,16,29]). These results are beyond the scope
of this paper.

By Theorem 3.1 in Jackson and Wormald [35], every connected claw-free graph
has a 2-walk, i.e., a closed walk which passes every vertex at most twice. Clearly, the
edges of a 2-walk induce a connected factor with maximum degree at most 4. In [14]
the following related result is proved.

Theorem 35 Every 4-connected claw-free graph contains a connected factor which
has degree two or four at each vertex.

By the results of Kriesell [41] it is possible to prove the related result that between
every pair of distinct vertices in a 4-connected line graph there exists a spanning trail
which passes every vertex at most twice. As with the 2-factor result these results do
not seem to help in finding a way to prove Conjectures 1 and 2, although they supply
some supporting evidence in favor of the conjectures.

9 Related Results with Additional Conditions

We have already presented some results in which a connectivity condition is accompa-
nied by another condition, e.g., Theorem 32. Another way of obtaining positive results
related to the conjectures is by relaxing the 4-connectedness and adding something
else. Many such results involve degree conditions and other neighborhood conditions.
Such results have been surveyed in several papers (see, e.g., [12,23,28]). We do not
want to discuss such conditions in this survey, but here is a connectivity-only result.

If we add an ‘essentially connectivity’ condition there is this result due to Lai et al.
[48].

Theorem 36 Every 3-connected, essentially 11-connected claw-free (line) graph is
hamiltonian.

The proof of Theorem 36 is based on the technique of collapsible graphs by Catlin
applied to the graph obtained from the root graph of the line graph by deleting vertices
with degree 1 and suppressing vertices with degree 2. We omit the details.

Recently, Kaiser and Vrána [38] were able to decrease the 11 to 9 in the above
theorem. In their proof they use a slight modification of their proof approach to
Theorem 32 in [37]. The proof is again based on quasitrees with tight complements in
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hypergraphs, but in the proof they have to work around quasitrees which contain bad
type leaves. This can be done by suitably choosing the hyperedges of the associated
hypergraph. We refer to [37] for the details.

Perhaps the 11 in Theorem 36 can be replaced by 5, which would be best possible
(by the line graph of the Petersen graph in which the edges of a perfect matching are
subdivided exactly once). An open question is how far we can decrease the 11 (or 9)
by raising the 3 to a 4 in the theorem.

10 Restrictions on the Root Graph

Using the technique of collapsible graphs, Lai [47] proved the following partial affir-
mative answer to Conjecture 2 by restricting the root graph to the class of planar
graphs, i.e., graphs that can be embedded in the plane in such a way that the edges
only intersect in incident vertices.

Theorem 37 Every 4-connected line graph of a planar graph is hamiltonian.

Kriesell [41] proved a similar result on line graphs of claw-free (multi)graphs with
the stronger conclusion of Hamilton-connectedness. In fact, he proved the following
more general result.

Theorem 38 Let G be a graph such that L(G) is 4-connected and every vertex of
degree 3 in G is on an edge of multiplicity at least 2 or on a triangle of G. Then L(G)

is Hamilton-connected.

Lai, Shao and Zhan [49] did something similar for quasi claw-free graphs, i.e.,
in which every pair of vertices u and v at distance 2 has a common neighbor w the
neighbors of which are in N (u) ∪ N (v) ∪ {u, v}.
Theorem 39 Every 4-connected line graph of a quasi claw-free graph is Hamilton-
connected.

11 Conclusion

We presented many conjectures, most of which have been shown to be equivalent to
the conjecture that 4-connected claw-free graphs are hamiltonian. We also presented
several results that supply supporting evidence in favor of the conjectures, including
the most recent result that 5-connected claw-free graphs with minimum degree at least
6 are Hamilton-connected. There are many other results on hamiltonian properties of
sufficiently connected claw-free graphs, including many that have not been listed here.
In most of the proofs of the results that are closely related to the open conjectures, clo-
sure techniques are used to restrict the statements to line graphs. Then the root graphs
are considered and the aim is to find a (closed or open) trail (internally) dominating all
edges. A common approach is the following. First the degree 1 vertices are deleted,
then the degree 2 vertices are suppressed, and now one tries to show that the reduced
graph has a suitable spanning (closed) trail. This is usually accomplished by applying
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the technique of finding two edge-disjoint spanning trees (or similar structures that
yield suitable trails), or by the technique of collapsible subgraphs, or by advanced
closure concepts. It seems that none of these techniques is capable of tackling the
open conjectures. Does the latter conclusion suggest that the conjectures are all false?
We now tend to believe that there might exist nonhamiltonian 4-connected claw-free
graphs, but we have no strong opinion. It is our sincere hope that this survey will
inspire new research into this intriguing and challenging field.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Alspach, B.R., Godsil, C.D. (eds).: Cycles in Graphs. Annals of Discrete Mathematics, vol. 27.
Unsolved problems 2.6, 463. North-Holland, Amsterdam (1985)

2. Ash, P., Jackson, B.: Dominating cycles in bipartite graphs. in J. In: Bondy, A., Murty, U.S.R. (eds.) Pro-
gress in Graph Theory, pp. 81–87. Academic Press, New York (1984)

3. Bauer, D., Broersma, H.J., Heuvel, J.van den. , Veldman, HJ.: On hamiltonian properties of 2-tough
graphs. J. Graph Theory 18, 539–543 (1994)

4. Bauer, D., Broersma, H.J., Veldman, HJ.: Not every 2-tough graph is hamiltonian. Discrete Appl.
Math. 99, 317–321 (2000)

5. Beineke, L.W.: Characterizations of derived graphs. J. Comb. Theory B 9, 129–135 (1970)
6. Bermond, J.C., Thomassen, C.: Cycles in digraphs—a survey. J. Graph Theory 5, 1–43 (1981)
7. Bertossi, A.A.: The edge hamiltonian path problem is NP-complete. Inf. Process. Lett. 13, 157–

159 (1981)
8. Bondy, J.A., Broersma, H.J., Hoede, C., Veldman, H.J. (eds.) : EIDMA Workshop on Hamiltonicity

of 2-Tough Graphs. Memorandum 1325. University of Twente, Enschede (1996)
9. Bondy, J.A. Chvátal V.: A method in graph theory. Discrete Math. 15, 111–135 (1976)

10. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, Heidelberg (2007)
11. Brinkmann, G., Goedgebeur, J., Hägglund, J., Markström, K.: Generation and properties of snarks

(in preparation)
12. Broersma, H.J.: On some intriguing problems in hamiltonian graph theory – a survey. Discrete

Math. 251, 47–69 (2002)
13. Broersma, H.J., Fijavž, G., Kaiser, T., Kužel, R., Ryjáček, Z., Vrána, P.: Contractible subgraphs,
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54. Ryjáček, Z., Saburov, K., Vrána, P.: Manuscript (2011)
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