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INTRODUCTION

The aim of our work is to define a family of linear grammars which
we shall call even linear grammars and to show that the languages
generated by them have mathematical properties analogous to those of
regular events.

In Section I we give the definition and the basic properties of these
grammars. In Section II we introduce equivalence relations with a cer-
tain symmetry property and a family of devices which are interrelated
in an analogous way as right invariant equivalence relations and finite
automata. These devices turn out to be more powerful than finite
automata. In Section IIT we shall prove that the languages acceptable
by these devices are just the languages generable by even linear gram-
mars. Consequently, the result obtained, which is by no means obvious,
is that the even linear grammars are, among others, able to generate
every regular event.

SECTION I

Let £ = {s] be a finite alphabet which we shall call terminal, and let
Ts = {e, ¢ -} be the free semigroup with unity A on Z.

In the following, given an alphabet a, we shall denote with 7, the
free semigroup with unity on a. We put also Tu X = Q = {«}.

DermiTION 1. A context free grammar (on the alphabet Z) is a system
g = (4, &, P) where:

1. A = {6} is a finite alphabet (auxiliary alphabet).

2, & € A (initial symbol).

3. P is a finite set of productions of the form:

§—oz(x €T,,v=2ZuUA z#35).

A string y € T, directly generates z € T,(y => 2) if there are u € T, ,
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v € T, such that ¥y = uéy, z = vuw and (6 — w) € P; y generates
2(y = z) if there exists a sequence of strings zo, --- z.(2; € T,) such
that y = m,2 = 2,2 =20z =0, --- (r — 1)).

Dermvirion 2. The language generated by a context free gramumnar
G = (A b, P),istheset £(g) = {0 € Tz d = ¢}. Two grammars G
and § are called equivalent if £(g) = £(§).

DermiTioN 3. An even linear grammar (ELG) is a context free
grammar having only productions of the form:

§—¢
5 — ‘P, 5 g0//
with the condition | ¢’ | = |¢” |}
The ELG’s are a subclass of linear grammars, which are defined in
the same way but with the condition |¢ | = |¢” | relaxed (Chomsky

and Schiitzenberger, 1963 ).
Lemma 1. Given an ELG G there exists an ELG § equivalent to G and
having only productions of the form:

0 —¢
-
with | ¢ | = |¢" | > 0.
The proof can eagily be obtained by a slight modification of the proof
of lemma 4.2. of Bar-Hillel, Perles, and Shamir (1961).

TaEOREM 1. Given an BELG G = (A, &, P) there exists an ELG G
equivalent to G and having only productions of the form:

6 —w (1)
§ — o'§a”.

Proor. From Lemma 1 we may assume that P does not contain pro-
ductions 8 — §. Let (8 — z) be a production of P not having form (1),
50 that we may rewrite it as § — o' 210”7, Where |2;| = (|2 | — 2) and
z: € A. We define a grammar g© = (A®, 3, PY), where A" =
Au 8?8 being a new symbol, 58 = 8 , and P is obtained from P
with this change: we substitute (6 — ) with

7o(1 1]
6 — ¢6M¢”, 3P — .

1 With standard notation | ¢ | is the length of the word ¢.
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Clearly £(g) = £(¢") and by a finite number of the above described
steps we prove the theorem.

We now give a theorem which is in many respects analogous to the
theorem about the construction of a deterministic automaton from a
given nondeterministic one. (See definition 11. and theorem 11 of Rabin
and Scott (1959).)

TaEOREM 2. Given an ELG G = (A, 6, P) there exists an ELG § =
(4, &, P) equivalent to § such that:

(a) V5[5 € A & § # &]P conlains only productions of the Jorm (1).

(b) If (5 —>x) € Pand (§ —y) € Pwithz = y then § = 3.

(¢) If (5o = x) € Pithenz € A.

Proor: From Theorem 1 we may assume that P has only productions
of the form (1). Let & be a new symbol and let ® = {6} be the set of all
the subsets of A. We put A = {5} = O u & and we define P as the set
of the following rules:

(a) §— o'bo”, ie., [6ay = 6a] — o'[3, - -+ §s,]0” if and omly if:

Voco ASEECh&(5— d8s”) € P
Y5cd 03{6](5——)0,50”) € P},

To be more explicit, given a set § = [§, - -+ &,] and a pair (o, ¢”), we
construct the set formed by all the symbols 84, , « * - 84, such that for
each 8., € 0 there exists at least one §; € 8 and a rule in P of the form
Oa; — 0',551"7”

We note that § may also contain some & such that any rule of the form
8 — o'6a” does not exist in P.

If ¢ is not empty, we put in P the rule 6 — ¢'8o”.

(b) 8§ > w,ie., [64 - 8a] > wifand only if: 8 = {8| (6 = w) € P}.

(e) 8o — 0 if and only if & € 0. With this definition § has the required
form; we shall show that £(§) = £(g).

£(g) € £(§). In fact let

=0, - olwn” o, € £(Q).

This means that there exists a sequence of symbols of A, 8%, 5@, ...
3™ such that (3% — w) € P, (3" - 0/5%%") € P(i=1,2, --- p)
and $™ = & . Consider the sequence 5§, §” --- of symbols of A so
constructed: §* is the symbol such that (8 — w) € P, (3% —
5i8%¢”) € P. We shall show that we obtain in this way a sequence
5V, 8, ... 57 where 5% 3 §,, which implies that ¢ € £(§). In

2 Note that this rule exists in P since (6® — w) € P.
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fact suppose that 5 3 6, which is true for ¢ = 1, we prove that
8 3 5", This follows immediately since (8“*” — ¢,6"¢,") € P.
Conversely it can be easily shown with a similar technique that £(§) C
£(g) q.e.d.

SECTION II

DrrFmiTion 4. An equivalence relation K on the free semigroup 7 is
called a quasi-congruence if, whenever Ry, then Y (o', ¢”) o'po”Ro' Yo"

Clearly if oRy, then V(¢', ¢”) with | ¢ | = |¢” | ¢ v¢”Ro'ye” > If R
has a finite number of equivalence classes we call it of finite index.

I1.1. Every congruence relation is obviously a quasi-congruence.

DermviTioN 5. Given a set H C T's we define the following relation
CH .

1
. L Y&, o)
¢ Cn ¢ if and only if {golgaqo” € H implies ¢'y” € H and conversely.

11.2. Cy is an equivalence relation.
I1.3. Cx is & quasi-congruence.
Proor: In fact from ¢Cx ¢ we have:

1
V(¢ ¢") oee” € H2 Yo" € H

” n=1rn,

and putting ¢’ = &0, 0" = "¢

2
Y(&,8") (Y(d,0") &o'ea"s” ¢ He23'o'yo"” € H).
Consequently:
Y(c',6") o'oc” Cuc'pa” qg.e.d.

I1.4. H is saturated by Cx (i.e., H is the union of some equivalence
classes of Cy).
Proor. Putting in Definition 5 ¢ = ¢” = \ we have

¢ CH=y € H.
TaroreM 3. Every quasi-congruence B which saturales H 1s a refine-

ment of Cy .

1
$ In the following we shall write V (¢’, ¢”) with the meaning V (¢, ¢”) with
le' =11
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1
Proor. If Ry then Y (o', ¢”) ¢'oo” Re'We” and since H is saturated
by R we have:

[4
V(e ¢") doe” € HR2 Yo" € H, ie., ¢Cuy qed.

DeFINITION 6. A two sided finite automaton ('TFA) over the alphabet
P={o - o} isasystem B = (S, F, M, Sy, f) where:

(a) 8 is a finite nonempty set (the states of B).

(b) F is a subset of S (the final states of B).

(¢) M is a mapping of = X § X = 8.
(d) Sy is a subset of S with at most » -+ 1 elements.

(e) f is a mapping of 2% 8.
Weextend M from = X 8 X Zto U,5, (2" X § X =") inthe following
way:

fM()\, $,\) =s
Vse S M(U’¢,a S, 99”0'”) = M(‘TI; M(¢,7 8, ‘p”): ‘7”)
with | ¢ | = | ¢” |

Derinirion 7. The set of tapes accepted by a TFA B, in symbols
£(B), is the collection of all tapes ¢ such that M(¢, f(w,), ¢”) € F,
where in a standard way we have decomposed ¢ as follows:

¢ =¢uwe” with [¢|=]¢"]
Below we shall use this decomposition, without writing it explicitly,
whenever no confusion occurs. In analogy with finite automata we
call all the sets aceceptable by some TFA quasi-regular events.
TororeEM 4. Let L be a set of tapes; there exists a TFA B which
accepls L, if, and only if, there exists a quasi-congruence R of finite
index which saturates L.
Proor. Let £(B) = L; we define the relation R:

SOR\l/ = M((P,,f(w¢), §a”> = M(‘p,)f(w\b); ‘l/”)'

Clearly R is an equivalence relation of finite index; we shall show that
it is a quasi-congruence: in fact let Ry then V( o, ¢”) we have:

M(o" &, f(wp), "0") = M(d', M(¢', f(wp), ¢"), a”)
= M(‘T’7 M(¢’7f(w\0)7 ‘pl/): 0'”) = M(‘T’Ir,/’; f(wl//)r ‘/’”‘T”>
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1.e.,
Y (o', ") ¢'0c”Roa'ya”, g.e.d.

In this way we have associated to each s € 8 a class of R, formed by
all the tapes ¢ such that

M(QD’, f(weﬂ)z QD”) = 8.

Clearly L is the union of all the classes of R associated to all the s € F.
Conversely, let L be saturated by a quasi-congruence of finite index
R, and let [¢] be the class of R containing ¢. We define

B' = ({lel}, {le] Yo € L}, M, {[v] Yo € 9}, f)

where:

(a) M(d, [e], ") = [d'eo”].

(b) f(@) = [u].
M is well defined since R is a quasi-congruence. B’ accepts L; in fact
let ¢ = ¢Iw¢g0” . We have:

M(&, flw,),0") = M(¢, [0, ") = le.

8o ¢ is accepted if and only if ¢ € L.

Lemma 2. The family of regular events is properly coniained in the
family of quasi-regular events.

The inclusion follows from I1.1, Theorem 4, and the theorem of Myhill
(Rabin and Scott, 1959) about finite automata.

To show that the inclusion is proper we observe that, putting £ =
(0,1), theevent £ = {0"10"} (n=0,1 ---),is saturated by the quasi-
congruence of finite index having as classes £ and (Ts — E), while it is
not a regular event (Rabin and Scott, 1959). In other words a device
which reads the tape beginning from its center is more powerful than
one which reads 1t beginning from one end. Note however that a TFA
is a finite memory device with, furthermore, a very simple infinite
operation, which is to find the center of the tape.

From Theorems 3 and 4 it follows that, as for finite automata, it is
possible to associate to the “minimal’” TFA which accepts a set L a
particular quasi-congruence, namely, Cr (Rabin and Scott, 1959).

SECTION III

TaEOREM 5. Given a set H C T's which is saturated by a quasi-con-
gruence of finite index C there exists an ELG G such that £(G) = H, and
conversely.
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Proor: Let Ci(¢ = 1, - - - n) be the classes of C so that
p
H=U,c¢, (p £ n).
1

We define § = (4, &, P) in this way:
(a)A = {8} = {C,} u & where & is a new symbol.
(b)
Ci—dCe”=26Ce" CC; ,
P=4C;—wz2wcl;,
b—C;2C; C H.
Clearly G is an ELG and it is not difficult to see that £(g) = H.
Conversely, let ¢ = (A, &, P) be an ELG; from Theorem 2 we may
assume that G has the particular form stated there.
We define a new grammar § = (A4, &, P) as follows:
(a) A = {8} = Au 3§, where § is a new symbol.
(b) 8 = .
(e) P contains P and the new productions:

§—ow if and only if A(6 - w) € P,
38— ¢'80” if and only if A(§ — ¢'8¢”) € P,
& —d'&e” for V(o o”).
Clearly G still has the particular form requested from Theorem 2. and

£(g) = £(9).

Consider now the relation C':
O =2 {(Ad £ 5 [0 & 5D y]).

(a) C is an equivalence relation; symmetry and reflexivity are im-
mediate. To prove transitivity we have to show that if §; = ¢ and §; =
@, then §; = §;. In fact suppose that §; # §,; let ¢ = o1 -+ oo
om-1 - o1, from condition (b) of Theorem 2 H(5,, , 5,,) with §;, =
87, such that:

57; —> 0'1,51'1(71”,
gj —> ol,gjlo'l".
By finite induction we prove that J(3;, , §;,,) with §;, > 5§, such that:

675m —>w,
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5jm —> W,

This contradicts condition (b) of Theorem 2 and so §; = §;. C is there-
fore an equivalence relation of finite index, and the generic class of C,
say C., is such that:

Ci:- {qa|52=*>¢&51?550}.

From this we have immediately that £(§) = £(g) is the union of those
classes C; such that for the associated symbol §; there exists in P the
production (8, — §;).

We finally show that C is a quasi-congruence. Let C; be a class of C,
and 5, the corresponding symbol. For every (o', ¢”) there exists in A
one and only one §; such that (§; — o’8,6”) € P. Consequently, calling
C; the class associated to §; we have:

O‘IC,;O'” c C;. qed

LemMa 3. The family of languages generated by the KLG’s is therefore,
Sfrom Theorems 4 and 5, the family of quasi-regulor events.

Lemma 4. The family of languages generated by the EELG’s contains the
family of languages generated by the one-sided linear grammars (Chomsky
and Schiitzenberger, 1963), i.e., given a one-sided linear grammar there
exists an ELG equivalent to 1.

We will now state an immediate consequence of Lemma 4, which is
nonobvious in itself (Stearns and Hartmanis, 1963).

Let H be a regular event; define R(H ) as the set of all “right halves”
of strings of H, ie.:

R(H) ={¢"|3p € H &o = g0’}

We shall show that R(H) is a regular event. In fact let ¢ = (4, &, P)
be a ELG of the form stated in Theorem 1, which generates H. We
define the grammar § = (A, &, P), where A = A, § = & and P con-
tains all the productions:

5;:— 8;0” if and only if Ao’ such that (8, — o’8,0”) € P,
8 — A\ if and only if Jw such that (8; — ) € P.

G is a one-sided linear grammar and it may be easily seen that £(§) =
R(H). In the same way it can be shown that the set of all “left halves”
of H, L(H), is a regular event. From our paper it is clear that quasi-
regular events behave very analogously to regular events; in a future
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paper we shall study their closure properties in order to obtain a “Kleene
Theorem” (Rabin and Scott, 1959), for this family.
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