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Abstract

The diffusion pathways of porous sandstone were examined by a three-dimensional (3-D)

imaging technique based on X-ray computed tomography (CT) using the SPring-8 (Super Photon

ring-8 GeV, Hyogo, Japan) synchrotron radiation facility. The analysis was undertaken to develop

better understanding of the diffusion pathways in natural rock as a key factor in clarifying the

detailed mechanism of the diffusion of radionuclides and water molecules through the pore spaces of

natural barriers in underground nuclear waste disposal facilities. A cylindrical sample (diameter 4

mm, length 6 mm) of sandstone (porosity 0.14) was imaged to obtain a 3-D image set of 4503

voxels = 2.623 mm3. Through cluster-labeling analysis of the 3-D image set, it was revealed that 89%

of the pore space forms a single large pore-cluster responsible for macroscopic diffusive transport,

while only 11% of the pore space is made up of isolated pores that are not involved in long-range

diffusive transport. Computer simulations of the 3-D diffusion of non-sorbing random walkers in the

largest pore cluster were performed to calculate the surface-to-volume ratio of the pore, tortuosity

(diffusion coefficient in free space divided by that in porous rock). The results showed that (i) the

simulated surface-to-volume ratio is about 60% of the results obtained by conventional pulsed-field-

gradient proton nuclear magnetic resonance (NMR) laboratory experiments and (ii) the simulated

tortuosity is five to seven times larger than the results of laboratory diffusion experiments using non-
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sorbing I� and Br�. These discrepancies are probably attributed to the intrinsic sample heterogeneity

and limited spatial resolution of the CT system. The permeability was also estimated based on the

NMR diffusometry theory using the results of the random walk simulations via the Kozeny–Carman

equation. The estimated permeability involved an error of about 20% compared with the

permeability measured by the conventional method, suggesting that the diffusometry-based NMR

well logging with gradient coils is applicable to the in-situ permeability measurement of strata. The

present study demonstrated that X-ray CT using synchrotron radiation is a powerful tool for

obtaining 3-D pore structure images without the beam-hardening artifacts inevitable in conventional

CT using X-ray tubes.

D 2004 Elsevier B.V.

Keywords: Diffusion coefficients of iodine and bromine; NMR geophysical exploration; Pulsed-field-gradient
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1. Introduction

In the underground disposal of nuclear waste, radionuclides (e.g., 129I) migrate in

water-saturated porous rocks by diffusion or random walk. Although there have been

many studies on diffusion in rocks (e.g., Ohlsson and Neretnieks, 1995), there is little

literature on the quantitative analysis of the three-dimensional (3-D) pore structure of

natural porous rocks in terms of diffusion associated with nuclear waste disposal. The

specific diffusion pathways (tortuous and irregular pores in natural rocks) need to be

studied in order to understand the detailed mechanism of diffusion in these environments.

X-ray computed tomography (CT) is a powerful tool for obtaining the 3-D pore

structure of porous media with high resolution (e.g., Wildenschild et al., 2002). The X-ray

CT technique using synchrotron radiation was applied to the study of natural sandstone in

the present study (Nakashima et al., 2003), and cluster-labeling image analysis (e.g., Ikeda

et al., 2000) of the obtained CT images was performed to examine the pore connectivity

(i.e., to count the pore voxels forming a large pore-cluster responsible for macroscopic

diffusive transport).

Computer simulations of the diffusion of non-sorbing random walkers in the pore space

have also been carried out to estimate the tortuosity (diffusion coefficient of non-sorbing

ions in bulk water divided by that in the water-saturated porous rock) and surface-to-

volume ratio of the pores. The estimated quantities have been compared with measure-

ments by conventional laboratory experiments (i.e., diffusion experiments on non-sorbing

I�, Br�, and H2O). Previous synchrotron CT studies on porous rocks (e.g., Spanne et al.,

1994; Ferreol and Rothman, 1995) have tended to focus on the Darcy flow simulations,

and there is no detailed research targeting diffusion. To the best of the authors’ knowledge,

the present study is the first application of synchrotron microtomography to the study of

diffusive migration of non-sorbing species in porous rocks.

Nakashima and Watanabe (2002) proposed a new method for the in-situ measurement

of the permeability of strata, which is applicable to the formation characterization of the

nuclear waste disposal sites. The method was derived from the nuclear magnetic resonance

(NMR) diffusometry theory, and its advantage over the conventional NMR well logging
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based on the T2-relaxometry (e.g., Dunn et al., 2002) is that permeabilities can be

estimated without the information of the rock species. However, the applicability of the

diffusometry-based method to natural rocks has not been tested. Thus, we estimated the

sandstone permeability using the diffusion data (tortuosity and surface-to-volume ratio)

obtained by the computer simulations to compare with the permeability measured by the

conventional laboratory experiments.
2. Experimental

The ‘‘SP-ACT’’ X-ray CT system of the SPring-8 synchrotron radiation facility (Super

Photon ring 8 GeV, Hyogo, Japan) was employed for tomography in the present study. SP-

ACT was developed at the BL20B2 beam line for imaging rocks and minerals at an

effective spatial resolution of about 13 Am (Uesugi et al., 1999; Ikeda et al., 2004).

Although X-ray CT is capable of obtaining the 3-D internal structure of rocks, some

artifacts occur. ‘‘Beam-hardening’’, one of the most serious artifacts, originates from the

polychromatic energy distribution of the X-ray source used (e.g., Ketcham and Carlson,

2001; Nakashima, 2003). The advantage of SP-ACT over conventional microfocus CT

using X-ray tubes is that the synchrotron radiation provides monochromatic X-rays,

effectively eliminating beam-hardening.

The imaging conditions were as follows. The monochromatic X-ray energy was 25

keV. A total of 360 projections were made through 180j sample-rotation, with an X-ray

exposure time of 12 s per projection. The time required for acquisition of the 360

projections was about 80 min. The convolution back-projection method using a Chesler

filter was used to reconstruct an 8-bit 3-D CT image set (710 contiguous two-dimensional

slices, 1000� 1000 voxels each slice). The voxel (volume element) of the CT image was

cubic, with side lengths of 5.833 Am3.

A cylindrical sample (diameter 4 mm, length 6 mm) of sandstone collected from a

Tertiary formation in Chichibu, Japan was prepared for the SP-ACT experiment. The grain

size of the sandstone was about 0.1 mm, with major mineral constituents of quartz and

plagioclase and minor strong X-ray absorbers (biotite, goethite, and zircon). The bulk

density of the dry sandstone sample was 2.2 g/cm3, and the porosity measured by the

difference between water-saturated and dry sample weights of a known volume was 0.14.

Permeabilities of five cylindrical sandstone blocks (diameter 30 mm, length 50 mm) were

measured by a conventional permeability test to obtain 1.3� 10� 14 m2.

The surface-to-volume ratio of the pore space and tortuosity is important transport

properties of porous media. These properties were estimated in the present study directly

by computer simulations of diffusion using the obtained CT images. The two quantities

were measured also by the following laboratory experiments for comparison. The pulsed-

field-gradient stimulated-echo proton NMR technique allows the surface-to-volume ratio

to be measured by measuring the time-dependent self-diffusion coefficient of pore water

molecules (e.g., Balzarini et al., 1996). This NMR technique was applied to a water-

saturated sample (diameter 7.5 mm, length 30 mm) on an NMR spectrometer at 0.47 T and

23.6 jC, and the obtained surface-to-volume ratio of the pores was 3.9� 105 m� 1.

Because the proton transverse surface-relaxivity of the water-saturated sample was as
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small as 5.6� 10� 5 m/s, a theoretical model for negligible surface-relaxivity (e.g., Eq.

(B.4) of Dunn et al., 2002) was used in the calculation of the surface-to-volume ratio.

The tortuosity was measured by imaging the diffusion of heavy ions (I� and Br�) in

water-saturated sandstone blocks (4� 4� 2 cm3) using a medical X-ray CT scanner. KI

and KBr were chosen as I- and Br-bearing substances. The principle of the diffusion

experiments using X-ray CT is described at length by Nakashima (2000, 2003). According

to the experiments, the tortuosity was estimated to be 4.7 by I� diffusion and 3.4 by Br�

diffusion. The computer simulation in the present study was performed for the diffusion of

non-sorbing random walkers so as to probe the geometrical tortuosity. Thus, the diffusants

used in the laboratory experiments should also be non-sorbing. Therefore, H2O, I
�, and

Br� were chosen as diffusants in the NMR and medical X-ray CT experiments.
3. Image analysis and random walk simulation

A cubic region of 4503 voxels ( = 2.623 mm3) was extracted from the original SP-ACT
image set consisting of 1000� 1000� 710 voxels. All image-analyses and random walk

simulations were performed on this 4503-voxel set. The 8-bit images (e.g., Fig. 1a) were

graded such that voxel intensity of air-filled pores was low (low density), and that of the

solid was high (high density). The intensity threshold for discriminating between solid and

pores was chosen so as to yield the experimentally measured porosity (0.14). This porosity

is the effective porosity, corresponding to the pore space forming a large percolation cluster

connected to the sample surface, by which water infiltration is possible. Thus, the

threshold was chosen such that the volume fraction of the largest pore cluster equaled

the effective porosity of 0.14.

Cluster labeling (e.g., Stauffer and Aharony, 1994) is an image analysis technique for

determining the connectivity of pore voxels. The volume and surface area are calculated

for each cluster. This analysis was applied to the 3-D binary images of 4503 voxels. The

cluster neighborhood rule was based on Ikeda et al. (2000). The threshold for discrim-

inating pores from the solid was determined by trial and error such that the volume fraction

of the largest pore cluster was 0.14. The main purpose of cluster labeling is to extract the

largest pore cluster responsible for macroscopic material transport across the image

system. Random walk simulations were then performed on this largest pore cluster, and

the contribution of isolated pores to the total porosity was also estimated.

3-D random walk computer simulations on the largest pore cluster were performed to

calculate the tortuosity. Two MathematicaR programs, RW3D.m (Watanabe and Naka-

shima, 2002) and DMAP.m (Nakashima and Yamaguchi, 2004a,b), available for free

download from the author’s homepage (URL http://staff.aist.go.jp/nakashima.yoshito/

progeng.htm) were used for the simulations. The random walk algorithm used in the

programs was a lattice walk in a simple cubic lattice (e.g., Stauffer and Aharony, 1994),

and non-sorbing walkers migrate on the discrete voxels whose gray-levels correspond to

pore space. The random walkers should be non-sorbing because the purpose is to calculate

the geometrical tortuosity and the undesirable effects of the sorption of walkers on the

solid surface should be eliminated. In the algorithm, a voxel is chosen randomly as a start

position of the lattice walk trial at tint = 0 where tint is the dimensionless integer time. The

 http:\\www.staff.aist.go.jp\nakashima.yoshito\progeng.htm 


Fig. 1. Cluster labeling of pores in the sandstone. (a) Example of an 8-bit 2-D CT image of a cylindrical dry

sandstone sample (diameter 4 mm). The image dimension is 7252 voxels = 4.232 mm2. The square region (open

frame) of 4502 voxels was extracted for 3-D cluster labeling analysis. (b) Binary (i.e., 1-bit) image of the square

region in (a), obtained assuming a threshold value yielding an effective porosity of 0.14. Black voxels represent

pores, and white voxels represent the solid. (c) Result of cluster labeling for region (b). Coloring scheme is as

noted in Table 1. Note that the green clusters in circles A and B are connected three-dimensionally. (d) Cross-plot

of the volume and surface area of each pore cluster. A total of 122,207 pore clusters were identified (Table 1). The

volume and surface area of the largest pore cluster (green in Fig. 1c) are 12,843,767 voxels = 2.55 mm3 and

5.40� 102 mm2, respectively.
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walker executes a random jump to one of the nearest unoccupied sites; tint is incremented

by unit time after the jump so that the time becomes tint + 1. If the randomly selected site or

voxel is occupied by an obstacle or solid, the jump is not performed, but the time becomes

tint + 1. RW3D.m gave the time-dependent mean-square displacement of the non-sorbing

walkers, from which the diffusion coefficient could be calculated by taking the time-

derivative. RW3D.m also allows the surface-to-volume ratio of the pore space to be
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estimated by measuring the time-dependent diffusion coefficient (Nakashima and Wata-

nabe, 2002). DMAP.m simulates the ‘‘out-diffusion’’ laboratory experiments (e.g., Sardini

et al., 2003), and the lattice walk is carried out until the walker goes out of the 4503 image

system. The time required for each walker to escape from the 4503 system is recorded to

calculate the cumulated flux (i.e., integrated number of walkers escaped from the system

by the time tint). The tortuosity can be estimated by fitting the time-dependent cumulated

flux to a theoretical curve (Nakashima and Yamaguchi, 2004a,b). The simulated values of

tortuosity and surface-to-volume ratio were then compared with the results obtained by

laboratory diffusion experiments on non-sorbing H2O, I
�, and Br�.

It is possible to predict the permeability of porous media using the diffusion data via

empirical Kozeny–Carman equation (Nakashima and Watanabe, 2002). Assuming an

orthogonal network of cylindrical tortuous pipes of equiradii and the Poiseuille flow in the

pipes (Nakashima and Yamaguchi, 2004a), we obtained 1/6 for the correction factor, a, of
Eq. (5) of Nakashima and Watanabe (2002):

k ¼ /

6 D0

Dl

� �
S
V

� �2
pore

ð1Þ

where k is the permeability, / is the porosity, Dl is the diffusion coefficient of the non-

sorbing random walkers in the porous media in the limit of tint!l, D0 is that in the free

space (i.e., / = 1), and (S/V)pore is the surface-to-volume ratio of the pore space. The ratio,

D0/Dl, is the tortuosity of the pore structure. Results of the random walk simulations on

the largest pore cluster by RW3D.m and DMAP.m were substituted into Eq. (1) to predict

the sandstone permeability.
4. Results and discussion

An example of the 8-bit SP-ACT images is shown in Fig. 1a. The voxel intensity (CT

number) increases with increasing density and atomic number of the minerals. Quartz and

plagioclase are dark, air-filled pores are the darkest, and Fe- and Zr-bearing strong X-ray

absorbers (biotite, goethite, and zircon) are bright in the image. Beam-hardening (e.g.,

Nakashima, 2003) is negligible in Fig. 1a, ensuring accurate cluster-labeling analysis. The

air-filled voxels in the square region of Fig. 1a are extracted to obtain a binary image (Fig.

1b). A total of 450 contiguous 2-D binary images were analyzed by cluster labeling.

The results of the cluster-labeling analysis are shown in Figs. 1c–d and 2, and listed in

Table 1. An important aspect of this 3-D image analysis is demonstrated in Fig. 1c.

Although the two green regions in circles A and B do not appear to be connected on the 2-

D slice, the regions are in fact connected three-dimensionally to form a single large pore

cluster. This suggests that conventional 2-D studies of the pore connectivity by micros-

copy analysis of a single thin-section are probably misleading. The largest cluster (green in

Fig. 2a,b) depicts the complex tortuous 3-D network of pores, which is difficult to obtain

by other imaging methods such as 2-D optical microscopy. A total of 122,207 pore clusters

were identified, and a single large percolation-cluster was recognized, responsible for



Fig. 2. Pore structure of the sandstone sample. (a) 3-D image of pore clusters. The image dimension is 4503

voxels = 2.623 mm3. Colors are the same as noted in Table 1. (b) Shaded part (slab of 450� 450� 40

voxels = 2.62� 2.62� 0.233 mm3) extracted from (a). Only the largest pore cluster (green) is visualized.
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macroscopic material transport by diffusion (Fig. 1d). Fig. 1d shows that the volume

fraction and surface-to-volume ratio of the largest pore cluster are 12,843,767/

4503c 0.141 and 5.40� 102 mm2/2.55 mm3c 2.1�105 m� 1, respectively.

Cluster labeling (Fig. 1d) revealed that, except for the largest cluster, there are 122,206

pore clusters, which are probably isolated from the cylindrical sample surface and thus never

contribute to long-range diffusive transport. It is possible to estimate the volume fraction of

such isolated pores (purple and brown voxels in Figs. 1c and 2a). The total voxel-numbers of

the isolated pores and of the largest pore cluster are 1,650,114 and 12,843,767, respectively.

Thus, 12,843,767/(12,843,767 + 1,650,114) = 89% of the pore space forms a single large

pore-cluster responsible for macroscopic diffusive transport, while 1,650,114/

(12,843,767 + 1,650,114) = 11% of the pore space represents isolated pores through which

material transport across the 4503 system is impossible. The volume fraction of the isolated

pores is 1,650,114/4503 = 0.018. Given the effective porosity (porosity of the largest pore
Table 1

Results of cluster labeling analysis of pore voxels in the 4503 system

Color of voxels Volume fraction Number of pore clusters Total surface area (mm2)

Green 0.141 1 540

Purple 0.004 4218 21

Brown 0.014 117,988 117

Pale yellow 0.841 – –

Total 1 122,207 678

Green: largest pore cluster. Purple: pore clusters, except for the green cluster, connected to at least one of the six

square surfaces of the cubic 4503 system. Brown: pore clusters isolated from the six surfaces of the cube. Pale

yellow: solid grains.
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cluster) of 0.141, the total porosity of the 4503 system is 0.141 + 0.018 = 0.159 (Table 1).

This is very close to the total porosity of 1� 2.2/2.65c 0.17 determined experimentally

based on the measured bulk density of the dry sample (2.2 g/cm3) and assuming an average

grain density of 2.65 g/cm3 (i.e., grain density of quartz). Thus, it is considered that cluster-

labeling analysis was performed in a reliable manner.

All pore clusters except for the largest cluster are classified into two groups: clusters

connected to at least one of the six surfaces of the 4503 cube (purple); or clusters isolated

from the six surfaces (brown) (Fig. 2a and Table 1). Some of the purple clusters may

connect to the largest pore cluster if the system size for the cluster labeling is larger than

4503 voxels. Although such purple clusters should be considered in the calculation of the

effective porosity and in the determination of the threshold value, the connection of these

clusters was neglected in the present study because the fraction of such clusters cannot be

determined. Fortunately according to the cluster-labeling results, the porosity of the all

purple clusters is 0.004 (Table 1), which is much smaller than the porosity of the largest

cluster (0.141) and can be reasonably neglected.

The results of the lattice walk using RW3D.m are shown in Fig. 3. The non-sorbing

walkers migrate via the largest pore cluster (green voxels in Fig. 2a), avoiding obstacles

(brown, purple, and pale yellow voxels). The mean-square displacement shows that

diffusion through the pores is strongly restricted by the tortuous pore structure (Fig. 3b).

The tortuosity is the ratio of the slope of the mean-square displacement in the free space to

that in the sandstone pore in the limit of tint!l, and was calculated to be 23 in Fig. 3b.

The surface-to-volume ratio of the largest pore cluster can be estimated from diffusion data

over a short time range. Because negligible surface-relaxivity is assumed in RW3D.m, the

theoretical curve, Eq. (10) of Nakashima and Watanabe (2002), was fitted to the time-

derivative of the mean-square displacement, giving a surface-to-volume ratio of 2.5� 105

m� 1 (Fig. 3c). This value agrees well with the value, 2.1�105 m� 1, determined by the

cluster labeling analysis (Fig. 1d), suggesting that the random walk simulation was

performed in a reliable manner.

The results of the random walk simulation using DMAP.m are shown in Fig. 4. This

figure shows that the out-diffusion from the rock pores is delayed greatly owing to the

tortuous pore structure compared to free space. The tortuosity value, 23, estimated by

DMAP.m is equal to that by RW3D.m (Fig. 3b), demonstrating the reliability of the

programs.

The transport properties obtained by cluster labeling and lattice walk simulations using

SP-ACT data are compared with the results of conventional laboratory experiments in

Table 2. Although the scatter of values falls within an order of magnitude, the discrepancy

is not negligible. The surface-to-volume ratio of the pores was 50–60% of the result of the

NMR experiment, and the simulated tortuosity was five to seven times larger than the

results of laboratory diffusion experiments using I� and Br�. A similar discrepancy of a

factors 3–5 was also reported for the prediction of sandstone permeability by Lattice–

Boltzmann simulation using 3-D pore images of a small volume (O’Connor and Fredrich,

1999). This can be attributed to the intrinsic meso-scale heterogeneity of tortuosity in

natural porous rocks (e.g., Gibbs et al., 1993), which would have been averaged in the

larger samples used for laboratory NMR and medical X-ray CT experiments. The small

sample (Fig. 2a) used for the computer simulations is several orders of magnitude less



Fig. 3. Computer simulation of diffusion through the largest pore cluster (green voxels in Fig. 2a) using RW3D.m.

(a) Example of 3-D trajectory of lattice walk for a single walker over 120,000 time steps. The initial and final

positions are marked by open circles. (b) Mean-square displacement averaged over 400 walkers as a function of

dimensionless integer time, tint. The linear regression analysis (dotted line) was applied to the data points for large

tint (i.e., tint>20,000) to obtain the tortuosity of 23. The simulation was completed in 303 h using a personal

computer with a 1.5-GHz PentiumR 4 processor. The theoretical mean-square displacement, Eq. (8) of Nakashima

and Watanabe (2002), for the lattice walk in the free space (i.e., /= 1) is also indicated. (c) Short-time behavior of

the normalized diffusivity of walkers averaged over 150,000 walkers. The time-derivative of the mean-square

displacement was calculated using the backward difference scheme, and translated into the normalized diffusivity,

D/D0, where D is the time-dependent diffusivity of the non-sorbing walkers in the porous rock. The simulation

was completed in 2.5 h using the same personal computer as (b). A theoretical curve, Eq. (10) of Nakashima and

Watanabe (2002), was fitted to the D/D0 data to obtain the surface-to-volume ratio to be 2.5� 105 m� 1. In the

limit of tint!l, the D/D0 value reaches the reciprocal number of the tortuosity listed in Table 2, and is indicated

as asymptote (broken line) for the I� and Br� diffusion tests and computer simulation of Fig. 3b.
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Fig. 4. Computer simulation of out-diffusion for the largest pore cluster using DMAP.m. The cumulated flux

(integrated number of walkers escaping from the 4503 system) is shown as a function of the dimensionless

integer time, tint. The theoretical model (dotted curve), Eq. (10) of Nakashima and Yamaguchi (2004a), was

fitted to the data to obtain the tortuosity of 23. The number of random walkers is 3114. The simulation was

completed in 174 h using the same personal computer as Fig. 3b. The theoretical curve for the random walk in

the free space (i.e., / = 1) is also shown for the same number of the walkers.
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voluminous than the samples used in the laboratory experiments, and would be highly

susceptible to localized variations in these values.

Another possible explanation for the discrepancy is the finite spatial resolution of the

CT system. The average pore diameter of porous media can be estimated to be 4/(S/V)pore
if cylindrical pipes of equiradii are assumed for the pore structure (Guéguen and

Palciauskas, 1994). It is 6/(S/V)pore if spherical pores of equiradii are assumed. According

to the pulsed-field-gradient stimulated-echo NMR, (S/V)pore is 3.9� 105 m� 1 (Table 2)

giving 4/(S/V)pore = 10 Am and 6/(S/V)pore = 15 Am. These values are on the same order as

the voxel dimension (5.83 Am) and effective spatial resolution (13 Am) of the CT system.

The estimated average pore-diameter suggests that some fractions of the pores in the

sandstone are less than the voxel dimension or spatial resolution because the pore size

distribution of sedimentary rocks ranges within several orders of magnitude (e.g., Dunn et
Table 2

Comparison of transport properties of the Chichibu sandstone obtained by image analysis and computer

simulation using SP-ACT data and by conventional laboratory experiments

Quantity SP-ACT study Laboratory experiments

Effective porositya 0.141 (Table 1) 0.14

Total porosity 0.159 (Table 1) 0.17

Surface-to-volume ratio 2.1�105 m� 1 (Fig. 1d) 3.9� 105 m� 1

2.5� 105 m� 1 (Fig. 3c)

Tortuosity 23 (Fig. 3b) 4.7 (I� diffusion)

23 (Fig. 4) 3.4 (Br� diffusion)

Permeability 1.6� 10� 14 m2 (Eq. (1)) 1.3� 10� 14 m2

a The effective porosity determined by the SP-ACT study was derived so as to be equal to the experimental

result.
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al., 2002). According to Keller (1998), pores and fractures as small as 13% of the voxel

size can be detected by the partial-volume effect. On the other hand, for example, it is

probably difficult to image pores of several tens of nanometers in diameter by the CT

system used. Thus, some fractions of the submicron-scale pores in the sandstone were

probably ignored, and the contribution of the small channels to the diffusive transport and

(S/V)pore was neglected. This is a possible cause for the overestimate of the tortuosity and

underestimate of (S/V)pore in Table 2.

The permeability was estimated by the diffusometry. The results of the random walk

simulations (i.e., D0/Dl = 23 and (S/V)pore = 2.5� 105 m� 1), and / = 0.14 were substi-

tuted into Eq. (1) to obtain k = 1.6� 10� 14 m2 (Table 2). If the values by laboratory

experiments (i.e., D0/Dl = 3.4 and (S/V)pore = 3.9� 105 m� 1) are used, k is 4.5� 10� 14

m2. These predicted k-values fall within an order of magnitude when compared with the

experimentally measured value (1.3� 10� 14 m2). The estimation error (less than an order

of magnitude) is equal to or better than that in the conventional NMR logging based on the

T2-relaxometry (Straley et al., 1997). Thus, although more tests are required, the present

study suggests that the lithology-independent method using Eq. (1) is useful in the in-situ

measurement of permeabilities of strata by NMR well logging.

The present study demonstrated that X-ray CT is useful for obtaining high-resolution 3-

D pore images non-destructively and quickly. The use of synchrotron radiation allows us

to (i) obtain CT images of pore structure without beam-hardening artifacts at voxel

dimensions of several microns (this study) or even at the submicron level (Uesugi et al.,

2001) and (ii) map the 3-D distribution of Cs concentration using an absorption edge

(Ikeda et al., 2004). Thus, X-ray CT using synchrotron radiation is expected to be a

powerful tool in the study of diffusion relevant to nuclear waste disposal.
Acknowledgements

Comments by the anonymous reviewers were helpful. SP-ACT experiments were

performed at the SPring-8 facility with the approval of the Japan Synchrotron Radiation

Research Institute (Proposal No. 2001B0501-NOD-np). This study was supported by the

Budget for Nuclear Research of the Ministry from Education, Culture, Sports, Science and

Technology, of Japan based on screening and counseling by the Atomic Energy

Commission.
References

Balzarini, M., Pavesi, L., Deriu, A., 1996. Resiricted geometry fluid dynamics in natural porous systems by

QENS and NMR PGSE. Phys., B Condens. Matter 226, 10–14.

Dunn, K.-J., Bergman, D.J., Latorraca, G.A., 2002. Nuclear Magnetic Resonance Petrophysical and Logging

Applications. Pergamon, Amsterdam. 293 pp.

Ferreol, B., Rothman, D.H., 1995. Lattice–Boltzmann simulations of flow-through Fontainebleau sandstone.

Transp. Porous Media 20, 3–20.

Gibbs, S.J., Attard, J.J., Hall, L.D., 1993. Diffusion in brine-saturated reservoir cores studied by NMR imaging.

AIChE J. 39, 689–694.



Y. Nakashima et al. / Journal of Contaminant Hydrology 74 (2004) 253–264264
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