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The generalized parallel sum of two monotone operators via a linear continuous mapping
is defined as the inverse of the sum of the inverse of one of the operators and with inverse
of the composition of the second one with the linear continuous mapping. In this article,
by assuming that the operators are maximal monotone of Gossez type (D), we provide
sufficient conditions of both interiority- and closedness-type for guaranteeing that their
generalized sum via a linear continuous mapping is maximal monotone of Gossez type (D),
too. This result will follow as a particular instance of a more general one concerning the
maximal monotonicity of Gossez type (D) of an extended parallel sum defined for the
maximal monotone extensions of the two operators to the corresponding biduals.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

Having two nonempty sets A and B and a multivalued operator M : A ⇒ B , we denote by G(M) = {(a,b) ∈ A × B: b ∈
M(a)} its graph and by M−1 : B ⇒ A the inverse operator of M , which is the multivalued operator having as graph the set
G(M−1) := {(b,a) ∈ B × A: (a,b) ∈ G(M)}. When X is a real nonzero Banach space and X∗ is its topological dual space, the
parallel sum of two multivalued monotone operators S, T : X ⇒ X∗ is defined as

S‖T : X ⇒ X∗, S‖T (x) := (
S−1 + T −1)−1

(x) ∀x ∈ X .

This notion has been first considered in Hilbert spaces by Passty in [24], where the interested reader can find some practical
interpretations of this notion including some preliminary investigations on the maximal monotonicity of the parallel sum of
two maximal monotone operators. The latter problem was also addressed in Hilbert spaces in [23] and in reflexive Banach
spaces in [1,31], the weakest condition for the maximal monotonicity of the parallel sum available in the latter setting in
the literature being recently introduced in [28]. Since S and T are maximal monotone if and only if their inverse S−1 and,
respectively, T −1 are maximal monotone, the sufficient conditions for the maximal monotonicity of S‖T in reflexive Banach
spaces can be gathered from the ones formulated for the maximal monotonicity of the sum of two maximal monotone
operators, applied to S−1 + T −1.
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When Y is another real nonzero Banach space with Y ∗ being its topological dual space, S : X ⇒ X∗ and T : Y ⇒ Y ∗ are
two monotone operators and A : X → Y is a linear continuous mapping with adjoint mapping A∗ : Y ∗ → X∗ , Penot and
Zălinescu proposed in [28] the following generalized parallel sums of S and T defined via A

S‖A T : Y ⇒ Y ∗, S‖A T (y) := (
A S−1 A∗ + T −1)−1

(y) ∀y ∈ Y

and

S‖A T : X ⇒ X∗, S‖A T (x) := (
S−1 + (

A∗T A
)−1)−1

(x) ∀x ∈ X,

respectively. One can easily notice that when X = Y and A is the identity mapping on X , then they both collapse into S‖T .
As the monotonicity of S and T gives rise to the same property for S‖A T and S‖A T , the question of how to guarantee for
these maximal monotonicity, provided that S and T are maximal monotone, comes automatically.

This question was already addressed by Stephen Simons in [36] in general Banach spaces in what concerns the gener-
alized parallel sum S‖A T . Under the assumption that S and T are maximal monotone operators of Gossez type (D), in the
mentioned paper, interiority-type regularity conditions for ensuring that S‖A T is a maximal monotone operator of Gossez
type (D), too, have been formulated. Due to its nature, at least in reflexive spaces, statements on the maximal monotonicity
of the parallel sum S‖A T and corresponding interiority- and closedness-type regularity conditions can be derived from the
statements given in the literature for the sum of a monotone operator with the composition of a second one with a linear
continuous mapping. With this respect we refer the reader to [5,6,29], where weak sufficient regularity conditions are for-
mulated by making use of the theory of representative functions for maximal monotone operators. One should also notice
that the latter was also employed (see [13,14]) in the study of both extended and variational sums of maximal monotone
operators and compositions of maximal monotone operators with a linear continuous mapping (see [30]), as well.

Unfortunately, the approach suggested above for S‖A T , regarding the direct derivation of sufficient conditions for maxi-
mal monotonicity from the already existent ones, cannot be applied to S‖A T accordingly. This fact represented the starting
point of the investigations made in this paper, where we want to provide interiority- and closedness-type regularity condi-
tions for the maximal monotonicity of Gossez type (D) of S‖A T , whenever S and T are maximal monotone operators of
Gossez type (D).

For a recent study on primal–dual splitting algorithms for solving inclusion problems involving generalized parallel sums
of maximal monotone operators we refer the interested reader to [11].

The outline of the paper is the following. In the remaining of this section we recall some elements of convex analysis
and introduce the necessary apparatus of notions and results referring to monotone operators in general Banach spaces. In
Section 2 we investigate the fulfillment in an exact sense of a generalized bivariate infimal convolution formula for which we
provide, by making use of a special conjugate formula, equivalent closedness-type conditions, but also sufficient interiority-
type ones. This formula represents the premise for ensuring in Section 3 maximal monotonicity of Gossez type (D) of a
generalized parallel sum of the maximal monotone operators of Gossez type (D) S and T , defined by making use of their
extensions to the corresponding biduals. The maximal monotonicity of Gossez type (D) of S‖A T will follow as a particular
instance of this general result. A special attention will be also given to the formulation of further sufficient conditions for
the interiority-type regularity condition and to the situation when these became equivalent. Finally, in Section 4, some
particular instances, to which the general results on the maximal monotonicity of S‖A T give rise, are considered.

1.1. Elements of convex analysis

Let X be a real separated locally convex space and X∗ be its topological dual space. We denote by w(X, X∗) (or, for
short, w) the weak topology on X induced by X∗ and by w(X∗, X) (or, for short, w∗) the weak∗ topology on X∗ induced
by X . We denote by 〈x∗, x〉 the value of the continuous linear functional x∗ ∈ X∗ at x ∈ X . For a given set D ⊆ X , we denote
by co D,aff D, int D and cl D , its convex hull, affine hull, interior and closure, respectively. When Z ⊆ X is a given set we say
that D is closed regarding the set Z if cl D ∩ Z = D ∩ Z . The conic hull of the set D will be denoted by cone D = ⋃

λ>0 λD ,
while its relative interior is defined as (see [43])

ri D =
{

rint D, if aff D is a closed set,
∅, otherwise,

where rint D := intaff D D . The algebraic interior (or core) of D is the set (see [17,32,43])

core D = {
u ∈ X | ∀x ∈ X ∃δ > 0 such that ∀λ ∈ [0, δ]: u + λx ∈ D

}
,

while its relative algebraic interior (or intrinsic core) is the set (see [17,43])

icr D = {
u ∈ X | ∀x ∈ aff(D − D) ∃δ > 0 such that ∀λ ∈ [0, δ]: u + λx ∈ D

}
.

One always has that rint D ⊆ icr D . The intrinsic relative algebraic interior of D (see [43,44]) is defined as

ic D =
{

icr D, if aff D is a closed set,
∅, otherwise.
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Thus we have, in general, that

ri D ⊆ ic D. (1)

In the case when D is a convex set, the above generalized interiority notions can be characterized as follows:

• core D = {x ∈ D: cone(D − x) = X} (see [32,43]);
• icr D = {x ∈ D: cone(D − x) is a linear subspace of X} (see [17,43]);
• ic D = {x ∈ D: cone(D − x) is a closed linear subspace of X} (see [43,44]);
• x ∈ ic D if and only if x ∈ icr D and aff(D − x) is a closed linear subspace of X (see [43,44])

and we have the following inclusions

int D ⊆ core D ⊆ ic D ⊆ icr D ⊆ D, (2)

they being in general strict.
When Y is another real separated locally convex space and A : X → Y is a linear continuous mapping we consider its

graph G(A) := {(x, Ax): x ∈ X}, which becomes when A = idX : X → X with idX (x) = x for all x ∈ X (the identity mapping
on X ) the diagonal subspace �X := {(x, x): x ∈ X} of X × X . The following result, which is of interest independently of the
purposes of this article, will play an important role in the sequel.

Lemma 1.1. Let X and Y be separated locally convex spaces, U ⊆ X and V ⊆ Y be two given convex sets and A : X → Y be a linear
continuous mapping. Then it holds

(0,0) ∈ ic(U × V − G(A)
) ⇔ 0 ∈ ic(V − A(U )

)
.

Proof. In the proof we use the following two characterizations:

(0,0) ∈ ic(U × V − G(A)
) ⇔ C := cone

(
U × V − G(A)

)
is a closed linear subspace of X × Y

and

0 ∈ ic(V − A(U )
) ⇔ D := cone

(
V − A(U )

)
is a closed linear subspace of Y .

“⇒” Suppose that C is a closed linear subspace. Since U and V are convex sets, one has that D is a convex cone. In
order to proof that D is a linear subspace, we show that −D ⊆ D . Take an arbitrary d ∈ D . Thus d = α(v − Au) for α > 0,
u ∈ U and v ∈ V , hence (0,d) = (α(u − u),α(v − Au)) = α((u, v) − (u, Au)) ∈ C . But C is a linear space, hence (0,−d) ∈ C ,
that is (0,−d) = β((u1, v1) − (x, Ax)), with β > 0, u1 ∈ U , v1 ∈ V and x ∈ X . It results that u1 − x = 0, hence x = u1 ∈ U .
Thus −d = β(v1 − Au1) with β > 0, u1 ∈ U , v1 ∈ V , hence −d ∈ D .

We prove next that D is closed and consider therefore an arbitrary element d ∈ cl D . Thus there exist (λα)α∈I ⊆ R+ ,
(uα)α∈I ⊆ U and (vα)α∈I ⊆ V such that dα = λα(vα − Auα) → d. But (0,dα) ∈ C for all α ∈ I and C is closed, thus
(0,d) = β(u − x, v − Ax), with β > 0, u ∈ U , v ∈ V and x ∈ X . Hence, x = u ∈ U and, consequently, d = β(v − Au) ∈ D .

“⇐” Suppose now that D is a closed linear subspace. The convexity of the sets U and V guarantees that C is a convex
cone. Next we prove that −C ⊆ C and consider to this end an arbitrary c ∈ C . Thus c = α(u − x, v − Ax), with α > 0,
u ∈ U , v ∈ V , x ∈ X . Hence, c = α(0, v − Au) + α(u − x, A(u − x)). Obviously, α(v − Au) ∈ D and since D is a linear space,
we have −α(v − Au) = β(v1 − Au1), with β > 0, u1 ∈ U and v1 ∈ V . Thus −c = β(0, v1 − Au1) − α(u − x, A(u − x)) =
β(u1 − (u1 + α/β(u − x)), v1 − A(u1 + α/β(u − x))) ∈ C .

In order to show that C is closed we consider an element c := (c1, c2) ∈ cl C and show that c ∈ C . Thus there exist
(λα)α∈I ⊆ R+ , (uα)α∈I ⊆ U , (vα)α∈I ⊆ V and (xα)α∈I ⊆ X such that cα = λα(uα − xα, vα − Axα) → c = (c1, c2). Obviously,
λα(uα − xα) → c1, hence λα A(uα − xα) → Ac1 and from here we obtain that λα(vα − Auα) → c2 − Ac1. But λα(vα −
Auα) ∈ D for all α ∈ I and D is closed, hence c2 − Ac1 = β(v − Au), with β > 0, u ∈ U and v ∈ V . Thus (c1, c2) = (u − (u −
1/βc1), v − A(u − 1/βc1)) ∈ C and this concludes the proof. �

The indicator function of a set D ⊆ X is defined as δD : X →R :=R∪ {±∞},

δD(x) =
{

0, if x ∈ D,

+∞, otherwise.

For E and F two nonempty sets we consider the projection operator prE : E × F → E , prE(e, f ) = e for all (e, f ) ∈ E × F .
For G and H two further nonempty sets and k : E → G and l : F → H two given functions we denote by k× l : E × F → G × H
the function defined as k × l(e, f ) = (k(e), l( f )) for all (e, f ) ∈ E × F . Throughout the paper, when an infimum is attained
we write min instead of inf.

Having a function f : X → R we denote its domain by dom f = {x ∈ X : f (x) < +∞} and its epigraph by epi f = {(x, r) ∈
X × R: f (x) � r}. We call f proper if dom f �= ∅ and f (x) > −∞ for all x ∈ X . By cl f : X → R we denote the lower
semicontinuous hull of f , namely the function whose epigraph is the closure of epi f , that is epi(cl f ) = cl(epi f ). We consider
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also co f : X → R, the convex hull of f , which is the greatest convex function majorized by f . For x ∈ X such that f (x) ∈ R

we define the subdifferential of f at x by

∂ f (x) = {
x∗ ∈ X∗: f (y) − f (x)�

〈
x∗, y − x

〉 ∀y ∈ X
}
.

When f (x) ∈ {±∞} we take by convention ∂ f (x) = ∅.
The Fenchel–Moreau conjugate of f is the function f ∗ : X∗ →R defined by

f ∗(x∗) = sup
x∈X

{〈
x∗, x

〉 − f (x)
} ∀x∗ ∈ X∗.

One always has the Young–Fenchel inequality

f ∗(x∗) + f (x)�
〈
x∗, x

〉 ∀x ∈ X ∀x∗ ∈ X∗.

Consider Y another separated locally convex space and a mapping h : X → Y . We denote by h(D) = {h(x): x ∈ D} the
image of a set D ⊆ X through h and by h−1(E) = {x ∈ X : h(x) ∈ E} the inverse of a set E ⊆ Y through h.

For A : X → Y a linear continuous mapping, Im A := A(X) denotes the image space of A, while its adjoint operator
A∗ : Y ∗ → X∗ is defined by 〈A∗ y∗, x〉 = 〈y∗, Ax〉 for all y∗ ∈ Y ∗ and x ∈ X . When X and Y are normed spaces, the biadjoint
operator of A, A∗∗ : X∗∗ → Y ∗∗ , is defined as being the adjoint operator of A∗ .

1.2. Monotone operators in general Banach spaces

Consider further X a nonzero real Banach space, X∗ its topological dual space and X∗∗ its topological bidual space.
Throughout the paper we identify X with its image under the canonical injection of X into X∗∗ . A multivalued operator
S : X ⇒ X∗ is said to be monotone if〈

y∗ − x∗, y − x
〉
� 0, whenever y∗ ∈ S(y) and x∗ ∈ S(x).

A monotone operator S is called maximal monotone if its graph G(S) is not properly contained in the graph of any other
monotone operator S ′ : X ⇒ X∗ . For the operator S we consider also its domain D(S) := {x ∈ X : S(x) �= ∅} = prX (G(S)) and
its range R(S) := ⋃

x∈X S(x) = prX∗(G(S)). The most prominent example of a maximal monotone operator is the subdiffer-
ential of a proper, convex and lower semicontinuous function (see [33]). However, there exist maximal monotone operators
which are not subdifferentials (see [34,35]).

To an arbitrary monotone operator S : X ⇒ X∗ we associate the Fitzpatrick function ϕS : X × X∗ →R, defined by

ϕS
(
x, x∗) = sup

{〈
y∗, x

〉 + 〈
x∗, y

〉 − 〈
y∗, y

〉: y∗ ∈ S(y)
}
,

which is obviously convex and weak × weak∗ lower semicontinuous. Introduced by Fitzpatrick in 1988 (see [12]) and redis-
covered after some years in [10,22], it proved to be very important in the theory of maximal monotone operators, revealing
important connections between convex analysis and monotone operators (see [2–10,21,25–28,34,38,39,42] and the refer-
ences therein).

Denoting by c : X × X∗ →R, c(x, x∗) = 〈x∗, x〉 for all (x, x∗) ∈ X × X∗ the coupling function of X × X∗ , one can easily show
that ϕS (x, x∗) = c∗

S(x∗, x) for all (x, x∗) ∈ X × X∗ , where cS : X × X∗ →R, cS = c+δG(S) . Well-linked to the Fitzpatrick function
is the function ψS : X × X∗ → R, ψS = cl‖·‖×‖·‖∗(co cS), where the closure is taken in the strong topology of X × X∗ . For all
(x, x∗) ∈ X × X∗ we have ψ∗

S (x∗, x) = ϕS (x, x∗), while when X is a reflexive Banach space the equality ϕ∗
S (x∗, x) = ψS (x, x∗)

holds (see [10, Remark 5.4]). The most important properties of the Fitzpatrick function of a maximal monotone operator
follow.

Lemma 1.2. (See [12].) Let S : X ⇒ X∗ be a maximal monotone operator. Then

(i) ϕS(x, x∗) � 〈x∗, x〉 for all (x, x∗) ∈ X × X∗ ,
(ii) G(S) = {(x, x∗) ∈ X × X∗: ϕS (x, x∗) = 〈x∗, x〉}.

They gave rise to the following notion introduced in connection to a monotone operator.

Definition 1.1. For S : X ⇒ X∗ a monotone operator, we call representative function of S a convex and lower semicontinuous
(in the strong topology of X × X∗) function hS : X × X∗ →R fulfilling

hS � c and G(S) ⊆ {(
x, x∗) ∈ X × X∗: hS

(
x, x∗) = 〈

x∗, x
〉}

.

If G(S) �= ∅ (which is the case when S is maximal monotone), then every representative function of S is proper. Obvi-
ously, the Fitzpatrick function associated to a maximal monotone operator is a representative function of the operator. From
[10] we have the following properties for the representative function of a maximal monotone operator.
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Proposition 1.1. Let S : X ⇒ X∗ be a maximal monotone operator and hS be a representative function of S. Then the following
statements are true:

(i) ϕS � hS �ψS ;
(ii) the function (x, x∗) �→ h∗

S(x∗, x) is also a representative function of S;
(iii) {(x, x∗) ∈ X × X∗: hS(x, x∗) = 〈x∗, x〉} = {(x, x∗) ∈ X × X∗: h∗

S(x∗, x) = 〈x∗, x〉} = G(S).

By Proposition 1.1 it follows that a convex and lower semicontinuous function f : X × X∗ →R is a representative function
of the maximal monotone operator S if and only if ϕS � f � ψS , in particular, ϕS and ψS are representative functions of S .
Let us also notice that if f : X →R is a proper, convex and lower semicontinuous function, then a representative function of
the maximal monotone operator ∂ f : X ⇒ X∗ is the function (x, x∗) �→ f (x)+ f ∗(x∗). Moreover, according to [8, Theorem 3.1]
(see also [25, Example 3]), if f is a sublinear and lower semicontinuous function, then the operator ∂ f : X ⇒ X∗ has a
unique representative function, namely the function (x, x∗) �→ f (x) + f ∗(x∗). For more on the properties of representative
functions we refer to [3,10,21,28] and the references therein.

Next we give a maximality criteria for a monotone operator valid in reflexive Banach spaces (cf. [9, Theorem 3.1] and
[28, Proposition 2.1]; see also [35] for other maximality criteria in reflexive spaces).

Theorem 1.1. Let X be a reflexive Banach space and f : X × X∗ → R be a proper, convex and lower semicontinuous function such
that f � c. Then the operator whose graph is the set {(x, x∗) ∈ X × X∗: f (x, x∗) = 〈x∗, x〉} is maximal monotone if and only if
f ∗(x∗, x) � 〈x∗, x〉 for all (x, x∗) ∈ X × X∗ .

For the following generalization of this result to general Banach spaces we refer to [19, Theorem 4.2].

Theorem 1.2. Let X be a nonzero Banach space and f : X × X∗ →R be a proper, convex and lower semicontinuous function such that
f � c and f ∗(x∗, x∗∗)� 〈x∗∗, x∗〉 for all (x∗, x∗∗) ∈ X∗ × X∗∗ . Then the operator whose graph is the set {(x, x∗) ∈ X × X∗: f (x, x∗) =
〈x∗, x〉} is maximal monotone and it holds {(x, x∗) ∈ X × X∗: f (x, x∗) = 〈x∗, x〉} = {(x, x∗) ∈ X × X∗: f ∗(x∗, x) = 〈x∗, x〉}.

In the last part of this section we turn our attention to a particular class of maximal monotone operators on general
Banach spaces.

Definition 1.2. (See [16].) Let S : X ⇒ X∗ be a maximal monotone operator.

(a) Gossez’s monotone closure of S is the operator S : X∗∗ ⇒ X∗ whose graph is

G(S) = {(
x∗∗, x∗) ∈ X∗∗ × X∗: 〈x∗∗ − y, x∗ − y∗〉 � 0 ∀(

y, y∗) ∈ G(S)
}
.

(b) The operator S : X ⇒ X∗ is said to be of Gossez type (D) if for any (x∗∗, x∗) ∈ G(S) there exists a bounded net
{(xα, x∗

α)}α∈I ⊆ G(S) which converges to (x∗∗, x∗) in the w∗ × ‖ · ‖∗-topology of X∗∗ × X∗ .

Gossez proved in [15] that a maximal monotone operator S : X ⇒ X∗ of Gossez type (D) has a unique maximal monotone
extension to the bidual, namely, its Gossez’s monotone closure S : X∗∗ ⇒ X∗ . The following characterization of the maximal
monotone operators of Gossez type (D) was recently provided in [20] (see also [18]).

Theorem 1.3. Let X be a nonzero real Banach space and S : X ⇒ X∗ be a maximal monotone operator. The following statements are
equivalent:

(a) S is of Gossez type (D);
(b) S is of Simons negative infimum type (NI) (see [37]), namely

inf
(y,y∗)∈G(S)

〈
y − x∗∗, y∗ − x∗〉 � 0 ∀(

x∗, x∗∗) ∈ X∗ × X∗∗;

(c) there exists a representative function hS of S such that

h∗
S

(
x∗, x∗∗)� 〈

x∗∗, x∗〉 ∀(
x∗, x∗∗) ∈ X∗ × X∗∗;

(d) for every representative function hS of S one has

h∗
S

(
x∗, x∗∗)� 〈

x∗∗, x∗〉 ∀(
x∗, x∗∗) ∈ X∗ × X∗∗.

A representative function hS of a maximal monotone operator S : X ⇒ X∗ fulfilling the inequality in the item (c) (or (d))
of the above theorem is called strong representative function of S (see [40]). The Fitzpatrick function ϕS of a maximal
monotone operator S : X ⇒ X∗ of Gossez type (D) is a strong representative function and one has ϕ |X×X∗ = ϕS . When
S
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hS : X × X∗ → R is a representative function of a maximal monotone operator of Gossez type (D) S : X ⇒ X∗ , then
h∗

S : X∗ × X∗∗ → R is a representative function of the inverse operator S−1 : X∗ → X∗∗ of Gossez’s monotone closure S
of S (for these statements we refer the reader to [20]).

2. A generalized bivariate infimal convolution formula

In this section we provide, by making use of an appropriate conjugate formula, sufficient conditions for an extended
bivariate infimal convolution formula, which we use in the sequel.

2.1. An useful conjugate formula

Let X, Y , Z be real separated locally convex spaces with topological duals X∗, Y ∗ and Z∗ , respectively.

Theorem 2.1. Let f : X → R and g : Y →R be proper, convex and lower semicontinuous functions and A : Z → X and B : Z → Y be
linear continuous mappings such that A−1(dom f ) ∩ B−1(dom g) �= ∅.

(a) For every set U ⊆ Z∗ the following statements are equivalent:
(i) The set {(A∗x∗ + B∗ y∗, r): r ∈R, f ∗(x∗) + g∗(y∗) � r} is closed regarding U ×R in (Z∗, w∗) ×R;

(ii) ( f ◦ A + g ◦ B)∗(z∗) = min{ f ∗(x∗) + g∗(y∗): (x∗, y∗) ∈ X∗ × Y ∗, A∗x∗ + B∗ y∗ = z∗} for all z∗ ∈ U .
(b) If X, Y and Z are Fréchet spaces and

(0,0) ∈ ic(dom f × dom g − (A × B)(�Z )
)
,

then the statements (i) and (ii) are valid for every U ⊆ Z∗ .

Proof. (a) Consider an arbitrary set U ⊆ Z∗ and the perturbation function

Φ : Z × X × Y → R, Φ(z, x, y) = f (Az + x) + g(Bz + y),

which is proper, convex and lower semicontinuous and fulfills

(0,0) ∈ prX×Y (dom Φ) = dom f × dom g − (A × B)(�Z ).

Its conjugate function looks for all (z∗, x∗, y∗) ∈ Z∗ × X∗ × Y ∗ like

Φ∗(z∗, x∗, y∗) = δ{0}
(
z∗ − A∗x∗ − B∗ y∗) + f ∗(x∗) + g∗(y∗).

Thus (ii) is nothing else than(
Φ(·,0,0)

)∗(
z∗) = min

(x∗,y∗)∈X∗×Y ∗ Φ∗(z∗, x∗, y∗) ∀z∗ ∈ U .

According to [5, Theorem 2], this is further equivalent to

prZ∗×R

(
epiΦ∗) is closed regarding U ×R in

(
Z∗, w∗) ×R. (3)

As one can easily see, it holds

prZ∗×R

(
epiΦ∗) = {(

A∗x∗ + B∗ y∗, r
): f ∗(x∗) + g∗(y∗)� r

}
and in this way the equivalence (i) ⇔ (ii) is proven.

(b) Since X, Y and Z are Fréchet spaces and (0,0) ∈ ic(prX×Y (dom Φ)), by [43, Corollary 2.7.3] it follows that for all
z∗ ∈ Z∗(

Φ(·,0,0)
)∗(

z∗) = min
(x∗,y∗)∈X∗×Y ∗ Φ∗(z∗, x∗, y∗)

or, equivalently,

( f ◦ A + g ◦ B)∗
(
z∗) = min

{
f ∗(x∗) + g∗(y∗): (

x∗, y∗) ∈ X∗ × Y ∗, A∗x∗ + B∗ y∗ = z∗},
which concludes the proof. �
Remark 2.1. In the hypotheses of Theorem 2.1, when X , Y and Z are Fréchet spaces, then, according to [43, Proposition 2.7.2],

ic(dom f × dom g − (A × B)(�Z )
) = ri

(
dom f × dom g − (A × B)(�Z )

)
.

Remark 2.2. We refer the reader to [4] for examples where, even X , Y and Z are finite dimensional spaces, the statements (i)
and (ii) in Theorem 2.1(a) are fulfilled, while the interiority-type condition in Theorem 2.1(b) fails.
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Remark 2.3. According to the previous theorem, one obtains when Z = X , A = idX and X and Y are Fréchet spaces as a
sufficient condition for the exact conjugate formula

( f + g ◦ B)∗
(
z∗) = min

{
f ∗(z∗ − B∗ y∗) + g∗(y∗): y∗ ∈ Y ∗} ∀z∗ ∈ X∗ (4)

the interiority-type condition

(0,0) ∈ ic(dom f × dom g − G(B)
)
.

Via Lemma 1.1 it follows that this is nothing else than

0 ∈ ic(dom g − B(dom f )
)
,

which is a regularity condition for (4) that has been already considered in literature (see, for instance, [43]).

2.2. A bivariate infimal convolution formula adequate for the generalized parallel sum

Let X and Y be two Banach spaces with X∗ and Y ∗ being their topological dual spaces and X∗∗ and Y ∗∗ their topo-
logical bidual spaces, respectively. Further, let f : X × X∗ → R and g : Y × Y ∗ → R be two given functions and A : X → Y
be a linear continuous mapping. In this subsection we deal with the following extended bivariate infimal convolutions
f ©A

1 g : X × X∗ →R,(
f ©A

1 g
)(

x, x∗) = inf
{

f
(
u, x∗) + g

(
Aw, v∗): u, w ∈ X, v∗ ∈ Y ∗, u + w = x, A∗v∗ = x∗},

and f ∗ ©A
2 g∗ : X∗ × X∗∗ →R,(

f ∗ ©A
2 g∗)(x∗, x∗∗) = inf

{
f ∗(x∗, u∗∗) + g∗(v∗, A∗∗w∗∗): u∗∗, w∗∗ ∈ X∗∗, v∗ ∈ Y ∗, u∗∗ + w∗∗ = x∗∗, A∗v∗ = x∗},

respectively. By making use of Theorem 2.1, we can prove the following result.

Theorem 2.2. Assume that f : X × X∗ → R and g : Y × Y ∗ → R are proper, convex and lower semicontinuous functions such that
dom g × prX∗(dom f ) ∩ Im A × G(A∗) �= ∅.

(a) The following statements are equivalent:
(i) The set {(u∗, A∗v∗, A∗∗u∗∗ + v∗∗, r): r ∈ R, f ∗(u∗, u∗∗) + g∗(v∗, v∗∗) � r} is closed regarding �X∗ × Im A∗∗ × R in

(X∗, w∗) × (X∗, w∗) × (Y ∗∗, w∗) ×R;
(ii) ( f ©A

1 g)∗(x∗, x∗∗) = ( f ∗ ©A
2 g∗)(x∗, x∗∗) and f ∗ ©A

2 g∗ is exact (that is, the infimum in the definition of
( f ∗ ©A

2 g∗)(x∗, x∗∗) is attained) for every (x∗, x∗∗) ∈ X∗ × X∗∗ .
(b) If

(0,0,0) ∈ ic(dom g × prX∗(dom f ) − Im A × G
(

A∗)),
then the statements (i) and (ii) are true.

Proof. Consider the proper, convex and lower semicontinuous functions F : X × X × X∗ → R, F (u, w, u∗) = f (u, u∗) and
G : X × Y × Y ∗ → R, G(u, v, v∗) = g(v, v∗) and the linear continuous mappings M : X × X × Y ∗ → X × X × X∗ , M =
idX × idX ×A∗ , and N : X × X × Y ∗ → X × Y × Y ∗ , N = idX ×A × idY ∗ . Since dom g × prX∗(dom f ) ∩ Im A × G(A∗) �= ∅, we
obtain that M−1(dom F ) ∩ N−1(dom G) �= ∅.

(a) According to Theorem 2.1(a), applied for U := �X∗ × Im A∗∗ ⊆ X∗ × X∗ × Y ∗∗ , we have that{(
M∗(u∗

1, w∗, u∗∗) + N∗(u∗
2, v∗, v∗∗), r

): r ∈R, F ∗(u∗
1, w∗, u∗∗) + G∗(u∗

2, v∗, v∗∗) � r
}

is closed regarding

�X∗ × Im A∗∗ ×R in
(

X∗, w∗) × (
X∗, w∗) × (

Y ∗∗, w∗) ×R (5)

if and only if

(F ◦ M + G ◦ N)∗
(
x∗, x∗, A∗∗x∗∗)

= min
(u∗

1,w∗,u∗∗)∈X∗×X∗×X∗∗
(u∗

2,v∗,v∗∗)∈X∗×Y ∗×Y ∗∗

{
F ∗(u∗

1, w∗, u∗∗) + G∗(u∗
2, v∗, v∗∗): M∗(u∗

1, w∗, u∗∗) + N∗(u∗
2, v∗, v∗∗) = (

x∗, x∗, A∗∗x∗∗)}

for all
(
x∗, x∗∗) ∈ X∗ × X∗∗. (6)

Since F ∗(u∗, w∗, u∗∗) = δ{0}(w∗) + f ∗(u∗, u∗∗) for all (u∗, w∗, u∗∗) ∈ X∗ × X∗ × X∗∗ and G∗(u∗, v∗, v∗∗) = δ{0}(u∗) +
g∗(v∗, v∗∗) for all (u∗, v∗, v∗∗) ∈ X∗ × Y ∗ × Y ∗∗ , one can easily see that



R.I. Boţ, S. László / J. Math. Anal. Appl. 391 (2012) 82–98 89
{(
M∗(u∗

1, w∗, u∗∗) + N∗(u∗
2, v∗, v∗∗), r

): r ∈R, F ∗(u∗
1, w∗, u∗∗) + G∗(u∗

2, v∗, v∗∗)� r
}

= {(
u∗, A∗v∗, A∗∗u∗∗ + v∗∗, r

): f ∗(u∗, u∗∗) + g∗(v∗, v∗∗) � r
}
,

which means that the statement in (5) is nothing else than (i).
On the other hand, for all (x∗, x∗∗) ∈ X∗ × X∗∗ it holds

(F ◦ M + G ◦ N)∗
(
x∗, x∗, A∗∗x∗∗)

= sup
(u,w,v∗)∈X×X×Y ∗

{〈(
x∗, x∗, A∗∗x∗∗), (u, w, v∗)〉 − (F ◦ M)

(
u, w, v∗) − (G ◦ N)

(
u, w, v∗)}

= sup
(u,w,v∗)∈X×X×Y ∗

{〈(
x∗, x∗∗), (u + w, A∗v∗)〉 − f

(
u, A∗v∗) − g

(
Aw, v∗)}

= sup
(s,s∗)∈X×X∗

{〈(
x∗, x∗∗), (s, s∗)〉 − inf

(u,w,v∗)∈X×X×Y ∗
{

f
(
u, s∗) + g

(
Aw, v∗): u + w = s, A∗v∗ = s∗}}

= (
f ©A

1 g
)∗(

x∗, x∗∗)
and

min
(u∗

1,w∗,u∗∗)∈X∗×X∗×X∗∗
(u∗

2,v∗,v∗∗)∈X∗×Y ∗×Y ∗∗

{
F ∗(u∗

1, w∗, u∗∗) + G∗(u∗
2, v∗, v∗∗): M∗(u∗

1, w∗, u∗∗) + N∗(u∗
2, v∗, v∗∗) = (

x∗, x∗, A∗∗x∗∗)}

= min
(u∗,0,u∗∗)∈X∗×X∗×X∗∗
(0,v∗,v∗∗)∈X∗×Y ∗×Y ∗∗

{
f ∗(u∗, u∗∗) + g∗(v∗, v∗∗): M∗(u∗,0, u∗∗) + N∗(0, v∗, v∗∗) = (

x∗, x∗, A∗∗x∗∗)}
= min

(u∗∗,w∗∗,v∗)∈X∗∗×X∗∗×Y ∗
{

f ∗(x∗, u∗∗) + g∗(v∗, A∗∗w∗∗): A∗v∗ = x∗, u∗∗ + w∗∗ = x∗∗}
= (

f ∗ ©A
2 g∗)(x∗, x∗∗),

which means that the statement in (6) says actually that ( f ©A
1 g)∗(x∗, x∗∗) = ( f ∗ ©A

2 g∗)(x∗, x∗∗) and f ∗ ©A
2 g∗ is exact

for every (x∗, x∗∗) ∈ X∗ × X∗∗ . This leads to the desired conclusion.
(b) The assertion is a direct consequence of Theorem 2.1(b), as, obviously,

(0,0,0,0,0,0) ∈ ic(dom F × dom G − (M × N)(�X×X×Y ∗)
)

⇔ (0,0,0,0,0,0) ∈ ic(X × X × X × (
dom g × prX∗(dom f ) − Im A × G

(
A∗)))

⇔ (0,0,0) ∈ ic(dom g × prX∗(dom f ) − Im A × G
(

A∗)). �
Remark 2.4. In the hypotheses of Theorem 2.2 and by keeping the notations used in its proof, according to Remark 2.1, we
have

ic(dom F × dom G − (M × N)(�X×X×Y ∗)
) = ri

(
dom F × dom G − (M × N)(�X×X×Y ∗)

)
,

which is equivalent to

ic(dom g × prX∗(dom f ) − Im A × G
(

A∗)) = ri
(
dom g × prX∗(dom f ) − Im A × G

(
A∗)).

In reflexive Banach spaces the equivalence in Theorem 2.2(a) gives rise to the following result.

Corollary 2.1. Let X and Y be reflexive Banach spaces and f : X × X∗ → R and g : Y × Y ∗ → R be proper, convex and lower
semicontinuous functions such that prX∗(dom f ) ∩ A∗(prY ∗ (dom g)) �= ∅. Then the following statements are equivalent:

(i) the set {(u∗, A∗v∗, Au + v, r): r ∈ R, f ∗(u∗, u) + g∗(v∗, v) � r} is closed regarding �X∗ × Im A × R in (X∗,‖ · ‖∗) ×
(X∗,‖ · ‖∗) × (Y ,‖ · ‖) ×R;

(ii) ( f ©A
1 g)∗(x∗, x) = ( f ∗ ©A

2 g∗)(x∗, x) and f ∗ ©A
2 g∗ is exact for every (x∗, x) ∈ X∗ × X.

3. The maximal monotonicity of Gossez type (D) of S‖A T

In what follows we assume that X and Y are real nonzero Banach spaces, that S : X ⇒ X∗ and T : Y ⇒ Y ∗ are two
monotone operators and that A : X → Y is a linear continuous mapping. For S : X∗∗ ⇒ X∗ and T : Y ∗∗ ⇒ Y ∗ , Gossez’s
monotone closures of S and T , respectively, we consider their extended generalized parallel sum defined via A, which is the
multivalued operator defined as

S‖A T : X ⇒ X∗, S‖A T (x) := (
S−1 + (

A∗T A∗∗)−1)−1
(x) ∀x ∈ X .
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The following result proposes two sufficient conditions ensuring the maximal monotonicity of Gossez type (D) of S‖A T ,
provided that both operators are maximal monotone of Gossez type (D), and it will give rise to a characterization of the
maximal monotonicity of the generalized parallel sum of S and T defined via A,

S‖A T : X ⇒ X∗, S‖A T (x) := (
S−1 + (

A∗T A
)−1)−1

(x) ∀x ∈ X .

Theorem 3.1. Let S : X ⇒ X∗ and T : Y ⇒ Y ∗ be two maximal monotone operators of Gossez type (D) with strong representative
functions hS and hT , respectively, and A : X → Y be a linear continuous mapping such that dom hT × prX∗(dom hS) ∩ Im A ×
G(A∗) �= ∅. Assume that one of the following conditions is fulfilled:

(a) (0,0,0) ∈ ic(dom hT × prX∗(dom hS ) − Im A × G(A∗));
(b) the set {(u∗, A∗v∗, A∗∗u∗∗ + v∗∗, r): r ∈R, h∗

S(u∗, u∗∗)+h∗
T (v∗, v∗∗) � r} is closed regarding �X∗ × Im A∗∗ ×R in (X∗, w∗)×

(X∗, w∗) × (Y ∗∗, w∗) ×R.

Then the function h : X × X∗ →R, h(x, x∗) = cl‖·‖×‖·‖∗ (hS ©A
1 hT )(x, x∗), is a strong representative function of S‖A T and the extended

generalized parallel sum S‖A T is a maximal monotone operator of Gossez type (D).

Proof. Obviously, h : X × X∗ →R is convex and (strong) lower semicontinuous and, due to the feasibility condition dom hT ×
prX∗(dom hS )∩ Im A × G(A∗) �= ∅, h is not identical to +∞. Since one of the conditions (a) and (b) is fulfilled, then one has,
via Theorem 2.2, that h∗(x∗, x∗∗) = (hS ©A

1 hT )∗(x∗, x∗∗) = (h∗
S ©A

2 h∗
T )(x∗, x∗∗) and h∗

S ©A
2 h∗

T is exact for every (x∗, x∗∗) ∈
X∗ × X∗∗ .

Take an arbitrary (x, x∗) ∈ X × X∗ . Then we have(
hS ©A

1 hT
)(

x, x∗) = inf
{

hS
(
u, x∗) + hT

(
Aw, v∗): u, w ∈ X, v∗ ∈ Y ∗, u + w = x, A∗v∗ = x∗}

� inf
{〈

x∗, u
〉 + 〈

x∗, w
〉: u, w ∈ X, u + w = x

} = 〈
x∗, x

〉
.

Hence, h(x, x∗) = cl‖·‖×‖·‖∗ (hS ©A
1 hT )(x, x∗) � 〈x∗, x〉, which implies that h � c, concomitantly ensuring that h is proper.

Take an arbitrary (x∗, x∗∗) ∈ X∗ × X∗∗ . Then we have

h∗(x∗, x∗∗) = (
h∗

S ©A
2 h∗

T

)(
x∗, x∗∗)

= inf
{

h∗
S

(
x∗, u∗∗) + h∗

T

(
v∗, A∗∗w∗∗): u∗∗, w∗∗ ∈ X∗∗, v∗ ∈ Y ∗, u∗∗ + w∗∗ = x∗∗, A∗v∗ = x∗}

� inf
{〈

u∗∗, x∗〉 + 〈
w∗∗, x∗〉: u∗∗, w∗∗ ∈ X∗∗, u∗∗ + w∗∗ = x∗∗} = 〈

x∗∗, x∗〉.
Thus, according to Theorem 1.2 and Theorem 1.3, the operator with the graph{(

x, x∗) ∈ X × X∗: h
(
x, x∗) = 〈

x∗, x
〉}

is maximal monotone of Gossez type (D) and one has{(
x, x∗) ∈ X × X∗: h

(
x, x∗) = 〈

x∗, x
〉} = {(

x, x∗) ∈ X × X∗: h∗(x∗, x
) = 〈

x∗, x
〉}

.

In order to conclude the proof, we show that

G(S‖A T ) = {(
x, x∗) ∈ X × X∗: h∗(x∗, x

) = 〈
x∗, x

〉}
and this will mean that h is a strong representative function of S‖A T .

Let (x, x∗) ∈ G(S‖A T ). Then x ∈ S−1(x∗) + (A∗T A∗∗)−1(x∗), hence there exists u∗∗ ∈ S−1(x∗) and w∗∗ ∈ (A∗T A∗∗)−1(x∗)
such that x = u∗∗ + w∗∗ . Thus (u∗∗, x∗) ∈ G(S) and, as x∗ ∈ A∗T A∗∗(w∗∗), there exists v∗ ∈ T (A∗∗w∗∗) such that A∗v∗ = x∗ .
Consequently, h∗

S(x∗, u∗∗) = 〈u∗∗, x∗〉 and h∗
T (v∗, A∗∗w∗∗) = 〈A∗∗w∗∗, v∗〉 and, so,

h∗(x∗, x
) = (

h∗
S ©A

2 h∗
T

)(
x∗, x

)
� h∗

S

(
x∗, u∗∗) + h∗

T

(
v∗, A∗∗w∗∗) = 〈

u∗∗, x∗〉 + 〈
w∗∗, x∗〉 = 〈

x∗, x
〉
.

On the other hand, as shown above, h∗(x∗, x) � 〈x∗, x〉 for all (x, x∗) ∈ X × X∗ , hence h∗(x∗, x) = 〈x∗, x〉, implying that
G(S‖A T ) ⊆ {(x, x∗) ∈ X × X∗: h(x, x∗) = 〈x∗, x〉}.

Conversely, let (x, x∗) ∈ X × X∗ be such that h∗(x∗, x) = 〈x∗, x〉. Using that h∗
S ©A

2 h∗
T is exact at (x∗, x), there exists

(u∗∗, w∗∗, v∗) ∈ X∗∗ × X∗∗ × Y ∗ such that u∗∗ + w∗∗ = x, A∗v∗ = x∗ and 〈x∗, x〉 = h(x, x∗) = h∗
S (x∗, u∗∗) + h∗

T (v∗, A∗∗w∗∗).
Since, on the other hand, h∗

S (x∗, u∗∗) + h∗
T (v∗, A∗∗w∗∗) � 〈u∗∗, x∗〉 + 〈A∗∗w∗∗, v∗〉 = 〈x∗, x〉, it follows that h∗

S(x∗, u∗∗) =
〈u∗∗, x∗〉 and h∗

T (v∗, A∗∗w∗∗) = 〈A∗∗w∗∗, v∗〉.
But h∗

S and h∗
T are representative functions of S−1 and T −1, respectively, which means that (u∗∗, x∗) ∈ G(S) and

(A∗∗w∗∗, v∗) ∈ G(T ). We have u∗∗ ∈ S−1(x∗) and, since w∗∗ = x − u∗∗ , we obtain v∗ ∈ T A∗∗(x − u∗∗), hence x∗ = A∗v∗ ∈
A∗T A∗∗(x − u∗∗) or, equivalently, x − u∗∗ ∈ (A∗T A∗∗)−1(x∗). Thus x = u∗∗ + (x − u∗∗) ∈ (S−1 + (A∗T A∗∗)−1)(x∗) and so
(x, x∗) ∈ G(S‖A T ).

Hence, G(S‖A T ) = {(x, x∗) ∈ X × X∗: h∗(x∗, x) = 〈x∗, x〉} and this concludes the proof. �
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Under the additional assumption that the domain of Gossez’s closure of S is a subset of X , the conditions (a) and (b)
of the previous theorem become sufficient for the maximal monotonicity of Gossez type (D) of the generalized parallel
sum S‖A T . One can notice that D(S) ⊆ X is particularly fulfilled when X is a reflexive Banach space.

Theorem 3.2. Let S : X ⇒ X∗ and T : Y ⇒ Y ∗ be two maximal monotone operators of Gossez type (D) with strong representative
functions hS and hT , respectively, and A : X → Y be a linear continuous mapping such that dom hT × prX∗(dom hS) ∩ Im A ×
G(A∗) �= ∅ and D(S) ⊆ X. Assume that one of the following conditions is fulfilled:

(a) (0,0,0) ∈ ic(dom hT × prX∗(dom hS) − Im A × G(A∗));
(b) the set {(u∗, A∗v∗, A∗∗u∗∗ + v∗∗, r): r ∈R, h∗

S(u∗, u∗∗)+h∗
T (v∗, v∗∗) � r} is closed regarding �X∗ × Im A∗∗ ×R in (X∗, w∗)×

(X∗, w∗) × (Y ∗∗, w∗) ×R.

Then the function h : X × X∗ →R, h(x, x∗) = cl‖·‖×‖·‖∗(hS ©A
1 hT )(x, x∗), is a strong representative function of S‖A T and the gener-

alized parallel sum S‖A T is a maximal monotone operator of Gossez type (D).

Proof. We need only to show that S‖A T = S‖A T , whenever D(S) ⊆ X . Indeed, (x, x∗) ∈ G(S‖A T ) if and only if there exist
u∗∗ ∈ S−1(x∗) ⊆ X and w∗∗ ∈ (A∗T A∗∗)−1(x∗) such that x = u∗∗ + w∗∗ . This is further equivalent to the existence of u∗∗ and
w∗∗ in X such that (u∗∗, x∗) ∈ G(S), x∗ ∈ A∗T A∗∗(w∗∗) = A∗T (Aw∗∗) = A∗T (Aw∗∗) and x = u∗∗ + w∗∗ . But this is the same
with x ∈ S−1(x∗) + (A∗T A)−1(x∗) or, equivalently, (x, x∗) ∈ G(S‖A T ). �
Remark 3.1. Concerning the two sufficient conditions for maximal monotonicity considered in Theorem 3.1 and Theorem 3.2,
one can notice, according to Theorem 2.2, that condition (b) is fulfilled whenever condition (a) is fulfilled. In the last section
of the paper we provide a situation where the latter fails, while condition (b) is valid (see Example 4.1).

In the last part of this section we turn our attention to the formulation of further interiority-type regularity conditions
for the maximal monotonicity of Gossez type (D) of the generalized parallel sums S‖A T , respectively, S‖A T , this time
expressed by means of the graph of T and of the range of S . We start with the following result.

Theorem 3.3. Let S : X ⇒ X∗ and T : Y ⇒ Y ∗ be two maximal monotone operators of Gossez type (D) with strong representative
functions hS and hT , respectively, and A : X → Y be a linear continuous mapping such that dom hT × prX∗(dom hS) ∩ Im A ×
G(A∗) �= ∅. Then it holds:

ic(G(T ) × R(S) − Im A × G
(

A∗))
⊆ ic(co G(T ) × co R(S) − Im A × G

(
A∗)) ⊆ ic(dom hT × prX∗(dom hS) − Im A × G

(
A∗))

= ri
(
dom hT × prX∗(dom hS) − Im A × G

(
A∗)).

Proof. Let us denote by C := dom hT × prX∗(dom hS) − Im A × G(A∗) and by D := G(T ) × R(S) − Im A × G(A∗). Then co D =
co G(T ) × co R(S) − Im A × G(A∗) and, obviously, ic D ⊆ ic(co D). On the other hand, as pointed out in Remark 2.4, we have
icC = ri C . Thus, it remains to show that ic(co D) ⊆ icC .

Since, co D ⊆ C , one has aff(co D) = aff D ⊆ aff C . Thus, in order to prove that ic(co D) ⊆ icC , it is enough to show that
aff C ⊆ cl(aff D). The proof will rely on [34, Lemma 20.4(b)] (for another result, where this lemma found application we
refer to [41]). What we will actually prove, is that

domϕT × prX∗(domϕS) ⊆ cl(aff D), (7)

where ϕS and ϕT denote the Fitzpatrick functions of the operators S and T , respectively. If (7) is true, then one gets

C ⊆ domϕT × prX∗(domϕS) − Im A × G
(

A∗) ⊆ cl
(
aff D − Im A × G

(
A∗)) = cl(aff D),

which leads to the desired conclusion.
In order to show (7), we assume without loss of generality that (0,0) ∈ G(S) and (0,0) ∈ G(T ). Suppose that there exists

(v, v∗, u∗) ∈ domϕT × prX∗(domϕS ) such that (v, v∗, u∗) /∈ cl(aff D). Then, according to a strong separation theorem, there
exist δ ∈R and (q∗,q∗∗, p∗∗) ∈ Y ∗ × Y ∗∗ × X∗∗ such that〈(

q∗,q∗∗, p∗∗), (v, v∗, u∗)〉 > δ > sup
{〈(

q∗,q∗∗, p∗∗), (y, y∗, x∗)〉: (y, y∗, x∗) ∈ cl(aff D)
}
.

As 0 ∈ D , aff D is a linear subspace. Thus 〈(q∗,q∗∗, p∗∗), (y, y∗, x∗)〉 = 0 for all (y, y∗, x∗) ∈ aff D and, consequently, δ > 0.
In other words,〈(

q∗,q∗∗, p∗∗), (y − Au, y∗ − v∗, x∗ − A∗v∗)〉 = 0 ∀(
y, y∗) ∈ G(T ) ∀x∗ ∈ R(S) ∀u ∈ X ∀v∗ ∈ Y ∗. (8)

By taking (y, y∗, x∗) := (0,0,0) ∈ G(T ) × R(S), we obtain

q∗∗ = −A∗∗ p∗∗
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and from here it results that〈
q∗, Au

〉 = 〈
A∗q∗, u

〉 = 0 ∀u ∈ X,

which means that A∗q∗ = 0. Hence,〈
q∗∗,q∗〉 = 〈−A∗∗ p∗∗,q∗〉 = 〈−p∗∗, A∗q∗〉 = 0.

On the other hand, from (8), we have 〈(q∗,q∗∗, p∗∗), (y, y∗, x∗)〉 = 0 for all (y, y∗) ∈ G(T ) and all x∗ ∈ R(S), hence〈(
q∗,q∗∗), (y, y∗)〉 = 0 ∀(

y, y∗) ∈ G(T )

and 〈
p∗∗, x∗〉 = 0 ∀x∗ ∈ R(S).

Take now an arbitrary (y∗∗, y∗) ∈ G(T ). Then there exists (yα, y∗
α)α∈I ∈ G(T ) such that (yα)α∈I converges to y∗∗ in

the weak∗ topology of Y ∗∗ and (y∗
α)α∈I converges to y∗ in the strong topology of Y ∗ . Since (yα, y∗

α) ∈ G(T ), we have
〈(q∗,q∗∗), (yα, y∗

α)〉 = 0 for every α ∈ I, hence 〈(q∗,q∗∗), (y∗∗, y∗)〉 = 0. Consequently,〈(
q∗,q∗∗), (y∗∗, y∗)〉 = 0 ∀(

y∗∗, y∗) ∈ G(T )

and one can prove in a similar way that〈
p∗∗, x∗〉 = 0 ∀x∗ ∈ R(S).

From here, according to [34, Lemma 20.4(b)], one has (as 〈q∗∗,q∗〉 = 0)〈(
q∗,q∗∗), (y∗∗, y∗)〉 = 0 ∀(

y∗∗, y∗) ∈ domϕT

and (as, obviously, 〈p∗∗,0〉 = 0)〈(
0, p∗∗), (x∗∗, x∗)〉 = 0 ∀(

x∗, x∗∗) ∈ domϕS .

But (v, v∗, u∗) ∈ domϕT × prX∗(domϕS) and, as ϕS |X×X∗ = ϕS and ϕT |Y ×Y ∗ = ϕT , it follows that〈(
q∗,q∗∗, p∗∗), (v, v∗, u∗)〉 = 0,

which is a contradiction to δ > 0. Consequently, (7) is valid and, so, ic(co D) ⊆ ic(C). �
The above theorem gives rise to two supplementary interiority-type regularity conditions for the maximal monotonicity

of S‖A T .

Corollary 3.1. Let S : X ⇒ X∗ and T : Y ⇒ Y ∗ be two maximal monotone operators of Gossez type (D) with strong representative
functions hS and hT , respectively, and A : X → Y be a linear continuous mapping such that dom hT × prX∗(dom hS) ∩ Im A ×
G(A∗) �= ∅. If

(0,0,0) ∈ ic(G(T ) × R(S) − Im A × G
(

A∗))
or

(0,0,0) ∈ ic(co G(T ) × co R(S) − Im A × G
(

A∗)),
then the extended generalized parallel sum S‖A T is a maximal monotone operator of Gossez type (D).

As follows from the following result, under the supplementary assumption that D(S) ⊆ X , the inclusion relations in
Theorem 3.3 become equalities.

Theorem 3.4. Let S : X ⇒ X∗ and T : Y ⇒ Y ∗ be two maximal monotone operators of Gossez type (D) with strong representative
functions hS and hT , respectively, and A : X → Y be a linear continuous mapping such that dom hT × prX∗(dom hS) ∩ Im A ×
G(A∗) �= ∅ and D(S) ⊆ X. Then it holds:

ic(G(T ) × R(S) − Im A × G
(

A∗))
= ri

(
G(T ) × R(S) − Im A × G

(
A∗)) = ic(co G(T ) × co R(S) − Im A × G

(
A∗))

= ri
(
co G(T ) × co R(S) − Im A × G

(
A∗)) = ic(dom hT × prX∗(dom hS) − Im A × G

(
A∗))

= ri
(
dom hT × prX∗(dom hS) − Im A × G

(
A∗)).
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Proof. By keeping the notations introduced in the proof of Theorem 3.3, let us prove first that icC ⊆ D . Take an arbitrary
(v, v∗, u∗) ∈ icC , hence (0,0,0) ∈ ic(C − (v, v∗, u∗)). Consider the functions

f̃ : X × X∗ → R, f̃
(
x, x∗) = hS

(
x, x∗ + u∗) − 〈

u∗, x
〉

and

g̃ : Y × Y ∗ → R, g̃
(

y, y∗) = hT
(

y + v, y∗ + v∗) − (〈
v∗, y

〉 + 〈
y∗, v

〉 + 〈
v∗, v

〉)
and the operators S̃ : X ⇒ X∗ defined by G (̃S) = {(x, x∗) ∈ X × X∗: f̃ (x, x∗) = 〈x∗, x〉} and T̃ : Y ⇒ Y ∗ defined by G(T̃ ) =
{(y, y∗) ∈ Y × Y ∗: g̃(y, y∗) = 〈y∗, y〉}. It can be easily observed, that G (̃S) = G(S) − (0, u∗) and G(T̃ ) = G(T ) − (v, v∗).
Consequently, S̃ and T̃ are maximal monotone operators of Gossez type (D) and f̃ , respectively, g̃ are strong representa-
tive functions for them. Since D(S) ⊆ X , the domain of Gossez’s closure of S̃ is a subset of X , too. Hence, according to
Theorem 3.2, the condition

(0,0,0) ∈ ic(C − (
v, v∗, u∗)) = ic(dom g̃ × prX∗(dom f̃ ) − Im A × G

(
A∗))

ensures the maximal monotonicity of S̃‖A T̃ . Hence, G (̃S‖A T̃ ) �= ∅, thus there exists x∗ ∈ (̃S−1 + (A∗ T̃ A)−1)−1(x) for some
x ∈ X . This means that there exist u, w ∈ X such that (u, x∗) ∈ G (̃S) and (w, x∗) ∈ G(A∗ T̃ A) and u + w = x. As G (̃S) =
G(S) − (0, u∗), we have(

0, u∗) ∈ G(S) − (
u, x∗).

On the other hand, as x∗ ∈ A∗ T̃ A(w), there exists y∗ ∈ Y ∗ , such that y∗ ∈ T̃ (Aw) and x∗ = A∗ y∗ . Thus, for y := Aw , we
have (y, y∗) ∈ G(T̃ ) = G(T ) − (v, v∗), hence(

v, v∗) ∈ G(T ) − (
y, y∗).

In conclusion, (v, v∗, u∗) ∈ G(T ) × R(S) − Im A × G(A∗) = D and, so, icC ⊆ D .
If icC = ri C is empty, then by Theorem 3.3 it holds ic D = ic(co D) = icC = ri C = ∅. Consequently, ri D = ri(co D) = ∅.
Assume now that icC is nonempty. Since icC ⊆ D ⊆ co D ⊆ C , one gets that ic D = ic(co D) = icC = ri C . Moreover, it holds

aff(icC) = aff C and, as ri C =ic C ⊆ D ⊆ co D ⊆ C , we have aff C = aff D , these sets being closed. Thus ri C = ri D = ri(co D)

and this provides the desired conclusion. �
We close the section by the following statement on the maximal monotonicity of Gossez type (D) of S‖A T , which follows

from Theorem 3.2 and Theorem 3.4.

Corollary 3.2. Let S : X ⇒ X∗ and T : Y ⇒ Y ∗ be two maximal monotone operators of Gossez type (D) with strong representative
functions hS and hT , respectively, and A : X → Y be a linear continuous mapping such that dom hT × prX∗(dom hS) ∩ Im A ×
G(A∗) �= ∅ and D(S) ⊆ X. Then one has the following sequence of equivalencies

(0,0,0) ∈ ic(G(T ) × R(S) − Im A × G
(

A∗))
⇔ (0,0,0) ∈ ri

(
G(T ) × R(S) − Im A × G

(
A∗)) ⇔ (0,0,0) ∈ ic(co G(T ) × co R(S) − Im A × G

(
A∗))

⇔ (0,0,0) ∈ ri
(
co G(T ) × co R(S) − Im A × G

(
A∗))

⇔ (0,0,0) ∈ ic(dom hT × prX∗(dom hS) − Im A × G
(

A∗))
⇔ (0,0,0) ∈ ri

(
dom hT × prX∗(dom hS) − Im A × G

(
A∗))

and each of these conditions guarantees that the generalized parallel sum S‖A T is a maximal monotone operator of Gossez type (D).

4. Particular cases

In this section we will consider two particular instances of the generalized parallel sum defined via a linear continuous
mapping and show what the results provided in Section 3 become in these special settings.

4.1. The maximal monotonicity of Gossez type (D) of S‖T

Assume that X is a real nonzero Banach space and S : X ⇒ X∗ and T : X ⇒ X∗ are two monotone operators. By taking
A = idX : X → X , their extended generalized parallel sum defined via A and their generalized parallel sum defined via A
become the extended parallel sum of S and T

S‖T : X ⇒ X∗, S‖T (x) := (
S−1 + T −1)−1

(x) ∀x ∈ X
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and the classical parallel sum of S and T ,

S‖T : X ⇒ X∗, S‖T (x) := (
S−1 + T −1)−1

(x) ∀x ∈ X,

respectively.
Having hS : X × X∗ → R and hT : X × X∗ → R representative functions of S and T , respectively, the extended infimal

convolutions of them, namely hS ©A
1 hT and h∗

S ©A
2 h∗

T , turn out to be the following classical bivariate infimal convolutions
(see, for instance, [5,34,38,40])

hS�1hT : X × X∗ → R, (hS�1hT )
(
x, x∗) = inf

{
hS

(
u, x∗) + hT

(
w, x∗): u, w ∈ X, u + w = x

}
and

h∗
S�2h∗

T : X∗ × X∗∗ → R,(
h∗

S�2h∗
T

)(
x∗, x∗∗) = inf

{
h∗

S

(
x∗, u∗∗) + h∗

T

(
x∗, w∗∗): u∗∗, w∗∗ ∈ X∗∗, u∗∗ + w∗∗ = x∗∗},

respectively.

Theorem 4.1. Let S : X ⇒ X∗ and T : X ⇒ X∗ be two maximal monotone operators of Gossez type (D) with strong representative
functions hS and hT , respectively, such that prX∗(dom hS) ∩ prX∗(dom hT ) �= ∅ and assume that one of the following conditions is
fulfilled:

(a) 0 ∈ ic(prX∗(dom hS) − prX∗(dom hT ));
(b) the set {(u∗, v∗, u∗∗ + v∗∗, r): r ∈ R, h∗

S(u∗, u∗∗) + h∗
T (v∗, v∗∗) � r} is closed regarding �X∗ × X∗∗ × R in (X∗, w∗) ×

(X∗, w∗) × (X∗∗, w∗) ×R.

Then the following statements are true:

(i) The function h : X × X∗ → R, h(x, x∗) = cl‖·‖×‖·‖∗(hS�1hT )(x, x∗), is a strong representative function of S‖T and the extended
parallel sum S‖T is a maximal monotone operator of Gossez type (D).

(ii) If D(S) ⊆ X (or, if D(T ) ⊆ X ), then the function h : X × X∗ →R, h(x, x∗) = cl‖·‖×‖·‖∗ (hS�1hT )(x, x∗), is a strong representative
function of S‖T and the parallel sum S‖T is a maximal monotone operator of Gossez type (D).

Proof. The result follows directly Theorem 3.3 and Theorem 3.4, by noticing that the interiority-type condition in these two
statements becomes

(0,0,0) ∈ ic(dom hT × prX∗(dom hS) − X × �X∗
) = X × ic(prX∗(dom hS) × prX∗(dom hS) − �X∗

)
or, equivalently,

(0,0) ∈ ic(prX∗(dom hS) × prX∗(dom hS) − �X∗
)
.

According to Lemma 1.1, the latter relation is equivalent to

0 ∈ ic(prX∗(dom hS) − prX∗(dom hT )
)
. �

The next result follows from Theorem 3.3 and Theorem 4.1(i).

Theorem 4.2. Let S : X ⇒ X∗ and T : X ⇒ X∗ be two maximal monotone operators of Gossez type (D) with strong representative
functions hS and hT , respectively, such that prX∗(dom hS) ∩ prX∗(dom hT ) �= ∅.

(a) Then it holds:

ic(R(S) − R(T )
) ⊆ ic(co R(S) − co R(T )

) ⊆ ic(prX∗(dom hS) − prX∗(dom hT )
)

= ri
(
prX∗(dom hS) − prX∗(dom hT )

)
.

(b) If

0 ∈ ic(R(S) − R(T )
)

or

0 ∈ ic(co R(S) − co R(T )
)
,

then the extended parallel sum S‖T is a maximal monotone operator of Gossez type (D).
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Proof. As (b) is a direct consequence of Theorem 4.1(i) and statement (a), we will turn our attention to the proof of the
latter. Concerning it, one can easily notice that the inclusion

ic(R(S) − R(T )
) ⊆ ic(co R(S) − co R(T )

)
follows directly from the definition of the intrinsic relative algebraic interior, while the equality

ic(prX∗(dom hS) − prX∗(dom hT )
) = ri

(
prX∗(dom hS) − prX∗(dom hT )

)
is a direct consequence of [43, Theorem 2.7.2], applied to the proper, convex and lower semicontinuous function

Φ : X × X × X∗ × X∗ → R, Φ
(
x, u, x∗, u∗) = hS

(
x, x∗ + u∗) + hT

(
u, x∗),

by taking into account that (we consider the projection on the fourth component of the product space X × X × X∗ × X∗)

prX∗(dom Φ) = prX∗(dom hS) − prX∗(dom hT ).

What it remained to be shown, namely that

ic(co R(S) − co R(T )
) ⊆ ic(prX∗(dom hS) − prX∗(dom hT )

)
,

follows according to Lemma 1.1 and Theorem 3.3. Indeed, when u∗ ∈ ic(co R(S) − co R(T )) or, equivalently, 0 ∈
ic(co R(S) − u∗ − co R(T )), one has that(

u∗,0
) ∈ ic(co R(T ) × co R(S) − �X∗

) ⊆ ic(prX∗(dom hT ) × prX∗(dom hS) − �X∗
)

and from here, again via Lemma 1.1, it follows u∗ ∈ ic(prX∗(dom hS) − prX∗(dom hT )). �
Theorem 3.4 and Theorem 4.1(ii) give rise to the following result.

Theorem 4.3. Let S : X ⇒ X∗ and T : X ⇒ X∗ be two maximal monotone operators of Gossez type (D) with strong representative
functions hS and hT , respectively, such that prX∗(dom hS ) ∩ prX∗(dom hT ) �= ∅ and D(S) ⊆ X (or, D(T ) ⊆ X ).

(a) Then it holds:

ic(R(S) − R(T )
) = ri

(
R(S) − R(T )

) = ic(co R(S) − co R(T )
) = ri

(
co R(S) − co R(T )

)
= ic(prX∗(dom hS) − prX∗(dom hT )

) = ri
(
prX∗(dom hS) − prX∗(dom hT )

)
.

(b) One has the following sequence of equivalencies

0 ∈ ic(R(S) − R(T )
) ⇔ 0 ∈ ri

(
R(S) − R(T )

) ⇔ 0 ∈ ic(co R(S) − co R(T )
)

⇔ 0 ∈ ri
(
co R(S) − co R(T )

) ⇔ 0 ∈ ic(prX∗(dom hS) − prX∗(dom hT )
)

⇔ 0 ∈ ri
(
prX∗(dom hS) − prX∗(dom hT )

)
and each of these conditions guarantees that the parallel sum S‖T is a maximal monotone operator of Gossez type (D).

Proof. We will only prove statement (a), as (b) is a direct consequence of it and Theorem 4.1(ii).
For an arbitrary u∗ ∈ ic(prX∗(dom hS ) − prX∗(dom hT )) one has, via Lemma 1.1, that(

u∗,0
) ∈ ic(prX∗(dom hT ) × prX∗(dom hS) − �X∗

)
.

Further, by Theorem 3.4 it follows (u∗,0) ∈ (R(T ) × R(S) − �X∗), implying that u∗ ∈ R(S) − R(T ). Consequently,

ic(prX∗(dom hS) − prX∗(dom hT )
) ⊆ R(S) − R(T ).

If ic(prX∗(dom hS) − prX∗(dom hT )) is empty, then there is nothing to be proved. Otherwise, the conclusion follows, by using
that

ic(prX∗(dom hS) − prX∗(dom hT )
) ⊆ R(S) − R(T ) ⊆ co R(S) − co R(T ) ⊆ prX∗(dom hS) − prX∗(dom hT )

and aff(ic(prX∗(dom hS ) − prX∗(dom hT ))) = aff(prX∗(dom hS ) − prX∗(dom hT )). �
Remark 4.1. In the setting of reflexive Banach spaces several interiority-type regularity conditions ensuring the maximal
monotonicity of the parallel sum S‖T of two maximal monotone operators S and T have been introduced in the literature.
While in [1] the condition

int
(

R(S)
) ∩ R(T ) �= ∅
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was considered, in [31] it has been assumed that

cone
(

R(S) − R(T )
) = X∗.

Further, in a Hilbert space context, in [23] the condition

cone
(

R(S) − R(T )
)

is a closed linear subspace of X∗

has been stated, while in [28], in reflexive Banach spaces, the condition

cone
(
co R(S) − co R(T )

)
is a closed linear subspace of X∗

was proposed.
Taking into account that an operator T : X ⇒ X∗ is maximal monotone if and only if T −1 : X∗ ⇒ X is maximal monotone

and that D(T −1) = R(T ), one can easily observe that all these interiority-type regularity conditions ensuring that S‖T is
maximal monotone, provided S and T are maximal monotone, are the counterpart of some meanwhile classical ones stated
for the maximal monotonicity of the sum S−1 + T −1 (see, for instance, [29,34,38]) and can be easily derived from them.

For interiority-type regularity conditions guaranteeing the maximal monotonicity of Gossez type (D) of the parallel sum
and the extended parallel sum of two maximal monotone operators of Gossez type (D) in general Banach spaces we refer
to [36]. These results have been obtained as particular instances of some corresponding ones formulated for the generalized
parallel sum defined via a linear continuous mapping S‖A T .

Example 4.1. With this example we want to emphasize that there exist maximal monotone operators with a maximal
monotone parallel sum and for which the interiority-type regularity condition (a) in Theorem 4.1 is not fulfilled, while the
closedness-type condition (b) in Theorem 4.1 holds.

Consider the proper, sublinear and lower semicontinuous functions f , g : R2 → R, f (x1, x2) = ‖(x1, x2)‖2 + δ
R

2+ (x1, x2),

where ‖ · ‖2 denotes the Euclidean norm on R
2, and g(x1, x2) = √

3/2x1 + 1/2x2 + δ−R
2+ (x1, x2). Then the multivalued

operators S := ∂ f and T := ∂ g are maximal monotone and their only representative functions are hS((x1, x2), (x∗
1, x∗

2)) =
f (x1, x2)+ f ∗(x∗

1, x∗
2) and hT ((x1, x2), (x∗

1, x∗
2)) = g(x1, x2)+ g∗(x∗

1, x∗
2), respectively. One can easily verify that f ∗ = δcl B

R2 −R
2+ ,

where BR2 denotes the open unit ball of R2, and g∗ = δ[√3/2,+∞)×[1/2,+∞)
.

Obviously,

prR2(dom hS) ∩ prR2(dom hT ) = (
cl BR2 −R

2+
) ∩ [√3/2,+∞) × [1/2,+∞) �= ∅,

where the projection is taken onto the second component of the product space R
2 ×R

2.
We also have{(

u∗, v∗, u∗∗ + v∗∗, r
) ∈R

2 ×R
2 ×R

2 ×R: h∗
S

(
u∗, u∗∗) + h∗

T

(
v∗, v∗∗) � r

}
= (

cl BR2 −R
2+
) × [√3/2,+∞) × [1/2,+∞)

× {
(x1 + y1, x2 + y2, r) ∈R

2 ×R: ∥∥(x1, x2)
∥∥

2 + √
3/2y1 + 1/2y2 � r

}
,

which is obviously a closed set. Hence, condition (b) in Theorem 4.1 is fulfilled and S‖T is maximal monotone.
On the other hand, one can notice that condition (a) in Theorem 4.1 fails. Otherwise, one would have according to

Theorem 4.3(b) that

(0,0) ∈ ri
(
prR2(dom hS) − prR2(dom hT )

)
or, equivalently,(

BR2 − intR2+
) ∩ (

√
3/2,+∞) × (1/2,+∞) �= ∅,

which would lead to a contradiction.

4.2. The maximal monotonicity of Gossez type (D) of A∗T A

For the second particular instance, we treat in this section, we stay in the same setting as in Section 3, but assume that
S : X ⇒ X∗ is the multivalued operator with G(S) = {0} × X∗ , which is obviously maximal monotone of Gossez type (D).
Its extension to the bidual, S : X∗∗ ⇒ X∗ , fulfills G(S) = {0} × X∗ , which means that the extended generalized parallel sum
S‖A T and the generalized parallel sum S‖A T coincide (see also the proof of Theorem 3.2) and fulfill

S‖A T (x) = S‖A T (x) = A∗T A(x) ∀x ∈ X .

Since ϕS = ψS = δ{0}×X∗ , by Proposition 1.1 it follows that the only representative function of S is hS = δ{0}×X∗ . Since
h∗ = δX∗×{0} , hS is actually a strong representative function of S .
S
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Having hT : Y × Y ∗ → R a representative function T , the extended infimal convolutions hS ©A
1 hT and h∗

S ©A
2 h∗

T of hS

and hT become in this situation

hA
T : X × X∗ →R, hA

T

(
x, x∗) = inf

{
hT

(
Ax, v∗): v∗ ∈ Y ∗, A∗v∗ = x∗}

and

h∗A
T : X∗ × X∗∗ → R, h∗A

T

(
x∗, x∗∗) = inf

{
h∗

T

(
v∗, A∗∗x∗∗): v∗ ∈ Y ∗, A∗v∗ = x∗},

respectively.
Noticing that dom hT × prX∗(dom hS ) − Im A × G(A∗) = (prY (dom hT ) − Im A) × Y ∗ × X∗ , Theorem 3.2 gives rise to the

following result.

Theorem 4.4. Let T : Y ⇒ Y ∗ be a maximal monotone operators of Gossez type (D) with strong representative function hT and
A : X → Y be a linear continuous mapping such that prY (dom hT )∩ Im A �= ∅. Assume that one of the following conditions is fulfilled:

(a) 0 ∈ ic(prY (dom hT ) − Im A);
(b) the set {(A∗v∗, v∗∗, r): r ∈ R, h∗

T (v∗, v∗∗) � r} is closed regarding X∗ × Im A∗∗ ×R in (X∗, w∗) × (Y ∗∗, w∗) ×R.

Then the function h : X × X∗ →R, h(x, x∗) = cl‖·‖×‖·‖∗ hA
T (x, x∗), is a strong representative function of A∗T A and A∗T A is a maximal

monotone operator of Gossez type (D).

Since G(T )× R(S)− Im A × G(A∗) = (D(T )− Im A)× Y ∗ × X∗ , via Theorem 3.4 and Corollary 3.2 we obtain the following
statement.

Theorem 4.5. Let T : Y ⇒ Y ∗ be a maximal monotone operators of Gossez type (D) with strong representative function hT and
A : X → Y be a linear continuous mapping such that prY (dom hT ) ∩ Im A �= ∅.

(a) Then it holds:

ic(D(T ) − Im A
) = ri

(
D(T ) − Im A

) = ic(co D(T ) − Im A
) = ri

(
co D(T ) − Im A

)
= ic(prY (dom hT ) − Im A

) = ri
(
prY (dom hT ) − Im A

)
.

(b) One has the following sequence of equivalencies

0 ∈ ic(D(T ) − Im A
) ⇔ 0 ∈ ri

(
D(T ) − Im A

) ⇔ 0 ∈ ic(co D(T ) − Im A
)

⇔ 0 ∈ ri
(
co D(T ) − Im A

) ⇔ 0 ∈ ic(prY (dom hT ) − Im A
) ⇔ 0 ∈ ri

(
prY (dom hT ) − Im A

)
and each of these conditions guarantees that A∗T A is a maximal monotone operator of Gossez type (D).

Remark 4.2. Using as a starting point Theorem 4.4 and Theorem 4.5 and by employing the techniques used in [14], one can
further provide interiority- and closedness-type regularity conditions for the maximal monotonicity of Gossez type (D) of
the sum of two maximal monotone operators of Gossez type (D), but also for the sum of a maximal monotone operator of
Gossez type (D) with the composition of another maximal monotone operator of Gossez type (D) with a linear continuous
mapping (for the latter one will thereby rediscover the statements given in [40, Theorem 16]).
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[40] M.D. Voisei, C. Zălinescu, Strongly-representable monotone operators, J. Convex Anal. 16 (3–4) (2009) 1011–1033.
[41] L. Yao, An affirmative answer to a problem posed by Zălinescu, J. Convex Anal. 18 (3) (2011).
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