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Abstract

This paper deals with the global uniform exponential stability independent of delay of time-
linear and time-invariant systems subject to point and distributed delays for the initial cond
being continuous real functions except possibly on a set of zero measure of bounded discont
It is assumed that the delay-free system as well as an auxiliary one are globally uniformly
nentially stable and globally uniform exponential stability independent of delay, respectivelyThe
auxiliary system is typically a part of the overall dynamics of the delayed system but not nece
the isolated undelayed dynamics as usually assumed in the literature.Since there is a great freedo
in setting such an auxiliary system, the obtained stability conditions are very useful in a wide
of practical applications.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The stability and feedback stabilization of time-delay systems subject to constan
and distributed delays as well as time-varying ones has received important attention
last years (see, for instance, [1,2,4–8,10,11,13]). A key point is that a system exh
stability in the absence of delays may loose that property for small delays and, in co
a stable delayed system may loose the property in the absence of delay (see, for in
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[1,4,6]). This paper deals with the global uniform exponential stability independe
the delays(g.u.e.s.i.d.) of a class of homogeneous time-delay systems subject to com
point and distributed delays as well as integro-differential Volterra-type delayed dyna
The global stability is investigated for any function of initial conditions being everyw
continuous on its definition domain, a real interval[−h,0], whereh is the maximum delay
in the system, except possibly on a set of zero measure where the function possess b
discontinuities. Necessary and sufficient global uniform stability conditions independ
the delays are obtained if the delay-free system is globally uniformly exponentially s
(g.u.e.s.) and an auxiliary system is g.u.e.s.i.d. The obtained results are then appl
number of particular cases of interest by setting different auxiliary systems includin
standard delay-free one. The mathematical proofs are based on conditions which gu
that a linear operator in a Banach space is compact within a domain that contains the
complex right-half plane provided that another one defined for the auxiliary system i
compact within a (not necessarily identical) domain that contains the closed complex
half plane. The auxiliary system may be a delay-free one or, in general, any par
parametrization of the whole system under study where a part of the delayed dyna
deleted. Some sufficient conditions for the system to be g.u.e.s. dependent on delay
obtained by using the same mathematical outlines. Extensions are given for forced s
under impulsive inputs and also by considering the closed-loop stabilization of time-
systems of the given class.

Notation. (a) For the delayed system,T : [0,∞)→ L(X) is the inverse Laplace transfor
of the resolvent mappinĝT (s), which is holomorphic where it exists, withX being the
real Banach space ofn-vector real functions endowed with the supremum norm on t
definition domain.T̂ −1(s) takes the form (̂T −1

JM(s)−∆T̂JM(s)), whereT̂JM(s) is defined

similarly as T̂ (s) for the auxiliary system, whose delay-free dynamics is defined
squaren-matrixM, and∆T̂JM(s)= T̂ −1

JM(s)− T̂ −1(s). For all complexs such thatT̂JM(s)

exists,T̂ (s)= (I − T̂JM(s)∆T̂JM(s))−1T̂JM(s)= ˆ̃
T −1

JM(s)T̂JM(s).
The subindexJ = (J1, J2, J3) denotes a triple for sets of indices referred to

particular subsets of real constants describing point delays (J1), infinitely distributed
Volterra-type delays (J2) and finitely distributed delays (J3) of the system which ar
also present in the auxiliary system. For instance, 1∈ J1 ⇒ h1 > 0 is a point delay of
the time-delay system which is also present in the auxiliary system and so on.
Card(J1) � m, Card(J2) � m′ + 1, Card(J3) � m′′. If a pure convolution Volterra-typ
dynamics

∫ t

0 dα0(τ )Aα0x(t − τ ) is present then it is described by a fictitious delayh′0 = 0.
If such a term is not present then Card(J2) � m′. The remaining infinitely distributed de
lays give contributions

∫ t

0 dαi(τ )Aαi x(t − τ − h′i ) with finite real constantsh′i > 0 with
i = 1,2, . . . ,m′ to ẋ(t) which are point delays under the integral symbol. It is said
the delays are infinitely distributed because of the contribution of the delayed dynam
made under an integral over[0,∞) ast →∞, i.e.,x(t − τ − h′i ) acts on the dynamics o
x(t) from τ = 0 to τ = t for finite t and ast →∞.

(b) T̂ ′−1(s, ϕ)= T̂ ′−1
JM (s,ϕ)−∆T̂ ′

JM(s,ϕ) is a complex operator-valued function wi
domain inC × [−π,π]m+m′+m′′+1 ⊂ C × Rm+m′+1 with [−π,π]m+m′+m′′+1 being the



458 M. De la Sen, N. Luo / J. Math. Anal. Appl. 289 (2004) 456–476

ut,
g
ed

f

uted

ni-
s have

The
c

ral
odels
cross product of[−π,π] by itself (m + m′ + m′′ + 1)-times andϕT = (ϕ1, ϕ2, . . . ,

ϕm+m′+m′′+1) andϕm+1 = 0 (sinceh′0 = 0) and range inCn.

(c) N(s, ĥ) = NJM(s, ĥ)[I − N−1
JM(s, ĥ)∆NJM(s, ĥ)] = NJM(s, ĥ). ÑJM(s, ĥ) is an

operator-valued function with domain inC × Rm+m′+m′′+1, whereĥ = (ĥ′T1 , ĥ′T2 )T and

h′0 = 0. For s = jω and anyĥ with ϕm+1 = 0 and remaining componentsϕi in [−π,π]
whose values depend on orhi (i � m) or h′i (i � m′ + 2). Similarly,

NJM(jω, ĥ)= T̂ ′−1
JM (jω,ϕ)= T̂ ′−1

JM (jω),

∆NJM(jω, ĥ)=∆T̂ ′
JM(jω,ϕ)=∆T̂JM(jω),

ÑJM(jω, ĥ)= ˆ̃
T ′−1

JM(jω,ϕ)= ˆ̃
T ′−1

JM(jω),

Ñ(jω, ĥ)= ˆ̃
T ′−1(jω,ϕ)= ˆ̃

T −1(jω)

for the aboveĥ andϕ. Note thatT̂ , T̂ ′ andN−1 are distinct mathematical objects b
however, they take identical values for all pure imaginarys = jω and a correspondin
ϕi ∈ [−π,π] such thate−jωi = e±jϕi with ϕm+1 = h′0 = 0. The same applies for the relat
objects referred to the auxiliary system.

2. Problem statement

Consider the following linear and time-invariant impulsive system with delays:

ẋ(t)=
m∑
i=0

Aix(t − hi)+
m′∑
i=0

t∫
0

dαi(τ )Aαi x(t − τ − h′i )

+
m′+m′′∑
i=m′+1

t∫
t−hi

dαi(t − τ )Aαi x(τ )+
∑
i∈I

biδ(t − ti), (1)

whereA0 andAi , Aαk (i = 1,2, . . . ,m, k = 0,1, . . . ,m′ + m′′) belong to the spaces o
unbounded and bounded operators, respectively, on a Banach space ofn-vector real func-
tionsx ∈X endowed with the supremum norm where the vectors of point and distrib
constant delays arêh = (0, h1, h2, . . . , hm)

T and ĥ′ = (ĥ′T1 |ĥ′T2 )T = (0, h′1, h′2, . . . , h′m′ |
h′
m′+1, h

′
m′+2, . . . , h

′
m′+m′′ )T , respectively, withhi � 0 andh′k � 0 (i = 1,2, . . . ,m′ +m′′)

andh0 = h′0 = 0, A0 ≡ A, Aα0 ≡ Aα andα0(·) ≡ α(·). The functionsαi : [0,∞) → R
and αk : [0, h′k] → R are continuously differentiable real functions within their defi
tion domains except possibly on sets of zero measure where the time-derivative
bounded discontinuities. All or some of theαi(·) andαk(·) may be alternatively matrix
functionsαi : [0, t] → Rn×n for t ∈ R+ andαi : [0, h′k] → Rn×n. We will not do any ex-
plicit difference between both possibilities in the notation for the sake of simplicity.
impulsive inputv(t)=∑i∈I biδ(t − ti ) is built with the finite or infinite sequence of Dira
δ(t − ti ) impulses at the sequence of time instants{ti , i ∈ I} with tt+1 > ti for some
totally ordered proper or improper numerable subsetI ⊆ N. If Card(I) = p < ∞ then
v(t) :=∑p

i=1 biδ(t − ti) andI := {i ∈ N: i � p}. Note that the system (1) is very gene
since it includes point-delayed dynamics, like, for instance, in typical war/peace m



M. De la Sen, N. Luo / J. Math. Anal. Appl. 289 (2004) 456–476 459

cs of

ed to
elec-
rra’s
is-

ed to
d
e

on
aking,
thin
-
ities.

-
f their

-
mea-

esis
eneous
n

or the so-called Minorski’ s problem appearing when controlling the lateral dynami
a ship. It also includes real constantsh′i (i = 0,1, . . . ,m′), with h′0 = 0, associated with
infinitely distributed delayed contributions to the dynamics through integrals, relat
αi(·), i = 0,1, . . . ,m′. Such delays are relevant, for instance, in viscoelastic fluids,
trodynamics and population growth [1,6,7]. In particular, an integro-differential Volte
type term is also included throughh′0 = 0. Apart from those delays, the action of finite d
tributed delays characterized by real constantsh′i (i = 0,1, . . . ,m′ +m′′) is also included
in (1). That kind of delays is well known, for instance, in econometric models relat
production rate [7]. Finally, the impulsive inputv(t)=∑i∈I biδ(t − ti ) generates bounde
discontinuities of the solution trajectoryx(t) at t = ti (i ∈ I), see, for instance, [8–10]. Th
following technical hypothesis are made.

(H1) All the operatorsAk (0 � k � m), Aαk (0 � k � m′ + m′′) are in L(X) :=
L(X,X), the set of linear operators onX, of dualX∗, andhk andh′$ (k = 1,2, . . . ,m,
$= 0,1, . . . ,m′ +m′′) are nonnegative constants with

h0 = h′0 = 0 and h=Max
(

Max
1�i�m

(hi), Max
1�i�m′+m′′(h

′
i )
)
.

(H2) The initial conditions of (1) are realn-vector functionsφ ∈ C(h), whereCe(h) :=
{φ = φ1 + φ2: φ1 ∈ C(h), φ2 ∈ B0(h)} with C(h) := {C0([−h,0];X)}; i.e., the set
of continuous mappings from[−h,0] into the Banach spaceX with norm φ̄ := |φ| =
Sup{‖φ(t)‖: −h � t � 0}; ‖ · ‖ denoting the Euclidean norm of vectors inRn and matrices
in Rn×n, andB0(h) := {φ : [−h,0] → X} is the set of real bounded vector functions
X endowed with the supremum norm having support of zero measure. Roughly spe
φ ∈ B0(h) if and only if it is almost everywhere zero except at isolated points of wi
[−h,0] where it is bounded. Thus,φ ∈ Ce(h) if and only if it is almost everywhere con
tinuous in[−h,0] except possibly on a set of zero measure of bounded discontinu
Ce(h) is also endowed with the supremum norm sinceφ = φ1 + φ2, someφ1 ∈ C(h),
φ2 ∈ B0(h) for eachφ ∈ Ce(h). In the following, the supremum norms onL(X) are also
denoted with| · |.

(H3) The linear operatorsAαi ∈ L(X), with abbreviated notationAα0 = Aα , are
closed and densely defined linear operators with respective domain and rangeD(Aαi )

andR(Aαi )⊂X (i = 0,1, . . . ,m′ +m′′). The functionsαi ∈ C0([0,∞);R)∩BVloc(R+)
(i = 0,1, . . . ,m′) andαi ∈ C0([−h,0);R) (i = 0,1, . . . ,m′ +m′′) being everywhere dif
ferentiable with possibly bounded discontinuities on subsets of zero measure o
definition domains with

∫∞
0 evt |dαi(t)| < ∞ some nonnegative real constantv (i =

0,1, . . . ,m′). If αi(·) is a matrix functionαi : [0,∞) × X∗ → L(X,X∗) then it is in
C0([0,∞);Rn×n) ∩ BVloc(R

n×n+ ) with
∫∞

0 evt |dαi(t)| < ∞ and its entries being every
where time-differentiable with possibly bounded discontinuities on a subset of zero
sure of their definition domains.

The integrability of theαi(·)-functions (or matrix functions) on[t − h′i , t], m′ + 1 �
i � m′ +m′′, follows since their definition domain is bounded. The technical hypoth
(H1)–(H3) guarantee the existence and uniqueness of the solution of the homog
system (1) (i.e.,v ≡ 0) for each initial conditionφ ∈ Ce(h). Take Laplace transforms i
(1) by using the convolution theorem and the relationsdα(τ) = α̇(τ ) dτ . It follows that
dα̂i(s) = sα̂i (s) − αi(0), wheref̂ (s) denotes the Laplace transform off (t). Thus, one
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gets from (1),

x̂(s)= T̂ (s)

(
x(0+)+

∑
i∈I

bie
−ti s

)
, (2)

where

T̂ (s)=
[
s

(
I − α̂(s)Aα −

m′∑
i=1

α̂i (s)Aαi e
−h′i s −

m′+m′′∑
i=m′+1

α̂i (s)Aαi (1− e−h′i s )

)

−A−
m∑
i=1

Aie
−his + α(0)Aα +

m∑
i=1

αi(0)Aαi e
−h′i s

+
m′+m′′∑
i=m′+1

αi(0)Aαi (1− e−h′i s )

]−1

. (3)

Note that (1) is guaranteed to be g.u.e.s.i.d. if and only ifT̂ (s) exists within some region
including properly the right-complex plane. In other words, if it is compact for Res >−α0,
for some constantα0 ∈ R+, since then all the entries of its Laplace transformT (t) decay
with exponential rate on[0,∞) for φ ∈ Ce(h) and then|x(t)| decays with exponentia
rate onR+. The unique solution of the homogeneous(1) for eachφ ∈ Ce(h) may be
equivalently written in infinitely many cases by first rewriting(1) by considering differ-
ent ‘auxiliary’ reference homogeneous systems plus additional terms considered as
actions. The next arrangements lead to conditions guaranteeing that the homogeneo
tem(1) is g.u.e.s.i.d. if it is g.u.e.s. in the absence of delay(i.e., for h = 0). Through this
arrangement, it is not necessarily requested forż(t) = Az(t), which is in fact one of the
possible auxiliary homogeneous systems for(1), to be g.u.e.s.i.d. for anyφ ∈ Ce(h). This
is the main underlying idea focused on in this paper compared to previous results [1
Thus, note that (1) may be written compactly as

ẋ(t)= Lxt + v(t)= LJMxt +
(
L̄JMxt + v(t)

)
, (4)

whereL = LJM + L̄JM is a linear operator inL(X) defined byLxt equalizing by the
unforced right-hand side of (1) wherext denotes the stringx : [t−h, t]→X of the solution
to (1) for φ ∈ Ce(h) for all t � 0; andLJM and L̄JM are also linear operators inL(X)

which define a nonunique additive decomposition ofL that depends onM, ann-square
arbitrary real matrix, andJ , a tripleJ = (J1, J2, J3) of indicesJi (i = 1,2,3). TheM-
matrix and theJ -triple define the subsequent g.u.e.s.i.d. auxiliary system. That prope
the starting point to derive conditions for the current delayed system (1) to be g.u.e
as well. The auxiliary system is

ż(t)= LJMzt =Mz(t)+ (A−M)z(t)+
∑
i∈J1

Aix(t − hi)

+
∑
i∈J2

t∫
0

dαi(τ )Aαx(t − h′i − τ )

+
∑
i∈J

t∫
dαi(t − τ )Aαi x(τ ) (5)
3 t−h′i
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lay

-

subject to initial conditionsz(t)= φ(t) for t ∈ [−h,0] with φ ∈Ce(h), some given matrix
M ∈ Rn×n; and

J1 =
{
i ∈ N: 1 � i � m andhi is a point delay iṅz(t)= LJMzt

}
,

J2 =
{
i ∈ N: 1 � i � m′ andh′i is a constant defining an infinitely distributed de

in ż(t)= LJMzt
}
,

J3 =
{
i ∈ N: m′ + 1 � i � m′ +m′′ andh′i is a finitely distributed delay

in ż(t)= LJMzt
}

(6)

are respective proper or improper subsets ofN1 = {1,2, . . . ,m}, N2 = {0,1, . . . ,m′} and
N3 = {m′ + 1,m′ + 2, . . . ,m′ +m′′} that define theJ -triple. J̄i =Ni/Ji denotes the com
plement ofJi in Ni (i = 1,2,3). Theni ∈ J1 if and only if the point delayhi is explicit
in the auxiliary system (5) andi ∈ J2,3 if and only if the distributed delayh′i is explicit
in (5). In particular,Ji =Φ (the empty set) for somei ∈ {1,2,3} if there is no delay of the
corresponding class in (5). Thus, (1) may be compactly rewritten as

ẋ(t)= Lxt + v(t)= LJMxt +
(
L̄JMxt + v(t)

)
(7a)

with x(t)= φ(t) for t ∈ [−h,0), φ ∈ Ce(h), where

Lxt =Ax(t)+
m∑
i=1

Aix(t − hi)+
m∑
i=0

t∫
0

dαi(τ )Aαi x(t − τ − h′i )

+
m′+m′′∑
i=m′+1

t∫
t−h′i

dαi(τ )Aαi x(τ ), (7b)

LJMxt =Mx(t)+
∑
i∈J1

Aix(t − hi)+
∑
i∈J2

t∫
0

dαi(τ )Aαi x(t − τ − h′i )

+
∑
i∈J3

t∫
t−h′i

dαi(t − τ )Aαi x(τ ), t � 0, (7c)

L̄JMxt = (L−LJM)x(t)

= (M −A)xt +
∑
i∈J̄1

Aix(t − hi)+
∑
i∈J̄2

t∫
0

dαi(τ )Aαi x(t − τ − h′i )

+
∑
i∈J̄3

t∫
t−h′i

dαi(t − τ )Aαi x(τ ), t � 0. (7d)

In view of (7), the unique solution of (1) for anyφ ∈ Ce(h) is
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x(t, φ)= T (t)φ(0+)+
m∑
i=1

0∫
−hi

T (t − τ )φ(τ ) dτ

+
m′+m′′∑
i=1

0∫
−h′i

T (t − τ )φ(τ ) dτ +
∑
i∈I

T (t − ti)biU(t − ti) (8a)

= TJM(t)φ(0+)+
∑
i∈J1

0∫
−hi

TJM(t − τ )φ(τ ) dτ

+
∑

i∈J2∪J3

0∫
−h′i

TJM(t − τ )φ(τ ) dτ

+
t∫

0

TJM(t − τ )

[
(A−M)x(τ)+

∑
i∈J̄1

Aix(τ − hi)

+
∑
i∈J̄2

τ∫
0

TJM(τ ′)α̇i (τ
′)Aαi x(τ − τ ′ − h′i ) dτ ′

+
∑
i∈J̄3

τ∫
τ−h′i

TJM(τ − τ ′)α̇i(τ − τ ′)Aαi x(τ
′) dτ ′

]
dτ

+
∑
i∈I

T (t − ti)biU(t − ti), (8b)

whereT (t) satisfiesṪ (t) = LTt for t > 0 with T (0) = I (the n-identity matrix) and
T (t)= 0 for t < 0 with T (t) being the inverse Laplace transform ofT̂ −1(s), T̂ (s) de-
fined in (3), andTJM(t) satisfiesṪJM(t) = LJM(TJM)t for t > 0 with TJM(0) = I and
TJM(t) = 0 for t < 0. U(t) = 1(t) is the unity Heaviside function. Thus,TJM(t) is the
inverse Laplace transform of the holomorphic (where it exists) mappingT̂JM(s) with

T̂JM(s)=
[
s

(
I −

∑
i∈J2

α̂i (s)Aαi e
−h′i s −

∑
i∈J3

α̂i(s)Aαi (1− e−h′i s)

)

−M −
∑
i∈J1

Aie
−hi s +

∑
i∈J2

αi(0+)Aαi

+
∑
i∈J3

αi(0+)Aαi (1− e−h′i s )

]−1

. (9)

Note thatT (t) (≡ TJM(t) if J = (N1,N2,N3)) and TJM(t) for any J -triple areC0-
semigroups onCe(h) of operators ofL(X). In particular, if Ji = Φ (i = 1,2,3) then
LJMzt = Mz(t) andTJM(t) = eAt is an analytic semigroup ifJ1 andJ3 are empty and
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J2 = {0} (i.e., h′0 = 0) is the unique contribution to a Volterra-type integral term th

LJMzt =Mz(t)+ ∫ t

0 dα(τ)Aαx(t − τ ) andTJM(t) is a transition operator if̂TJM(s) is
compact for Res >−γJM (γJM ∈ R+).

Remark 1. Note that the compactness of the operator-valued functionsT̂ (s) andT̂JM(s)

for all Res >−γ and Res >−γJM , someγ ∈ R+ andγJM ∈ R+, respectively, ifẋ(t)=
Lxt , ż(t) = Lxt , respectively, are g.u.e.s.i.d for allφ ∈ Ce(h) holds directly if they are
bounded provided thatX is considered as a Hilbert space endowed with the usual i
product norm. The stability properties of the operator-valued functionT : [0,∞)→ L(X)

are independent of the use of any of both alternative formal characterizations. T
X is a Hilbert space, then there exist dense injective mappingsX → X∗ (dual ofX) →
X∗∗ (dual of X∗) ≡ X, instead of the generic result which may include in some c
proper inclusionX∗∗ ⊃ X �= X∗∗ so thatX is a reflexive linear space and any opera
in L(X∗∗,X) (≡ L(X,X) = L(X) in this case) is compact if and only if it is complete
continuous (i.e, if it maps any weakly convergent sequence into a strongly converge
with respect to the norm topology). Thus,T̂ (s) is compact (or completely continuou
where it exists since(T̂ )∗T̂ is bounded for Res > −γ . The same property holds for an
T̂JM for Res >−γJM .

Note thatT̂ (s) = [T̂JM(s) − ∆T̂JM(s)]−1 = T̂JM(s)[I − T̂ −1
JM(s)∆T̂JM(s)]−1 in the

definition domain ofT̂JM for any auxiliary system defined from some givenJ -triple. The
following special cases are of interest.

Case1. The auxiliary system is delay-free.J = (J1, J2, J3) with Ji = Φ (i = 1,2,3)
so that the auxiliary system iṡz(t)=Mz(t). This is the case usually treated in the lite
ture (see, for instance, [1,7]). Thus,J̄i =Ni (i = 1,2,3) andTJM(t)= eMt is an analytic
semigroup.

Case2. The auxiliary system is subject to delay-free dynamics and all point
lays. J1 = N1 and J2 ∪ J3 = Φ so thatĴ1 = Φ and J̄i = Ni (i = 2,3). Then,ż(t) =
Mz(t) + ∑m

i=1Aiz(t − hi) with initial conditions z(t) = φ(t), φ ∈ Ce(h), for t ∈
[max1�i�0(−hi),0] so thatṪJM(t)=MTJM(t)+∑m

i=1AiTJM(t −hi) with TJM(0)= I

andTJM(t)= 0 (t < 0) yields a unique solution

TJM(t)= eMt

(
I +

m∑
i=1

t∫
hi

e−MτAiTJM(τ − hi) dτ

)
for t � 0.

Case3. The auxiliary system is subject to delay-free dynamics and Volterra-int
type dynamics.J1 ∪ J3 = Φ, J̄i = Ni and J̄2 = {1,2, . . . ,m′}. Thus, ż(t) = Mz(t) +∫ t

0 dα(τ)Aαz(t − τ ). In particular,TJM(t) is ensured to be a transition operator w
|TJM(t)| � Ke−ρt for some positive real constantsK � 1 andρ and all t � 0 (see, for
instance, [3,6]), ifT̂ −1

JM(s)= [s(I − α̂(s)Aα)+α(0)Aα −M]−1 is compact for Res >−ρ,
any real constantρ < γJM , and∣∣∣∣di(T̂ −1

JM(s))

i

∣∣∣∣<
∣∣∣∣ K

i−1

∣∣∣∣ (for i = 1,2,3).

ds (s + ρ)
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Case4. The auxiliary system has delay-free dynamics and all the infinitely distrib
delays. Now,J = (J1, J2, J3) with Ji =Φ (i = 1,3) andJ2 =N2 so thatJ̄i =Ni (i = 1,3)
andJ̄2 =Φ, which leads to

ż(t)=Mz(t)+
m∑
i=0

t∫
0

dαi(τ )z(t − τ − h′i )

under initial conditionsφ ∈ Ce(h). Thus, one gets

ṪJM(t)=MTJM(t)+
m∑
i=0

t∫
0

dαi(τ )AαiTJM(t − τ − h′i )

for t > 0 with TJM(0)= I ; TJM(t)= 0 for t < 0, whose unique solution for allt > 0 is

TJM(t)= eMt

(
I +

m∑
i=0

t∫
0

τ∫
0

e−Mτdαi(τ )AαiTJM(τ − τ ′ − h′i ) dτ ′
)
.

Case5. The auxiliary system has delay-free dynamics and all the finitely distrib
delays. Now,J = (J1, J2, J3) with Ji =Φ (i = 1,2) andJ3 =N3 so thatJ̄i =Ni (i = 1,2)
andJ̄3 =Φ. Under the same initial conditions as in the above case, one gets

ż(t)=Mz(t)+
m′+m′′∑
i=m′+1

t∫
t−hi

dαi(t − τ )Aαi z(τ ) for t > 0

which is also satisfied by the transition operator of the auxiliary system whose u
solution under the same initial conditions as in Case 4 is

TJM(t)= eMt

(
I +

m′+m′′∑
i=m′+1

t∫
0

τ∫
τ−h′i

e−Mτdαi(τ − τ ′)Aαi TJM(τ ′) dτ ′
)
.

3. Uniform stability of the homogeneous system

Theorem 1. Assume that(1) is g.u.e.s. for̂h = 0 and thatż(t) = LJMzt is g.u.e.s.i.d. for
all φ ∈ Ce(h). Thus, the homogeneous equation(1), ẋ(t) = LJMxt is g.u.e.s.i.d.(i.e., for
all φ ∈Ce(h)) if and only if the operator-valued function

ˆ̃
T −1

JM(jω,ϕ)= (I − T̂ ′
JM(jω,ϕ)∆T̂ ′

JM(jω,ϕ)
)−1

(10)

exists for all realω ∈ (0,∞) and allϕiki ∈ [−π,π] (i = 1,2,3) (ϕ21= 0); ki = 1,2, . . . , p
with p=m if i = 1, p =m′ + 1 if i = 2 andp =m′′ if i = 3.

Proof. First note that the argumentω = 0 for the above operator-valued function is e
cluded from the conditions since (1) is g.u.e.s. forĥ = 0. The system (1) is g.u.e.s.i.
if and only if N−1(s, ĥ) exists for Res > −γ (someγ ∈ R+) for any sets of delays
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SinceN−1
JM(s)(s, ĥ)N(s, ĥ)= [I −N−1

JM(s, ĥ)∆NJM(s, ĥ)] andNJM(s, ĥ) has an inverse
Res > −γJM (someγJM ∈ R+) for all the sets of delays explicit in the auxiliary sy
tem (5),N−1(s, ĥ) exists for a pair(s, ĥ) if and only if Ñ−1(s, ĥ) exists for(s, ĥ), where

ÑJM(s, ĥ)=N−1
JM(s, ĥ)N(s, ĥ)= [I −N−1

JM(s, ĥ)∆NJM(s, ĥ)
]
.

Proof of necessity. The rank condition cannot fail forω = 0 since the system (1) i
g.u.e.s. and thenN(j0, ĥ) is full rank for any set of delays. Assume that

rank
[ ˆ̃
T ′

JM(jω,ϕ)
]
< n for someω �= 0;

then rank[ÑJM(jω, ĥ)]< n, and the set of delayshi = ϕi/ω, whereϕi is theith compo-
nent ofϕ. This is a contradiction and necessity follows.

Proof of sufficiency. SinceT̂ (s), T̂JM(s) (andN−1(s, ĥ)) are compact wherever the
exist, any possible singularities ofT̂ (s) andT̂JM(s) are poles [1,3]. SinceNJM(s, ĥ) has
an inverse for Res >−γJM , then, ifÑJM(s, ĥ) has an inverse in Res >−γ ′

JM , it follows

that the operator-valued functionN(s, ĥ) has an inverse in Res > Min(−γJM,−γ ′
JM) by

construction ofN(s, ĥ). T̂ (s) has a pole with Res0 > Min(−γJM,−γ ′
JM) if and only if

the operator-valued functionN(s, ĥ) has an eigenvalue one ats = s0 so thatN−1
JM(s0, ĥ)

and ÑJM(s0, ĥ) and N(s0, ĥ) are not full rank. Define the vector function of dela
f (ĥ) := Sup(Res: ÑJM(s, ĥ) has an eigenvalue one). This function is continuous
its definition domainR0+. Since the delay-free system (1) is g.u.e.s. thenf (0) < 0 so
that (1) is not (is) g.u.e.s.i.d. if and only iff (ĥ0) > 0 for some vector of delayŝh0 with
h0,m+1 = 0 andh0,i > 0 for i �=m+ 1 (if and only if f (ĥ) < 0 for all ĥ with h0,m+1 = 0
andh0,i > 0 for i �= m + 1). Furthermore, there is a domain properly included inR0+
such thatˆ̃T ′

JM(jω,ϕ0) has an eigenvalue one iff (ĥ0)= 0 sinceÑJM(jω, ĥ0) is not full
rank for some realω, whereϕ0i = ωh0i (i = 1,2, . . . ,m+m′ + 1) with h0,m+1 = 0. But
then, from the definition of̂T ′(jω,ϕ0), there always exists[−π,π] such that the rank
of T̂ (jω,ϕ0) and T̂ ′

JM(jω,ϕ0) are less thann and the result has been proved. Note t
the test for negativeω is unnecessary since eventual complex poles appear in conj
pairs. ✷

Theorem 1 is now used to obtain stability results for the special cases of auxiliar
tems in Section 2.

Corollaries
Assume, in the following corollaries, thaṫx(t) = Lxt is g.u.e.s. forĥ = 0 for all

φ ∈ Ce(h).

Corollary 1 (Auxiliary system involving delay-free dynamics).If M is strictly Hurwitzian
then ẋ(t) = Lxt is g.u.e.s. for allĥ ∈ [0,∞), i.e., g.u.e.s.i.d. if and only if the operato
valued function(10)exists, where

T̂ ′
JM(jω)= (jωI −M)−1,

∆T̂ ′
JM(jω,ϕ)=M −A+

m∑
Aie

jϕ1i
i=1
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dy-
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+ jω

(
m′∑
i=0

α̂i(jω)Aαi e
jϕ2i +

m′+m′′∑
i=m′+1

α̂i(jω)Aαi (1− ejϕ3i )

)

+
(

m′∑
i=0

αi(0)Aαi e
jϕ2i +

m′+m′′∑
i=m′+1

αi(0)Aαi (1− ejϕ3i )

)
.

Corollary 2 (Auxiliary system involving delay-free and point-delayed dynamics).If ż(t)=
LJMzt = LJMzt ≡ Mz(t) +∑m

i=1Aiz(t − hi) is g.u.e.s.i.d. for some given real squa
n-matrixM, thenẋ(t)= Lxt is g.u.e.s.i.d. if and only if(10)exists, where

T̂ ′
JM(jω,ϕ)=

[
jωĪ −M −

m∑
i=1

Aie
jϕ1i

]−1

,

∆T̂ ′
JM(jω,ϕ)=M −A

+ jω

(
m′∑
i=0

α̂i(jω)Aαi e
jϕ2i +

m′+m′′∑
i=m′+1

α̂i(jω)Aαi (1− ejϕ3i )

)

+
(

m′∑
i=0

αi(0)Aαi e
jϕ2i +

m′+m′′∑
i=m′+1

αi(0)Aαi (1− ejϕ3i )

)
.

Corollary 3 (Auxiliary system involving delay-free and convolution Volterra-type dyna
ics). If ż(t)= LJMzt ≡Mz(t)+ ∫ t

0 dα(τ)Aαz(t − τ ) is g.u.e.s. for all boundedz(0) ∈ Rn

for some given real squaren-matrix M, thenẋ(t) = Lxt is g.u.e.s.i.d. if and only if(10)
exists, where

T̂ ′
JM(jω,ϕ)= [jω(I − α̂(jω)Aα

)−M + α(0)Aα

]−1
,

∆T̂ ′
JM(jω,ϕ)=M −A+

m∑
i=1

Aie
jϕ1i

+ jω

(
m′∑
i=1

α̂i(jω)Aαi e
jϕ2i +

m′+m′′∑
i=m′+1

α̂i(jω)Aαi (1− ejϕ3i )

)

+
(

m′∑
i=1

αi(0)Aαi e
jϕ2i +

m′+m′′∑
i=m′+1

αi(0)Aαi (1− ejϕ3i )

)
.

Corollary 4 (Auxiliary system involving delay-free and infinitely-distributed delayed
namics).If ż(t) = LJMzt ≡ Mz(t) +∑m′

i=0

∫ t

0 dαi(τ )Aαi z(t − τ − h′i ) is g.u.e.s. for all
boundedφ ∈ Ce(h) for some given real squaren-matrixM, thenẋ(t)= Lxt is g.u.e.s.i.d
if and only if(10)exists, where

T̂ ′
JM(jω,ϕ)=

[
jω

(
I −

m′∑
α̂i(jω)Aαi e

jϕ2i

)
−M

]−1

,

i=0
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∆T̂ ′
JM(jω,ϕ)=M −A+

m∑
i=1

Aie
jϕ1i + jω

(
m′+m′′∑
i=m′+1

α̂i(jω)Aαi (1− ejϕ3i )

)

+
(

m′+m′′∑
i=m′+1

αi(0)Aαi (1− ejϕ3i )

)
.

Corollary 5 (Auxiliary system involving delay-free and finitely-distributed delayed
namics).If ż(t) = LJMzt ≡Mz(t)+∑m′+m′′

i=m′+1

∫ t

t−h′i
dαi(t − τ )Aαi z(τ ) is g.u.e.s. for all

boundedφ ∈ Ce(h) for some given real squaren-matrixM, thenẋ(t)= Lxt is g.u.e.s.i.d
for all boundedφ ∈Ce(h) if and only if (10)exists, where

T̂ ′
JM(jω,ϕ)=

[
jω

(
I −

m′+m′′∑
i=m′+1

α̂i (jω)Aαi (1− ejϕ3i )

)
−M

]−1

,

∆T̂ ′
JM(jω,ϕ)=M −A+

m∑
i=1

Aie
jϕ1i + jω

(
m∑
i=0

α̂i (jω)Aαi e
jϕ2i

)

+
(

m∑
i=0

αi(0)Aαi e
jϕ2i +

m′+m′′∑
i=m′+1

αi(0)Aαi (1− ejϕ3i )

)
.

The global uniform exponential stability of (1) may be investigated provided that
group of delayed dynamics (like, for instance, all point delays, infinitely distributed
lays or finitely distributed ones) is successively introduced in the system as addres
follows. Note, for instance, that the system with combined delay-free and point-delay
namicsż(t) = LJMzt ≡ Az(t)

∑m
i=1Aiz(t − hi) is g.u.e.s.i.d. for all boundedφ ∈ Ce(h)

if and only if (I − (jωI − A)−1∑m
i=1Aie

jϕ1i )−1 exists for allω ∈ (0,∞) and allϕ1i ∈
[−π,π], i = 1,2, . . . ,m, provided thatA is strictly Hurwitzian (i.e., if the undelayed au
iliary system is g.u.e.s. so that Corollary 1 holds).

Corollary 6 (Delay-free, point-delayed and infinitely distributed-delayed dynamicsIf
ż(t)= LJMzt ≡Az(t)+∑m

i=1Aiz(t−hi)+∑m′
i=0

∫ t

0 dαi(τ )Aαi z(t−τ−h′i ) is g.u.e.s.i.d
for all boundedφ ∈Ce(h) if and only if[

I − (jωI −A)−1

(
m∑
i=1

Aie
jϕ1i +

m∑
i=0

(
jωα̂i(jω)− αi(0)

)
ejϕ2i

)]−1

exists for allω ∈ (0,∞) and allϕki ∈ [−π,π], ki ∈Ni , i = 1,2, provided thatA is strictly
Hurwitzian(i.e., provided that the undelayed auxiliary system is g.u.e.s. so that Coroll1
holds withM = A). It is also true thatż(t) = LJMzt is g.u.e.s.i.d. for all boundedφ ∈
Ce(h) if and only if(

I −
(
jωI −A−

m∑
Aie

jϕ1i

)−1)[ m′∑(
jωα̂i(jω)− αi(0)

)
ejϕ2i

]−1
i=1 i=0
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exists for allω ∈ (0,∞), ϕ21 = 0 and all ϕki ∈ [−π,π], ki ∈ Ni , i = 1,2, provided that
A is strictly Hurwitzian(i.e., provided that the auxiliary system with both undelayed
point delayed dynamics is g.u.e.s. so that Corollary2 holds withM =A).

We might proceed in that way by giving conditions that ensure that each added gr
delays maintains the uniform stability independent of delay provided that it was g.u.e
before adding those delays. It is also interesting to derive conditions for losing or en
uniform stability dependent of delay as follows.

Theorem 2. Assume that(1) is g.u.e.s. for̂h= 0. Thus,ẋ(t)= Lxt is not(respectively, is)
g.u.e.s. for all sets of delays that satisfy simultaneouslyhi = ϕ1i/ω, h′k = ϕ2k/ω andh′$ =
ϕ3k/ω with ϕ21= 0 for someω ∈ R+, ϕik ∈ [−π,π], i = 1,2, . . . ,m, k = 1,2, . . . ,m′ and
$=m′ + 1,m′ + 2, . . . ,m′ +m′′ provided that(10)does not exist(respectively, exists).

Proof (Outline). It follows directly since for such sets of delays, the proof of Theore
fails since there is some pole of̂T (s), so that it is not holomorphic, on Res � 0 since
T̂ ′(jω,ϕ) has not an inverse for someω ∈ R+ andϕ = (ϕT

1 , ϕT
2 , ϕT

3 )T of components in
the real interval[−π,π]. ✷

4. Uniform stability under impulsive forcing terms

The stability under impulsive forcing terms in (1) may be formulated under a d
extension of the basic results of Section 3 as follows.

Theorem 3. Assume thaṫx(t) = Lxt is g.u.e.s.i.d., which holds if Theorem1 holds with
T̂ ′(jω,ϕ) = [I,−T̂ ′

JM(jω,ϕ)∆T̂ ′
JM(jω,ϕ)]−1T̂ ′

JM(jω,ϕ) existing within some appro

priate domain withT̂ ′
JM(jω,ϕ) defining any g.u.e.s.i.d. auxiliary system defined for s

J -triple, and thus∆T̂ ′
JM(jω,ϕ)= T̂ ′−1

JM (jω,ϕ)− T̂ ′−1(jω,ϕ). Assume also that the forc
ing impulsive vector functionv : [0,∞) → Rn satisfies|bi| � Kie

−iρ with ti+1 − ti �
Tmin � (ρ − ρ′)/γ , some real constantρ′ ∈ (0, ρ) andKi ∈ R+ being bounded constan
for all i ∈ I. Thus, the solution of(1), x(t, φ) is bounded onR+ andx(t, φ)→ 0 exponen-
tially as t →∞ for anyφ ∈Ce(h).

Proof. Let x0(t, φ) the unique solution of the homogeneousẋ(t)= Lxt for t � 0 for any
givenφ ∈ Ce(h). Thus, the unique solutionx(t, φ) for t � 0 for identicalφ ∈ Ce(h) of the
forcedẋ(t)= Lxt + u(t), with v(t)=∑i∈I bie

−(t−ti), is boundedR+ on and satisfies

∥∥x(t, φ)− x0(t, φ)
∥∥�

∥∥∥∥∑
i∈I

T (t − ti )bi

∥∥∥∥�
∣∣∣∣∑
i∈I

Ke−γ (t−ti)bi

∣∣∣∣
since‖T (t)‖ � Ke−γ t (γ ∈ R+). If Card(I) < ∞ then x(t) is bounded andx(t) → 0
exponentially ast →∞ if x0(t)→ 0 exponentially ast →∞. It only remains to conside
the case when Card(I)=∞. Since|bi|� Kie

−jρ , γ ti−iρ �−iρ′ for some realρ′ ∈ (0, ρ)
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since ti =∑i
k=1Tk � iTmin � i(ρ − ρ′)/γ with Ti � Tmin = (ρ − ρ′)/γ , ∀i ∈ I. Thus,

since
∑∞

i=0 e
−iρ <∞,

∥∥x(tk, φ)− x0(tk, φ)
∥∥� KK̄

k∑
i=0

e−iϕe−γ (tk−ti ) �KK̄

∞∑
i=0

e−γ tke−i(ρ′−ρ)

� KK̄e−γ tk
ε

1− ε
→ 0

astk →∞ andx ∈ L∞([0,∞);Rn), with ε = e−(ρ−ρ′) < 1,∀φ ∈ L∞([0,∞);Rn). Then,
it is also exponentially continuous overI. Since the solutionx(t, φ) of (1) is continuous
over the finite intervals of nonzero measures[tk, tk+1), k ∈ I, it cannot diverge within suc
intervals. Thus,x(t, φ) is bounded and converges exponentially to zero ast →∞. ✷
Theorem 4. Assume that the homogeneous(1) is g.u.e.s.i.d. for allφ ∈ Ce(h). Thus, it is
g.u.e.s.i.d. for allφ ∈Ce(h) and any impulsivev(t)=∑i∈I biδ(t − ti) with Card(I) being
finite or infinite if any of the subsequent conditions hold for alli(� i0) ∈ I, some arbitrary
i0 ∈ N,

(i) Min
i∈I

(t$+1 − t$) � Tmin >
1

iγ

i∑
k=1

ln
(‖I +Bk‖

);
(ii) If T0 = t1 andTi = tt+1− ti , ∀i ∈ I, then

i∑
k=1

Tk �
i∑

k=1

ln
(‖I +Bk‖

)1/γ ;
(iii ) Ti � ln

(‖I +Bi‖
)1/γ

for all i = i0, i0 + 1, . . . ,Card(I)− 1.

Proof. Let Ti beTi = ti+1 − ti , ∀i ∈ I, andτ ∈ [0, Ti). Thus, from (1),

x(ti+1 + τ,φ)= T (τ)x
(
t+i
)+

0∫
−h

T (τ − τ ′)x(ti+1+ τ,ϕ) dτ ′,

x
(
t+i , φ

)= (I +Bi)x
(
t−i , φ

)= (I +Bi)

[
T (ti)φ(0+)+

i−1∑
k=1

T (ti − tk)Bkx
(
t−k , φ

)]

= (I +Bi)

[
T (ti − ti−1)x

(
t+i−1, φ

)

+
0∫

−h

T (ti − ti−1 − τ ′)x(ti−1 + τ ′, φ) dτ ′
]
.

Taking Euclidean norms in the above relations, one gets

∥∥x(t+i , φ
)∥∥� γ + 1− e−γ h

γ

∥∥(I +Bi)T (ti − ti−1)
∥∥ Sup

0�τ�t−

(∥∥x(τ,φ)∥∥)

i
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� Ke−γ (ti−ti−1)‖I +Bi‖ Sup
t−i−1−h�τ�t−1

(∥∥x(τ,φ)∥∥),
∥∥x(ti + τ,φ)

∥∥�
∥∥T (τ)

∥∥[∥∥x(t+i , φ
)∥∥+

0∫
−h

∥∥R(τ ′)
∥∥∥∥x(ti + τ ′, φ)

∥∥dτ ′
]

� γ + 1− e−γ h

γ

∥∥T (τ)
∥∥ Sup
t+i +τ−h�τ ′�t+i+1

(∥∥x(τ ′, φ)∥∥)
� Ke−γ t Sup

t+i +τ−h�τ ′�t+i+1

(∥∥x(τ ′, φ)∥∥)

with R : [0,∞)→ Rn×n being a matrix function that defines the factored representa
T (t − τ ) = T (t)R(τ) so that‖R(τ)‖ � e−γ τ since‖T (t − τ )‖ � Ke−γ (t−τ ) for all t �
τ � 0. Since

∫ 0
−h

‖R(τ)‖dτ � (1− e−γ h)/γ then

∥∥∥∥∥x(t+i , φ
)+

0∫
−h

R(τ ′)x
(
t+i + τ ′, φ

)
dτ ′
∥∥∥∥∥

�
∥∥x(t+i , φ

)∥∥+ 1

γ
Sup

t−i −h�τ�t+i

(∥∥x(τ,φ)∥∥)

� γ + 1− e−γ h

γ
Sup

t−i −h�τ�t+i

(∥∥x(τ,φ)∥∥). (11)

The recursive use of (11) for all while relatingx(t1, φ) to initial conditionsφ : [−h,0]→
Rn of supreme norm̄φ leads to

Sup
t+i �τ�t−i+1

(∥∥x(τ,φ)∥∥)� γ + 1− e−γ h

γ

∥∥T (τ)
∥∥ i∏
k=1

(‖I +Bk‖
)∥∥T (tk − ti+1)

∥∥φ̄

� Ke−γ (τ+ti)
i∏

k=1

(‖I +Bk‖
)
φ̄.

A sufficient condition for global uniform exponential stability independent of dela
e−iγ Tmin

∏i
k=1(‖I + Bk+$‖) < 1 for any finite integeri � 0 provided thatti+1 − ti � Tmin

for any integeri � $. Thus, it follows that (1) is g.u.e.s.i.d. under (i). It is proved t

(1) is g.u.e.s.i.d. under (ii) by replacinge−iγ Tmin → e−ti = e−
∑i−1

k=1 Tk . The fact that (1) is
g.u.e.s.i.d. under (iii) is direct since the fulfillment of (iii) guarantees that of (ii).✷

5. Closed-loop uniform exponential stability under linear feedback

In the subsequent study, consider the unforced (1). The discussion is limited to th
of delay-free combined point-delayed dynamics in (1); i.e.,m′ =m′′ = 0. The extension to
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the general case is direct. The auxiliary system isż(t) =Mz(t), i.e.,Ji = Φ (i = 1,2,3)
with M strictly Hurwitzian. Thus, (1) is g.u.e.s.i.d. From Corollary 1, (1) is g.u.e.s.i.
and only if

T̂ (jω)=
(
I − (jωI −M)−1

[
M −A+

m∑
i=1

Aix(t − hi)

])−1

(jωI −M)−1

exists for allω ∈ R+ and is g.u.e.s. for̂h= 0, i.e., for any boundedx(0)= φ(0) ∈ Rn. Note
that (jωI −M)−1 exists for allω ∈ R+ sinceM is strictly Hurwitzian. Consider the se
H∞(X) = {x : C0+ → X: SupRes>0(‖x(s)‖) <∞}, whereC0+ is the complex open right
hand side half plane. A similarH∞-space is defined for the set of linear operators onX by
replacingX→L(X,X). Note thatT̂ ∈H∞(L(X,X)) where it exists. Simple calculation
for H∞-norms yield

γM := ∥∥(jωI −M)−1
∥∥∞

= Max

{
γ ∈ R+: HM :=

[
M 1/γ 2

M

−I −MT

]

has an eigenvalue on the imaginary axis

}
.

T̂ (jω) exists for allω ∈ R0+ if 1 > γM [‖M −A‖2 +∑m
i=1‖Ai‖2] since

Supω∈R0+

{∥∥∥∥∥M −A+
m∑
i=1

Aie
−jωhi

∥∥∥∥∥
2

}
� ‖M −A‖2+

m∑
i=1

‖Ai‖2,

whereR0+ := R+ ∪ {0}
and‖ · ‖2 denotes thel2-matrix norm for eachω ∈ R+. Now, consider the following feed
back system:

ẋ(t)=Ax(t)+
m∑
i=1

Aix(t − hi)+Bu(t)+
m′∑
i=1

Biu(t − h′i ) (12)

with B,Bj ∈ Rq×n (i = 1,2, . . . ,m′), where the control functionu : [0,∞)→ Rq is con-
tinuous and has rangeU, i.e.,u ∈ C(0)([0,∞);U) while being generated from the contr
law

u(t)=KCx(t)+
m∑
i=1

KiCx(t − hi)+
m′∑
i=1

K ′
iu(t − h′i ) (13)

with real matricesK,Ki ∈ Rq×r , C ∈ Rr×n. It is assumed thaty is anr-measurable outpu
signaly : [0,∞)→ Rr defined byy(t) = Cx(t) for all t � 0. Taking Laplace transform
in (12) with zero initial conditions withs = jω, one gets directly the closed-loop relatio(

jωI −A−
m∑

Aie
−jωhi

)
x̂(jω)= B0 +

m′∑
Bie

−jωh′i û(jω), (14)

i=1 i=1
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(
I −

m∑
i=1

K ′
i e
−jωh′i

)
û(jω)=

m∑
i=0

KiCe−jωhi x̂(jω). (15)

The substitution of (15) into (14) yieldŝSc(jω)x̂(jω)= 0 with

Ŝc(jω)= (jωI −M)T̂c(jω),

T̂c(jω)= I − (jωI −M)−1

{
M −A−BKC +

m∑
i=1

(Ai +BKiC)e−jωhi

+
(

m′∑
i=1

Bie
−jωh′i

)
S−1
u (jω)+

(
KC +

m∑
i=1

KiCe−jωhi

)}

with Su(jω)= I −∑m′
i=1K

′
i e
−jhiω. The closed-loop system is g.u.e.s.i.d. ifT̂ −1

c (jω) ex-
ists provided thatS−1

u (jω) for all ω ∈ R+. The following result holds.

Theorem 5. The closed-loop system is g.u.e.s.i.d. if the following conditions are fulfil:

(a) M is strictly Hurwitzian so that the auxiliary systeṁz(t)=Mz(t) is g.u.e.s.;
(b)

∑m
i=1‖K ′

i‖< 1;
(c) The closed-loop system is g.u.e.s. in the absence of delays, i.e., forhi = 0, h′k (i =

1,2, . . . ,m, k = 1,2, . . . ,m′);

(d) 1> γM

{
‖M −A−BKC‖2 +

m∑
i=1

‖Ai +BKiC‖2

+
m′∑
i=1

‖Bi‖2

m∑
i=1

‖Ki‖2‖C‖2
1

1− ‖∑m
i=1‖K ′

i‖2‖

}
. (16)

Extensions of the above results in this section to the presence of distributed dela
direct. Assume, for instance, that the state (or only the output) is available for measur
i.e.,C = I (orC �= I ), and that there are distributed delays in the system. Thus, the co
law (15) may be generalized to

u(t)=KCx(t)+
m∑
i=1

KiCx(t − hi)+
m∑
i=0

t∫
0

dαi(τ )Kαi x(t − τ − h′i )

+
m′+m′′∑
i=m′+1

t∫
t−h′i

dαi(t − τ )Kαi x(τ ). (17)

Define

β = Max
0�i�m′+m′′

(
βj ∈ R+:

∞∫ ∣∣αi(τ )
∣∣dτ <∞

)
.

0
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Thus, α̂i (s) =
∫∞

0 αi(τ )e
−sτ dτ �

∫∞
0 |αi(τ )|eβτ dτ < ∞ for Res � −β (i = 0,1, . . . ,

m′ +m′′), it follows that|αi(t)|� Ke(ε−β)t , ∀t � 0 and any real constantε > 0, so that

Max
0�i�m′+m′′

(∣∣α̂i (s)
∣∣)� K

|s + β − ε| <
K

|s + β| for Res <−γ.

Then,∥∥sα̂i (s)− αi(0)
∥∥� K + Max

0�i�m′+m′′
(∣∣αi(0)

∣∣)� 2K. (18)

Thus, the condition (d) of Theorem 5 becomes after substituting (17) into (1), via (18
obtaining a relation in Laplace transforms for the closed-loop system description:

1> γM

{
‖M −A−BKC‖2 +

m∑
i=1

‖Ai +BKiC‖2

+ 2K

[
m′∑
i=0

‖Aαi +BKαiC‖2 + 2
m′+m′′∑
i=m′+1

‖Aαi +BKαiC‖2

]}
. (19)

Very similar considerations as for point-delays (Theorem 5) may be used for the case
(A,B,C) is controllable and observable or for(A,B) being controllable andC = I with
r = n and for that when(A,B,C) is stabilizable and detectable but the triples(Ai,B,C)

and(Aαk ,B,C) (i = 1,2, . . . ,m, k = 0,1, . . . ,m′ +m′′) are controllable and observab
or, if C = I , then the pairs(Ai,B) and(Aαk ,B) (i = 1,2, . . . ,m, k = 0,1, . . . ,m′ +m′′)
are all controllable.

6. Examples

Example 1. The simple first-order systeṁx(t)=−ax(t)+ a1x(t − h) with x(0)= x0. If
a > 0 then Theorem 5 yieldsαa = ‖(s − a)−1‖∞ = 1/|a| and the system is g.u.e.s.i.d.
1 > γa|a1|Supω∈R0+(|e−jhω|) = γa|a1| provided that the auxiliary systeṁz(t) = −az(t)

with z(0)= z0 is g.u.e.s., i.e.,a > 0. Thus, the system is g.u.e.s.i.d. ifa > |a1| > 0. The
same conclusion is obtained by applying Gronwall’s lemma [9] as follows. Comput
solution to the system differential equation to obtain

∣∣g(t)∣∣� e−ah|x0| +
h∫

0

∣∣ea(τ−h)φ(τ − h)
∣∣dτ + |a1|

t∫
h

∣∣g(τ − h)
∣∣dτ

so that‖x(t, φ)‖� ν(φ)e−(a+|a1|)t for all t � 0, where

ν = ‖x0‖e−ah +
∣∣∣∣a1

a

∣∣∣∣|eah− 1| Sup
−h�τ�0

(‖φ(τ)‖).
Thus, exponential stability follows fora > |a1| > 0. Assume, for instance, thata < 0 so
that the auxiliary system is unstable. Thus, use the delay-free control lawu(t) = kx(t)

with k >−a. Thus, the above results hold by replacinga→ k−|a| so that the closed-loo
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uniform exponential stability independent of delay is ensured ifk > |a| + |a1| still from
Theorem 5. Note that Theorem 1 holds withT̂ (s)= (s+ a− a1e

−hs)−1, T̂ −1
JM = (s+ a)−1

andM = a.

Example 2. Consider the multiple point-delaynth-order system under an impulsive forci
term

ẋ(t)=Ax(t)+
m∑
i=1

Aix(t − h)+
∑
i∈I

biδ(t − ti).

Thus, the unique solution for any admissiblen-vector real function of initial conditions is

x(t)= eA(t−ti)x(t+i )+
m∑
i=1

t∫
ti

eA(t−τ )Aix(τ − hi) dτ

= T (t)φ(0+)+
0∫

−h

T (t − τ )φ(τ ) dτ +
∑
i∈I

T (t − ti )U(t − ti )bi

for t ∈ (ti, ti+1); x(t
+
i+1) = x(t−i+1)+ bi+1 with h = Max1�i�m(hi) with T (t) satisfying

Ṫ (t)= AT (t)+∑m
i=1AiT (t − h) with T (0)= I andT (t)= 0 for t < 0. Several specia

situations are now discussed.
(a) (A,B) is stabilizable [12] with stability abscissa is Min(−ϑ,−ϑ ′) < 0, where

(−ϑ) < 0 is obtained from the relocated closed-loop controllable poles through the
troller gain matrixK and(−ϑ ′) < 0 is the stability abscissa of the uncontrollable op
loop stable (since the system is stabilizable) poles which cannot be relocated th
feedback. Thus, the delayed system is g.u.e.s.i.d. if Max(|ϑ|µ, |ϑ ′|µ′

) >
∑m

i=1 ‖Ai‖2.
(b) Assume that the impulsive input is nonzero. If there is a finite number of imp

then the above conditions of uniform stability still remain valid. If there is an infinite n
ber of impulsesbi = Bix(t

−
i ) then the global uniform stability independent of delay

preserved if all the time intervals in-between consecutive impulses satisfy the const

Tmin � Sup
k∈I

(
1

iγ ′

) i∑
k=1

‖I +Bk‖ with γ ′ = γ−1
A −

m∑
i=1

‖Ai‖2

from Theorems 4(ii) and 5 provided thatγA := ‖(sI −A)−1‖∞ >
∑m

i=1 ‖Ai‖2.
(c) If in case (b),A is not strictly Hurwitzian and a closed-loop stabilization is p

formed, thenγA is replaced by the appropriate gainγM for M = A + BK. If all the bi
(i ∈ I) converge exponentially to zero while being state-independent, Theorem 4 m
used instead of Theorem 5.

(d) Now, assume that an auxiliary systemż(t)= Az(t)+A1z(t−h1) is g.u.e.s.i.d. for al
φ ∈ Ce(h1) and any delayh1. A sufficient condition is|ϑa |µA > |A1|2 with γ−1

A = |ϑA|µA ,
where(−ϑA) < 0 is the stability abscissa ofA provided thatA is strictly Hurwitzian with
the dominant eigenvalue being of multiplicityµA. Define theH∞-norm
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γaux :=
∥∥(sI −A−A1e

−hs)−1
∥∥∞ �

∥∥(sl −A)−1
∥∥∞∥∥I − (sI −A)−1A1e

−hs
∥∥∞

� A

1− γA‖A1‖2
, (20)

provided that‖A1‖2 < γ−1
A = |ϑA|µA . Then, a sufficient condition for the current syste

to be g.u.e.s.i.d. when no impulsive input is injected is that 1< γaux
∑m

i=2‖Ai‖2 which is
guaranteed if 1> γA

∑m
i=2 ‖Ai‖2/(1− γA‖A1‖2) provided that‖A1‖2 < γ−1

A = |ϑA|µA .
If A+A1e

−hs has stable eigenvalues butA is not strictly Hurwitzian thenγaux is finite but
it cannot be calculated from sufficiency-type conditions for stability using (20). How
the system is still g.u.e.s.i.d. if 1> γaux

∑m
i=2 ‖Ai‖2.

(e) Now, assume that in case (d) there is an impulsive input consisting of infinitely
impulses. Thus, the current system is g.u.e.s.i.d. if the impulses occur at consecutiv
being not less than Supk∈I(1/(iγ

′
aux))

∑i
k=1‖I + Bk‖, except possibly on a set of ze

measure, withγ ′−1 → γ ′−1
aux = (1− γA‖A1‖2)/γA −∑m

i=2 ‖Ai‖2, provided that‖A1‖2 <

γ−1
A and

∑m
i=2‖Ai‖2 < γ−1

A (1− γA‖A1‖2), from Theorem 4(ii) and Theorem 5.

Example 3. Consider the second-order scalar functional equationẍ(t) = −aẋ(t)+
bx(t − h) decomposed as

x(t)= x1(t), ẋ1(t)= x2(t),

ẋ2(t)=−ax2(t)+ bx1(t)−
0∫

−h

bx2(t + τ ) dτ.

Using the Lyapunov functional candidateV (x1t , x2t )= x2
2t−bx2

1t+ξ
∫ 0
−h

∫ t

t+s x
2
2t (τ ) dτ ds

[7], the system is proved to be globally asymptotically stable dependent of the de
(−2a/h+ ξ − b) < 0 for some real constantξ > 0 if xi(t), for i = 1 or 2, is nonzero fo
some subinterval of nonzero measure of[t − h, t] any t � t0 (some finitet0 ∈ R0+). This
holds for allh > 0 if Min(a, b) � 0 anda andb are not simultaneously zero. A gene
necessary condition is thath <−a/b. A necessary condition for exponential stability f
h= 0 is thata > 0 andb < 0. As a result, ifa > 0 andb < 0 then the system is global
uniformly asymptotically stable ifh ∈ [0, a/|b|]. Decompose the system equation into t
first-order differential equations as follows:

ẋ(t)=Ax(t)+A1
(
x(t)− x(t − h)

)
, (21)

wherex(t)= (x1(t), x2(t))
T , and

A=
[

0 1
b −a

]
, A1 =

[
0 0
−b 0

]
.

The system is g.u.e.s.i.d. from Theorem 5 ifa > 0, b < 0 anda > 2|b|+√a2− 4|b| since
the stability condition fora � 2|b| is (a −√

a2− 4b) > 2|b| and fora < 2|b|.
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