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A general method unifying the known constructions of binary self-orthogonal 
codes from designs is described. As an application more than 70 inequivalent 
extremal doubly even self-dual codes of length 40 are constructed from Hadamard 
matrices of order 20. Some of these codes do not admit nontrivial automorphisms 
of odd orders, and there is a code with trivial automorphism group. 0 1989 

Academic Press, Inc. 

1. SELF-ORTHOGONAL CODES AND DESIGNS 

We assume that the reader is familiar with the basic notions and facts 
from design and coding theory (cf., e.g., [2, 63). 

A binary (n, k) code C is a k-dimensional subspace of the n-dimensional 
vector space V, over GF(2). Given an (n, k) code C, the (n, n-k) code 
C’ = (x E V, : yx = 0 for each y E C> is called the orthogonal, or dual of C. 
A matrix with the property that the linear span of its rows generates the 
code C, is a generator matrix of C. The generator matrices of the dual code 
CL are called parity check matrices of C. We refer to the elements of a code 
as code words, or words only. The weight of a code word is the number 
of its nonzero positions, and the minimum weight of a code is the weight 
of a lightest nonzero code word. An (n, k, d) code is an (n, k) code with 
minimum weight d. 

A code C is self-orthogonal (resp. self-dual) if Cc CL (resp. C = C’). 
The weights of all words in a binary self-orthogonal code are even. If, in 
addition, all weights are divisible by 4, the code is called doubly even. A 
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doubly even self-dual (n, n/2) code exists if and only if n z 0 (mod 8), and 
the minimum weight d of such a code is bounded by 

d< 4[n/24] + 4 

(cf. [6]). A code satisfying the equality in the above bound is called 
extremal. The words of minimum weight in an extremal code yield l-, 3-, 
or 5-design provided that n - 16, 8, or 0 (mod 24). The number of extremal 
codes is finite (but unknown). 

Let X= {xi, . . . . x,} be a finite set of “points.” We call a family 
B = { Bj}j= i of subsets of X a weakly self-orthogonal design if the following 
conditions are satisfied: 

(a) lBil E lBjl (mod 2) for any i, jE { 1, . . . . b}. 

(b) IBinBjlEIBknB,I (mod2)fori,j,k,mE{l,..., b},i#j,k#m. 

There are four possible tupes of weakly self-orthogonal designs according 
to the parity of the block size and the cardinality of intersection of pairs of 
blocks: 

(i) lB,n Bjl E IB,J ~0 (mod 2). 

(ii) IBin Bjl = lBkl 5 1 (mod 2). 

(iii) lB,n Bjl E 1 (mod 2), (Bkl = 0 (mod 2). 

(iv) IBin B,I r0 (mod 2), JBkl = 1 (mod 2). 

A design of type (i) is called properly self-orthogonal, or self-orthogonal, 
only. The term “self-orthogonal” is due to the following easily checked but 
useful connection between such designs and binary self-orthogonal codes. 

THEOREM 1.1. Zf A is a block-point b x v incidence matrix of a self- 
orthogonal design, then A generates a self-orthogonal binary code of length v. 

Designs of type (ii), (iii), or (iv) are easily extendable to self-orthogonal 
designs of type (i) by adding one or two new points to each block in an 
appropriate way. 

Suppose that D = (X, B) is a weakly self-orthogonal design. Define the 
sets x’, x”, X* and the families of blocks B’, B”, B* as follows: 
X’=Xu {x,+1}, Jf”=Xu {X,+,,...,Xv+6,X,+b+l), X*=X”\{x”+b+l}; 
B’= {Bju {x,+1): j= l,..., b}, B”= {B~u {X"+j,X"+b+l}: j= l,..., b}, 
B* = {Bju {x,,~}: j= 1, . . . . b}. Then the following assertions are easily 
verified: 

(1) If D is of type (ii), then D’ = (xl, B’) is self-orthogonal, i.e., of 
type 6). 

(2) If D is of type (iii) then D” = (X”, B”) is of type (i). 

(3) If D is of type (iv) then D* = (X*, B*) is of type (i). 
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In other words, if A is a b x u incidence matrix of a weakly self- 
orthogonal design D, then the following matrix 

(4) 

generates a binary self-orthogonal code of length u + 1 provided that D is 
of type (ii); the matrix 

(5) 

generates a self-orthogonal code of length b + v + 1 provided that D is of 
type (iii). Let us mention that if v is odd, then one can add one more block 
consisting of all old points plus one new point x, +b +2, so that a self- 
orthogonal design with v + b + 2 points and b + 1 blocks is obtained. In 
coding terms, the following matrix 

I (6) 

generates a self-orthogonal code of length v + b + 2. Finally, the matrix 

(L A) (7) 

generates a self-orthogonal code of length b + v provided that D is of 
type (iv). 

Familiar examples of weakly self-orthogonal designs are provided by 
symmetric 2-designs. In such a case the corresponding codes generated by 
matrices of the form (6) or (7) are in fact self-dual and the construction is 
well known [ 11. In particular, if A is an incidence matrix of a Hadamard 
symmetric 2 - (4t - 1, 2t, t) design with odd t then the matrix (6) generates 
a doubly even self-dual code of length 8t. As proved in [8], any such code 
has minimum weight at least 8 provided that t > 0; in particular, the codes 
derived from Hadamard designs with t < 5 are extremal. The last result was 
recently “rediscovered” by Ozeki [7] (without the bound da 8; the 
extremality has been checked by computer in [7]). Hadamard 2-designs 
which are extendable to isomorphic Hadamard 3-designs, produce equiv- 
alent codes [8]. In particular, there are three nonisomorphic Hadamard 
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3-(20, 10,4) designs producing three extremal doubly even (40,20, 8) codes 
[S]. An interesting theorem from [7] states that designs arising from 
equivalent adamard matrices yield equivalent codes. 

Exploring the concept of a self-orthogonal design, we generalize the con- 
struction of self-dual codes based on Hadamard designs to a construction 
using (0, l)-Hadamard matrices. This general construction can produce 
inequivalent codes from equivalent Hadamard matrices. As an application, 
we demonstrate that at least 79 (and perhaps many more) inequivalent 
extremal doubly even (40,20) codes are obtained from the Hadamard 
matrices of order 20. Many of these codes do not possess any 
automorphisms of an odd prime order, and there is at least one code with 
trivial automorphism group. This seems to be the first example of an 
extremal doubly even code without any nontrivial automorphisms. 

2. SELF-ORTHOGONAL DESIGNS OBTAINED 
FROM HADAMARD MATRICES 

Given a Hadamard matrix H of order n = 4t, define incidence between 
rows and columns of H, a row and a column being incident if they intersect 
in + 1. We call the incidence structure thus defined the design of H. An 
incidence matrix of the design of H is (H + 5)/2, where J is the all-one 
matrix. 

An essential property of a Hadamard matrix of order n is that the 
Hamming distance between each pair of rows is n/2. Consequently, the 
parity of the number of + l’s in a row is the same for all rows if n > 2. 
Using this, it is straightforward to prove the following theorem. 

THEOREM 2.1. The design of a Hadamard matrix H of order n > 2 such 
that the numbers of + l’s in all rows of H are congruent module 4, is weakly 
self-orthogonal. 

Suppose now that H is a Hadamard matrix of order n = 8t + 4 with some 
row (and hence all rows) containing an odd number of + 1’s. Note that if 
the number of + l’s in a row is - 1 (mod 4), then multiplying that row by 
- 1 transforms it in a row containing a number of + l’s = 3 (mod 4). 

THEOREM 2.2. Let H be a Hadamard matrix of order n = 8t + 4 such that 
the number of + l’s in each row is 5 3 (mod 4). Then the matrix 

(4 A), (8) 

where A = (H + J)/2 is the incidence matrix of the design of H, generates a 
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self-dual doubly even code C of length 2n. The minimum distance of C is at 
least 8 if and only if each row and column of H contains at least seven + l’s 

Proof: The self-orthogonality of the code follows from the fact that the 
design of H is self-orthogonal of type (iv). The code C is doubly even since 
the weights of all rows of the generator matrix (9) are divisible by 4. 

Suppose that the minimum weight d is less than 8, i.e., d = 4. Since the 
matrix A is non-sigular over GF(2), a code word of weight 4 must be a sum 
of at most three rows of (8). A row of (8) can be of weight 4 only if some 
row of H contains exactly three + 1’s. Since H is a Hadamard matrix, the 
weight of the sum of any two rows of (8) is 2 + n/2 > 4 for n > 4. If there 
is a code word of weight 4 being’a sum of three rows of (8) then this word 
must be a row of the matrix 

(AT, 0, (9) 

which is, due to the self-duality of C, both parity check and generator 
matrix of C. However, (9) can have a row of weight 4 only if H contains 
a column with exactly three + 1’s. 1 

Let us mention that if H is of the form 

then H’ is an (+ 1, - 1) incidence matrix of a symmetric Hadamard 
2 - (n - 1, n/2, n/4) design, thus the condition of Theorem 2.2 is fullfiled if 
n > 4. Hence Theorem 2.2 generalizes a similar result from [S]. 

Theorem 2.2 gives a simple criterium for extremality of codes arising 
from Hadamard matrices of order 8, 12, or 20. Since the only doubly even 
self-dual code of length 8 is the extended Hamming code, and there is a 
unique extremal code of length 24, namely the extended Golay code, we 
illustrate our method on codes of length 40 derived from Hadamard 
matrices of order 20. 

Starting from a particular Hadamard matrix, one can transform it into 
many different (but equivalent) matrices by multiplying comumns and 
rows with -1 so that all columns and rows contain a number of + l’s 
congruent to 3 mod 4. We have carried out an incomplete computer search 
for extremal codes derived from Hadamard matrices of order 20. In the 
cases where we obtained an extremal code we investigated the set of all 285 
minimum weight code words. As known [2,6], this set forms a 285 x 40 
incidence matrix of a 1 - (40, 8, 57) design. Classifying the 40 columns of 
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TABLE I 

The 2 - (19, 10,5) Designs 

III IV QR 

0000000001111111111 0000000001111111111 I0,2,3,8,10,12,13,14, 
0000111110000011111 0000111110000011111 
0001011110111100001 0001011110111100001 15,181 (mad 19). 
0011100111001100110 0011100111001101110 
0101100111110011000 0101100111110011000 
0110011011010101010 0110011011010101010 
0110011101101010100 0110011101101010100 
0111101000011010011 0111101000011010011 
0111110000100101101 0111110000100101101 
1001111001001111000 1001111001011001100 
1010101010110110100 1010101010101111000 
1010110100111001010 1010110101010110001 
1011001101010001101 1011001101100001011 
1011010011100010011 1011010010110010110 
1100101101100100011 1100101100110100110 
1100110011011000101 1100110011101000011 
1101001010101001110 1101001011000110101 
1101010100010110110 1101010100001111010 
1110000110001111001 1110000110011001101 

this matrix according to their scalar products with the remaining 39 
columns, or equivalently, counting for each point of the relevant 
1 - (40,8,57) design the number of points different from it and such that 
both points occur together in a certain number of blocks, we get an 
isomorphism invariant distinguishing the codes well enough. We found in 
this way at least 79 inequivalent extremal doubly even (40, 20) codes. The 
results are listed in Table II. For each code we indicate the Hadamard 
matrix producing the code, the columns which have to be negated, and the 
“type” of the code, giving the classification of the 40 code coordinates 
according to the invariant described above. For instance, the type 
“4(2) S(4)” means that the set of 40 coordinates is partitioned into six sub- 
sets each consisting of coordinates with identical characteristics: 2 subsets 
of cardinality 4 and 4 subsets of cardinality 8. The Hadamard matrices we 
have started with all have the form (10). The particular 2 - (19 10, 5) 
designs we have used are listed in Table I. Designs III and IV are taken 
from [4]. 

3. COMMENTS 

3.1. Codes from Table II are divided into 70 classes by their type. 
Only the following classes contain more than one code: (1, 17}, (2, 15}, 
{8,22}, (10, 12, 32, 80}, (11, 19}, (13, 29}, (16,481, {37,65}. Most of 
these codes are also inequivalent, which can be seen by a comparison of the 



TABLE II 

Extremal (40,20) Codes Derived from 
Hadamard Matrices of Order 20 

1 2 11 14 
1 2 11 15 
1 7 11 16 
1 2 12 *a 
1-a 
1-6 11 1s 
1-6 I, 19 
i-b 12 16 
1-s 10 I1 1s 
1-s 10 11 17 
1-s 10 12 19 
1-s 11 12 17 
1-8 11 15 17 *a 
,234 
1235 
1237 

1-6 1, 17 
I-L 12 1.4 
1-L 12 17 
l-11 14 
l-11 16 
l-10 12 1s 
l-10 13 16 
l-10 1s 16 
l-10 Ib 17 
l-9 11 12 18 
None 
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characteristics of coordinates belonging to subsets with the same car- 
dinality with respect to our isomorphism invariant. For instance, given a 
coordinate of the code 10, the remaining 39 coordinates are partitioned 
into three groups containing 1, 16, and 21 coordinates respectively, while 
for a coordinate of the code 12 there is a group containing 37 coordinates. 
The only two codes with identical types and characteristics are 2 and 15. 
We do not know whether these two codes are equivalent or not. Therefore, 
Table 2 contains at least 79 inequivalent codes. 

3.2. A powerful method for the construction of self-dual codes that 
has recently been developped considerably, is based on consideration of 
automorphisms (cf., e.g., [3, 5,9]). An essential feature of this method is 
that it is applicable only for automorphism groups of order not divisible by 
the characteristic of the underlying field. In particular, for binary codes 
only automorphisms of an odd order are handled. It was proved in [9] 
that the only odd primes that can be orders of automorphisms of an 
extremal doubly even self-dual code of length 40 are 19, 7, 5, and 3, and 
there are precisely three inequivalent codes with automorphisms of order 
19 and 5 codes with automorphisms of order 7. Moreover, an 
automorphism of order 19 fixes exactly two coordinates; an automorphism 
of order 7 fixes live coordinates; an automorphism of order 5 fixes either 
20 or no coordinates; and an automorphism of order 3 fixes at most 22 
coordinates [9]. It follows from this and the data of Table II that at least 
11 codes, namely 21, 30, 35, 39, 41, 42, 47, 49, 51, 53, 54, do not possess 
any nontrivial automorphisms of an odd order. 

In fact, some of these codes do not admit any nontrivial automorphisms 
at all. We have checked this for the code 41 in the following way. Consider 
the set of all code words of weight 8. The Hamming distance between any 
two such words is 8, 12, or 16. For each code word of weight 8 we compute 
the characteristic (as, n i2, n,,), where ni is the number of code words of 
weight 8 being at distance i from the given word. The set of all 285 code 
words of weight 8 is divided into live subsets of cardinalities 5, 13, 53, 82, 
132, respectively, according to their characteristics (ne, n,,, ni6). The 
columns of the 53 x 40 matrix having as rows the words of the subset of 
cardinality 53 are completely distinguished by the distribution of their 
scalar products with the remaining columns. Thus the code 41 cannot 
admit any nontrivial automorphism. 
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