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Abstract Concept learning provides a natural framework in which to place the
problems solved by the quantum algorithms of Bernstein-Vazirani and Grover. By
combining the tools used in these algorithms—quantum fast transforms and amplitude
amplification—with a novel (in this context) tool—a solution method for geometrical
optimization problems—we derive a general technique for quantum concept learning.
We name this technique “Amplified Impatient Learning” and apply it to construct
quantum algorithms solving two new problems: Battleship and Majority, more
efficiently than is possible classically.
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1 Introduction

Over the past decade increasing numbers of scientists have built quantum computa-
tion into an imposing edifice. The paucity of quantum algorithms, however, betrays a
certain emptiness at its center. Only a handful of problems are known to be solvable
more efficiently quantum mechanically than classically, and even fewer general quan-
tum algorithmic techniques are known. The latter include quantum fast transforms
[1–7] and amplitude amplification [8–13]. In this paper we explain how to combine
these techniques with a new (in this context) one—a solution method for geometrical
optimization problems—into quantum algorithms that solve new classes of problems.

These new problems can be thought of as generalizations of the structured and
unstructured search problems solved by the quantum algorithms of Bernstein and
Vazirani [14,15] and Grover [8,9]. Our thinking, however, is largely informed by a
branch of classical artificial intelligence—machine learning (For the computer science
perspective) [16], and (for a recent mathematical perspective) [17], or more specifi-
cally, computational learning theory [18].

In this subject, a concept is a map c : X → Z2, defined on some discrete set X ;
the support of the function, c−1(1) ⊂ X , is the extension of the concept. For exam-
ple, let X be the set of all balloons, and define c(x) = 1 if and only if x ∈ X is
red; this concept is “red balloon”. Concept learning is the process by which a student
(the learner) identifies (or approximates) a target concept from a concept class C of
possible concepts. Learning can be passive—in situations where examples x ∈ X are
presented to the student by some external mechanism, or active—in situations where
the student can query a teacher for information about the target concept. In the latter
case, Angluin has defined a minimally adequate teacher to consist of a pair of oracles:
a membership oracle that responds to a query x ∈ X with c̄(x), where c̄ ∈ C is the
target concept; and an equivalence oracle that responds to a query c ∈ C with δcc̄ [19].

The number of queries made by a learning algorithm is the query complexity of
the algorithm; the number of queries to the membership oracle is its sample complex-
ity. These are distinct from the computational complexity of the algorithm, which is
defined in the usual way [20]. A family of concept classes Ci , for 0 < i ∈ Z, is an
infinite sequence of concept classes defined on a corresponding sequence of sets Xi .
A learning algorithm for such a family is a sequence of learning algorithms, one for
each Ci . Since each algorithm in the sequence has a sample complexity, we can discuss
the asymptotic sample complexity of the family. As we describe in detail in §2, both
Bernstein and Vazirani’s and Grover’s algorithms can be interpreted as quantum algo-
rithms for concept learning from a membership oracle, each with a sample complexity
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The geometry of quantum learning 323

that is asymptotically smaller than the sample complexity of the best possible classical
learning algorithm for the same problem.

Bernstein and Vazirani’s algorithm is particularly striking because it requires only
a single query to the membership oracle to learn any concept in the problem class.
Only very special concept learning problems have quantum sample complexity 1 in this
sense. In §2 we explain that these are learning problems in what should be described as
“Hadamard” concept classes. Other learning problems, like the one solved by Grover’s
algorithm, have quantum sample complexity greater than 1, but one can ask how well
a student can learn with a single query. In §3 we pose this problem of “impatient
learning” precisely, and show that it is answered by the solution to a certain geometric
optimization problem.

With additional queries we should expect superior results. In §4 we show that the
quantum computing technique of amplitude amplification [8–13] corresponds to que-
rying also the other half of a minimally adequate teacher, the equivalence oracle. Using
an equivalence oracle we can define a general quantum learning algorithm, but with-
out the use of some structure in—or symmetry of—the concept class, it is precisely
Grover’s algorithm, with the queries interpreted as being to the equivalence oracle,
rather than to the membership oracle. In §5 we review group algebras, in order to
describe particular symmetries of concept classes. These symmetries—via quantum
fast transforms—allow equivalence queries to be combined with optimal impatient
learning algorithms to achieve performance superior to use of equivalence queries
alone. In §6 and §7 we analyze the resulting quantum algorithms for concept classes
with ZN and Z

n
2 symmetry, respectively. We obtain efficient quantum algorithms for

two novel problems: Battleship and Majority.
We conclude in §8 with a discussion of the optimality of our quantum algorithms,

and their relevance to a pair of conjectured upper bounds for the sample complexity
of quantum learning algorithms.

2 Formalization of quantum learning algorithms

Bernstein and Vazirani’s search problem is the task of identifying a ∈ Z
n
2, given a

‘sophisticated’ oracle that returns a · x mod 2 when queried about x ∈ Z
n
2 [21]. From

our point of view, it can also be interpreted as an instance of active learning with access
to a membership oracle. There is a family of concept classes BVn for 0 < n ∈ Z, with

BVn = {
pa : Z

n
2 → Z2 | pa(x) = a · x mod 2 for a ∈ Z

n
2

}
,

consisting of the concepts “bit string with odd inner product with a” for a ∈ Z
n
2. Since

the concept class BVn is parameterized by a ∈ Z
n
2, identifying a is equivalent to learn-

ing a target concept pa by querying a membership oracle. Classically this learning
problem has sample complexity �(n).

In Bernstein and Vazirani’s quantum algorithm for this problem, as well as in
all the quantum concept learning algorithms we consider in this paper, the “data
structure” consists of a query “register” and a response “register”—the Hilbert space
of states is C

|X | ⊗ C
2. A membership oracle for target concept c̄ acts via the unitary
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324 M. Hunziker et al.

transformation Uc̄ defined by linear extension from its action on the computational
basis, {|x, b〉 | x ∈ X, b ∈ Z2}, namely Uc̄|x, b〉 = |x, b + c̄(x)〉, where “+” denotes
addition modulo 2. Let |−〉 = (|0〉 − |1〉) /

√
2. Then Uc̄|x〉|−〉 = (−1)c̄(x)|x〉|−〉. We

will use this “phase kickback” trick [22] throughout, so we need only concentrate on
the query register and, abusing notation slightly, write Uc̄|x〉 = (−1)c̄(x)|x〉.

With this notation, Bernstein and Vazirani’s algorithm is summarized by the equa-
tion:

H⊗nUpa H⊗n|0〉 = |a〉, (2.1)

where H =
(

1 1
1 −1

) /√
2 and 0 ∈ Z

n
2. That is, from an initial state |0〉, we apply the

Hadamard transform, H⊗n ; query the membership oracle; and apply the Hadamard
transform again. The result is the state |a〉, so a measurement in the computational basis
identifies the target concept pa with probability 1. The quantum sample complexity of
this algorithm is 1, a substantial improvement over the classical sample complexity.

To understand why this algorithm works, notice that after the first Hadamard trans-
form in (2.1), the state of the query register is in an equal superposition of all possible
queries:

H⊗n|0〉 = 1√
2n

∑

x∈Z
n
2

|x〉.

Such an equal superposition is the state before the initial query in each of the quan-
tum algorithms we discuss in this paper. Acting on this state by Upa produces one of
|Zn

2| = 2n possible vectors, according to the value of a. Let ABV be the matrix that
has these vectors as columns. In general we make the following definition.

Definition For any concept class C defined over a set X , define the membership query
matrix AC to be the |X | × |C| matrix with cth column

Uc
1√|X |

∑

x∈X

|x〉,

for c ∈ C. In this paper we only consider concept classes for which there is a bijection
between X and C; we call these matched concept classes. For matched concept classes,
the membership query matrix is square.

For the Bernstein and Vazirani problem, the membership query matrix has entries

(ABV )xa = (−1)x ·a
√

2n
,

which we recognize as the entries of H⊗n . Thus the final Hadamard transform in (2.1)
acts as

H⊗n(ABV )a = (H⊗n ABV )a = (H⊗n H⊗n)a = (I )a = |a〉, (2.2)
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The geometry of quantum learning 325

since H = H−1. That is, it inverts the query matrix. Clearly, then, the sample com-
plexity of quantum learning in any concept class with a unitary membership query
matrix is 1. Since such a membership query matrix is just a Hadamard matrix in the
traditional sense (an orthogonal matrix with entries ±1) [23,24], normalized by

√|X |,
we refer to such concept classes as Hadamard concept classes.1

Not all learning problems, of course, are this easy. Grover’s search problem can also
be interpreted as an instance of active concept learning with access to a membership
oracle. In this case there is a family {GN } of concept classes, for 0 < N ∈ Z, with

GN = {δa : ZN → Z2 | δa(x) = δax for a ∈ ZN },

which consists of the concepts “is the number a” for a ∈ ZN . The task is to identify a
given an oracle that returns δax when queried about x . Since the concept class GN is
parameterized by a ∈ ZN , identifying a is equivalent to identifying a target concept
δa . Classically this learning problem has sample complexity �(N ).

Quantum mechanically, this oracle acts by a unitary matrix Uδa , so the membership
query matrix for this problem has entries

(AG)xa = (−1)δxa

√
N

= 1√
N

(
N F†|0〉〈0|F − 2I

)

xa
, (2.3)

where F is the N -dimensional discrete Fourier transform. Clearly AG is not unitary,
so GN is not a Hadamard concept class, and a single query does not suffice to learn
a target concept. In fact, Bennett, Bernstein, Brassard, and Vazirani [26] showed that
(in our language) the sample complexity of Grover’s learning problem is �(

√
N ).

Nevertheless, one might ask how well it is possible to do with a single query. That
is, if we can make any unitary transformation (independent of a) after a single query,
how do we maximize the probability that a measurement in the computational basis
{|x〉 | x ∈ ZN } returns a? We give a general solution to this problem of impatient
learning in the next section, and then apply it to Grover’s problem in §5.

3 Impatient learning

The column vectors of a membership query matrix—the possible states of the query
register after a single equal superposition membership query—form a special case of
a general situation we can consider, namely a quantum system whose state is one of
a set of 0 < N ∈ Z unit vectors {|vi 〉 | i ∈ ZN } in an N -dimensional Hilbert space,
H. The task is to select a measurement to perform that will maximize the probabil-
ity of correctly guessing which state the system was in before the measurement was
made. This is a special case of the problem originally considered by Helstrom [27]
and Kholevo [28], quantum hypothesis testing, namely identifying one from among a
set of pure quantum states, no matter their provenance.

1 This nomenclature is motivated by van Dam’s paper on a quantum algorithm for the quadratic residue
problem [25].

123



326 M. Hunziker et al.

Recall that a von Neumann measurement [29] is defined by an orthogonal direct
sum decomposition of the Hilbert space. The measurement is complete if the sum-
mands are one-dimensional. Belavkin [30] and Kennedy [31] have shown that when
the {|vi 〉} are linearly independent the optimal quantum measurement is, in fact, a
complete von Neumann measurement. Such a measurement determines an orthonor-
mal basis {|ei 〉 | i ∈ ZN }, up to phases. The probability that the system will be in state
|ei 〉 after this measurement, given that it was in state |v〉 before the measurement, is
|〈v|ei 〉|2. If we assume that the system has been prepared in one of the states {|vi 〉},
chosen uniformly at random, then the quantity we want to maximize is

N∑

i=1

|〈vi |ei 〉|2. (3.1)

Necessary and sufficient criteria for solutions to this optimization problem, in the more
general case of arbitrary prior probabilities for the {|vi 〉}, can be found in the early
quantum hypothesis testing literature [28,30,32]. In the following we provide a brief,
geometrical derivation of such a criterion.

We can phrase this problem as a question about matrices: If we choose an isomor-
phism of Hilbert spaces, H 	 C

N , then the list (|v1〉, . . . , |vN 〉) is identified with a
square matrix A ∈ MN (C). Making an arbitrary complete measurement is equivalent
to making an arbitrary unitary transformation, followed by a fixed complete measure-
ment in, for example, the computational basis. Thus we should consider the matrices
S A, for S ∈ U (N ), where U (N ) denotes the unitary group. We write A ∼ B if B = S A
for some S ∈ U (N ). Maximizing the quantity (3.1) is equivalent to maximizing the
quantity

‖d(B)‖2 (3.2)

over the U (N )-orbit of A, {B | B ∼ A}, where d : MN (C) → MN (C) is projection
onto diagonal matrices and ‖ · ‖ is the L2 (or Frobenius) norm. In the following, when
we speak of critical points of the function (3.2), it will be implicit that the U (N )-
orbit of A is the domain. We have the following characterization of the critical points,
which was stated and proved (differently) by Helstrom, in the more general setting of
an arbitrary probability distribution over the state vectors [32, Chap. IV, eq. (1.30)]:

Proposition 3.1 The matrix B is a critical point of ‖d(B)‖2 if and only if Bd(B)† is
Hermitian, i.e.,

Bd(B)† = d(B)B†,

where † denotes the adjoint.

Proof Let u(N ) denote the Lie algebra of U (N ), i.e., the set of skew-Hermitian matri-
ces. The criticality condition is that for all ζ ∈ u(N ),

d

dt
| t=0 ‖d ((1 + tζ )B)‖2 = 0,
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which is true when Re
(
tr

(
d(ζ B)d(B)†

)) = 0. For all matrices X and Y , one has

tr (d(X)d(Y )) = tr (Xd(Y )) .

Therefore

Re
(

tr
(

d(ζ B)d(B)†
))

= Re
(

tr
(
ζ Bd(B)†

))
,

so the condition for B to be critical is that Bd(B)† be orthogonal to all skew-Hermitian
matrices, with respect to the inner product Re

(
tr

(
(·)(·)†

))
. This proves the proposi-

tion, since the orthogonal complement to the space of skew-Hermitian matrices is the
space of Hermitian matrices. �

Since ‖d(B)‖2 is invariant under left multiplication by unitary diagonal matrices,
we can restrict our attention to those critical points of (3.2) that have nonnegative real
entries on the diagonal. Now the criticality condition reads

Bd(B) = d(B)B†. (3.3)

We would like, however, an explicit solution to (3.3). Consider the Gram matrix of
A, G = A† A, with components Gi j = 〈vi |v j 〉. G is a positive semi-definite Hermitian
matrix. Let

√
G denote the positive semi-definite Hermitian square root of G. By the

polar decomposition of A, there is always a unitary matrix S such that
√

G = S A, so
it is natural to ask whether B = √

G solves (3.3). Proposition 3.1 shows that this is
generally not the case. More precisely, we have the following corollary:

Corollary 3.2
√

G is a critical point of (3.2) if and only if
√

G commutes with its
own diagonal.

If the off-diagonal part of
√

G is sufficiently general then the conclusion of Corol-
lary 3.2 will force the diagonal to be constant. Although this is a strong condition in
general, it is a very natural simplification [28,30,32,33]. We shall see that it occurs in
many structured learning problems. Moreover, having a constant diagonal is precisely
the condition needed to go beyond impatient learning—which we will do in the next
section. So it is a case worth considering.

Proposition 3.3 Let G be a positive semi-definite Hermitian matrix. Let
√

G denote
the positive semi-definite Hermitian square root of G. Assume the diagonal of

√
G is

constant. Let S denote the set of matrices B such that B ∼ √
G and B has constant

diagonal. Then the maximum of ‖d(B)‖2 over B ∈ S occurs at
√

G.

Proof If B has constant diagonal, then ‖d(B)‖2 = |tr(B)|2/N . So it suffices to prove
that

√
G gives the maximum value of |tr(B)|2 over all B ∈ S. As in the proof of Prop-

osition 3.1, the critical points occur when Re (tr(B)tr(ζ B)) = 0 for all ζ ∈ u(N ).
Writing tr(B)tr(ζ B) = tr (ζ B tr(B)), we see that the critical points are given by
the condition that B tr(B) is Hermitian, also as in the proof of Proposition 3.1. Let
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328 M. Hunziker et al.

Bh = (B + B†)/2 and Bs = (B − B†)/2. We want the skew-Hermitian part of B tr(B)

to vanish, thus

Bh tr(Bs) + Bs tr(Bh) = 0. (3.4)

The trace of (3.4) shows that either tr(Bh) = 0 or tr(Bs) = 0. If both traces vanish
then we get the minimum possible value, |tr(B)|2 = 0. If this is also the maximum
then

√
G is forced to vanish since it is positive semi-definite, so the statement is

true in this case. If only one of the traces vanishes, the maximum occurs at a point
where Bs = 0 or Bh = 0. Since multiplication by i is a symmetry of |tr(B)|2, we may
assume Bs = 0. Then B is some square root of G. The maximum of |tr(B)|2 will occur
when one chooses the same sign for the square root of each eigenvalue, e.g., when
B = √

G. �

Remark As we have noted above, both Proposition 3.1 and Proposition 3.3 have
long been known in the context of quantum hypothesis testing. Nevertheless, we have
included our proofs of these results in order to emphasize the connection with a similar
optimization problem: These new proofs are inspired by the proof of the result that the
minimum of the L2 distance ‖B − I‖ over the set B ∼ √

G is given by B = √
G, irre-

spective of any assumption about the diagonal. In particular, for an arbitrary invertible
matrix A, with polar decomposition A = S−1 P , where S is unitary and P is positive
definite Hermitian, the closest point to I in the U (N )-orbit of A is P—this is the solu-
tion to the Procrustes Problem [34]. Most recently, Eldar and Forney have noted that
(in our notation) when the diagonal of

√
G is constant, B = √

G not only minimizes
the L2 distance ‖B − I‖ over the

√
G orbit, but also maximizes ‖d(B)‖2 over the

orbit, and is thus the solution to the optimization problem (3.1) that is the relevant one
for quantum measurement [35].

Thus we have the following quantum algorithm for a concept learning problem
with invertible membership query matrix AC :

Impatient learning

1. Prepare the query register in the equal superposition state, F†|0〉, where F is the
|X |-dimensional discrete Fourier transform. (Any unitary map taking |0〉 to the
equal superposition state works; in the case where X = Z

n
2, H⊗n can be applied.)

2. Query the membership oracle, obtaining as the state the c̄th column of AC ,
Uc̄ F†|0〉.

3. Apply the unitary transformation SC = (A†
C AC)1/2 A−1

C .
4. Measure the resulting state SCUc̄ F†|0〉 in the computational basis.

Notice that BC = SC AC satisfies (3.3). As a consequence of the preceding discussion
we have:
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Theorem 3.4 For concept c̄, Impatient Learning succeeds with probability |(BC)c̄c̄|2
and, when these diagonal elements are all equal, is optimal (in the sense of maximizing
(3.1)) among single query quantum algorithms that begin with an equal superposition
over membership queries.2

As we saw in (2.2), for ABV , BBV = H⊗n ABV = I maximizes (3.1), so the Bern-
stein–Vazirani algorithm is Impatient Learning, and succeeds with probability 1 for
every target concept. Furthermore, as we will see in §5, for Grover’s problem, (3.1)
is maximized by BG = (

2F†|0〉〈0|F − I
)

AG . Using (2.3) it is then easy to compute
that the diagonal entries of BG are all (3−4/N )/

√
N , so Impatient Learning succeeds

with asymptotic probability 9/N as N → ∞. Theorem 3.4 says that this is the best we
can do using only a single membership query. Although it is certainly an improvement
over the success probability 1/N of random guessing, Impatient Learning is far from
satisfactory for this problem.

4 Beyond impatient learning

In fact, for most concept learning problems a single membership query simply does not
provide enough information to learn the target concept with probability close to 1. A
specific target concept c̄ defines a subspace of the Hilbert space C

|X |, namely span{|c̄〉}
(recall that there is a bijection between X and C), however, so we can apply one of
the few general quantum algorithm techniques—amplitude amplification [8–13]. This
technique, invented by Brassard and Høyer [10] as a generalization of Grover’s algo-
rithm [8,9], can be described in terms of concepts:

Amplitude Amplification ([13], Theorem 2). Let χ be a concept over X; let H1
denote the subspace of C

|X | spanned by the vectors labeled by the elements in the
extension of χ , χ−1(1); and let � denote the projection C

|X | → H1. For any unitary
transformation W of C

|X |, let p(W ) = |�W |0〉|2 be the probability with which the
state W |0〉 is measured to be in the subspace H1. As long as p(W ) > 0, we can
set sin2 θ = p(W ) for 0 < θ ≤ π/2. In this case, repeatedly applying the unitary
transformation WUδ0 W †Uχ amplifies the probability of measuring the state to be in
the subspace H1. More precisely,

p
(
(WUδ0 W †Uχ )m W

)
≥ max{1 − p(W ), p(W )},

where m = ⌊
π
4θ

− 1
2

⌉
, the nearest integer to π

4θ
− 1

2 .
After step 3 of Impatient Learning, the state is SCUc̄ F†|0〉, where SC was cho-

sen to maximize
∑

c̄

∣
∣〈c̄|SCUc̄ F†|0〉∣∣2

. Thus, letting χ = δc̄, H1 = span{|c̄〉} and
WC = SCUc̄ F†, applying Amplitude Amplification gives a new quantum algorithm:

2 Even when the diagonal of BC = (A†
C AC)1/2 is not constant, a result of Barnum and Knill [36] implies

that the success probability is within a factor of 2 of the optimum.

123



330 M. Hunziker et al.

Amplified impatient learning

1. Prepare the query register in the equal superposition state, F†|0〉, where F is the
|X |-dimensional discrete Fourier transform. (Any unitary map taking |0〉 to the
equal superposition state works; in the case where X = Z

n
2, H⊗n can be applied.)

2. Query the membership oracle, obtaining as the state the c̄th column of AC ,
Uc̄ F†|0〉.

3. Apply an impatient learning transform SC , producing SCUc̄ F†|0〉 = WC |0〉.
4. Apply WCUδ0 W †

CUδc̄ m times, where m = ⌊
π
4θ

− 1
2

⌉
, and sin θ = |〈c̄|WC |0〉| =

|(BC)c̄c̄|, with 0 < θ ≤ π
2 .

5. Measure the resulting state in the computational basis.

As a consequence of Theorem 3.4 and Amplitude Amplification we have:

Theorem 4.1 For problems with BC having constant diagonal element s, Amplified
Impatient Learning succeeds with probability at least max{1 − s2, s2}. Since each
of WC and W †

C includes calls to the membership oracle via Uc̄, Amplified Impatient
Learning has sample complexity 2m + 1, i.e., O(1/s).

Notice, however, that the algorithm uses more than membership queries. The oper-
ation Uδc̄ in step 4 is the action of an equivalence oracle responding to a queried
concept (rather than a concept argument). Roughly speaking, the Impatient Learning
part of this algorithm maximizes the amplitude for the target concept c̄ after a single
membership query; then an equivalence oracle is queried about the correctness of this
concept. Thus Amplified Impatient Learning uses both oracles comprising the min-
imally adequate teacher defined in §1, making 2m + 1 membership queries and m
equivalence queries.

At the risk of confusing the membership and equivalence oracles, we can apply
Amplified Impatient Learning to Grover’s problem. As we noted at the end of §3
and as we will compute in §5, for AG the post-membership query transform is SG =
2F†|0〉〈0|F − I = F†Uδ0 F . So for this problem,

WG = SGUc̄ F† = F†Uδ0 FUδc̄ F†,

where this use of Uδc̄ is a query to the membership oracle. The iterated transformation
is

WGUδ0 W †
GUδc̄ = (F†Uδ0 FUδc̄ F†)Uδ0(FUδc̄ F†Uδ0 F)Uδc̄

= F†Uδ0 FUδc̄ · F†Uδ0 FUδc̄ · F†Uδ0 FUδc̄

= (F†Uδ0 FUδc̄ )
3,

where the Uδc̄ in the first expression is the operation of the equivalence oracle but
the distinction between the two kinds of oracles is ignored in the last expression. The
complete algorithm is then

(F†Uδ0 FUδc̄)
3m F†Uδ0 FUδc̄ F†|0〉 = (F†Uδ0 FUδc̄ )

3m+1 F†|0〉,
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where m = ⌊
π
4θ

− 1
2

⌉
, and θ = arcsin |(BG)c̄c̄| = arcsin

(
(3 − 4/N )/

√
N

)
. Thus

m ∼ π
4

√
N/3 so the interated transformation is applied π

4

√
N times, asymptotically.

This is, in fact, exactly Grover’s algorithm [8,9], although one usually sees it factored
differently (and with F and F† replaced by H⊗n).

5 Concept classes with group symmetry

The sets Z
n
2 and ZN , over which the Bernstein-Vazirani and Grover concept classes

are defined, are abelian groups under componentwise addition modulo 2 and addi-
tion modulo N , respectively. In each case the Hilbert space C

G becomes a ring, with
multiplication law defined by linear extension from

|x〉 ∗ |y〉 = |x + y〉 for x, y ∈ G,

where G is Z
n
2 or ZN .

Definition The group algebra of G is the Hilbert space C
G (often written C[G]),

equipped with this ring structure.

The regular representation of the group algebra is the map

C
G � |v〉 �−→ Lv ∈ M|G|(C),

where Lv is left multiplication by |v〉, a linear map on C
G , hence a |G|× |G| complex

matrix in the computational basis. We will identify the group algebra with its image
in this representation.

For G = Z2, C
2 � |v〉 = α|0〉 + β|1〉 is a general element of the group algebra.

From the definition,

|v〉 ∗ |0〉 = α|0〉 + β|1〉
|v〉 ∗ |1〉 = α|1〉 + β|0〉,

so

Lv =
(

α β

β α

)
= α I + β X = αX0 + β X1, (5.1)

where X =
(

0 1
1 0

)
= L1 is the usual Pauli matrix. More generally, we have:

Proposition 5.1 The group algebra of Z
n
2 consists of 2n × 2n dimensional matrices

of the form

Lv =
∑

x∈Z
n
2

vx X x ,

123



332 M. Hunziker et al.

for

|v〉 =
∑

x∈Z
n
2

vx |x〉 ∈ C
Z

n
2 = (C2)⊗n .

(In the expression for Lv , x ∈ Z
n
2 is a multi-index, i.e., X x = X x1···xn = X x1 ⊗ · · · ⊗

X xn .) |v〉 is the first column of Lv; Lv is symmetric and has constant diagonal. Lv is
diagonalized by the Hadamard transform.

Proof By induction on n. That the Hadamard transform diagonalizes the elements of
the Z

n
2 group algebra follows from the familiar Pauli matrix identity Z = H × H ,

where Z =
(

1 0
0 −1

)
. �

The group ZN is generated by the element 1, and for y ∈ ZN ,

L1 : |y〉 �→ |1 + y〉 �⇒ L1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 · · · 1
1 0

. . .
. . .

...

. . . 0
1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Analogously to Proposition 5.1, for ZN we have:

Proposition 5.2 The group algebra of ZN consists of N × N dimensional matrices
of the form

Lv =
∑

x∈ZN

vx Lx
1,

where

|v〉 =
∑

x∈ZN

vx |x〉 ∈ C
ZN = C

N .

|v〉 is the first column of Lv; Lv need not be symmetric, but it has constant diagonal.
Lv is diagonalized by the N-dimensional discrete Fourier transform.

Proof That the Fourier transform diagonalizes the elements of the ZN group
algebra follows from the fact that F L1 F† = diag(1, ω, ω2, . . . , ωN−1), where
ω = e2π i/N . �

Propositions 5.1 and 5.2 allow us to characterize useful symmetries of concept
classes:

123



The geometry of quantum learning 333

Proposition 5.3 Let C be a matched concept class over a finite abelian group G. Then
AC is in the group algebra of G if and only if it commutes with the action of G, i.e.,

Lg AC = AC Lg, ∀g ∈ G. (5.2)

In components (5.2) becomes

(AC)x+g,c+g = (AC)xc, ∀g ∈ G; (5.3)

equivalently c(x) is a function of c − x.

Proof Equations (5.2) and (5.3) are easily seen to be equivalent by direct computa-
tion. Suppose that the matrix AC belongs to the group algebra of G. Then (5.2) follows
from the fact that G is abelian, and hence Lg commutes with Lh for all g, h ∈ G.
Conversely, if the matrix AC satisifes (5.3), then it follows that AC is determined by
its first column (the column labeled by 0, the identity of G), as follows:

AC =
∑

k∈G

(AC)k0 Lk .

Hence AC belongs to the group algebra. �
In Grover’s problem, AG satisfies (5.2) and (5.3) for G = ZN (and for G = Z

n
2,

when N = 2n). Thus this membership query matrix belongs to the group algebra of
ZN (and of Z

n
2, when N = 2n) and is diagonalized by F (and by H⊗n , when N = 2n).

It is, furthermore, a real symmetric matrix. The following proposition explains how to
compute the optimal transformation S required for Impatient Learning and Amplified
Impatient Learning in this case.

Proposition 5.4 Let A be a real, symmetric matrix in the group algebra of Z
n
2

(or ZN ). Using the Spectral Theorem, define |A| by

|A|v = |λ|v,

for each eigenvector-eigenvalue pair (v, λ) of A. Then |A| is also an element of the
same group algebra. Moreover, the maximum value of ‖d(B)‖2 over matrices B ∼ A
with constant diagonal occurs at |A|.
Proof Since A is real and symmetric, A is a square root of its Gram matrix. Conjuga-
tion by the appropriate transform (H⊗n or F) diagonalizes A so |A|, having the same
eigenvectors, is also an element of the same group algebra as A. Moreover, |A| is the
positive semi-definite square root of the Gram matrix. Thus the result follows from
Proposition 3.3. �

Proposition 5.4, applied to a symmetric membership query matrix AC satisfying
the conditions of Propostion 5.3, implies that an optimal unitary transformation SC in
the Impatient Learning and Amplified Impatient Learning algorithms satisfies

|AC | = SC AC . (5.4)
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When AC is nonsingular, SC is unique and (5.4) implies that

SC = |AC |A−1
C =: sign(AC),

where

sign(A)v = sign(λ)v = λ

|λ|v,

for all eigenvector-eigenvalue pairs (v, λ) of A.
To compute SG for Grover’s concept class we diagonalize AG :

F
1√
N

(
N F†|0〉〈0|F − 2I

)
F† = 1√

N
(N |0〉〈0| − 2I ).

This implies that

SG = sign(AG) = F†diag(1,−1, . . . ,−1)F = F† (2|0〉〈0| − I ) F = −F†Uδ0 F,

which is the promised expression for SG that we quoted in §3 and §4.

6 Learning problems with cyclic symmetry

Although recognizing Grover’s algorithm as an instance of Amplified Impatient Learn-
ing perhaps contributes to a better understanding of this basic quantum algorithm, we
would like to apply the general formalism developed in the preceding sections to
derive new quantum algorithms. So in this section we consider some new problems
with cyclic symmetry.

According to Proposition 5.3, any learning problem with a transitive ZN action has
the property that the oracle response c(x) depends only on the difference c − x mod
N . Thus we may write c(x) = φ(c − x) for some function φ : ZN → Z2, whence the
membership query matrix AC is

AC = 1√
N

∑

k∈ZN

(−1)φ(k)Lk
1. (6.1)

By Proposition 5.2, AC is diagonalized by the Fourier transform; hence its eigenvalues
are

λ j = 1√
N

∑

k∈ZN

(−1)φ(k)ω jk, (6.2)

for j ∈ ZN . By Proposition 5.4, the relevant quantity for Impatient Learning is the size
of the diagonal elements of |AC |. This matrix is in the ZN group algebra, and hence
has constant diagonal. Furthermore, the diagonal element s is just the average of the
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eigenvalues of |AC |, i.e., the average of the absolute values of the eigenvalues of AC .
By Theorem 4.1, therefore, Amplified Impatient Learning requires O(1/s) queries.

Consider a special class of cyclically symmetric problems, which we call Battle-
ship, after the Milton Bradley game with the same name. Let 0 ≤ r < N/2. For any
a, x ∈ ZN , set

ba(x) =
{

1 if a − x ≡ −r, . . . , r mod N ;
0 otherwise.

d = 2r + 1 is the length of the battleship, i.e., d counts the number of x ∈ ZN that
satisfy ba(x) = 1 for any fixed a.

It turns out that the behavior of Battleshipproblems depends on the relative size
of d with respect to N . Thus we consider two separate subfamilies of Battleship:
For the problem Smallship(d), we fix the value of d and let N be arbitrary. For the
problem Bigship(α), we again let N be arbitrary, but fix the ratio α ∈ (0, 1/2) of d to
N . That is, we take d = �αN�.

Theorem 6.1 For any fixed d, Amplified Impatient Learning solves Smallship(d)
with O(

√
N ) queries, which is optimal to within a constant factor. When applied to

Bigship(α), however, Amplified Impatient Learning requires �(
√

N/ log N ) queries,
which is far from optimal.

Proof The eigenvalues of ABS for the Battleship concept class with parameters N
and r are

λ j = 1√
N

(

−
r∑

k=−r

ω jk +
N−r−1∑

k=r+1

ω jk

)

.

In particular, this gives

λ0 = 1√
N

(N − 2d),

while for j > 0,

λ j = − 2√
N

sin(π jd/N )

sin(π j/N )
. (6.3)

First, consider the case of Smallship(d) for fixed d. Since the expression
sin(π j/N ) in the denominator of (6.3) is bounded above in absolute value by 1, it
follows that

s
√

N ≥ 2

N

N−1∑

j=1

∣
∣
∣
∣sin

π jd

N

∣
∣
∣
∣ .
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As N tends to infinity, the right hand side approaches the constant value 2
∫ 1

0 | sin dπx |
dx . We conclude that s = �(1/

√
N ) and hence Amplified Impatient Learning has

query complexity O(
√

N ).
To see that this is optimal, first note that the equivalence oracle can be simu-

lated using exactly two calls to the membership oracle, since c = ba if and only if
c(a + r) = 1 and c(a + r + 1) = 0. Hence the equivalence oracle is unnecessary.
Now note that any solution to Smallship(d) allows one to solve the restricted prob-
lem in which the value a is assumed to be divisible by d. This restricted problem is
easily seen to be equivalent to an unstructured search on a set of size N/d, which is
known to require �(

√
N/d) (as shown in [26]). Since d is constant, we see that for

Smallship(d), Amplified Impatient Learning is optimal up to a constant factor.
Second, consider Bigship(α) for fixed α. In this case we claim that s =

O
(
(log N )/

√
N

)
. To see this, note first that λ0/N is O(1/

√
N ). Bounding each

of the sines in the numerator of (6.3) by 1, we find that for j > 0, λ j/N is bounded
above in absolute value:

1

N
|λ j | ≤ 1

N
√

N
csc

π j

N
.

It follows that λ1/N and λn−1/N are O(1/
√

N ), while the remaining sum

1

N

N−2∑

j=2

|λ j | ≤ 1

N
√

N

N−2∑

j=2

csc
π j

N
≤ 1√

N

1−1/N∫

1/N

csc πx dx = O

(
log N√

N

)
.

Thus the number of steps required by Amplified Impatient Learning is �(
√

N/ log N ).
To see that this is not an optimal algorithm, consider using Grover’s algorithm to
return some x for which ba(x) = 1. This requires O(

√
N/d) quantum queries [37],

and narrows the possible answer space to a set of size d. A classical binary search,
requiring log d further (classical) queries can now be used to identify the answer a
uniquely. This alternative algorithm solves Bigship(α) with only O(

√
N/d +log d) =

O(
√

1/α + log αN ) = O(log N ) queries, far fewer than the �(
√

N/ log N ) required
by Amplified Impatient Learning. �

7 The Majority problem

The other group algebra introduced in §5 is that of Z
n
2. In this section we study a novel

problem, Majority, that has this symmetry. Fix a positive integer n, and for each
a ∈ Z

n
2 define a function ma : Z

n
2 → Z2 by

ma(x) =
{

1 if wt(a − x) ≤ n/2;
0 otherwise.

That is, ma(x) = 1 when the bit strings a and x agree in at least as many bits as they
disagree. The Majority concept class MAJ n is defined to be the set of all functions
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ma , where a is any element of Z
n
2. It is easy to see that any classical learning algorithm

requires at least n queries. We can do better quantum mechanically:

Theorem 7.1 Amplified Impatient Learning solves Majority with O(
√

n) quantum
queries, given access to both the membership oracle and the equivalence oracle.

If n is an odd integer, the membership query matrix for MAJ n contains in its upper
left-hand corner (rows and columns labeled 0, . . . , 0 to 1, . . . , 1 top-to-bottom and
left-to-right, respectively) a 2n−1 × 2n−1 submatrix proportional to the membership
query matrix for MAJ n−1. Furthermore, if a, b ∈ Z

n
2 are complementary bit strings

then ma(x) = 1 − mb(x) for all x , and hence the column in the membership query
matrix corresponding to a equals the negative of the column corresponding to b. It
follows that if one can learn a concept from MAJ n−1, then one can learn a concept
from MAJ n with one additional membership query. Thus, in what follows, we will
assume that n is an even integer.

For learning problems with Z
n
2 symmetry we have the following analogues of (6.1)

and (6.2): Since c(x) = φ(c − x) for some φ : Z
n
2 → Z2, the membership query

matrix has the form

AC = 1√
2n

∑

b∈Z
n
2

(−1)φ(b) Xb. (7.1)

By Proposition 5.1, AC is diagonalized by the Hadamard transform; hence its eigen-
values are

λc = 1√
2n

∑

b∈Z
n
2

(−1)φ(b)(−1)b·c, (7.2)

for c ∈ Z
n
2. With these preliminaries in place, we can prove Theorem 7.1:

Proof For the concept class MAJ n , φ(b) = �
( n

2 − wt(b)
)
, where the Heaviside

function �(z) = 1 if z ≥ 0; and vanishes otherwise. It is easy to see in (7.2) that for
this problem the value of λc depends only on k = wt(c). Thus, for k ∈ {0, . . . , n},
we may set λn,k = λc, where c ∈ Z

n
2 is any bit string of weight k. To calculate λn,k ,

we consider the string c = 0n−k1k , which has weight k. For any b ∈ Z
n
2, let s denote

the number of 1s in the first n − k bits of b, and let r denote the number of 1s in the
remaining k bits of b. Then b · c = r , and φ(b) = �

( n
2 − (r + s)

)
. Since the number

of bit strings b with given values for r and s is
(n−k

s

)(k
r

)
, we have

λn,k =
∑

r,s

(
n − k

s

)(
k

r

)
(−1)�( n

2 −(r+s))(−1)r .

Using standard combinatorial techniques, this sum simplifies to give

λn,k =
{

− (−1)k/2√
2n

( n
n/2

) 1·3···(k−1)
(n−1)·(n−3)···(n−k+1)

for k even;
λn,k−1 for k odd.
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It follows that for any even number n, the eigenvalue of smallest absolute value is the
middle eigenvalue λn,n/2, which is given by

|λn,n/2| =
{

1√
2n

(n/2
n/4

)
if n ≡ 0 mod 4;

2√
2n

(
(n−2)/2
(n−2)/4

)
if n ≡ 2 mod 4.

Since, by Stirling’s formula, each of these expressions is asymptotic to 1/
√

n, we
find that the average s of the absolute values of the eigenvalues of AMAJ n is
�(1/

√
n). Thus the quantum query complexity of Majority is O(1/s) = O(

√
n), as

claimed. �

8 Conclusion

In this paper we have derived a general technique—Amplified Impatient Learning—
for quantum concept learning from a minimally adequate teacher. We applied it to two
novel problems: Battleship and Majority, that like the problems of Bernstein-Vaz-
irani and Grover, can be recognized as concept learning problems. Amplified Impa-
tient Learning solves Smallship(d) with O(

√
N ) queries, an improvement over the

�(N ) queries required classically. For Bigship(α), Amplified Impatient Learning is
not so good, but we gave an alternative quantum algorithm with sample complex-
ity O(log N ). Finally, Amplified Impatient Learning solves Majority with O(

√
n)

quantum queries, again an improvement over the �(n) required classically.
Quantum algorithms for concept learning were first considered by Bshouty and

Jackson [38], who analyzed the traditional DNF learning problem [39]. Subsequently,
Servedio and Gortler proved some general lower bounds on the quantum sample com-
plexity of learning from any membership oracle [40]. Their results, together with
algorithms derived in this paper, motivate us to make a pair of conjectures about gen-
eral upper bounds on the quantum sample complexity of learning from a membership
oracle:

Conjecture 1 For any family of concept classes {Ci } with |Ci | → ∞, there exists a
quantum learning algorithm with membership oracle query complexity O(

√|Ci |).

Our quantum algorithm for Smallship(d) (which specializes to Grover’s algorithm
when d = 1) saturates this bound; the idea is that these minimally structured search
problems are concept learning problems that are as difficult as any of the same size. As
we noted in the proof of Theorem 6.1, the calls to the equivalence oracle in this prob-
lem can be replaced by calls to the membership oracle, so our results are consistent
with Conjecture 1.

The difficulty of concept learning problems depends on more than the number of
concepts |C| among which the target concept lies, however; it also depends on how
similar distinct concepts are. Servedio and Gortler express their lower bounds in terms
of a quantity γC that measures this similarity: For any C′ ⊂ C, define C′

x,b = {c ∈ C′ |
c(x) = b}. Then
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γC = min
C′⊂C, |C′|≥2

max
x∈X

min
b∈Z2

|C′
x,b|
|C| .

γC is small if there is a large subset C′ from which the response to any query to the
membership oracle rules out only a small fraction of the concepts. In this case we
expect the concept class to be difficult to learn. (Since C′ can contain only 3 concepts,
from which a query might eliminate only 1, γC cannot be greater than 1/3.)

Conjecture 2 For any family of concept classes {Ci } with |Ci | → ∞, there exists a

quantum learning algorithm with membership oracle query complexity O
(

log |Ci |√
γ

)
.

The problems Majority, Smallship(d), and Bigship(α) studied in this paper
provide examples of learning problems that satisfy the bounds given in the above
conjectures. For the Battleship problem, one calculates that γBS = min{d/N , 1/3}.
Thus, for Smallship(d), whose quantum sample complexity is O(

√
N ), Conjec-

ture 1 is sharp, while Conjecture 2 provides the weaker bound of O(
√

N log N ). For
Bigship(α), the situation is reversed: Conjecture 2 provides a sharp upper bound of
O(log N ), while Conjecture 1 gives the weaker upper bound of O(

√
N ). For Major-

ity, whose quantum sample complexity is at most log N , it is easy to see (using the
fact that γ ≤ 1/3) that Conjecture 2 holds.3
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