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ARTICLE

Homozygosity Haplotype Allows a Genomewide Search for the
Autosomal Segments Shared among Patients
Hitoshi Miyazawa,* Masaaki Kato,* Takuya Awata, Masakazu Kohda, Hiroyasu Iwasa,
Nobuyuki Koyama, Tomoaki Tanaka, Huqun, Shunei Kyo, Yasushi Okazaki, and Koichi Hagiwara

A promising strategy for identifying disease susceptibility genes for both single- and multiple-gene diseases is to search
patients’ autosomes for shared chromosomal segments derived from a common ancestor. Such segments are characterized
by the distinct identity of their haplotype. The methods and algorithms currently available have only a limited capability
for determining a high-resolution haplotype genomewide. We herein introduce the homozygosity haplotype (HH), a
haplotype described by the homozygous SNPs that are easily obtained from high-density SNP genotyping data. The HH
represents haplotypes of both copies of homologous autosomes, allowing for direct comparisons of the autosomes among
multiple patients and enabling the identification of the shared segments. The HH successfully detected the shared
segments from members of a large family with Marfan syndrome, which is an autosomal dominant, single-gene disease.
It also detected the shared segments from patients with model multigene diseases originating with common ancestors
who lived 10–25 generations ago. The HH is therefore considered to be useful for the identification of disease susceptibility
genes in both single- and multiple-gene diseases.
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Current genetic approaches focus on the identification of
disease susceptibility genes (hereafter referred to as “dis-
ease genes”) by exploiting the cosegregation of the disease
phenotype over generations with a disease gene as well as
a set of polymorphic marker types in its neighborhood
(i.e., the haplotype). In a large family including multiple
patients with a specific disease, the disease gene is usually
derived from a single ancestor. On the basis of this as-
sumption, haplotype analysis1 or linkage analysis2 has
been used to find the gene. In affected-sib-pair analysis, a
sib pair affected with the same disease is considered to
share the same disease gene, inherited from their parents.
The gene is searched for by looking at the genetic markers
shared by the pair.1,3 In whole-genome association studies,
researchers try to capture segments containing disease-risk
alleles derived from a limited number of very ancient an-
cestors where a haplotype block is the ultimate unit of
search.4–6 Because the haplotype contains the canonical
information for every approach, determination of the
haplotype is considered to greatly simplify the analyses.7

However, the haplotype is not easy to identify in diploid
organisms such as humans, because the genotypes of poly-
morphic markers are obtained as a mixture of those of the
two alleles. Although many methods have been developed
to reconstruct the haplotype,1,7–9 their capabilities are lim-
ited. It is currently not possible, at least on a genomewide
basis, to obtain haplotype information from an arbitrary
subject or to compare two unrelated subjects in order to

search for chromosomal segments sharing the same hap-
lotype. In this study, we introduce the homozygosity hap-
lotype (HH), which overcomes a part of this problem. The
HH is a form of haplotype described by the homozygous
SNPs, and, therefore, it is easily obtained genomewide.
Using a family affected with Marfan syndrome (MIM
154700) and patients with model multigene diseases, we
demonstrate how HH analysis allows the identification of
the location of disease genes.

Material and Methods
Definition of Terms

Homozygosity haplotype (HH).—An HH is a haplotype described
by only homozygous SNPs and is obtained by the deletion of
heterozygous SNPs (fig. 1Ai), leaving only the homozygous SNPs
(fig. 1Aii). At this point, the haplotype of each chromosome is
uniquely determined, because all SNPs are homozygous (fig.
1Aiii). Note that both copies of homologous autosomes have the
same HH over their entire length.

Comparable SNP (compSNP).—A compSNP is a SNP that is ho-
mozygous in two subjects (fig. 1B). We can compare the HHs
between two subjects by use of the compSNPs (fig. 1C).

Region with a conserved HH (RCHH).—An RCHH is a run of
compSNPs matched for allelic type, the genetic length of which
is longer than the cutoff value (fig. 1C). An RCHH is bounded by
either a mismatched compSNP(s) or by the end(s) of an autosome.
The RCHHs shared by multiple subjects are the overlap of the
RCHHs for each subject pair (fig. 1D).

Region from a common ancestor (RCA).—An RCA is an autosomal

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81158368?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


www.ajhg.org The American Journal of Human Genetics Volume 80 June 2007 1091

Figure 1. HH analysis. A, “A” denotes the major allelic type for each SNP. “B” denotes the minor allelic type for each SNP. B, Definition
of a compSNP. C, Definition of an RCHH. An RCHH has a genetic length longer than the cutoff value. D, The definitions of an RCHH
shared among multiple patients.

region where subjects share a chromosomal segment derived from
a common ancestor (i.e., a segment identical by descent) (fig. 2A).
In an RCA, subjects share the same segment on one or both copies
of their homologous autosomes and thus share the same HH.
Conversely, when subjects have the HH in a region, it suggests
the presence of an RCA. Note that the RCA is unknown, and its
presence is merely predicted through the RCHHs (see the section
entitled “The RCHHs, False Negatives, Type A False Positives, and
Type B False Positives”).

The average genetic length of the RCAs decreases over gen-
erations. Figure 2B is a model pedigree with common ancestors
(A and B). Two descendants (M and N), who are m and n gen-
erations removed from their common ancestors, share the RCAs
derived from A and B. Assuming that the spouses (shown in gray
shapes in fig. 2B) are not the descendants of A or B, then

is the ratio of the total genetic length of the A- or B-RCA(m,n)
derived RCA to the entire length of the autosomes. It is expressed
as

�m�12 m � 1,n p 0

3
RCA(m,n:m � n) p m p 1,n p 1 (1)

4{
�m�n�22 otherwise.

A detailed description of the deduction of equation (1) is given
in appendix A. Note that is equal to 1, indicating thatRCA(1,0)
a parent and a child (i.e., , ) share the RCAs over them p 1 n p 0
entire lengths of their autosomes.

Crossover Model and Data Analysis

We used the Haldane’s Poisson process model10 for the occurrence
of crossovers and performed all calculations on the basis of this
model. Information on SNPs used by the 500K GeneChips Map-
ping Array Set (Affymetrix) was summarized in the GeneChip

annotation files (4/13/2006 version; see Affymetrix Web site),
where, for each SNP, the genetic distance from the telomere of
the short arm of the chromosome was obtained by interpolation
from the sex-averaged data by deCODE Genetics.11 The genetic
length of an RCHH is the genetic distance between its bounding
compSNPs.

We restricted our analysis to a total of 492,554 SNPs that had
assigned dbSNP refIDs (see National Center for Biology Infor-
mation Web site). The computer programs were written in the C
programming language and were compiled by the GNU C com-
piler 4.0 (see the GNU Compiler Collection Web site). The pro-
gram is available from our Web site and from the Saitama Medical
University Web site.

The RCHHs, False Negatives, Type A False Positives, and
Type B False Positives

When subjects who have common ancestors suffer from the same
disease, the RCAs are the candidate regions in which to look for
the disease gene. Because many RCAs are contained in the
RCHHs, we established an algorithm that detects the RCHHs,
thereby allowing us to identify the disease gene. As described, an
RCHH is defined when a run of type-matched compSNPs is longer
than the cutoff value (fig. 3A). Many RCHHs contain the RCAs;
however, some do not. We defined three types of errors (fig. 3B).
The false negatives are the RCAs that are not contained in the
RCHHs. The type A false positives are the RCHHs that do not
contain the RCAs. The type B false positives are the spaces be-
tween a containing RCHH and a contained RCA. The equations
to calculate each of these errors are given in appendix A. Before
the analysis, we calculated the ratios of the false negatives to the
total length of the RCAs and of the type A and type B false pos-
itives to the entire length of the autosomes for a range of cutoff
values, and we selected a value that minimizes the influence of
errors.
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Figure 2. The RCA. A, The definition of an RCA. Gray regions are
those derived from a single ancestral autosome from a single an-
cestor (segments identical by descent). A subject may have two
copies of the segments in case inbreeding exists. B, A model
pedigree. “A” and “B” denote the common ancestors. M and N are
m and n generations away from the common ancestors. Direct
offspring are shown by unfilled shapes. The spouse of each off-
spring is shown as a gray shape.

Figure 3. RCHHs, false negatives, type A false positives, and type
B false positives. A, Detection of an RCHH. An RCHH has a genetic
length longer than the cutoff value. B, Relationship of an RCHH
and an RCA. The RCAs are overlaid and shown by dark gray boxes,
and the RCHHs are shown by light gray boxes. Three types of errors
are defined.

Human Subjects

This study was approved by the institutional review board of
Saitama Medical University. All DNA samples were purified from
peripheral blood drawn after written informed consent had been
obtained. A family that included multiple patients with Marfan
syndrome was genotyped, as were 46 unrelated subjects. In ad-
dition, the genotyping data from 45 unrelated Japanese subjects
who had been enrolled in the International HapMap project (see
International HapMap Web site) were obtained from the Affym-
etrix Web site (an average of 199,400 SNPs per subject had con-
fidence values !.05).

Genotyping

Genomewide SNP genotypings were performed using the 500K
GeneChips Mapping Array Set (i.e., the GeneChip Human Map-
ping 250K Nsp Array plus the GeneChip Human Mapping 250K
Sty Array) (Affymetrix) or either of the two arrays. (Hereafter, the
500K GeneChips Mapping Array Sets will be abbreviated as “500k
GeneChips” and the GeneChip Human Mapping 250K Nsp Array
as “250k GeneChips.”) 500k GeneChips was used for the analysis
of the family with Marfan syndrome. 250k GeneChips was used
for the multigene disease simulation.

Pools of Subjects

In the multigene disease simulations, genotyping data of patients
who share an RCA at a specific position were constructed by
replacing that part of their genotyping data with the genotyping
data of a specific subject who acts as a common ancestor. The
length of the replaced segment (x, in centimorgans) was taken at
random from an exponential distribution with a probability den-
sity function of

�lxf(x) p le ,

m
l p , (2)

100

where m is the age, in generations, of the common ancestor.

Statistical Analysis

The numbers of subjects who share an RCHH at a given position
on an autosome were compared between the patient pool and
the control pool. The assumption was made that

∗ ∗ˆ ˆP � P1 2u p0
1 1∗ ∗ˆ ˆ�P (1 � P ) �( )n n1 2

has a standard normal distribution, where ,x �0.5∗ ∗1ˆ ˆP p P p1 2n �11

, , , and are the numbers of subjects shar-x �0.5 x �x �0.5∗2 1 2P̂ p x x1 2n �1 n �n �12 1 2

ing RCHHs in the patient pool and the control pool, respectively,
and and are the total numbers of subjects in the patientn n1 2

pool and the control pool, respectively. The P value was calculated
by

�

2x1
�P p e dx .2��2p

u0
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Figure 4. Accuracy of the GeneChip data. A, Pedigree of a family with Marfan syndrome. B, Relationship between the confidence-value
cutoffs and the concordance ratios. C, Schematic presentation of the data in panel B. D, False negatives between two subjects in
generation III and the average ratio of the type A false positives and the type B false positives to the entire length of the autosomes
for all combinations of subjects were plotted for a range of RCHH cutoffs.

Results
Analysis of a Family with Marfan Syndrome

To investigate the utility of the HH in a family analysis,
we studied a family that has multiple patients with Marfan
syndrome. Marfan syndrome is an autosomal dominant
disease characterized by an abnormality in the connective
tissue. Mutations of either the fibrillin-1 gene (FBN-1) on
15q21.1 or of the TGF-b type II receptor gene (TGFBR2)
on 3p24.2 are known to be the cause of this syndrome.12

The family had been studied, and six symptomatic mem-
bers and three asymptomatic carriers had a heterozygous
1879CrT (R627C) mutation in FBN-1 (fig. 4A). Subject I-
1 is considered to be the common ancestor for the disease

gene. The questions we posed were as follows: (i) Could
the HH identify the region containing FBN-1 by the data
from six symptomatic members? and (ii) Could the HH
further narrow the region with the inclusion into the anal-
ysis of three asymptomatic carriers?

Before beginning our analysis, we checked the accuracy
of the genotyping data. Equation (1) indicates that a par-
ent and a child share the same HH along the entire length
of their autosomes. Therefore, the ratio of the number of
the matched compSNPs to the total number of compSNPs
indicates the accuracy of genotyping. We studied three
pairs: II-1 and III-4, II-3 and III-1, and II-5 and III-3. In a
GeneChip analysis, the genotyping result for each SNP is
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accompanied by a confidence value; the smaller the con-
fidence values, the more reliable the data. The concor-
dance ratios of the compSNPs in three parent-child pairs
for a range of confidence-value cutoffs are shown in figure
4B and 4C. We chose a confidence-value cutoff of .05.

Secondly, we determined the cutoff value for defining
the RCHHs (hereafter, an “RCHH cutoff”). Figure 4D
shows the relationship of the RCHH cutoffs and three
types of errors. We chose 3.0 cM because it gave small
rates of type A and type B false positives with an acceptable
value for the false negatives.

We then analyzed six symptomatic patients. In figure
5, we present the result stepwise. Patients II-3 and III-1 are
a parent-child pair who share RCHHs over the entire
length of the autosomes (fig. 5A). II-1 and II-2 are siblings
whose RCHHs occupy 81% of the autosomes (eq. [1] pre-
dicted 75%) (fig. 5B). II-2 and III-1 are an aunt and nephew
whose RCHHs occupy 56% of the autosomes (eq. [1] pre-
dicted 50%) (fig. 5C). III-2 and III-3 are first cousins whose
RCHHs occupy 39% of the autosomes (eq. [1] predicted
25%) (fig. 5D). The RCHHs conserved among all symp-
tomatic members contained 96% of the total length of the
RCA (calculated from table A1), and they did indeed con-
tain FBN-1 (fig. 5E). The inclusion of asymptomatic car-
riers (II-4, II-5, and III-4) (see fig. 4A) did further narrow
the RCHHs (fig. 5F). These results demonstrate that HH
analysis is both efficient and intuitive for identifying the
location of disease genes in a large family.

Simulation of a Multigene Disease

Each multigene disease has a specific genetic structure.
Some are considered to be a collection of single-gene dis-
eases of which the phenotypes are indistinguishable from
each other. In others, several genes working together are
required to produce symptoms.13 In either case, a subgroup
of patients may share a disease gene from a common
ancestor.

To investigate the utility of the HH in multigene dis-
eases, we investigated a model multigene disease (fig. 6A).
Here, SNP rs16823424 (the 100,000th SNP on 500k
GeneChip) is the location of the disease gene. In this re-
gion, 15 patients share an RCA derived from a common
ancestor who lived 10 generations ago. The genotyping
data around rs16823424 in these 15 patients were replaced
with the genotyping data at the corresponding position
from a specific person who, in this analysis, acts as the
common ancestor (fig. 6B). The lengths of the replace-
ments were taken at random from an exponential distri-
bution (eq. [2]: ). Therefore, comparison of twom p 10
patients corresponds with the situation in fig.m p n p 10
2B. The patient pool included these 15 subjects together
with 30 unrelated subjects (fig. 6C). The control pool
consists of 45 unrelated Japanese samples obtained from
the Affymetrix Web site. Our aim was to identify the
rs16823424 region. The strategy was as follows. In step 1,
we divided autosomal regions into minute regions. In step

2, using the patient pool, we identified the HH shared by
the greatest number of subjects for each region (i.e., the
most common HH). We then concatenated the most com-
mon HHs for each region into a virtual HH for the entire
autosome. A virtual subject who has this virtual HH was
named “the representative” (step 1 in fig. 6C). The subjects
were counted who shared the RCHHs with “the represen-
tative” in both the patient pool and the control pool for
each region (step 2 in fig. 6C). Finally, the differences be-
tween the pools were expressed by P values. The candidate
region for the disease gene is the region that has the lowest
P value (i.e., the greatest �log10(P) value) in the entire
autosome.

Before the analysis, we determined an appropriate
RCHH cutoff (fig. 6D). Here, the false negatives were plot-
ted for several ages of common ancestors (the ages are
expressed by m and n). As the number of generations in-
creases, the length of the RCA shortens, increasing the
difficulty of its detection with increasingly high m and n
values. Because an RCHH cutoff of 5 cM was considered
suitable for , this value is used hereafter. Them p n p 10
false negatives to the total length of the RCAs decreases
as we include more SNPs in the analysis. This will be dis-
cussed later.

We then performed the analysis. Figure 6E is a densi-
togram of the �log10(P) value; the denser the areas are,
the higher the significance. The rs16823424 region pro-
vided a �log10(P) of 4.48, and was the only region with a

(i.e., ). The greatest �log10(P) out-� log (P) 1 3.0 P ! .00110

side of the rs16823424 region was 2.92, which provides
the background of the analysis.

Next, we investigated the detection limit. For each num-
ber from 7 to 15, we constructed 100 patient pools in
which that number of patients, out of 45, shared an RCA
at the rs16823424 region. When the number is !9, the
background value overwhelmed the signal in most of the
analyses (fig. 6F). Therefore, 10 of 45 patients (22%) was
the detection limit of this analysis.

Detection of Multiple Targets and the Effect of Age of
Common Ancestors

We next simulated a multigene disease with three different
causative genes: one at rs16823424 (the 100,000th SNP on
500k GeneChips), one at rs4473885 (the 200,000th SNP),
and one at rs11200928 (the 300,000th SNP). The ages of
the common ancestors were , 20, and 25. Wem p n p 15
generated 100 sets of 45 subjects. Subjects 1–15 had a
segment replaced with that of a specific person (the com-
mon ancestor) for a length taken at random from an ex-
ponential distribution corresponding to . Sub-m p n p 15
jects 16–30 had a segment replaced corresponding to

. Subjects 31–45 had a segment replaced cor-m p n p 20
responding to (fig. 7A). The analysis was per-m p n p 25
formed with an RCHH cutoff of 5.0 cM. Figure 7B dem-
onstrates the detection of three targets simultaneously.
The detection limits were 10 (22%) ( ), 13m p n p 15
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Figure 5. Family analysis. Identification of the candidate regions for the disease gene for a family with Marfan syndrome. The RCHHs
are shown in black, whereas the other autosomal regions are shown in gray. A, The RCHHs between a parent and child, indicated by
arrows, are shown. B, The RCHHs between siblings. C, The RCHHs between an aunt and nephew. D, The RCHHs between first cousins.
E, The RCHHs for all symptomatic members. The FBN-1 gene is located in the RCHH (19.6 cM in length) indicated by a large arrow. F,
The RCHHs for all nine members (six symptomatic members and three asymptomatic carriers) who have a mutation in the FBN-1 gene.

(29%) ( ) and 13 (29%) ( ) of 45m p n p 20 m p n p 25
patients.

Discussion

In this study, we introduce HH analysis. Both copies of
the homologous autosomes have the same HH and thus
can be handled as if they were a single chromosome with
a single HH. This enables the direct comparison of the
autosomes between two individuals and thereby enables
a search for a shared ancestral segment.

Because HH analysis looks for the ancestral segments,
both dominant and recessive genes can be detected. The
analysis is nonparametric—that is, it does not require the
information from the pedigree. The patient pool contains
only affected subjects, and therefore information on pen-

etrance is not necessary. All these characteristics make the
design and the interpretation of analyses simple.

Another characteristic of HH analysis is the simplicity
of the algorithm, and therefore the calculation may be
performed on many personal computers. The calculation
for a family with Marfan syndrome that contains nine
subjects (fig. 5) is completed in 6 s on our laptop computer.
The analysis composed of two pools containing 45 sub-
jects each (fig. 6E) took 5 min. The calculation time is
proportional to the square of the number of subjects, and
thus analyses with a larger number of subjects are not
difficult to perform.

We used the classical Haldane’s Poisson model for the
calculations. In an actual situation, the crossovers do not
occur randomly along the length of the autosomes. One
of the major causes of the deviation from the model is



Figure 6. Simulation of a multigene disease. A, The structure of a model multigene disease. In 15 patients, a causative mutation of
the gene at rs16823424 is derived from a common ancestor. In the remaining 30 patients, the mutation may be from a different ancestor,
or the mutations may occur in a different disease gene(s). B, Construction of a patient pool. Black bars indicate segments at the
rs16823424 region taken from the common ancestor. St p subject. C, Analysis procedure. D, The average ratios of the type A false
positives and the type B false positives to the entire length of the autosomes for all combinations of the subjects in the control pool.
The ratio of the false negatives to the total length of the RCAs for several values of m and n are simultaneously shown. E, Densitogram
of �log10(P) value for each region of the autosomes. A region that is 2.92 cM in length and contains rs16823424 (indicated by a white
arrow) gave the greatest �log10(P) value, 4.09. F, The distribution of �log10(P) from the analyses using 100 patient pools for each
number of patients is shown as mean � SD. The highest background value is 2.92 (i.e., the greatest �log10(P) value outside of the
rs16823424 region).
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Figure 7. Multiple targets and the effect of the numbers of generations. A, Structure of the disease. B, An example of simultaneous
detection of three regions. White arrows indicate the position of individual SNPs. A 2.56-cM-length region containing 100,000th SNP
on chromosome 3, a 0.94-cM-length region containing the 200,000th SNP on chromosome 6 and a 2.55-cM-length containing the
300,000th SNP on chromosome 10 present the greatest �log10(P) values in their neighborhood, and the values were 4.09, 4.39, and
3.49, respectively. C, The distribution of �log10(P) from the analyses using 100 patient pools. The graph is similar to fig. 6F, and the
data for three targets (100,000th SNP, 200,000th SNP, and 300,000th SNP) are simultaneously shown. The highest background value
is 2.92.

crossover interference.14 However, the crossover interfer-
ence suppresses the production of short RCAs and favors
the RCHHs in detecting true RCAs, so we made no ad-
justments for crossover interference in our calculation. For
more-detailed discussion, see appendix A. If inbreeding
exists in the pedigree, the segments from the common
ancestor may be located on both copies of homologous
autosomes, as in subject 2 in fig. 2A. This increases the
average size of the RCAs and reduces the false negative
rates. However, the rate of false positives may rise. The
detailed information on inbreeding that occurred in pre-
vious generations is most often unknown. The practical
approach to handling this is to calculate the false positives
by use of the actual genotyping data, as illustrated in figure
6D, and to determine the RCHH cutoff. This compensates
for the lack of information on inbreeding.

The numbers of SNPs used in this study were not suf-
ficient to detect ancestral segments with an age of m �

(fig. 6D). The number of type A false positives isn 1 30
reduced as the number of SNPs increases (fig. 8). (The rate
of type B false positives is heavily dependent on the actual

genotyping data and thus was not plotted.) A larger num-
ber of SNPs will allow us to use a smaller RCHH cutoff.
Figure 8 suggests that the genotyping data of 1,000,000
SNPs may expand the range of analysis to .m � n 1 60

In the model multigene diseases, we used the patient
pool containing 45 subjects. However, smaller numbers of
subjects worked fine as well. For example, a pool of 18
subjects containing 6 subjects sharing an RCA clearly pro-
vided sufficient signal, although with a higher background
(data not shown).

The four major methods for the identification of disease
genes are the haplotype analysis, the linkage analysis, the
sib-pair analysis and the whole-genome association stud-
ies.15 The former two methods target single-gene diseases
occurring in families (usually ), whereas the latterm � n ! 6
two methods target both single-gene and multigene dis-
eases occurring in the general population. When m �

, HH analysis does not work well. In fact, the HHn ! 3
cannot distinguish parents from children, as shown in
figure 5A, whereas haplotype analysis or linkage analysis
may be able to identify a disease gene from pedigrees com-



1098 The American Journal of Human Genetics Volume 80 June 2007 www.ajhg.org

Figure 8. The effect of the numbers of SNPs used and the target
generations of the analysis. The type A false positives were plotted
for a range of numbers of the SNPs genotyped. The false negatives
were plotted for a range of values.m � n

posed of only two generations.16 For families containing
subjects with , HH analysis works well, as shownm � n � 3
in figure 5. HH analysis may provide an advantage when

where the haplotype analysis or the link-6 � m � n � 50
age analysis are difficult to perform. HH analysis is con-
sidered applicable to sib-pair analysis, where one sib pair
provides 3/4 of the entire autosomes as shared regions (see
eq. [1]). One attractive application may be for affected-
relative-pair analyses.17 Equation (1) indicates that one
second-cousin pair may narrow the candidate autosomal
region to 1/16 of the entire length of the autosomes,
and three second-cousin pairs may narrow it further to

.3(1/16) p 1/4,096
The simulation results presented in this study suggest

that HH analysis demonstrates advantages and may com-
plement whole-genome association studies by detecting
genes for common diseases in the following situations. (1)
The target population is genetically isolated. (2) The rel-
ative risk of the disease gene is moderate to high, and thus
the frequencies of the disease-associated HH are expected
to be significantly different between the patient pool and
the control pool. (3) The common ancestors who brought
the disease gene into the population are assumed to have
existed within the last several hundred years, thus en-
abling the detection of the RCAs as RCHHs. (4) The num-
ber of the common ancestors who brought the disease
gene was small, which limits the number of the disease-
associated HHs in the population, and thus the frequen-
cies of some of them may exceed the detection limit
shown in figures 6F and 7C. When these conditions are
met, the inclusion of only a few dozen patients may be

required to identify the location of the disease gene (figs.
6 and 7). However, the identified regions may be 1–3 cM
in length and require more-detailed investigation. Eth-
nically, geographically, or culturally isolated populations
may fulfill these requirements for many diseases. For ex-
ample, consider the French-Canadian population in
Quebec.18,19 It is known that two-thirds of the genetic pool
of the current population of 6 million people is derived
from only 2,600 settlers who arrived during the 17th cen-
tury (i.e., , given 20 years per generation). Them p n p 20
causative genes for diseases with an incidence of �0.01
may be derived from only one or two dozen common
ancestors. In other words, the number of the disease-as-
sociated HH was limited to one or two dozen because of
the bottleneck effect caused by the immigration. If ran-
dom genetic drift is taken into consideration, some of the
disease-associated HH may exceed the detection limit of
29% in the patient pool (fig. 7B). Therefore, moderate- to
high-risk genes for diseases with an incidence of �0.01 in
Quebec fulfills all four requirements and is therefore worth
studying by HH analysis, whether the gene is for a single-
gene disease or a multigene disease. If any one of the four
conditions is not met, HH analysis should not be consid-
ered a good choice. The selection of the target population
and the target disease are crucial.

In this study, we describe the introduction of the HH
and its applications. The HH is easy to obtain and the
results are intuitive. Although modern society promotes
the movement of people, many countries have a history
in which the transfer of people was politically or geo-
graphically limited. Patients with a specific disease clus-
tered in a geographical region therefore may inherit a
common ancestral disease gene. In such regions, HH anal-
ysis may provide a distinct benefit. We believe that HH
analysis will therefore facilitate the identification of dis-
ease genes both for single-gene and multigene diseases.
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Appendix A

Deduction of Equation (1)

The calculation to obtain is presented as anRCA(1,1)
example (fig. A1). A and B are the common ancestors. m1–
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Figure A1. Deduction of equation (1). Gray circles and boxes
indicate spouses. Gray areas of the chromosomes come from
spouses and do not contain segments from the common ancestors
(i.e., A and B).

1 and m1–2 are two copies of homologous chromosomes
for subject m1, and n1–1 and n1–2 are two copies of ho-
mologous chromosomes for subject n1. One half of m1–
1 is from m0–1, and the other half is from m0–2. One half
of n1–1 is from n0–1, and the other half is from n0–2.
Between subjects m1 and n1, the ratio of the RCA to the
entire chromosome is calculated as the probability that
m1 and n1 share the same chromosomal segment at a
specific position on chromosomes. It can be obtained by
subtracting from 1 the probability that m1–1, m1–2, n1–
1, and n1–2 all have segments derived from different chro-
mosomes. Therefore,

1 1 3
RCA(1,1) p 1 � # p .

2 2 4

for other values of m and n were similarly ob-RCA(m,n)
tained and summarized in equation (1).

Calculation of False Negatives, Type A False Positives,
and Type B False Positives

Step 1: Ratio of False Negatives to Total Length of
RCAs (Rfalse negatives).—According to the Haldane’s Pois-

son model, the length (x, in centimorgans) of the chro-
mosomal segment derived from an ancestral chromosome

in generation m (see fig. 2B) has an exponential distri-
bution that has the probability density function

�lxf(x) p le ,

m
l p . (A1)

100

First, the union of ancestral chromosomal segments on
two homologous chromosomes are taken for each subject.
Next, the RCAs are the intersections of these unions be-
tween the two subjects. From equation A1, when m � n
(see fig. 2B) is large enough, for an RCHH cutoffRFalse negatives

c is approximated by

c

xf(x)dx∫
0R ≈ �False negatives

xf(x)dx∫
0

�lcp 1 � e (1 � lc) , (A2)

where

�lxf(x) p le

m � n
l p .

100

However, when is small, the deviatesm � n RFalse negatives

from the value calculated by equation (A2). We therefore
obtained for small values of by the MonteR m � nFalse negatives

Carlo method, with use of 100,000 pedigrees (table A1).
We found that equation (A2) provides good approxima-
tions when (see table A1; compare the valuesm � n 1 12
for ).m � n p 12

Step 2: Ratio of the Type A False Positives to the Entire
Autosome (RType A false positives).—Given that is theNSNP

total number of SNPs on a genotyping chip, and andPn

are the frequencies of the major and minor alleles forQn

the nth SNP, respectively, the average frequencies of the
major alleles ( ) and the minor alleles ( )

— —
F Fmajor allele minor allele

are

NSNP� Pn— np1F pmajor allele NSNP

and

NSNP� Qn— np1F p ,minor allele NSNP
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Figure A2. Two strategies for comparing the patient pool with
the control pool.

respectively. The number of mismatched compSNPs
( ) is approximated byNmismatched compSNP

2 2— —( ) ( )2 F F N Nmajor allele minor allele Pt1 Pt2

N ≈ ,mismatched compSNP NSNP

where and are the numbers of SNPs successfullyN NPt1 Pt2

genotyped for Pt1 and Pt2, respectively. isNmismatched compSNP

not a large number. For example, with use of the 500k
GeneChips from Affymetrix, is 22,000 atNmismatched compSNP

maximum, spaced at 0.16 cM on average. This spacing is
larger in size than most of the haplotype blocks and thus
is assumed to be randomly distributed over the entire au-
tosome. The length between two mismatched compSNPs
is considered to have an exponential distribution with a
density probability function of

�lxf(x) p le ,

Nmismatched compSNP
l p ,

Lautosome

where is the entire genetic length of the auto-Lautosome

somes. Therefore, for the cutoff value c,

�

xf(x)dx∫
c �lc( )R p p 1 � lc e .�Type A false positives

xf(x)dx∫
0

Step 3: Ratio of the Type B False Positives to the Entire
Length of the Autosomes (RTypeBfalsepositives).—An RCHH

containing an RCA is expected to have the type B false
positives with a length of on each end. It iscut off value

2

impossible to distinguish RCHHs that contain the RCAs
from those that do not (i.e., the type A false positives).
We calculated under the assumption thatRType B false positives

every RCHH contains an RCA. Therefore, the
calculation results in an overestimation,RType B false positives

which we consider to be more appropriate than an un-
derestimation when the appropriate RCHH cutoff is being
determined.

The Representative

The easiest way to compare the patient pool and the
control pool is to directly compare the number of patients
sharing the RCHHs at the given position (fig. A2A). This
algorithm usually works fine, but actually this reduces the
sensitivity. Assume that, at a specific position, the patient
pool has 4 subjects sharing HH1 and has 0 subject sharing
HH2. The control pool has 0 subject sharing HH1 and 4
subjects sharing HH2. Although two pools are different in
their frequency of HH1, the algorithm shown in figure
A2A does not detect it.

One of the ways to solve this problem is to have a rep-

resentative, as shown in fig. A2B, as we did in this study.
For the actual algorithm, please see the program source
code. This algorithm may have difficulty picking up the
most common HHs in a region where there is no domi-
nant HH but only many kinds of HHs with low frequen-
cies, which we think does not cause any major problems.
We have also provided the source code for an alternative
algorithm. The source may be modified according to your
uses.

Crossover Interference and the Size of the RCAs

Crossover interference increases the average size of the
RCA, and favors the RCHHs in detecting the RCA, which
reduces the false negatives. This results in a better perfor-
mance in HH analysis. Figure A3 shows an RCA in one
generation. The size of RCA may be reduced in size in the
next generation. The reduction occurs by two processes:
(1) crossover occurs in one or both subjects and (2) mul-



Table A1. Ratios of False Negatives to the Total Length of the RCAs for a Range of RCHH Cutoffs
Ratio of False Negatives to Total Length of the RCAs, by RCHH Cutoff (in cM)

Calculation
Method and
Variable(s) .2 .4 .6 .8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6

Monte Carlo

m�n m n

2 2 0 .000 .000 .000 .000 .000 .000 .000 .000 .000 .001 .001 .001 .001 .001 .001 .001 .002 .002 .002 .002 .003 .003 .003 .003 .004 .004 .004 .004 .005 .005
1 1 .000 .000 .000 .000 .000 .000 .001 .001 .001 .001 .001 .001 .002 .002 .002 .003 .003 .003 .004 .004 .004 .005 .005 .005 .006 .006 .007 .007 .008 .008

3 3 0 .000 .000 .000 .000 .000 .001 .001 .001 .001 .002 .002 .002 .003 .003 .003 .004 .004 .005 .005 .006 .007 .007 .008 .008 .009 .010 .011 .012 .012 .013
2 1 .000 .000 .000 .000 .001 .001 .001 .001 .002 .002 .003 .003 .004 .004 .005 .005 .006 .007 .008 .008 .009 .010 .011 .012 .013 .014 .015 .016 .017 .018

4 4 0 .000 .000 .000 .000 .001 .001 .001 .002 .002 .003 .003 .004 .005 .005 .006 .007 .008 .009 .010 .011 .012 .013 .014 .015 .017 .018 .019 .021 .022 .024
3 1 .000 .000 .000 .001 .001 .001 .002 .002 .003 .004 .004 .005 .006 .007 .008 .009 .010 .011 .013 .014 .015 .017 .018 .019 .021 .022 .024 .026 .028 .029
2 2 .000 .000 .000 .001 .001 .002 .002 .003 .004 .004 .005 .006 .007 .009 .010 .011 .013 .014 .015 .017 .019 .020 .022 .024 .026 .028 .030 .032 .034 .036

5 5 0 .000 .000 .000 .001 .001 .002 .002 .003 .004 .004 .005 .006 .007 .008 .010 .011 .012 .014 .015 .017 .019 .020 .022 .024 .026 .028 .030 .032 .034 .037
4 1 .000 .000 .001 .001 .001 .002 .003 .004 .004 .005 .007 .008 .009 .010 .012 .013 .015 .017 .019 .020 .022 .025 .027 .029 .031 .034 .036 .039 .041 .044
3 2 .000 .000 .001 .001 .002 .002 .003 .004 .005 .006 .008 .009 .011 .012 .014 .016 .018 .020 .022 .024 .026 .029 .031 .034 .036 .039 .042 .044 .047 .050

6 6 0 .000 .000 .001 .001 .002 .002 .003 .004 .005 .006 .008 .009 .010 .012 .014 .016 .018 .020 .022 .024 .026 .029 .031 .034 .036 .039 .041 .044 .047 .050
5 1 .000 .000 .001 .001 .002 .003 .004 .005 .006 .007 .009 .011 .013 .014 .016 .018 .020 .023 .025 .028 .030 .033 .036 .039 .042 .045 .049 .052 .056 .059
4 2 .000 .000 .001 .001 .002 .003 .004 .006 .007 .009 .010 .012 .014 .016 .018 .021 .023 .026 .029 .032 .035 .038 .041 .044 .048 .051 .055 .059 .062 .066
3 3 .000 .000 .001 .001 .002 .003 .004 .006 .007 .009 .010 .012 .014 .016 .019 .021 .024 .026 .029 .032 .035 .038 .042 .045 .048 .052 .055 .059 .063 .066

7 6 1 .000 .000 .001 .002 .003 .004 .005 .006 .008 .010 .011 .013 .016 .018 .021 .023 .026 .029 .033 .036 .040 .043 .046 .050 .054 .058 .063 .067 .071 .075
5 2 .000 .000 .001 .002 .003 .004 .006 .007 .009 .011 .013 .016 .018 .021 .024 .027 .030 .034 .037 .041 .044 .048 .052 .056 .061 .065 .070 .075 .080 .084
4 3 .000 .000 .001 .002 .003 .004 .006 .007 .009 .011 .013 .016 .018 .021 .024 .026 .030 .033 .037 .040 .044 .048 .052 .056 .061 .065 .069 .074 .078 .083

8 6 2 .000 .001 .001 .003 .004 .005 .007 .009 .012 .014 .017 .020 .023 .026 .029 .033 .037 .041 .046 .050 .055 .060 .064 .069 .075 .081 .086 .092 .097 .103
5 3 .000 .001 .001 .002 .004 .005 .007 .009 .011 .014 .017 .019 .022 .026 .029 .032 .036 .040 .045 .050 .054 .059 .063 .069 .074 .080 .085 .091 .096 .101
4 4 .000 .001 .001 .002 .004 .005 .007 .009 .011 .014 .017 .019 .022 .026 .029 .032 .036 .040 .045 .049 .054 .059 .063 .068 .073 .079 .084 .089 .094 .099

9 6 3 .000 .001 .002 .003 .005 .007 .009 .012 .015 .017 .020 .024 .027 .031 .035 .039 .044 .049 .055 .061 .067 .073 .079 .085 .092 .098 .104 .111 .117 .124
5 4 .000 .001 .002 .003 .004 .006 .009 .011 .013 .016 .019 .022 .026 .030 .034 .038 .043 .047 .052 .057 .063 .069 .074 .081 .088 .094 .100 .105 .111 .118

10 6 4 .000 .001 .002 .004 .006 .008 .011 .014 .017 .021 .024 .028 .032 .036 .041 .046 .051 .056 .062 .068 .074 .081 .090 .097 .104 .111 .119 .126 .134 .142
5 5 .000 .001 .002 .003 .005 .007 .011 .014 .016 .019 .023 .027 .031 .035 .040 .045 .051 .056 .062 .068 .074 .081 .088 .095 .102 .110 .117 .124 .131 .138

11 6 5 .000 .001 .002 .004 .007 .009 .013 .016 .019 .023 .027 .032 .037 .042 .047 .053 .060 .066 .072 .080 .089 .096 .103 .110 .117 .125 .133 .141 .150 .158
12 6 6 .000 .001 .003 .005 .008 .010 .014 .019 .023 .027 .032 .037 .042 .049 .056 .063 .069 .077 .084 .092 .101 .111 .120 .128 .137 .145 .152 .159 .166 .173

Eq. (A1)

m�n m n

12 .000 .001 .002 .004 .007 .009 .013 .016 .020 .025 .029 .034 .040 .045 .051 .057 .064 .070 .077 .084 .091 .099 .106 .114 .122 .130 .138 .146 .154 .163
13 .000 .001 .003 .005 .008 .011 .015 .019 .023 .028 .034 .040 .046 .052 .059 .066 .073 .081 .088 .096 .104 .113 .121 .130 .139 .148 .157 .166 .175 .184
14 .000 .002 .003 .006 .009 .013 .017 .022 .027 .033 .039 .045 .052 .059 .067 .075 .083 .091 .100 .109 .118 .127 .137 .146 .156 .166 .175 .185 .196 .206
15 .000 .002 .004 .007 .010 .014 .019 .025 .031 .037 .044 .051 .059 .067 .075 .084 .093 .103 .112 .122 .132 .142 .152 .163 .173 .184 .195 .206 .217 .228
16 .000 .002 .004 .008 .012 .016 .022 .028 .034 .041 .049 .057 .066 .075 .084 .094 .104 .114 .125 .135 .146 .157 .168 .180 .191 .203 .214 .226 .238 .250
17 .001 .002 .005 .008 .013 .018 .024 .031 .038 .046 .055 .064 .073 .083 .093 .104 .115 .126 .137 .149 .161 .173 .185 .197 .209 .222 .234 .247 .259 .272
18 .001 .002 .005 .009 .014 .020 .027 .034 .042 .051 .060 .070 .081 .091 .103 .114 .126 .138 .150 .163 .175 .188 .201 .214 .228 .241 .254 .267 .280 .294
19 .001 .003 .006 .010 .016 .022 .030 .038 .047 .056 .066 .077 .088 .100 .112 .125 .137 .150 .163 .177 .190 .204 .218 .232 .246 .260 .274 .288 .302 .316
20 .001 .003 .007 .012 .018 .025 .033 .041 .051 .062 .073 .084 .096 .109 .122 .135 .149 .163 .177 .191 .206 .220 .235 .250 .264 .279 .294 .308 .323 .337
25 .001 .005 .010 .018 .027 .037 .049 .062 .075 .090 .106 .122 .139 .156 .173 .191 .209 .228 .246 .264 .283 .301 .319 .337 .355 .373 .391 .408 .425 .442
30 .002 .007 .014 .025 .037 .051 .067 .084 .103 .122 .142 .163 .184 .206 .228 .250 .272 .294 .316 .337 .359 .380 .401 .422 .442 .462 .482 .501 .519 .537
35 .002 .009 .019 .033 .049 .067 .087 .109 .132 .156 .180 .206 .231 .257 .283 .308 .334 .359 .384 .408 .432 .455 .478 .501 .522 .543 .563 .583 .602 .620
40 .003 .012 .025 .041 .062 .084 .109 .135 .163 .191 .220 .250 .279 .308 .337 .366 .394 .422 .449 .475 .501 .525 .549 .572 .594 .615 .636 .655 .674 .692
50 .005 .018 .037 .062 .090 .122 .156 .191 .228 .264 .301 .337 .373 .408 .442 .475 .507 .537 .566 .594 .620 .645 .669 .692 .713 .733 .751 .769 .785 .801
60 .007 .025 .051 .084 .122 .163 .206 .250 .294 .337 .380 .422 .462 .501 .537 .572 .605 .636 .665 .692 .717 .740 .762 .782 .801 .818 .834 .849 .862 .874
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Figure A3. Effects of crossover interference. Process numbers are
enclosed in the circle. Processes 1 and 2 both reduce the length
of the RCAs in the next generation. Process 1 is independent of
and process 2 is dependent on the crossover interference. Gray
area, shared segments derived from a common ancestor.

tiple crossovers occur in one or both subjects. Although
occurrence of process 2 may be suppressed by crossover
interference, process 1 is independent of the interference
and is not suppressed. Moreover, as the size of the shared
segments from the common ancestor (shown in gray in
fig. A3) shortens over generations, multiple crossovers in
a single RCA become less frequent, even without crossover
interference, and process 1 becomes the main determinant
of the size of the RCAs. Therefore, crossover interference
has a limited effect on HH analysis, and so we chose not
to make any adjustment in the algorithm.

Web Resources

URLs for data presented herein are as follows:

Affymetrix, http://www.affymetrix.com/index.affx
GCC, the GNU Compiler Collection, http://gcc.gnu.org/
K.H.’s Web site, http://homepage.mac.com/hagiwark/FileSharing1

.html (for HH analysis program)
International HapMap Project, http://www.hapmap.org/
National Center for Biotechnology Information, http://www.ncbi

.nlm.nih.gov/
Online Mendelian Inheritance in Man (OMIM), http://www.ncbi

.nlm.nih.gov/Omim/
Saitama Medical University, http://www.saitama-med.ac.jp/

genome/TR/hh_analysis_program_and_manual.zip (for HH
analysis program and manual)
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