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Anomalous Subdiffusion in Fluorescence Photobleaching Recovery:
A Monte Carlo Study

Michael J. Saxton
Institute of Theoretical Dynamics, University of California, Davis, California 95616 USA

ABSTRACT Anomalous subdiffusion is hindered diffusion in which the mean-square displacement of a diffusing particle is
proportional to some power of time less than one. Anomalous subdiffusion has been observed for a variety of lipids and
proteins in the plasma membranes of a variety of cells. Fluorescence photobleaching recovery experiments with anomalous
subdiffusion are simulated to see how to analyze the data. It is useful to fit the recovery curve with both the usual recovery
equation and the anomalous one, and to judge the goodness of fit on log-log plots. The simulations show that the simplest
approximate treatment of anomalous subdiffusion usually gives good results. Three models of anomalous subdiffusion are
considered: obstruction, fractional Brownian motion, and the continuous-time random walk. The models differ significantly in
their behavior at short times and in their noise level. For obstructed diffusion the approach to the percolation threshold is
marked by a large increase in noise, a broadening of the distribution of diffusion coefficients and anomalous subdiffusion
exponents, and the expected abrupt decrease in the mobile fraction. The extreme fluctuations in the recovery curves at and

near the percolation threshold result from extreme fluctuations in the geometry of the percolation cluster.

INTRODUCTION

In normal diffusion, the mean-square displacement () is
proportional to time 7. In anomalous subdiffusion, diffusion
is hindered by obstruction or trapping in such a way that (%)
is proportional to some power of time less than one. That
power « is the anomalous diffusion exponent.

Anomalous subdiffusion has been observed in mem-
branes of several cell lines by various techniques. Single-
particle tracking (SPT) measurements on the low-density
lipoprotein receptor in human skin fibroblasts found that
around half the particles showed anomalous subdiffusion,
with values of a between 0.2 and 0.9 (Ghosh, 1991; Ghosh
and Webb, 1994). Slattery (1995) reported anomalous sub-
diffusion of the high-affinity IgE receptor FceRI in rat
basophilic leukemia cells measured by SPT, and Feder et al.
(1996) measured anomalous subdiffusion in the same sys-
tem by fluorescence photobleaching recovery (FPR). Sheets
et al. (1997) used SPT to classify the motion of gold-labeled
Thy-1 in fibroblasts. Trajectories in the fast class showed
normal diffusion, but those in the slow and confined class-
es—61% of the trajectories examined—showed highly
anomalous diffusion, with o = 0.42 and 0.58, respectively.
Simson et al. (1998) made similar SPT measurements on
neural cell adhesion molecules in 3T3 and muscle cells. For
NCAM-180 in 3T3 cells, 35% of the trajectories were
classified as slow, with average a = 0.51 and 21% cor-
ralled, with a = 0.29. Schwille et al. (1999a,b) used fluo-
rescence autocorrelation spectroscopy to measure anoma-
lous subdiffusion of the IgE receptor and fluorescent lipid
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analogs in rat basophilic leukemia cells. They found o =
0.7-0.8, though the experimental curve could be fit equally
well assuming normal diffusion of two components. Smith
et al. (1999) showed by SPT that in HeLa cells the class I
major histocompatibility complex diffused anomalously
with a = 0.49.

If anomalous subdiffusion occurs it will have a major
effect on mobility, and therefore on the kinetics of diffu-
sion-mediated reactions. Fig. 1, suggested by a figure in
Cherry et al. (1998), shows the effect of anomalous subdif-
fusion on the spread of diffusing particles from a point
source.

The general effects of membrane heterogeneities on lat-
eral diffusion are reviewed elsewhere (Saxton, 1999; Saxton
and Jacobson, 1997). Many factors may be involved, and
involved simultaneously: obstruction, binding, hydrody-
namic interactions, interactions of extracellular domains,
and interactions of intracellular domains with one another
and with the membrane skeleton. For other recent reviews
of membrane dynamics, see Edidin (1996, 1997), Jacobson
and Dietrich (1999), and Kusumi and Sako (1996). Anom-
alous diffusion is reviewed by Bouchaud and Georges
(1988, 1990), Bunde and Havlin (1991), Haus and Kehr
(1987), Havlin and Ben-Avraham (1987), Havlin and Bunde
(1991), and Shlesinger (1988).

Here we simulate FPR experiments with anomalous sub-
diffusion to answer three questions. Can anomalous subdif-
fusion be detected by FPR? How should the data analysis be
done? How well can the diffusion coefficient and the anom-
alous diffusion exponent be measured? This work is based
on the approximate treatment of anomalous subdiffusion by
Feder et al. (1996), who viewed anomalous subdiffusion as
resulting from random and continuously changing potential
energy traps, with a wide range of binding energies yielding
a range of escape times so wide that there is no average
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FIGURE 1 Effect of anomalous subdiffusion as « decreases from 1.0
(normal diffusion) to 0.4. One thousand tracers are placed at the origin and
diffuse by a fractional Brownian motion algorithm (Lundahl et al., 1986).
The position of each tracer is shown after 10 (green), 100 (blue), and 1000
(red) time steps. Note that there is relatively little effect at 10 time steps.

escape time. The traps could involve membrane proteins,
lipids, cytoskeletal proteins, and the extracellular matrix.

We simulate FPR for diffusion in the presence of random
point obstacles, for which diffusion is anomalous at the
percolation threshold, and for two other models of anoma-
lous subdiffusion, fractional Brownian motion (fBm) and
the continuous-time random walk (CTRW). The results for
obstructed diffusion are directly applicable to experiments
on lateral diffusion in lipid mixtures in the region of lateral
phase separation (reviews: Vaz, 1992; Almeida and Vaz,
1995). Percolation gives values of « between 0.697 and 1,
so the other models are more appropriate for the extreme
cases observed.

Simulations of FPR have been done by Coclho et al.
(1997), Feder et al. (1996), Gordon et al. (1995), Nagle
(1992), and Schram et al. (1994, 1996). We show that if one
fits an anomalous recovery curve with the usual equation,
the results are highly sensitive to the total measurement
time, in agreement with the results of Nagle (1992). The
results are much more consistent if the same data are fit with
an equation that accounts for anomalous subdiffusion.

As in single-particle tracking (Saxton, 1997), scatter
should be viewed as both signal and noise. The percolation
threshold is marked by large scatter in the shape of the FPR
recovery curves and in the resulting diffusion coefficients
and anomalous subdiffusion exponents. The scatter results
from variation in the geometric connectivity of the bleach
region. In FPR measurements on cells and artificial bilayers,
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additional scatter may result from instrumental and biolog-
ical factors. For reviews of instrumental factors see, for
example, Gordon et al. (1995), Munnelly et al. (1998),
Petersen et al. (1986), Thomas and Webb (1990), and Wolf
(1989). Experimental results on scatter are summarized
elsewhere (Saxton, 1997).

METHODS

We used Monte Carlo calculations to generate simulated recovery curves
using an anomalous subdiffusion or normal random-walk algorithm. Both
lattice and continuum simulations of FPR were used. The Tausworthe
random number generator was used (Kirkpatrick and Stoll, 1981). Typi-
cally, 1000 tracers were used to generate each simulated recovery curve,
and 500 recovery curves were generated. The system size was taken to be
512 X 512, and the bleach spot was a circle of radius 32 (containing 3697
points in the lattice simulations). A bleach spot of radius 48 or 64 gave
distorted results in a 512 X 512 system. Periodic boundary conditions were
imposed, but tracers contributed to the fluorescence signal only if they
were in the bleach spot of the original 512 X 512 system, not if they were
in a periodic image of the bleach spot. So, the obstructed system was, in
effect, an infinite system with the obstacles periodically repeated.

A direct simulation of the FPR experiment would start unbleached
tracers outside the bleach spot and measure whether they are in the bleach
spot at various times. This is extremely inefficient, and one can consider-
ably reduce the noise in the simulated recovery curve by starting bleached
tracers inside the bleach spot and measuring their diffusion out of the
bleach spot (Soumpasis, 1983; Coelho et al., 1997). This approach is valid
for obstructed diffusion at low obstacle concentrations because the sum of
the concentrations of bleached and unbleached tracers is constant. To
verify that this works even in the case of anomalous subdiffusion, for
which the diffusion coefficient is distance-dependent, two sets of runs were
compared. In the standard runs, the tracers started inside the bleach spot in
an infinite system. In the test runs, the tracers started outside the bleach
spot in a finite system with conventional periodic boundary conditions.
When tracers were started outside, 10,000 tracers were used to generate
each simulated recovery curve, instead of 1000. The outside curves were
still noisier than the standard curves; the computer time requirements for
higher numbers of tracers would have been prohibitive. Tests were done for
fBm, the CTRW, and obstructed diffusion at the percolation threshold. The
difference in recovery curves between the two calculations was detectable,
but not significant. The differences in the distributions of « and D were
small compared with the width of the distributions, except that for the
CTRW it was necessary to use 100,000 tracers in the outside runs.

The analytical expression for the recovery curve F(calc) was fit to the
simulated curve F(sim). Anomalous subdiffusion requires a two-parameter
fit using the equation D(¢) = I't*~" (Feder et al., 1996). Normal diffusion
requires a two-parameter fit with the parameters D and the mobile fraction
R ,0p> though in almost all of the simulations here the actual mobile fraction
is necessarily one. To eliminate possible errors from approximate data-
fitting, the simulated recovery curves were fit to the full analytical expres-
sion for the recovery curve using the Levenberg-Marquardt nonlinear
least-squares algorithm (Press et al., 1992). To prevent overflow it was
useful to modify the subroutine of Press et al. (1992) for the modified
Bessel function /,(z) to calculate e “/,(z) instead. In the least-squares
fitting it was useful to constrain I" to be positive (Gordon et al., 1995) by
setting up the fitting equation in terms of V/T. The fitting algorithm
requires initial guesses for I and «, and in the simulations it is necessary
to generate the initial guesses without manual intervention, even for noisy
data. The best approach was to set up a grid of parameters spanning the
entire reasonable range, calculate the error x> = S[F(sim) — F(calc)]? for
all values in that grid, and use as the initial guess I" and « at the minimum
X°. A second iteration of the grid search was useful. The coarse grid used
a = 0.02 to 2.0 by factors of 10>, and ' = 0.002 to 100 in a 1/2/5
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TABLE 1 Time sampling in simulations
Time range At Number of points Weight
1-1K 1 1024 1
1K—4K 4 768 1024/768
4K-16K 16 768 1024/768
16K-64K 64 768 1024/768
64K-128K 256 256 16

progression. This search method is utterly inelegant but highly robust, and
for analysis of thousands of noisy curves, robustness is essential. We will
see in Results the range of curve shapes that must be accommodated. (An
apparently reasonable alternative is to do least-squares fits of the initial and
final segments of the recovery curves to polynomials in ¢ found from the
series expansion of the exact solution. The grid search was preferable.)

Each simulated recovery curve included 2000-8000 time points,
closely spaced at short times and widely spaced at long times. Even with
this time sampling, appropriate weighting of the time segments is neces-
sary. A long run is required to approach full recovery, particularly in
anomalous subdiffusion. However, if a long run is sampled at equal time
intervals and fit with the time points equally weighted, the slow final
approach to full recovery is given much more emphasis than the initial part
of curve where most of the change takes place. The time sampling and
weighting are shown in Table 1 for a run of 128K time points (1K = 1024)
sampled at time intervals At, for a total of 3584 time points. A similar
pattern was used for larger numbers of time points. Gordon et al. (1995)
used a time-dependent smoothing algorithm with a similar effect. The
weighting was chosen so that the first and the last halves of the time points
(1 to 64K and 64K to 128K) are weighted equally, and the four segments
in the first half are weighted equally. (This method leads to artifactual
changes in the noise among segments, as will be seen in some of the
figures.) The obvious alternative, weighting time points inversely accord-
ing to the noise in the segment, would not work. Such an approach would
just place very heavy weight on the points for large ¢ In analyzing
experimental data one might record the recovery curves at equal intervals
of log ¢ instead of ¢ (Donaldson, 1989) and weight them appropriately.

Obstructed diffusion on a lattice was modeled as described before
(Saxton, 1996). Briefly, mobile point obstacles were placed on a triangular
lattice at random at a prescribed concentration. The infinite percolating
cluster was identified by the algorithm of Hoshen and Kopelman (1976). A
tracer was placed at a random unblocked lattice point on the infinite cluster
inside or outside a circular bleach spot, as required, and carried out a
random walk on unobstructed lattice sites. The tracer position was recorded
as a function of time. The approximations involved in a lattice model of
lateral diffusion are discussed by Scalettar and Abney (1991) and by
Almeida and Vaz (1995).

The CTRW was modeled as described elsewhere (Saxton, 1996) for
lattice diffusion, though some continuum calculations were also done as a
control. In the continuum calculations, the direction of the step was chosen
randomly from a uniform distribution and the length was chosen randomly
from the distribution exp(—r%/4Dt) 27rdr. The time scale for the CTRW is
different from the other two models, as will be seen in some of the figures.

Modeling fractional Brownian motion requires care. Many methods
have been proposed in the literature, some suitable for quantitative tests of
the accuracy of methods of analyzing fractal dimensions, and others mostly
useful for generating fractal landscapes (for reviews see Caccia et al.
(1997); Jennane et al. (1996)). One high-quality method is to generate
Gaussian random variates and then directly put in the required correlations
(Lundahl et al., 1986). The original method requires a N X N correlation
matrix to generate a time series of N points, but a more recent version
(Falconer and Véhel, 2000) is more practical. The fractional Gaussian
process algorithm recommended by Caccia et al. (1997) requires too many
Gaussian random variates to be practical here. Instead, we used another
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high-quality method, the Weierstrass-Mandelbrot (WM) function (Berry
and Lewis, 1980; Feder, 1988; Molz et al., 1997; Voss, 1988)

—+ oo

1
AGENDY VT (cos py(n) — cos[Y't* + (n)]), (1)

n=-w

where ¢ is time, #,,,, is the total time, * = 2mt/t, ., v > 1 is a constant here
chosen to be V' (Jaggard, 1990), and ¢,(n) are random phases uniformly
distributed between 0 and 2. In a Fourier series the terms form an
arithmetic series in the frequency; here the terms form a geometric series.
As n increases, the frequencies increase and the amplitudes decrease. The
geometric variation in frequency produces structure on all time scales, as
is required for W, (f) to be fractal (Molz and Boman, 1995). The WM
function gives the x-position of the tracer at time #. (To generate fractional
Brownian noise one would take differences of W,(¢), and to generate
fractional Brownian motion from the noise one would sum the noise,
regenerating W, (7).) The y-position is obtained similarly, but with inde-
pendent random phases. A normalization factor was chosen to make the
step size at unit time (+*) = 1. In the simulations, the sum in Eq. 1 was
taken from —8 to +48. These values were chosen by examining the ratio
(r*)/t for normal Brownian motion, / = 1/2. If the lower limit is —4, the
ratio droops around 2 million time steps; if —8, the ratio oscillates around
a constant value. Adding more terms on either end of the series has little
effect. The reason for the oscillation is as follows. If one evaluates W2 and
averages over the random phases, one obtains

+oo

1
Wit = X o [1 — cos(y'*)], )

n=-—om

which is the WM function of Eq. 1 with the random phases zero and an
exponent 2/ instead of H.

In some of the figures, Catmull-Rom splines (Foley et al., 1990) were
used to draw smooth curves through data points. This is a convenient way
to produce curves like the smooth curves one would sketch by hand.

RESULTS
Theoretical recovery curves: equations

In anomalous subdiffusion the mean-square displacement is
() ~ 3)

in the limit of large ¢ with the anomalous diffusion exponent
a = 1. So the diffusion coefficient D is time-dependent:

D(t) o (7t ~ 171, 4

These equations hold only in the limit of large ¢, but we shall
use the same asymptotic approximation that the Webb
group used (Feder et al., 1996), and assume that Eq. 4 holds
for all t = 1, so that

D(t) =T !, 6

with I' constant. If &« = 1, (#?) ~ ¢, D = T is constant, and
diffusion is normal. As we shall see, Eq. 5 is an approxi-
mation, but it captures much of the behavior of anomalous
subdiffusion.

When Eq. 5 is used for D(¢), one can use the standard
expressions for the recovery curves with D(r) substituted for
D. To show this we outline how the equation for the normal
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recovery curve can, in principle, be derived. (In practice, the
integrals are intractable and transform methods are used.)
The propagator or Green’s function for diffusion G(r, ', ¢,
0) gives the concentration of diffusing species at a position
7 at time ¢ due to a point source at a position 7" at time 0. For
normal diffusion in two dimensions, G(r, ', ¢, 0) = (1/
4mDt)exp[—(r — r')*/4Dt]. We start with an initial distri-
bution of label C(+', 0) and integrate over r’ to give the
distribution of label at time 1, C(r, £) = [ G(r, ¥, t, 0)C(r’,
0)dr'. Then we find the fluorescence by multiplying C(r, f)
by the beam intensity /(») and integrating over r, giving
F(t) = [ C(r, H(r)dr. The derivation for the anomalous
recovery curve would be done similarly. Now D and ¢ occur
only as the product D¢, and this factor has no effect on the
integrations over r’ and r. So in the approximation of Eq. 5
one can just use the standard derivation of F(¢) and replace
Dt with T't* at the end.

The bleach beam is assumed to be circular and of uniform
intensity, not Gaussian, and the equation of Soumpasis
(1983) is used for the recovery curve:

F(z) = e [1(2) + 1,(2)], (6)

where z = 27/t, T, = w*/4D is the characteristic time for
recovery, w is the beam radius, D is the diffusion coeffi-
cient, and /,(z) is a modified Bessel function. Other forms of
F(z) and their relation to Eq. 6 are discussed in the Appen-
dix. The same assumptions were made in the analysis of
experiments on lipid mixtures (Almeida and Vaz, 1995;
Vaz, 1992).

Theoretical recovery curves: qualitative behavior

It is useful to look at the form of the recovery curves in the
limits of long and short times. At short times (Soumpasis,
1983),

_ [ADt 1 4Dt
FO=\me [ 6w ™
so that the initial time dependence is
() = AT N g
() = p . ®)

For normal diffusion, this gives F(z) « ¢/

(Soumpasis, 1983),

W2 W2 2
F(f)zl_m‘f‘(m)—"' (9)

so that in the anomalous case

. At long times

2

w
F)=1— ot -

4Tr (10

The effect of « in Eq. 10 can be significant. For example, at
the percolation threshold, where o = 0.697 (Havlin and
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Bunde, 1991), the time needed for 1/¢* to reach 0.01 is ¢ =
740 instead of 100.

Fig. 2 shows families of recovery curves for normal
diffusion and anomalous subdiffusion from Egs. 5 and 6 as
linear and log-log plots. The linear plots of anomalous
subdiffusion show the slow approach to complete recovery
observed experimentally (Almeida and Vaz, 1995; Vaz,
1992). The log-log plots are much more revealing. In nor-
mal diffusion, the initial slope is always 1/2, the final value
is here F(e°) = 1, and varying D simply changes the inter-
section of the two limiting lines. In the anomalous case, the
initial slope is «/2 and the rate of approach to F(®) = 1 is
set by a. As we shall see, freedom to vary the initial slope
is essential in fitting Monte Carlo anomalous recovery
curves. Equations 5 and 6 require that the initial and final
slopes of the log-log plots be proportional. Note that in a
pure anomalous subdiffusion model the mobile fraction is
necessarily 1, though the time to reach that limit may be
long. Changing I at constant « shifts the anomalous curves
just as shifting D does for the normal recovery curves.

Models of anomalous subdiffusion

We shall use several models of anomalous subdiffusion in
the simulations, to cover the full range of « reported in cell
membranes, to avoid model dependence, to test for artifacts,
and to illustrate the differences in commonly used models of
anomalous subdiffusion. It would be premature to focus en-
tirely on one model because the cause of anomalous subdiffu-
sion in biological membranes has not been established, and
several factors are likely to be involved simultaneously, as in
the obstruction-binding model (Saxton, 1996). We consider
obstructed diffusion, fBm, and CTRW, but not binding.
Obstructed diffusion is one of the standard models of
hindered diffusion, and is of interest because lipid mixtures
can provide a direct physical realization. In an unobstructed
system, diffusion is normal. As obstacles are added, diffu-
sion becomes anomalous at short times and normal at long
times. As the obstacle concentration C increases to the
percolation threshold Cj, the crossover from anomalous to
normal diffusion takes place at longer and longer times, and
diffusion becomes more anomalous. At the threshold, the
crossover time becomes infinite. A percolation cluster is
self-similar—that is, it has no characteristic length
scale—so diffusion on a percolation cluster has no charac-
teristic time scale. Diffusion on a percolation cluster is
therefore anomalous at all times, except for the first few
time steps, where the nonzero lattice or obstacle spacing
affects diffusion. A tracer diffusing on a percolation cluster
encounters dead ends, bottlenecks, obstructed areas, and
other hindrances to diffusion on all length scales; these
hindrances lead to anomalous subdiffusion. Obstructed dif-
fusion provides only a narrow range of «. When C = 0, a =
1, and when C = Cp, o = 0.697. For intermediate obstacle
concentrations, « varies smoothly between these values

Biophysical Journal 81(4) 2226-2240
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FIGURE 2 Theoretical recovery curves for normal diffusion and anomalous subdiffusion. Note the difference in time scales between (a) and (c). Dashed
horizontal lines, full recovery. (a) Normal recovery curves for D = 0.01, 0.03, 0.1, 0.3, and 1; mobile fraction 1.0. (b) Log-log plot of the same normal
recovery curves. (¢) Anomalous recovery curves for « = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, with I' = 1. (d) Log-log plot of the same anomalous recovery curves.

(Saxton, 1994). (There the exponent is given as d,, = 2/a,
the usual notation in the physics literature.)

Near the percolation threshold, there is one infinite clus-
ter of conducting sites (“ocean”) and many finite clusters of
conducting sites (“lakes”). If a lake is entirely within the
bleach spot, no recovery occurs and the lake contributes to
the immobile fraction. If a lake crosses the edge of the
bleach spot, the lake contributes to fast recovery. To ensure
the purest anomalous subdiffusion at the threshold, we
restrict tracers to the ocean, thus requiring that there is no
immobile fraction. A justification for this restriction is that
smaller lakes are more common; the number n, of lakes
containing s points is n, ~ s~ 25 (Stauffer and Aharony,
1992). So there could be a significant contribution to recov-
ery from tracers in lakes of size two or three lattice points
straddling the bleach spot boundary. Including this recovery
would be pressing a lattice model of diffusion beyond the
reasonable. To eliminate lakes experimentally, one could do
a long preliminary bleach to deplete the tracer in the lakes
(Schwille et al., 1999a).

The CTRW is a standard model from physics (Scher et
al., 1991). In a CTRW the diffusing particle carries out an
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ordinary random walk, but with a modified time scale. At
each step in a normal random walk the time is incremented
by Az = 1, but in a CTRW, At is a random waiting time
chosen from a singular distribution

P(6) = BI(1 + AP (11)
(Scher et al., 1991) and
() ~ 1 (12)

for large ¢ (Blumen et al., 1984). The system has no mem-
ory; if a tracer escapes from the same point several times,
the escape times are independent. The CTRW gives tempo-
ral disorder with no spatial dependence, but a random walk
on a percolation cluster gives spatial disorder with no time
dependence. Nagle (1992) used the CTRW to analyze the
effect of long-time tails in the jump rate on one-dimensional
FPR. He showed that the diffusion coefficient and the frac-
tional recovery varied strongly with the measurement time.
Another model we use is fBm on a continuum. Normal
diffusion on the continuum is driven by white noise, but
fBm is driven by correlated noise. The correlation is spec-
ified by the Hurst exponent H, with H = 1/2 corresponding
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to uncorrelated motion, that is, normal diffusion. The mean-
square displacement is proportional to "' (Feder, 1988).

We do not consider anomalous subdiffusion due to bind-
ing because the simulations required are much different.
One would use multiple tracers that exclude other tracers
from their position. Tracers in deep traps would not con-
tribute to fluorescence recovery, but would obstruct other
tracers. Diffusion would be sensitive to the tracer concen-
tration, because the tracer concentration would determine
the deepest unfilled trap. Diffusion in such a system would
also depend critically on whether the tracer is in thermal
equilibrium with the traps (Saxton, 1996).

Noise in models

The obstructed diffusion model translates most directly into
a biophysical model. Vaz, Thompson, Almeida, and their
collaborators used FPR to measure lateral diffusion in bi-
nary and ternary lipid mixtures in the region of lateral phase
separation. They presented their results as plots of the
mobile fraction as a function of the area fraction of gel
phase from the phase diagrams. They observed clear perco-
lation thresholds and found major differences in thresholds
for different lipid mixtures, attributed to differences in the
geometry of the gel phases among the mixtures (reviews:
Vaz, 1992; Almeida and Vaz, 1995).

Coclho et al. (1997) modeled these experiments as a
random walk in the presence of overlapping, randomly
oriented elliptical obstacles, and generated simulated recov-
ery curves. The main object was to find domain sizes and
axial ratios of ellipses that would reproduce the observed
values of the fractional recovery as a function of the arca
fraction of fluid phase, and would be consistent with other
estimates of domain size (Almeida et al., 1993).

In these experiments and simulations, the FPR recovery
curves were fit using the equation of Soumpasis (1983) for
normal diffusion, plus a linear ramp if required. Originally,
the ramp was taken to represent recovery due to diffusion in
defects in the gel phase (Vaz et al., 1989), but the ramp
could also represent slow diffusion due to percolation
(Coelho et al., 1997). Slow diffusion could result from, say,
diffusion between “lakes” joined by a narrow “strait.” As
Eq. 10 indicates, a ramp is a natural consequence of an
anomalous subdiffusion model. This model predicts that the
ramp would be required only near the percolation threshold,
in the region where « is significantly less than one.

Furthermore, the scatter in the mobile fraction was high
near the percolation threshold (Almeida et al., 1992b).
Noise near the threshold is a consequence of a percolation
model. A percolation cluster at the threshold is shown in
Fig. 3, along with three arbitrarily chosen bleach spots. Two
sources of fluctuations are evident. First, the number of
conducting sites in the bleach spot varies considerably,
though in experiments this variation is removed by normal-
izing the recovery curve F(¢) by the prebleach fluorescence
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FIGURE 3 A percolation cluster with arbitrary bleach spots. The perco-
lation cluster is on a triangular lattice at the threshold Cp, = 0.5. This is at
the scale used in the simulations, a 512 X 512 cluster with a bleach spot
of radius 32.

F(—). Second, there is great variation in the connectivity of
the bleach spot to the rest of the cluster. This is significant,
leading to the variation in recovery curves shown in Fig. 4.

There are, however, two important differences between
the experiments and the simulations in Fig. 4. First, the
simulations exclude diffusion on nonpercolating clusters
and fast recovery in lakes at the edge of the bleach spot. The
fast recovery affects the shape of the initial part of the

12 T T T T T T T T T
1.0
0.8

0.6

0.4

Fluorescence

Time/10°

FIGURE 4 Scatter among five simulated FPR curves for obstructed
diffusion with C = 0.3 (black) and five curves with C = Cp = 0.5 (color).
The abrupt changes in noise level are artifacts of the time sampling used
(see Methods).
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recovery curve, and recovery in lakes introduces significant
variation in the mobile fraction. If the lakes are excluded, all
conducting sites are on the percolation cluster and F() =
1, but if they are included, F(e°) depends on the ratio of lake
sites to ocean sites in the bleach spot, and the extent to
which the lakes overlap the bleach spot. Second, the exper-
iments were on multilayers containing hundreds of bilayers,
but the simulations used single configurations of obstacles,
corresponding to a single bilayer. Almeida et al. (1992b)
suggested that the observed fluctuations may occur because
each bilayer in the stack is either percolating or not percolating.

The sets of simulated FPR curves of Fig. 4 are anecdotal
evidence about noise. We can characterize the noise more
systematically by calculating the standard deviation of the
recovery curve, as shown in Fig. 5. The recovery curves are
highly reproducible well below the threshold (C = 0.0 and
0.3) but are extremely scattered at the threshold. The stan-
dard deviation at the threshold is even larger if lakes and
nonpercolating clusters are included. Note that a plot of the
standard deviation tends to sanitize the results. The results
in Fig. 5 a for C = 0.5 would be consistent with a single
reproducible recovery curve with a large amount of high-
frequency noise, but Fig. 4 implies that the problem is
instead low-frequency noise leading to major variations in
the entire recovery curve, including ramps.

In contrast, there is much less scatter for fBm and the
CTRW as shown in Fig. 5, b and c. The plots in Fig. 5 are
strictly comparable: 500 recovery curves were simulated, 1000
tracers were used per recovery curve, and the recovery curves
for C = Cp = 0.5,2H = 0.697, and B = 0.697 all have in the

asymptotic limit a mean-square displacement (%) ~ /%7,

Fitting individual recovery curves

To test the fit of normal and anomalous curves to the
simulated recovery curves, it is helpful to use linear plots to
emphasize the behavior at large ¢, and log-log plots to
emphasize small ¢. Fig. 6 shows least-squares fits of both of
the theoretical curves to simulated recovery curves. In Fig.
6, a and b, for obstructed diffusion at the percolation thresh-
old, it is clear from the linear plot that the anomalous curve
gives a better fit than the standard recovery curve. The
log-log plot shows that the problem with the standard fit is
that the initial slope is fixed at 1/2, so the curve is too low
at small ¢ and then overshoots the recovery curve. But the
least-squares fit to the anomalous curve gives an initial
slope of 0.35 and this leads to a much better fit. The
anomalous curve does not always fit this well, but it is in
general a significant improvement over the standard curve.
For fBm with 2H = 0.697, the anomalous curve fits
better than the standard curve, as is clear in both linear and
log-log plots (Fig. 6, ¢ and d). The freedom to vary the
initial slope in the log-log plot is crucial to the good fit.
For the CTRW with B = 0.697, the linear plot Fig. 6
e shows that the anomalous curve unquestionably gives a
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FIGURE 5 Standard deviation of FPR recovery curves for 500 recovery
curves with 1000 tracers per recovery curve. Lines, mean recovery curve. Gray
area, mean recovery curve = one standard deviation. (a) Obstructed diffusion
with C = 0.0, C = 0.3, and C = C, = 0.5. (b) Bm with 24 = 0.300, 0.500,
0.697, and 1.000. Note the oscillations of increasing period, most evident in the
curve for 2H = 0.500. (¢) CTRW with 8 = 0.300, 0.500, 0.697, and 0.900.
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better fit, but the log-log plot in Fig. 6 fshows a deviation
in the fit at small times. As the average recovery curve in
Fig. 6 f shows more clearly, there are three segments of
approximately constant slope in the CTRW recovery
curve, and the least-squares fit deviates at small ¢. This
structure of the recovery curve does not appear to be
artifactual; the same structure was obtained with contin-
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FIGURE 6 Simulated recovery curves (black) and least-squares fits to them using the normal (red) and anomalous (blue) equations. Recovery curves are
for 1000 tracers. Note the different time scales in the linear plots. (a, b) Obstructed diffusion with C = C, = 0.5. Linear and log-log plots. (¢, d) fBm with
2H = 0.697. Linear and log-log plots. (e, f) CTRW with 8 = 0.697. Linear and log-log plots. In f'the average recovery curve over 500 grids (green) is
also included to show that the structure at short times is real, not just noise in the particular curve shown.

uum diffusion and with the ran2 random number gener-
ator (Press et al., 1992).

Why are the simulated recovery curves different in the
different models? Anomalous subdiffusion simply requires
that at large times (+*) ~ ¢, but does not specify either the

behavior at short times or the behavior of higher moments
of r. One can examine the differences in the models by
plotting (+*)/¢*, which approaches a constant at large . For
unobstructed diffusion o = 1, and for obstructed diffusion
at the percolation threshold « = 0.697. We choose the
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FIGURE 7 Scaled moments (+%)/t*. (¢) Moments for unobstructed dif-
fusion (C = 0, a = 1), obstructed diffusion at the percolation threshold
(C =05, a =0.697), fBm with 2H = 0.697, and the CTRW with 8 =
0.697. The unobstructed case is continuum diffusion with a random step
size as described in Methods for the continuum CTRW. (b) Moments for
the CTRW with B = 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9.

parameters 2H and S in the other models so that they have
the same asymptotic behavior as in percolation.

Results are shown in Fig. 7 a. For unobstructed diffusion,
C = 0, log(r*)/t = 0 for all times. All three anomalous
curves are horizontal at large times, as required by the
asymptotic limit, but the behavior at short times is much
different. (The most prominent oscillations in the fBm curve
are of frequency vy, from the » = —1 term in Eq. 2.) In terms
of this plot, Eq. 5 is an approximation in which it is assumed
that (?)/t* is constant for all # > 1. It describes the asymp-
totic behavior correctly, but does not include the short-time
behavior of the anomalous subdiffusion models. Plots for
higher moments (+*")/f**, n = 2, 3, and 4, are of similar
shape, but with vertical shifts in the absolute and relative
positions.

Fig. 7 b shows similar curves for the CTRW as B is
varied. For highly anomalous subdiffusion, say 8 = 0.3 as
used by Nagle (1992), (+*)/t? reaches its asymptotic value
quickly and the asymptotic approximation Eq. 5 works well.
However, as diffusion becomes less anomalous, say 3 =
0.8, the approach is much slower. The entire recovery curve
then falls in the initial region, and Eq. 5 does not work well.
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(If the simulations are repeated with a larger beam radius
and system size, more of the recovery curve is in the
asymptotic region. The fit and the values of « are better,
though very large systems must be used.)

Anomalous subdiffusion exponents

How well can the anomalous subdiffusion exponent a be
determined in an FPR measurement? Fig. 8 a gives the mean
values of « for obstructed diffusion. As a reference value we
show aggq(init), determined from the initial slope of a plot of
log (%) versus log t. As the obstacle concentration C increases
from 0 to the percolation threshold Cp, the short-range agg-
Q(init) decreases smoothly from 1 at C = 0 to 0.697 at Cp
(Saxton, 1994); but agpr from the recovery curves is a longer-
range value measured over a length of the order of the beam
width, and remains at 1 until the system is near Cp. As a result,
in the histogram in Fig. 8 b, values of appg are distributed
around 1 for C = 0.3. A slight shift toward lower values begins
at C = 0.3, and a significant change occurs around C = 0.4.
The distribution broadens considerably as the obstacle concen-
tration approaches the percolation threshold. For fBm the dis-
tributions of « are narrow and the means are very close to the
true values. For the CTRW the distributions are similarly
narrow, but the means are incorrect except for small 8. The
cause of the problem is the slow approach of (+*) to its
asymptotic value, shown in Fig. 7 b. Unfortunately, fits to the
CTRW model give diffusion more anomalous than is correct.

Diffusion coefficients

In anomalous subdiffusion the diffusion coefficient is time-
dependent, but it would be convenient to be able to refer to
a single diffusion coefficient. One solution is to discuss all
results in terms of D(1 s) (Feder et al., 1996), but this seems
arbitrary. An alternative is to define a single value of D
self-consistently in terms of the bleach radius w. We have
from Feder et al. (1996)

=T (13)
and
D(r) = ;T (14)

Define 7 as the time at which (*) = w? evaluate the
equations at time 7, and eliminate 7 to give

1 WZ (a—1)/a
D(w) = 4F<r) . (15)
or
D(r) = ;T\, (16)
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FIGURE 8 Distributions of anomalous subdiffusion exponents « for simulated recovery curves fit by Eqs. 5 and 6. The smooth curves are Gaussians fit
to the observed histograms; for some distributions, the actual histogram is shown as a fine line. The short vertical lines are mean values. (¢) Mean anomalous
diffusion exponent « as a function of obstacle concentration C. Here aggq(init) is the short-range value from fits to the initial slope of log (r?) versus log
7, and appy is the long-range value from the FPR simulations. The line for aggq(init) is a least-squares fit to 2/« given elsewhere (Saxton, 1994), and the
line for apy is a Catmull-Rom spline. (b) Obstructed diffusion with C = 0.0, 0.3, 0.4, and C = C, = 0.5. (¢) fBm with 24 = 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

0.9, and 1.0. (d) CTRW with 8 = 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9.

For normal diffusion, @ = 1 and D(w) = Y4l is constant. In
the Monte Carlo calculations, D(w) is normalized to elimi-
nate the factor of Va.

We define two diffusion coefficients based on Eq. 15:
Drso(w) is obtained from fitting Eq. 13 to a plot of
log(r”) versus log ¢, and Dppgr(w) is obtained from fitting
Eqgs. 5 and 6 to the recovery curve. The corresponding
diffusion coefficients for normal diffusion are Dygn(norm)
and Dgpr(norm). We use Drgo(w) as the reference standard
because it accounts for anomalous subdiffusion and uses all
the data in the simulation. In contrast, FPR simulation is an
utterly inefficient way to find a diffusion coefficient. One
calculates random walks for a large number of tracers, and
then throws away all the information except whether each
tracer was in the bleach spot at a given time.

We find that Dypg(w) is a reasonable, though not perfect,
approximation to Dggo(w), but fitting anomalous subdiffu-
sion with the equations for normal diffusion gives erroneous
results. As shown in Fig. 6, the normal recovery equation
gives a systematically bad fit to an anomalous recovery
curve, so the resulting value of Dppp(norm) is incorrect

unless «a is near 1. Similarly, if diffusion is anomalous at all
times, a plot of (+%) versus  is nonlinear, so fitting it with a
straight line gives a slope that depends on the measurement
time, and Drgo(norm) is time-dependent.

Histograms of Dgpg(w) for the different anomalous sub-
diffusion models are shown in Fig. 9. The results for ob-
structed diffusion are shown as linear and logarithmic his-
tograms, but for the fBm model, only log Dypr(w) is shown
so that the entire family of curves can be shown on one plot.
In all models the distribution of I" is much broader than the
distribution of Dgpr(w), and is asymmetric.

For obstructed diffusion far from the percolation thresh-
old, Dipr(w) reduces to Dgpr(norm), and even at the thresh-
old the distributions are similar. Both of these distributions
are much broader than the distribution of the reference
Dgso(w) because fewer data points are used. As C — Cp,
the distribution of D narrows in the linear plot (Fig. 9 @) and
D crowds around zero, but the distributions of log Dppr(w)
widen (Fig. 9 b). The logarithmic distributions are more
relevant to experiment; if experimental diffusion coeffi-
cients covered such a wide range, one would change the
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Catmull-Rom splines are used.

beam radius or the recording time to measure diffusion
accurately. Anomalous behavior becomes important only
for C = 0.425, as indicated by an increase in x* for normal
fits. At the percolation threshold, Dgpr(norm) and Dypr(w)
occasionally show extremely high values. These are a result
of eliminating the lakes, leaving just a few ocean sites at the
edges of the bleach beam. Occasionally there are no ocean
sites in the bleach beam.

For fBm, the distributions of Dypgr(w) broaden consider-
ably as 2H decreases, as shown in Fig. 9 ¢. Mean values of
the various fBm diffusion coefficients are shown in Fig. 9 d.
The values of Dggo(w) and Dypr(w) are indistinguishable
on the scale of the figure and are simply labeled D(w).
Dppr(w) is systematically higher by 3.5 to 7% for 2H =
0.4. For moderately anomalous subdiffusion, 2H = 0.7,
Dypr(norm) agrees well with D(w), but at smaller 2H it
systematically deviates, increasing sharply and spuriously
when 2H decreases below 0.5. The value Dggo(norm) from
the slope of (+*) versus ¢ is in error except at 2H = 1.
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For the CTRW, the distributions of Dppr(w) decrease and
broaden considerably as diffusion becomes more anoma-
lous, just as shown for fBm. The mean values of the differ-
ent diffusion coefficients are qualitatively similar to that
shown in Fig. 9 d, except that the values of Dypr(w) are a
factor of 0.4 to 0.8 smaller than values of Dygo(w). Pre-
sumably this error in Dppr(w) results from the mistit shown
in Fig. 6, e and f.

Fitting an anomalous recovery curve with the
standard equation

Suppose that one fits an anomalous recovery curve using the
standard form of the recovery curve for normal diffusion.
The best example to use is fBm, where « can be varied over
a wide range and the recovery curve is well-fit using Egs. 5
and 6. The quality of fit is measured by x> per time point.
As shown in Fig. 10, as diffusion becomes more anomalous,
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FIGURE 10 Results of fitting anomalous recovery curves for fBm with
the normal recovery equation. Here R, is the apparent mobile fraction;
X°(N) and x*(A) are the values of the mean-square error per point for fits
to the normal and anomalous curves. For reference, the diffusion coeffi-
cient Dppr(w) is also given. Results are shown as points fit by Catmull-
Rom splines.

the apparent mobile fraction R, from a fit to the standard
curve decreases, and the quality of the fit by the standard
curve becomes considerably worse. (The decrease in x> for
the standard fit for 2H = 0.5 is misleading; if one examined
the standard and anomalous fits one would immediately
reject the standard fit.) The corresponding results for the
CTRW for B = 0.3 to 0.9 are qualitatively similar. The
anomalous curve fits better, as shown by values of ¥* a
factor of 25 lower than those for the normal recovery curve.
The corresponding results for obstructed diffusion show that
anomalous behavior becomes important only for C = 0.425,
indicated by an increase in x> for the normal fit.

If an anomalous recovery curve is fit using the standard
equation, the results depend strongly on the number of time
points included, as shown by Nagle (1992), but if the curve
is fit using the anomalous equation, accurate values of « and
reasonable values of D(w) are obtained. For fBm with 2H =
0.5, seven runs were made with the number of time points
from 32K to 128M increasing by factors of 4. (For runs with
2M time points or fewer, there was no breakpoint and the
recovery curve was entirely in the initial region described
by Eq. 8.) As the run lengths increased, the diffusion
coefficients based on normal diffusion, Drgo(norm) and
Dypr(norm), were strongly dependent on the run time, and
decreased by factors of 58 and 220, respectively. In contrast,
fits assuming anomalous subdiffusion gave good values of
a for all run lengths, 0.501 from (+?(f)) and 0.504 from the
recovery curves, with standard deviations below 0.001. Val-
ues of Drgo(w) and Dipr(w) agreed well, with Dppr(w)
~6% higher, and the standard deviations for the seven runs
were 18% of the mean for both of these diffusion coeffi-
cients. The errors x> per point were much larger for the
normal fit than for the anomalous fit (by a factor of 2.6 to
22) and the bad fits were evident in a log-log plot of the
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recovery curve. Just as in the one-dimensional model of
Nagle (1992), the standard equation yielded a mobile frac-
tion strongly dependent on the number of time points in the
recovery curve, here increasing from 25% to 90% mobile as
the run time increased. The anomalous recovery curve can
extrapolate the recovery curve reasonably well; a run with
512K points had a value of only 0.45 at the final time point,
but a fit to a three-parameter anomalous recovery curve («,
I, and R,,,,) gave a mobile fraction of 0.96 = 0.12.

DISCUSSION

The main result is that according to the simulations, the
effect of anomalous subdiffusion on FPR can usually be
taken into account by the simple approximation of Eq. 5. To
test for anomalous subdiffusion, one ought to fit the recov-
ery curves by normal and anomalous equations and look for
systematic deviations, both in linear plots to see the fit at
large times and log-log plots to see the fit at short times. The
improvement in fit to an anomalous recovery curve on
fitting with the anomalous function is clear in the values of
X°, but looking at the plots is far more informative, espe-
cially in view of the differences in shape of the recovery
curves among different models of anomalous subdiffusion.
Note that experimental limitations may affect observed re-
covery curves at short and long times. At short times the
curve may be distorted by diffusion during the bleach pulse,
imperfections in the beam profile, and limits in the rate of
data collection; and at long times by motion of the mem-
brane and photobleaching by the probe beam. As shown by
Wolf (1989) and Gordon et al. (1995), among others, in
fitting the recovery curves one ought to use a nonlinear
least-squares fit to the full recovery curve, not a linearized
approximation.

In anomalous subdiffusion, the diffusion coefficient is
distance-dependent, but it is useful to have a single number
with the dimensions of a diffusion coefficient to character-
ize diffusion, so we have defined Dypr(w) self-consistently
in Eq. 15 to describe diffusion over distances of the order of
the measurement distance w.

The simulation is sensitive to the choice of anomalous
subdiffusion model. Requiring anomalous subdiffusion
merely specifies the asymptotic value of one moment: (%)
~ t“ The percolation, fBm, and CTRW models differ
appreciably in their approach to the asymptotic value (Fig.
7) and in their noise levels (Figs. 4 and 5). Which model is
appropriate depends on the mechanisms responsible for
anomalous subdiffusion in the membrane. Despite the os-
cillations that are evident in linear plots of (+*(f)) and
obvious in log-log plots, fractional Brownian motion is the
purest of the anomalous subdiffusion models used here and
the fBm recovery curves are fit very well using Egs. 5 and
6. For obstructed diffusion, the anomalous subdiffusion
exponent « varies from 1 in the unobstructed system to
0.697 at the percolation threshold. The CTRW and fBm
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models, like some of the binding models (Saxton, 1996) not
discussed here, allow diffusion to be much more anomalous
than pure obstruction does. Obstruction alone cannot ac-
count for the highly anomalous diffusion cited in the Intro-
duction.

There is good reason to use the approximation of Feder et
al. (1996). It is an asymptotic approximation that describes
a major part of the behavior of anomalous subdiffusion,
though not all. Fig. 7 shows the nature of the approximation;
the families of curves in Fig. 2 and the fits in Figs. 6 show
that this approximation describes anomalous recovery
curves better because the initial time dependence is F(#) *
t*?. Anomalous subdiffusion explains the linear ramp that
Vaz et al. (1989) included on physical grounds, and predicts
that in obstructed systems it is important only near the
percolation threshold. The threshold is observable in FPR
not only as a transition in the mobile fraction, but also as an
increase in noise in the shape of the recovery curve (Fig. 5)
and a broadening in the distributions of « and log D (Figs.
8 and 9). Scatter in FPR and SPT (Saxton, 1997) should be
viewed as both signal and noise; here the noise is a signature
of the percolation threshold. It is therefore useful for exper-
imentalists to publish histograms of diffusion coefficients,
not just mean values with an often disturbingly large stan-
dard deviation.

In the simulations we have excluded diffusion in lakes.
Lakes can be climinated experimentally by a prebleach
(Schwille et al., 1999a). If lakes are included, it is necessary
to include the mobile fraction as a third parameter in the
anomalous fits. Without this the fits are clearly erroneous
because the anomalous function goes to one at large times
and the actual recovery curve does not. In experiments on
lipid mixtures it is necessary to include the mobile fraction
if the lakes are stable on the time scale of the measurement.
The stability of the obstacles is demonstrated by the obser-
vation that in a mixture of dimyristoylphosphatidylcholine
and distearoylphosphatidylcholine, 20% gel phase by mass
disconnects 80% fluid phase (Vaz et al., 1989). In experi-
ments on cells, Feder et al. (1996) found that a three-
parameter fit including an immobile fraction worked better
than a fit with just I' and «.

Vaz, Thompson, Almeida, and collaborators (for reviews
see Vaz, 1992; Almeida and Vaz, 1995) interpreted their
FPR measurements in two-phase and three-phase lipid mix-
tures in terms of percolation of the fluid phase. The mod-
eling of FPR presented here is consistent with their analysis.

The obstruction model may appear to be of limited bio-
logical use, restricted to artificial bilayers with a lateral
phase separation between gel and fluid phases. As Almeida
et al. (1992a) pointed out, obstruction and percolation are
also applicable to liquid-liquid lateral phase separation, as in
the liquid-ordered and liquid-disordered phases. There has
been much interest lately in lipid rafts, considered to be
domains of liquid-ordered phase, and their role in signal
transduction (Brown and London, 2000; London and
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Brown, 2000; Simons and Ikonen, 2000; Simons and
Toomre, 2000). Rietveld and Simons (1998) suggested that
in most membranes the liquid-disordered phase percolates,
but that in the apical membrane of polarized epithelial cells
the liquid-ordered phase percolates. If a mobile species has
a very strong preference for one of the phases, percolation
could have a major effect on its motion, so it would be of
considerable interest to measure the partition coefficients
for proteins involved in signaling reactions.

APPENDIX
Equations for the recovery curves

Axelrod et al. (1976) give the recovery curve for a uniform circular bleach
spot as

Fiz) = FA(2) = 50, (A1)
where
Fi@) =1-Se @ +LE] (A2
and
Z 2k + 2)!(k+ 1)) z\k
9 =23 g e o () 4

k=0

Here z = 27p/t, Tp, = w?/4D is the recovery time, w is the beam radius, D
is the diffusion coefficient, and /,(z) is a modified Bessel function. The
sign of the series has been corrected according to Lopez et al. (1988).
Soumpasis (1983) gives the form
Fs(z) = e [l(2) + Ii(2)]. (A4)

It would be reassuring to know that these are the same. As a preliminary
test, F, and Fg were expanded as a 10-term power series in z using
Mathematica (Wolfram, 1999) and were found to agree. We outline the
proof that the series are equal. Clearly, it will be useful to have a power
series expansion of e “/,(z). We use Eq. 13.6.3 of Abramowitz and Stegun
(1972) to write this as a Kummer function

Mw+1/2,2v+1,22) =T'(v + 1)(2/z)%1 (z), (A5)
where I'(v) is the gamma function. We then replace z with —z and use the
fact that /,(—z) = (—1)"I,(z) (Abramowitz and Stegun, 1972, Eq. 9.6.30)
to obtain

z

e I(z) = (2>VM(V +1/2,2v+1,2z). (A6)

I'ev+1)

The series expansion of the Kummer function is given by Eqgs. 13.1.2 and
6.1.22 of Abramowitz and Stegun (1972), and we obtain

reev+1) z\"”
'+ HI'(v+1/2) (2)

e ’I(z) =

0

>

n=0

(=22)"T'(n + v+ 1/2)
n TI'h+2v+1)°

(A7)
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We then substitute Eq. A7 into Eqgs. Al, A2, and A4, and use standard
identities for gamma functions and factorials (Abramowitz and Stegun,
1972, Chapter 6) to show that F,(z) = Fg(z). It is convenient to do this by
finding the general term of the power series for F, — Fj, reducing it to its
simplest form, and then showing it is equal to the simplest form of the
general term in Eq. A3.
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