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SUMMARY

By analyzing gene expression data in glioblastoma in
combination with matched microRNA profiles, we
have uncovered a posttranscriptional regulation
layer of surprising magnitude, comprising more
than 248,000microRNA (miR)-mediated interactions.
These include�7,000 geneswhose transcripts act as
miR ‘‘sponges’’ and 148 genes that act through
alternative, nonsponge interactions. Biochemical
analyses in cell lines confirmed that this network
regulates established drivers of tumor initiation and
subtype implementation, including PTEN, PDGFRA,
RB1, VEGFA, STAT3, and RUNX1, suggesting that
these interactions mediate crosstalk between
canonical oncogenic pathways. siRNA silencing of
13 miR-mediated PTEN regulators, whose locus
deletions are predictive of PTEN expression vari-
ability, was sufficient to downregulate PTEN in a
30UTR-dependent manner and to increase tumor
cell growth rates. Thus, miR-mediated interactions
provide a mechanistic, experimentally validated
rationale for the loss of PTEN expression in a large
number of glioma samples with an intact PTEN locus.

INTRODUCTION

Dysregulation of physiologic microRNA (miR) activity has been

shown to play an important role in tumor initiation and progres-

sion, including gliomagenesis (Gabriely et al., 2011; Godlewski

et al., 2008; Kim et al., 2010a, 2011; Kwak et al., 2011). There-

fore, molecular species that can regulate miR activity on their

target RNAs without affecting the expression of relevant mature

miRs may play equally relevant roles in cancer. Yet few such
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modulators of miR activity have been characterized (Krol et al.,

2010; Poliseno et al., 2010), and both the extent and relevance

of their role in controlling normal cell physiology and pathogen-

esis are poorly understood.

By analyzing a large set of sample-matched gene and miR

expression profiles from The Cancer Genome Atlas (TCGA),

we show here that the regulation of target genes by modula-

tors of miR activity is surprisingly extensive in human glioma

and that it affects genes with an established role in gliomagen-

esis and tumor subtype implementation. Specifically, we study

two types of miR activity modulators with distinct molecular

mechanisms (Figures 1A and 1B). Sponge modulators include

both messenger RNAs (mRNAs) and noncoding RNAs, which

share miR-binding sites with other RNAs. Thus, these modula-

tors act as miR sponges, or competitive endogenous RNA

(ceRNA), via an established titration mechanism (Arvey et al.,

2010; Ebert et al., 2007; Poliseno et al., 2010). Depending on

their expression levels and on the total number of functional

miR-binding sites that they share with a target, sponge modu-

lators can decrease the number of free miR molecules avail-

able to repress other functional targets. Nonsponge modula-

tors, on the other hand, are implemented by proteins and

RNAs acting via a variety of alternative mechanisms, including

activation or suppression of miRISC-mediated regulation of

target RNAs (Krol et al., 2010), protection from miR degrada-

tion (Chatterjee et al., 2011), or prevention of miRs from

binding their targets (Eiring et al., 2010). As a result, they do

not necessarily share miR-binding sites with their modulated

targets. Established sponge modulators include VCAN (Lee

et al., 2010), PTENP1 (Poliseno et al., 2010), and CD44 (Jeya-

palan et al., 2011), and nonsponge modulators include miRISC

core components, such as the members of the AGO and

TNRC6 families (Krol et al., 2010). Notably, genetic alterations

at the PTENP1, AGO2, and TNRC6A loci have all been impli-

cated in tumorigenesis (Kim et al., 2010b; Poliseno et al.,

2010; Zhou et al., 2010).
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Figure 1. MiR Activity Modulators
MiR activity modulation may be implemented by several distinct mechanisms.

We consider competition by RNAs for common miR programs (sponge effect)

separately from other mechanisms, such as those driven by protein-protein or

protein-miR interactions.

(A) RNAs modulate each other through their commonmiR regulatory program.

Up/down changes to the expression of one RNA perturb the relative abun-

dance of functioning miRs that target both RNAs, leading to a corresponding

up/downregulation of the second RNA.

(B) Nonsponge modulators regulate miR activity by assisting or inhibiting

components of the miR-mediated posttranscriptional regulatory apparatus.

These regulators may help or prevent recruitment of miRISC to the target RNA

or affect target degradation and transport.

(C) To identify candidate modulators, we sought out instances in which the

correlation between the total expression of a miR program and its target is

dependent on the expression of a candidate modulator. This image visualizes

a simplification of the process. The top heatmap shows expression of miRs in

a program (rows) across all samples (columns) in which the modulator
To evaluate both the range and potential tumorigenic role of

this class of miR-mediated interactions, we present a new

multivariate analysis method called Hermes. Hermes systemati-

cally infers candidate modulators of miR activity from large

collections of genome-wide expression profiles of both genes

and miRs from the same tumor samples. Hermes extends the

functionality of the modulator inference by network dynamics

(MINDy) algorithm, which uses measurements from information

theory to identify genes that modulate transcription factor

activity via posttranslational modifications. MINDy has been

used to infer posttranslational modulators of the MYC transcrip-

tion factor in human B cells (Wang et al., 2009b), to infer signaling

modulators of all transcription factors in human B cells (Wang

et al., 2009a), and to identify the ubiquitin-conjugating ligase

HUWE1 as a modulator of N-MYC turnover in neural stem cells

(Zhao et al., 2009).

In essence, MINDy and Hermes make inferences by esti-

mating two quantities from information theory: the mutual infor-

mation (MI) and conditional mutual information (CMI). The MI

quantifies howmuch one variable informs about another variable

(i.e., high MI between two variables implies that knowledge

about the first variable is predictive of state of the second vari-

able). The CMI calculates the expected value of MI of two vari-

ables given the third variable. Specifically, given a modulator

(M), a regulator (R), and a regulated target (T), the algorithms

dissect the regulatory dependency of these three components

by studying the difference between the CMI of the regulator’s

expression level and the target’s expression level (conditional

on the expression level of the modulator) and the MI of the regu-

lator and target expressions, DI = I[R;TjM] � I[R;T] (Wang et al.,

2006). These quantities and their associated statistical signifi-

cance can be computed from large collections of gene expres-

sion profiles (>250 samples) using a variety of estimators for MI

and CMI (Wang et al., 2006), i.e., computational tools that can

quantitatively estimate their values.

Hermes expands the MINDy information theoretic framework

to identify candidate genes that modulate miR activity (i.e.,

modulators), whose availability M affects the relationship

between the expression of miRs targeting a gene T and its

expression profile, T. We use the term ‘‘miR program’’ to indicate

a set of miRs targeting a gene and the term ‘‘common miR

program’’ to indicate the intersection between themiR programs

of two distinct genes. Analysis of Hermes-inferred sponge and

nonsponge interactions in TCGA glioblastoma data revealed

a regulatory network of previously unsuspected size. Experi-

mental validation of 29 such interactions (26 sponge and 3 non-

sponge), of which only 3 failed to validate, suggested that

Hermes has a low false positive rate and showed that its
expression is high, with the bottom line showing the total expression of the

miR program in the sample. Samples are sorted low to high based on miR

program expression. Below that is the expression of the target of the

miR program. The top heatmap shows strong inverse correlation between

miR-program expression and target expression, consistent with an active miR

program. The bottom heatmap shows the same data but this time for samples

in which modulator expression is low. Here, the negative correlation between

miR program expression and target expression is reduced, which is indicative

of a suppressed miR program.
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predicted interactions participate collectively in regulation of key

drivers of gliomagenesis and tumor subtype, that these interac-

tions mediate crosstalk between independent pathways, and

that they affect cell pathophysiology.

RESULTS

Whereas MINDy considers one candidate modulator/regulator/

target triplet at a time, Hermes integrates the analysis across

all miRs in the commonmiR program of two genes (sponge inter-

actions) or in the miR program of a target gene (nonsponge inter-

actions) using Fisher’s method (Fisher, 1925). Specific technical

details of the analysis are provided in the Experimental Proce-

dures. The cartoon example of Figure 1C illustrates the type of

interaction that Hermes can help to dissect. Here, the increase

in expression of the modulator gene is associated with a corre-

sponding increase inmutual information between the expression

of several miRs and the expression of their common target.

In principle, one could evaluate all possible modulator/miR/

target triplets and then select statistically significant ones that

share the same modulator and target via different miRs. Though

this would avoid having to select relevant miR programs a priori,

it would also entail evaluating a huge number of triplets (�4.0 3

1011), which is computationally prohibitive and will effectively

prevent the discovery of many interactions due to excessive

multiple hypothesis testing correction. Similar to MINDy, which

addresses this problem by testing only triplets for experimentally

validated or computationally inferred transcription factor-target

interactions, we use a new miR target discovery algorithm,

Cupid, which is specifically tailored to the identification of miR

programs, to reduce the number of statistical tests performed

by Hermes (see Experimental Procedures). Specifically, for

sponge modulators, Hermes considers only modulator-target

pairs (M, T) sharing a statistically significant number of miRs in

their Cupid-inferred commonmiR programs. In addition, Hermes

assumes that sponge interactions are symmetric and thus jointly

evaluates the statistical significance of both M as a miR

program-mediated modulator of T and T as a miR program-

mediated regulator of M by combining p values using Fisher’s

method (Fisher, 1925). Indeed, even though miR binding and

regulatory kinetics may differ in the two targets, most sponge-

mediated interactions should still exhibit symmetric behavior.

This is because, when averaged over the multiple miRs in their

common miR program, the differences in the number of indi-

vidual miR-binding sites and their regulatory kinetics should

average out. As shown in Experimental Procedures, symmetry

analysis confirmed that only a very small fraction of candidate

sponge interactions with strictly asymmetric supporting evi-

dence is missed by Hermes (<0.02%).

Conversely, nonsponge regulatory interactions are asym-

metric by definition, as the modulator acts via alternative

protein-protein or protein-RNA interaction mechanisms. Thus,

they can be identified by selecting candidate (M, T) pairs with

an empty or nonstatistically significant common miR program.

Furthermore, because nonsponge interactions may bemediated

by a single miR, rather than by a substantial miR program, use

of a miR prediction algorithm may introduce too many false

positive interactions. To reduce false positive predictions for
372 Cell 147, 370–381, October 14, 2011 ª2011 Elsevier Inc.
nonsponge interactions, we restricted Hermes analysis to (M,

miR, T) triplets with an experimentally validated miR-target regu-

latory interaction.

The miR Program-Mediated Regulatory Network
The statistical significance of DI = I[miR;TjM] � I[miR;T] can be

effectively estimated from a large number of samples (>250)

using a variety of CMI estimators (Wang et al., 2009b), provided

that matched miR and gene expression profiles are available for

the same samples. The Cancer Genome Atlas (TCGA) data sets

are thus ideally suited for this analysis, as they are among only

a handful satisfying these requirements. For this analysis, we

used a publicly available set of 262 matched gene (both mRNA

and noncoding RNA) and miR expression profiles from glioblas-

toma biopsies (TCGA, 2008). When used in a genome-wide

fashion on this data set, Hermes identified nearly 7,000 sponge

modulators participating in �248,000 pairwise miR program-

mediated (RNA-RNA) interactions at a highly conservative false

discovery rate (FDR < 13 10�4). These interactions are summa-

rized in Figure 2A and are enumerated in Data S1 available on-

line. In addition, Hermes identified 148 nonsponge modulators

participating in 169 miR program-mediated regulatory (mPR)

interactions with more than 100 genes (Data S1), including

many established oncogenes and tumor suppressors, such as

PTEN, RUNX1, TP63, VEGFA, EGFR, MYC, and NOTCH1,

among others. For these, the sponge mechanism is excluded

because modulator and target have no common miR regulators.

Thus, their mechanism is likely mediated by protein-protein and

protein-RNA interactions. Together, sponge- and nonsponge-

mediated interactions constitute a large and previously unchar-

acterized mPR network.

Globally, the sponge-mediated component of the mPR

network presents roughly the same size and scale-free structure

of typical transcriptional regulatory networks (Maslov and

Sneppen, 2002). For instance, ARACNe-based reverse engi-

neering of transcriptional interactions in glioblastoma dissected

�150,000 distinct TF-target interactions (Carro et al., 2010),

compared to �248,000 mPR interactions inferred by Hermes.

We modeled the network graphically, with RNAs represented

as nodes and their sponge-mediated mPR interactions as undi-

rected edges (Figure 2A). Because inferred sponge interactions

are symmetric, RNAs in this network both regulate and are

regulated by their neighbor RNAs. However, mPR interactions

sharing a common RNA are not necessarily mediated by the

same miR program. Common miR programs supporting mPR

network interactions include 18 miRs on average and up to a

maximum of 153miRs (Data S1). This suggests that, on average,

sponge modulation effects associated with each individual miR

in a common program may be negligible compared to the global

effect of the entire program.

The mPR network contains many highly interconnected (i.e.,

dense) structures, i.e., N gene subgraphs, with a number of

internal edges approximating the theoretical maximum of

Nmax = N(N � 1)/2. Indeed, the largest dense glioma mPR struc-

ture is a 564 node, 111 core subgraph (Barrat et al., 2008), i.e.,

a structure in which each RNA is directly linked to at least 111

of the other 563 RNAs (Data S1). RNAs in these dense subgraphs

are strongly coexpressed, as each RNA tracks the average
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Figure 2. The mPR network

(A) Genome-wide inference of sponge modulators identified a miR program-mediated posttranscriptional regulatory (mPR) network including �248,000 inter-

actions. Its graphic visualization uses nodes to represent individual RNAs and edges to represent miR program-mediated RNA-RNA interactions. Nodes near the

center of the graph are contained within more tightly regulated, dense subgraphs, with the densest 564 node subgraph shown in red at the center of the network.

The network is scale free, and the color bands, which include nodes with similar connectivity, have a size that increases exponentially with the distance from the

center.

(B) The correlation between expression of RNAs and the total expression of their mPR regulators (i.e., all of its mPR neighbors) is plotted as a function of the

number of its mPR regulators; genes at the center of themPR network are regulated by hundreds ofmPR regulators and are significantly correlatedwith their total

expression. Values above the blue line are statistically significant at p < 0.05.

(C) The 564 nodemPR subgraph facilitates interactions between the loci of distal genes. Colors designate the number of gene-to-gene edges connecting each 10

Mb chromosomal region.

See also Figure S1 and Data S1.
expression of the other subgraph members that it is connected

to. Densest subgraph RNAs and their interactions are shown in

red, near the center of Figure 2A. Conversely, subgraphs near

the edge of the figure, which are shown in purple, are sparser,

and their members are less coexpressed. Nodes in the network

are clustered according to their subgraph connectivity, and each

node is depicted with a color representing the size of the

subgraph that contains it. The mPR network is scale free (see

Extended Experimental Procedures). Thus, the number of

same-color nodes in a band increases exponentially with their

distance from the center (Figure 2A).

The overall regulatory effect on a node depends on many vari-

ables, including the number of its mPR neighbors, the size of the

miR programs that mediate its interactions, and the individual

kinetics of the individual miR-target interactions that it shares

with its neighbors. In general, however, nodes in larger highly

connected subgraphs will have more neighbors and will thus
be more strongly regulated by their mPR interactions. Indeed,

coexpression of RNAs in a subgraph increases exponentially

with the subgraph size, as shown in Figure 2B.

Analysis of the mPR network shows that mPR interactions

participate in distal regulation between genes within and across

chromosomes (see Figure 2C by Circos) (Krzywinski et al., 2009).

In addition, analysis of KEGG pathway genes (Kanehisa and

Goto, 2000) targeted by mPR interactions shows that this inter-

action layer mediates crosstalk between numerous pathways

(see Figure S1 and Data S1).

PTEN Expression Is Regulated by mPR Interactions
PTEN downregulation is a hallmark of gliomagenesis, and its

locus has been identified as one of the most frequently altered

in glioblastoma (Verhaak et al., 2010). Though homozygous dele-

tions at the PTEN locus are rare, appearing in less than 2% of

glioblastoma samples, PTEN is haploinsufficient, and even
Cell 147, 370–381, October 14, 2011 ª2011 Elsevier Inc. 373
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Figure 3. PTEN Expression Is Correlated with the

Expression of Its mPR Regulators

(A) PTEN is targeted by > 500 mPR regulators, and its

expression is correlated with both their total gene

expression and with deletions at their loci; in aggregate,

97% of the TCGA glioma tumors have at least one deletion

in a PTEN mPR regulator locus. We selected 13 mPR

regulators of PTEN with enriched locus deletions in PTEN

intact tumors. As shown, their collective deletions and total

expression are both significantly correlated with PTEN

expression (pD < 2 3 10�10 and pE < 5 3 10�23, respec-

tively).

(B) Surprisingly, the correlation between PTEN and the

aggregate expression across the 13 genes is significant in

both samples with an intact PTEN locus and samples with

heterozygous deletions (rD = 0.40, pD < 10�9 and rWT =

0.46, pWT < 43 10�4 by Pearson correlation, respectively).

The range of PTEN expression in PTEN heterozygously

deleted samples and in samples with an intact PTEN locus

was virtually the same.

(C) Individual siRNA-mediated silencing of 13 PTEN mPR

regulators reduced PTEN 30UTR luciferase activity in

SNB19 cells at 24 hr. Negative control targets (in gray)

were unaffected.

(D) Ectopic expression of PTEN 30UTR increased expres-

sion of 13 PTEN mPR regulators in SNB19 cells at 24 hr,

compared to empty vector. Negative control targets

(in gray) were unaffected.

(E and F) Results in SNB19were replicated in SNF188 cells

for genes that are expressed in this cell line. Fold change

was measured by qRT-PCR.

Data are represented as mean ± SEM. See also Figure S2

and Data S1.
moderate PTEN downregulation at the protein level, such as that

resulting from loss of a single allele, may be tumorigenic. Surpris-

ingly, however, the range of PTEN expression in heterozygously

deleted samples is comparable to its range of expression in

samples in which its locus is intact (Figures 3A and 3B), suggest-

ing that its expression may be tightly regulated and that a variety

of additional mechanisms may contribute to its downregulation

in tumors. PTEN regulation by miRs is well established. In glio-

blastoma, for instance, amplifications at the miR-26a locus

have been implicated with downregulation of PTEN (Kim et al.,

2010a). Interestingly, PTEN is one of the genes in the densest

111 core subgraph, with a total of 534 interactions in the mPR

network (Data S1), suggesting that its expression is strongly

regulated by sponge effect. Indeed, not only do > 80% of the

tumors with an intact PTEN locus have deletions in at least one

of the PTEN mPR regulator loci (44/53 as of March, 2011). But

the total number of such deletions in each sample is highly

predictive of PTEN expression (p < 10�4 by permutation testing)

(see Figure 3B). Interestingly, these deletions aremore predictive

of PTEN expression in PTEN wild-type tumors than in tumors

with PTEN heterozygous deletions, suggesting that mPR re-

gulators may account for missing PTEN genetic variability in

glioblastoma.

We focused on a subset of 13 PTEN mPR regulators that are

expressed in the glioblastoma cell line SNB19 and whose loci

are enriched for deletions in tumors with an intact PTEN locus

(25/53); interestingly, these 25 tumors include all of the 8/53
374 Cell 147, 370–381, October 14, 2011 ª2011 Elsevier Inc.
PTEN intact tumors with amplification at the miR-26a. The total

number of deletions at these 13 gene loci, as well as their total

mRNA expression, was found to be highly predictive of PTEN

expression not only in PTEN intact samples, but also across all

262 tumors tested in our analysis (Figures 3A and 3B and Data

S1; pDel < 2 310�10 and pE < 5 3 10�23 by Pearson correlation

analysis, respectively). Correlation between the genetics and

genomics of PTEN mPR regulators and PTEN’s mRNA expres-

sion suggests that deletions at PTEN mPR loci may collectively

represent a key contribution to loss of PTEN expression in

glioblastoma. In addition, PTEN is not the only gene whose

expression may be regulated by deletions at the loci of its

mPR regulators. In total, glioblastoma expression profiles of

292 genes, including many known drivers of tumorigenesis and

tumor subtypes such as RUNX1, PTPRN, FGFR3, TGFBR2,

and DICER1, were significantly correlated (p < 0.001) with dele-

tions at the loci of their mPR regulators (Data S1). Strikingly, the

expression profiles ofmore than half of these genes had stronger

correlation with deletions at the loci of their mPR regulators than

with deletions at their own loci.

To confirm functional mPR-based PTEN regulation by these

13 mPR regulators, we performed siRNA-mediated silencing of

each gene in SNB19 cells (see Figure S2 for silencing efficiency

estimates) and measured the effect on PTEN using a PTEN

30UTR luciferase reporter assay. Silencing of 11 of the 13 modu-

lators in SNB19 leads to a significant (p < 0.01) reduction inPTEN

luciferase activity, compared to negative controls (Figure 3C). To



further validate that this regulatory mechanism is symmetric in

nature, thus allowing PTEN expression to modulate the same

13 genes, we transfected SNB19 cells with PTEN 30UTR and

measured the effects on modulator expression (Figure 3D).

This also addressed the potential issue that siRNA-mediated

silencing may perturb endogenous miRs, possibly affecting the

results displayed in Figure 3C. Upregulation of 10 of the 13

modulators was significant (p < 0.01). Overall, 13/13 tested

interactions were positive either in siRNA silencing or in 30UTR
expression assays. To ensure that the effects are not cell line

specific, we repeated the two experiments in the glioblastoma

cell line SF188, using the subset of genes that were expressed

in this cell line (9/13) (Figures 3E and 3F). Results in SF188

confirmed the SNB19 results: indeed, silencing nine of the nine

modulators lead to a significant reduction in PTEN luciferase

activity, and transfection with PTEN 30UTR upregulated

seven of the nine modulators. Taken in aggregate, the cumula-

tive Fisher’s p value across all of the experiments is effectively

below machine precision (p < 10�221 based on an analytical

estimate).

To show that these effects are specific to mPR regulators, six

negative control genes were selected randomly among those

that (1) are not PTEN neighbors in the mPR network, (2) have

variable length UTRs, and (3) show a variety of correlation

patterns with PTEN’s mRNA expression (positively correlated,

negatively correlated, and uncorrelated). Randomly selected

genes include TMEM149 (30 base 30UTR), POFUT1 (4003 base

30UTR), DDX24 (269 base 30UTR), SLC46A3 (1416 base

30UTR), EXTL3 (2819 base 30UTR), PIK3R2 (1239 base 30UTR),
and EHMT2 (324 base 30UTR). Of these, expression profiles of

DDX24 and SLC46A3 are significantly positively correlated

with that of PTEN, whereas POFUT1 expression is significantly

anticorrelated with PTEN expression. All of these genes except

for POFUT1 were highly expressed and could be silenced in

SNB19 cells, whereas only DDX24, EHMT2, EXTL3, and

POFUT1 were expressed and could be silenced in SF188 cells.

As predicted, PTEN 30UTR luciferase activity was unchanged

after silencing these genes in both cell lines (see Figures 3C

and 3E). Furthermore, their mRNA expression was not signifi-

cantly affected following transfection with PTEN 30UTR (see

Figures 3D and 3F). As an additional negative control, transfec-

tion of both SNB19 and SF188 cells with PIK3R2 30UTR, which

is not inferred as a PTEN or an RB1 regulator, failed to affect

PTEN, RB1, and the vast majority of their selected mPR regula-

tors (see Figure S3A). Finally, transfection with PTEN cDNA,

which lacks a 30UTR region, failed to alter the expression of

tested PTEN mPR regulators (Figure S3B). Note that the expres-

sion of these genes was affected by transfection with PTEN

30UTR (Figures 3D and 3F). Taken together, these results confirm

miR-mediated interactions between predicted mPR RNA pairs,

including PTEN and its predicted mPR regulators, but not

between these genes and other randomly selected genes (nega-

tive controls), regardless of their correlation with PTEN expres-

sion or the lengths of their UTRs.

Tumor Growth Is Regulated by PTEN mPR Interactions
To test whether PTEN mPR regulators may affect tumor cell

growth, as previously shown for PTEN’s posttranscriptional
regulator PTENP1 (Poliseno et al., 2010), we measured SNB19

and SF188 cell growth rates in response to transfection of

PTEN cDNA (missing the 30UTR) and 30UTR, as well as to

siRNA-mediated silencing of PTEN and of its Hermes-inferred

mPR regulators (Figure 4). Transfection of PTEN 30UTR upregu-

lated the expression of its mPR neighbors, increased PTEN

(protein) concentration, and reduced tumor cell growth rates.

Conversely, siRNA-mediated silencing of 10/13 and 9/9 mPR

regulators reduced PTEN 30UTR-luciferase expression and

significantly accelerated SNB19 and SF188 cell growth, respec-

tively. The effect of silencing these regulators was comparable to

that of siRNA-mediated PTEN silencing, and the aggregate

p value for the significance of the increase in tumor cell growth

computed by Fisher’s method is below machine precision (i.e.,

p z 0).

To demonstrate that mPR regulation is not limited to the PTEN

and its mPR neighbors but is rather a general property of the

mPR network, we further tested the ability of RUNX1, a master

regulator of the glioma mesenchymal subtype (Carro et al.,

2010), to regulate its Hermes-predicted neighbors. Indeed,

transfection with RUNX1 30UTR in SNB19 cells was equally

effective in upregulating four of its fives mPR neighbors

(Figure S4).

Glioma Regulators Form a Dense Subgraph
in the mPR Network
The mPR network may explain significant crosstalk among

different regulatory compartments of the cell that are observed

in perturbation experiments (Chow et al., 2011). Indeed, further

investigation of the mPR network revealed that known drivers

of glioma tumorigenesis and glioblastoma subtypes RB1,

PTEN, RUNX1, PDGFRA, STAT3, and VEGFA (Carro et al.,

2010; Parsons et al., 2008; Verhaak et al., 2010) are part of

a dense subgraph ofmutuallymPR-interacting genes (Figure 5A).

Ectopic expression of PTEN 30UTR was effective in upregulating

expression of the other genes in this subgraph, and siRNA-medi-

ated silencing of DICER and DROSHA (necessary for miR

processing) was sufficient to abrogate the effect, suggesting

that these interactions are miR mediated (Figure 5B). To further

confirm symmetric posttranscriptional regulation across all

genes in the subgraph, we measured their response to transfec-

tion with the 30UTRs of all other genes in the subnetwork in

SNB19 cells by qRT-PCR, except for VEGFA, whose 30UTR
cloning was not successful. Results confirmed that ectopic

expression of the 30UTRs of genes in this subnetwork upregu-

lated expression of the other genes (Figures 5B and 5C). In

particular, ectopic expression of PTEN and RB1 30UTRs led to

a > 50% upregulation of both genes, suggesting significant

miR-mediated crosstalk between the PTEN and RB1 pathways,

both implicated in gliomagenesis. Moreover, co-ectopic expres-

sion of 30UTR pairs at 50% concentration for each UTR intensi-

fied the regulatory response (Figure 5D), suggesting that the

effect of multiple mPR modulation is more than additive, as sug-

gested by results shown in Figure 2B.

Cooperativity between some of the regulators in the subnet-

work has been implicated in high-grade gliomagenesis (Chow

et al., 2011), despite their distinct functions, lack of common

transcriptional regulation, and large genomic distances. In
Cell 147, 370–381, October 14, 2011 ª2011 Elsevier Inc. 375
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Figure 4. Silencing of PTEN mPR Regulators Accelerates Tumor Cell Growth

(A) Cell proliferation assayswere performed at 24 hr intervals, up to 4 days, following siRNA-mediated PTEN silencing,PTEN cDNA ectopic expression, andPTEN

30UTR ectopic expression. Protein levels of PTEN were assessed by western blotting at day 1.

(B) Cell proliferation assays were performed at 24 hr intervals, up to 4 days, following siRNA-mediated silencing of 13 PTENmPR regulators. Nontarget (NT) siRNA

was used as a control.

(C and D) Results in SNB19 were replicated in SNF188 cells for genes that are expressed in this cell line.

Data are represented as mean ± SEM. See also Figure S3.
particular, the loci of tumor suppressors PTEN and RB1 are

frequently deleted in high-grade glioma (PTEN, 80%; RB1,

33%; PTEN+RB1, 85%). Analysis of 30UTR luciferase activity

of five of the six genes (Figure 5A), following siRNA-mediated

silencing of PTEN and RB1, confirmed the presence of the

predicted regulatory interactions (Figure 6). Thus, our results

suggest that PTEN and RB1 regulate one another posttranscrip-

tionally through 32miRs in a common program (Data S1) and that

their availability significantly affects expression of other genes in

the same subgraph, with an established role in gliomagenesis.

Overall, six of eight predicted interactions were confirmed by

these assays. Additionally, of 11 experimentally validated inter-

actions between these genes, six were predicted, suggesting

a false negative rate of �45%. Full analysis of mPR interactions

between genes in selected KEGGpathways (Kanehisa andGoto,

2000) is presented in Figure S1 and enumerated in Data S1.

Nonsponge-Related miR Activity Modulation
As discussed, to identify nonspongemiR activity modulators, we

restricted our analysis to candidate modulators of literature-vali-

dated miR-target interactions. Because prediction of individual

miR targets is still inaccurate, we could not rely on the robust
376 Cell 147, 370–381, October 14, 2011 ª2011 Elsevier Inc.
statistics afforded by largemiR programs, as usedwhen predict-

ing sponge modulators. Even with this substantial limitation,

Hermes could identify 148 miR activity modulators, suggesting

that this number may increase substantially once a more

comprehensive, high-accuracy miR target network is available.

To experimentally confirm nonsponge modulator candidates

inferred by our analysis, we selected three interactions,

two affecting PTEN and one affecting RUNX1. These include

WIPF2, as a miR-mediated regulator of RUNX1, and PALB2

and WNT7A, as miR-mediated regulators of PTEN (Figure 7A).

Both PTEN and RUNX1 are known drivers of gliomagenesis

(Carro et al., 2010; Verhaak et al., 2010), and genes that regulate

their expression may play a role in this disease.

Upregulation of WNT7A by transfection of its cDNA sequence,

which lacks both 50 and 30UTRs, led to 1.5-fold upregulation of

PTENorPTEN 30UTR luciferase activity (Figures 7B and 7E), sug-

gesting that, as predicted, WNT7A regulation of PTEN is miR

dependent, but not sponge mediated. Silencing PALB2 led to

a 1.5-fold upregulation of PTEN or PTEN 30UTR luciferase

activity (Figures 7C and 7E), and silencing WIPF2 led to a

3-fold upregulation of RUNX1 expression and 2-fold upregula-

tion of RUNX1 30UTR luciferase activity (Figures 7D and 7F),



both consistent with computational predictions of miR-mediated

downregulation. Consistent with miR-dependent regulation,

DROSHA and DICER silencing (Figure 7G) abrogated PTEN

and RUNX1 regulation by WNT7a/PALB2 and WIPF2, respec-

tively (Figures 7E and 7F). Expression of validatedmiRs targeting

these genes, such as mir-21 (WNT7A), mir-106a (PALB2), and

mir-17-5p (WIPF2), were relatively unchanged (Figure S5).

DISCUSSION

Hermes Unveils an Extensive Layer of miR-Mediated
Posttranscriptional Regulation
Genome-wide Hermes analysis supports the existence of a miR-

mediated, posttranscriptional regulation layer of unsuspected

magnitude, the mPR network, effected both by sponge and non-

sponge interactions. Though the specific mechanism of sponge

modulation and the potential for miR-gene interactions were

previously reported (Arvey et al., 2010; Carro et al., 2010;

Krol et al., 2010; Poliseno et al., 2010; Su et al., 2011), both the

extent and the functional relevance of this regulatory layer

were unknown. In terms of size, the mPR layer rivals transcrip-

tional regulation, supporting regulation of thousands of RNA

species and modulating crosstalk between distinct regulatory

pathways. Changes in two or more mPR regulators of a target

gene may have effects comparable to transcriptional regulation

(i.e., >2-fold changes), as suggested by Figure 2C and as shown

in Figures 5C and 5D.

ThemPR network discovered here is implemented by sponge-

mediated interactions that are generally symmetric in nature and

in a sponge-independent fashion by multiple gene products

(e.g., proteins and RNAs) that affect miR target regulation asym-

metrically. Given the genome-wide nature of the algorithm used

to infer nonsponge mPR regulation, elucidation of the variety of

mechanisms that may support them cannot be accomplished

at this stage. However, the experimentally validated existence

of this class of interactions suggests a variety of mechanisms

for future testing, some of which have been previously elucidated

(Figure 1B). A key and potentially confusing point is that our anal-

ysis suggests that mPR sponge interactions are mediated by

relatively large miR programs, including, on average, 18 and up

to 153 miRs (Table S1). As a result, the effect of individual

miRs is relatively negligible, and mPR regulation is unlikely to

be significantly affected by modulation of individual miRs or

miR-binding sites in isolation. In addition, two other articles in

this issue of Cell (Tay et al., 2011; Karreth et al., 2011) also report

the identification of a regulatory network of miR ‘‘sponges’’ (or

competitive endogenous RNAs) in cancer, and a third article in

this issue (Cesana et al., 2011) reports the discovery of a long

noncoding RNA that regulates muscle differentiation via

a ‘‘sponge-like’’ mechanism, as well.

Importantly, though we have validated a substantial set of

miR-mediated PTEN modulators in multiple cell lines, this by no

means constitutes a thorough validation of the entire network.

Yet, out of the 29 predicted interactions that we tried to experi-

mentally validate, including 26 sponge-mediated ones (Figures

3C–3F, 5, 6, and S4) and three nonsponge-mediated ones (Fig-

ure 7), all but six were confirmed (all but three if one considers

both 30UTR expression and siRNA-mediated silencing assays
in Figures 3C and 3D). This suggests that our false positive rates

are low (�10%–20%), comparing favorably with false positive

rates in typical high-throughput experimental procedures. Thus,

if globally validated using the experimental assays proposed in

this manuscript, which is not currently feasible even using high-

throughput approaches, a substantial number of the predicted

interactions should be confirmed. Furthermore, we validated all

of the pairwise interactions in the dense subgraph that includes

PTEN, STAT3, VEGFA, PDGFRA, RUNX1, and RB1. Of the 11

that were experimentally validated, five were not predicted, sug-

gesting a false negative rate of �45%, which is also competitive

with experimental false negative rates.

In addition, limitation of nonsponge modulator analysis strictly

to literature-validated miR-target interactions suggests that,

when extrapolated to the full set of miR-target interactions in

a cellular context, nonsponge interactions may be far more

numerous. Finally, though we focused on regulation of mRNAs

through miRs that target 30UTRs, miR-mediated regulation is

not restricted to 30UTR targeting (Chi et al., 2009; Hafner et al.,

2010), and miRs are known to target noncoding RNAs (Poliseno

et al., 2010), which suggests that the scope of this network needs

to be further expanded.

MiR Activity Modulators Regulate Pathogenesis
of Disease
It is important to note that, though individual miR-mediated inter-

actions may be weak, their regulatory effect in combination is

substantial (Figures 2B and 5D). Furthermore, their ability to

affect cellular phenotype is also significant and comparable to

what was previously described for PTENP1 (Poliseno et al.,

2010), whose deletion was shown to be tumorigenic in vivo.

This suggests that miR-mediated interactions between genes

may play an important role in disease initiation and progression

when dysregulated. Indeed, analysis of large glioblastoma data

sets revealed that miR-mediated PTEN regulators are highly

predictive of PTEN downregulation even when the PTEN locus

is intact and may account for a significant proportion of the

missing genetic variability of the PTEN locus.

In this manuscript, we focused on PTEN as a key driver of glio-

magenesis whose locus is often altered in glioblastoma samples

(Verhaak et al., 2010). However, regulation bymiR activity modu-

lators is not limited to PTEN or to glioma. In this study, we

showed that a variety of well-established drivers of tumorigen-

esis and tumor subtype in glioblastoma are regulated by miR

activity modulators, and our computational predictions suggest

that other established oncogenes and tumor suppressors are

similarly regulated. Because these effects are miR mediated

and miR expression is strongly cell context dependent, mPR

networks are likely to be context specific, and their structure

and contribution to disease initiation and progression will need

to be studied independently in different contexts.

Direct Screening Methods Are Required
for Systematic Prediction
Hermes, the algorithm used for the identification of miR activity

modulators, presents two key advantages. First, by definition,

nonsponge modulators cannot be inferred by miR target anal-

ysis. Thus, Hermes provides the only systematic computational
Cell 147, 370–381, October 14, 2011 ª2011 Elsevier Inc. 377



A B

C

D

Figure 5. 30 UTR Transfections Confirm miR-Mediated Interactions between Key Drivers of Glioma

(A) A tightly interconnected mPR network subgraph was identified, which includes established drivers of gliomagenesis. Sponge-mediated interactions inferred

by Hermes are shown as dotted green lines.

(B) Gene expression fold change of PTEN, PDGFRA, RB1, RUNX1, STAT3, and VEGFA at 24 hr following ectopic expression of PTEN 30UTR, compared to an

empty vector, with (right) and without (left) siRNA-mediated silencing of DICER and DROSHA.

378 Cell 147, 370–381, October 14, 2011 ª2011 Elsevier Inc.
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siPTEN siRB1 siPTEN siRB1 

A 3'UTR luciferase activity in SNB19 B 3'UTR luciferase activity in SF188  Figure 6. 30UTR Luciferase Activity Assays

Confirm miR-Mediated Interactions between Key

Drivers of Glioma

(A) 30UTR luciferase activity of PTEN, PDGFRA, RB1,

RUNX1, andSTAT3weremeasured in SNB19 cells at 24 hr

following siRNA-mediated silencing of PTEN and RB1

compared to nontargeting siRNAs (NT5) as control (in

black).

(B) Results in SNB19 were replicated in SNF188 cells.

Similar to Figure 5, y axes start at 0.5.

Data are represented as mean ± SEM.
approach to determine this kind of interaction. Second, though

it may be possible to infer sponge modulators by miR target

analysis alone, for instance by identifying genes whose tran-

scripts share common miR-binding sites, identification of func-

tional miR targets is still largely inaccurate, with different

methods predicting widely different interactions. Hermes cir-

cumvents this problem by first integrating evidence from

multiple miRs in a common program and then by requiring

direct, multivariate expression-based evidence for the predicted

interaction by conditional mutual information analysis. Thus,

false negative predictions by miR target prediction algorithms

are much less critical than false positive predictions, as the

latter dramatically reduce the statistical power of the method

by increasing the number of hypotheses tested by the algo-

rithm. On the other hand, even if miR program size is reduced

by false negatives, conditional mutual information analysis can

still filter false positive interactions. As a result, rather than

relying on existing algorithms for miR target prediction, which

still have substantial false positive rates, we implemented Cupid

specifically to reduce false positive predictions even if at the

expense of some false negative predictions (Extended Experi-

mental Procedures). Indeed, Cupid predicts fewer miR-target

interactions than the intersection of three established algo-

rithms, TARGETSCAN (Lewis et al., 2005), PITA (Kertesz et al.,

2007), and MIRANDA (Enright et al., 2003). However, when we

replaced Cupid predictions by the intersection of the three algo-

rithms, 25 out of 26 experimentally validated mPR interactions

in this manuscript were missed. As a result, though our analysis

does not suggest that Cupid may outperform other algorithms in

terms of miR target identification, its specific design, aimed at

minimizing false positives at the expense of false negatives, is

uniquely tailored to inferring miR programs for further Hermes

analysis.
(C) Gene expression fold change of PTEN, PDGFRA, RB1, RUNX1, STAT3, and VEGFA at 24 hr fol

STAT3 30UTRs, compared to empty vector.

(D) Gene expression fold change of PTEN, PDGFRA, RB1, RUNX1, STAT3, and VEGFA at 24 hr follo

transfections of PTEN and PDGFRA, PDGFRA and RB1, PDGFRA and STAT3, and RB1 and STAT3

highlight the significance of the change, note that y axes start at 0.5 to better visualize the ratio betw

Data are represented as mean ± SEM. See also Figure S4.

Cell 147, 37
Conclusions
Periodically, we are facedwith the emergence of

new regulatory layers, the posttranscriptional

and histone modification ones being the latest

additions. Every time that this happens, we
discover that these layers account for a significant amount of

missing genetic and epigenetic variability in the etiology of

disease. As a result, as suggested by our data, it is reasonable

to expect that this extensive miR-mediated interaction layer,

which allows gene regulation without direct transcriptional or

even posttranscriptional interactions, will also provide a number

of clues to the dysregulation of keymechanisms of pathogenesis

as well as to the regulation of normal cell physiology.

EXPERIMENTAL PROCEDURES

We used a miR activity modulator screening algorithm, Hermes, to identify

candidate miR activity modulators by finding genes whose expression is

correlated with deviations in coexpression between miR programs and their

targets using conditional mutual information. We used an integrative miR

target prediction algorithm, Cupid, to predict miR-target interactions and to

assemble miR regulatory programs for 30UTRs. We identified genomic alter-

ations using snapCGH (Marioni et al., 2006). Level 3 Agilent gene and miR

expression data for glioma tumors were obtained from TCGA (TCGA, 2008).

The glioblastoma cell lines SNB19 and SF188 were cultured under standard

conditions. Transient transfections of expression vectors were used to overex-

press genes and 30UTRs; siRNAs were used for mRNA silencing; real-time

PCR, luciferase activity, western blots, and proliferation assays were per-

formed according to standard protocols. Our methods and experimental

procedures are described in detail in the Extended Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures,

five figures, and one data file and can be found with this article online at

doi:10.1016/j.cell.2011.09.041.
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Figure 7. Validation of Nonsponge miR

Activity Modulators

(A) Validated nonsponge modulators include

WNT7A and PALB2 (predicted to induce miR-

dependent upregulation and downregulation of

PTEN, respectively) and WIPF2 (predicted to in-

duce miR-dependent downregulation of RUNX1).

(B) PTEN 30UTR luciferase activity and activity of

the empty luciferase vector (pEZX) were measured

at 24 hr following ectopic expression of pCMV-

WNT7A or empty vector pCMV.

(C) PTEN 30UTR luciferase activity and activity of

the empty luciferase vector (pEZX) were measured

at 24 hr following siRNA-mediated silencing of

PALB2 versus nontarget siRNA.

(D) RUNX1 30UTR luciferase activity (pMirTarget-

RUNX1 30UTR) and activity of the empty luciferase

vector (pMirTarget) at 24 hr following siRNA-

mediated silencing of WIPF2 and nontarget (NT5)

siRNA.

(E) qRT-PCR analysis of PTEN gene expression

fold change at 24 hr following ectopic expression

ofWNT7A and siRNAmediated silencing of PALB2

without (left) and with (right) siRNA-mediated

silencing of DROSHA and DICER.

(F) qRT-PCR analysis of RUNX1 gene expression

fold change at 24 hr following siRNA-mediated

silencing of WIPF2 without (left) and with (right)

siRNA-mediated silencing of DROSHA and

DICER.

(G) Efficiency of WNT7A ectopic expression and of

siRNA-mediated silencing of PALB2, WIPF2,

DICER, and DROSHA, measured by qRT-PCR

analysis.

Data are represented as mean ± SEM. See also

Figure S5.
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