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Abstract-The numerical analytic method combined with the comparison one is used to establish 
solvability of differential algebraic systems with integral boundary conditions. Existence results are 
formulated under assumptions that corresponding functions satisfy the Lipschits conditions in matrix 
notation. A problem with deviated arguments is aiso discussed. @ 2003 Elsevier Science Ltd. All 
rights reserved. 
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1. INTRODUCTION 
A useful approach in the studying of existence of solutions is Samoilenko’s numerical analytic 
method (for details, see [1,2]). In this paper, we apply this technique to differential algebraic 
systems of the form 

44 = f(t,+), y(t)>, t E J = [O,T], 

Y(t) = d44t), y(t)), tEJ (1) 

with the integral boundary condition 

J E A049 + D(s)z(s) ds + A&l”) = d, 
0 

(2) 

where f E C(J x RF’ x IV, WP), g E C(J x WP x IV, IW). The value < is a fixed constant and 
0 -c t 5 T. In the above, (Ao)~x~, (Adpxp, Dpxp, and dpxl are given matrices. The application 
of numerical analytic method to differential systems s’(t) = f(t,s(t)) with condition (2) can be 
found, for example, in papers [l-lo] if D(t) = 0 on [O,t], see also [ll]. 

The numerical analytic method combined with the comparison one is used to formulate corre- 
sponding existence results for problems of type (l),(2) under the assumption that f and g satisfy 
the Lipschitz conditions (with respect to the last two variables) in matrix notation. The aim 
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of the present paper is to discuss the conditions under which the solution can be obtained by 
the method of successive approximations and Seidel’s method too. A more general differential 
algebraic problem with deviated arguments is also considered and corresponding existence results 
are given in Section 5. 

2. ASSUMPTIONS 

Put 

U(G x, Y) = ( 1 - 

J c 
B. = SD(S) ds, 

0 J c 
B1 = D(s) ds, 

0 

B2 = (AIT + B&l, B3@o) = B2[d- (-40 +A, +&)~ol, 

assuming that the matrix B2 exists. Apply the numerical analytic method to problem (l),(2) to 
obtain the following auxiliary system 

J c 
x(t) = 30 + Lf(t, x, y) - Bzt D(s)U(s, 2, Y) dts + t& @o) = F (6 2, Y; 10) , 

0 t E J, (3) 

Y(t) = Sh da y(t)>, t E J. 

Note that if x satisfies the first equation of problem (3), then condition (2) is satisfied too. 
Moreover, F(0, z, y; 50) = 30, so z(0) = 3%. 

Let us introduce the following. 

ASSUMPTION HI. 

lo There are matrices Kpxp, Lpxp with nonnegative entries such that 

If@, x, Y) - f (C %8)1 I K lx - zl+ L Jy - 51, 

foralltc J, x,~EWP, y,ji~WQ. 
2O There are ma&Ices Mqxp, N qxq with nonnegative entries, p(N) < 1, and such that 

for aI1 t E J, x, Z E WP, y, g E W 9. Here I . I denotes the absolute value of the vector, 

so 14 = hl,. . . , bpbT or IYI = (IYII,. . . ,l~~l)~. Moreover, p(N) denotes the spectral 
radius of the matrix N. 

ASSUMPTION Hz. For any nonnegative function h E C( J x IW’, W’,), there exists a unique solution 
u E C( J, W”,) of the comparison equation 

Q(t,u) + [Bzlt oC ID(s)IR(s,~)ds + h(t,zo) = u(t), J t E J, 

where 

n(t,U)= (l-$)lAu(s)ds+$lTAu(s)ds, withA=K+L(I-N)-‘M. 

Put 

cl1(t,u,v) = l- ( ;) J’ [Ku(s) + LV(S)] ds + ; lT [KU(S) + Lv(s)] ds. 
0 
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Then, by Assumption Hr(lO), for t E J, we have 

IU(4 2, Y) - a (t, 2, &)I I fh (6 Iz - 31 9 IY - sl) I 

IF (6 3-G y; 10) - F (t, f&8; so>1 I l=w, 2, Y> - u (6 3, iAl 

+lBzlt o’l~(~)[~f(~,~,~)-~~(~~~,8)ll ds 
J 

I 01 (t, 15 - 4 7 IY - ?I> 

(5) 

+ P2l t 
J 

oc I&>l& (s, lz*- 4 , IY - %I> ds. 

3. LEMMAS 

For t E J, TX = 0, 1, . . . , let us define the sequences {u,, w,} by formulas 

%+1(t) = fh (t, %I, w,) + lB2l t 
J 

’ IWs)lfh (s, wa, wn> ds, uo(t) = ‘Ii(t), 
0 

%+1(t) = M%(t) + Jhl(t), wo(t> = (I - q-’ [Muo(t) + Is@, x0, Yo) - YO@)ll I 

where u is defined as in Assumption Hz with 

h(t,zo) = IF(t,zo,~o;zo) -zo(t)l +fi(t,f) + lB2lt 
J 

' ID(s)li=i(s, r) ds 
0 

for T(t) = I&~o,Yo) - YoW H ere a is defined as R with the matrix B = L(I - N)-’ instead 
of A. 

To obtain a solution of problem (3), we shall first establish some properties for sequences 
{u,, w,}. They are given in the next two lemmas. 

LEMMA 1. Let Assumptions HI and Hz be satisfied. Assume that the matrix B2 exists. Then 

%+1(t) = un(t) < uo(t), %+1(t) I wn(t) I we(t), ~EJ, n=O,l,..., 

and the sequences {un, w,} converge uniformly to zero functions, so un(t) ---) 0, w,,(t) + 0, t E J 
iflz+m. 

PROOF. Note that the matrix (I - N)-’ exists and its entries are nonnegative because of the 
condition p(N) < 1. Indeed, fll(t,uo,wo) = fl(t,u,-,) +fi(t,r). Then 

J 
’ w(t) = %(t, uo, wo) + l&It lW)I%(s, 210, ‘wo) ds 

0 
5 E 

= w, uo) + lB2k 
J 

lD(s)lQ(s, uo) ds + fi(t, r) + l&It PWl~z(s, r> ds 5 uo(t), 

wl(t) = Muo(t) + N(I -ON)-1 [M%(t) + r(t)] I we(t), 
J 0 

t E J. 

By induction in n, we are able to prove that 

%+1(t) I %z(t), %+1(t) I w%(t), tEJ, n=O,l,.... 

Now, if n + 00, then ‘1~, --) u, w, + w, where the pair (u, w) is a solution of the system 

J 

E 
u(t) = 01(&u, w) + l&It IWsKh(s, 21, ‘1~) ds, t E J, 

0 

w(t) = MU + NW, t E J. 

Hence, w(t) = (I - N)-lMU(t), so Rl(t, U, w) = fl(t, u) showing that u is a solution of problem 
u(t) = Q(t,u) + IBzlt s,’ ID(s)(R(s,u)ds, t E J. By Assumption HZ, zl(t) = 0 on J and then 
w(t) = 0, t E J. The proof ls complete. 



602 T. JANKOWSKI 

LEMMA 2. Assume that f E C(J x IV’ x Wq, IW), g E C(J x II@’ x Wq, IV), and (Ao)~~~, (A&,,,, 
D pxp, and dpxl are given matrices. Assume that the matrix Bz exists. Let Assumptions HI and 
Hz be satisfied. Then we have the estimates 

1 

I%(t) - xo(t)l 5 m(t), t E J, 

lGl+k(t) - Xk@)l 5 uk(t)r t E J, 

where zo E C’(J,lW), yo E C(J,Wq), and 

Iv&> - yo(t)I 5 wo(t>, t E J, 

IYn+k@) - !&@)I I war t E 4 (6) 

%+1(t) = F (4 &a, 3/n; zo> 3 Yn+l(t) = 9 (6 %I, ?/?a) I t E J. (7) 

Moreover, 

Ao~,+l(o) + Alxn+l(T) + I o’ D(sbn+l(s) ds = 4 n=O,l,.... 

PROOF. Put R(t; 30) = JF(t, 20, y00; ZO) - xo(t)l, r(t) = lg(t, 20, YO) - YoWl. Indeed, 

In(t) - zo(t)l = R (t, 20) 5 h (410) I uo(t>, t E J, 

IYl@) - Yo(t)I = r(t) F [w - v-’ + q r(t) 5 we(t), t E J. 

Assume that 

l4) - zo(t)l 5 w(t), IYkW - YOM I we(t), t E J, 

for some k 2 0. Then, by (5), we have 

bk+l(t) - xO(t)l 5 IF(t,Zk,Yk;zO) - F(t,zO,T/o;fO)l + R(t,*O) 

I f-h (t, 210, ~0) + IB2l t 
I 

’ ID(s)IRl (s,uo, wo) ds + R (t; 2,) = uo(t)r 

bk+l(t) - ?/O(t)1 5 b(t, Zk, 3/k) - 9 (&SO, ;O,I + r(t) 5 Muo(t) + NWo(t) + T(t) = We(t). 

Hence, by mathematical induction, we have 

l%(t) - zo(t)l 5 ho@), IYnW - YOW 5 ~o@L t E J, 

for n = O,l,. . . . Basing on the above, let us assume that 

bn+k(t) - Zk(t)l < ‘1Lk(t)r bn+k(t) - ?/k(t)/ 5 wk(t), t E J, 

for all n and some k 2 0. Then, by (5), we see that 

I%+k+l(t) - Zk+l(t)l = IF@,-%+k,!/n+k;~O) - F(t,zkrvk;~o)I 

_< RI (t,Uk,Wk) + IBzlt 
I 

’ ID(s (s, uk, wk) ds = Uk+l(t) 

h/n+k+l@) - Yk+l(t)l = b(t, %+k,Yn+k) -g(t:zk,Yk)l 5 Muk(t) + N”Jk(t) = Wk+l(t), 

for t E J. Hence, by mathematical induction, the estimates (6) hold. It is quite simple to verify 
that x,,+i satisfies integral boundary condition (2) for any n = 0, 1, . . . . It ends the proof. 
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4. EXISTENCE RESULTS 

Put 

h(zo,yo) = {(qy) E cl (J,W) x C(J,WQ) : Izo@) -z(t)1 I uo(t), lYO@) - YWl I ~O@))~ 

Combining Lemmas 1 and 2, we have the following. 

THEOREMS. Assumethatf~C(JxlIPP~R~,W~),g~C(JxWPxW~,W~),~d (Ao)~~~,(AI)~~~, 
D pxp, and dpxl are given matrices. Assume that the matrix Bz exists. Let Assumptions Hi 
and H2 be satisfied. Then, for every lo E W p, there exists a solution (2, 8) of problem (3) where 
z*(t) + z(t), y*(t) + g(t), t E J as n 4 00, and we have the estimates 

lZ&) - WI 5 %(a Ivn(t) - ml I %@)7 t E J. 

The pair (5, g) is a unique solution of problem (3) in the class h(zo, yo). 
Moreover, (z, Q) is the solution of problem (l),(2) iff 

1 T 

TO J 
’ f(s,f$s),g(s>) ds+Bz D(s)Lcf (s, 5, g) ds = B3 (Z,) . 

PROOF. By Lemmas 1 and 2, zn(t) --t z(t), y,,(t) + g(t), t E J. Indeed, (3,s) is a solution of 
problem (3). We need to show the uniqueness of (3,~). Assume that problem (3) has another 
solution (X,Y) such that IX(t) - zo(t)l < uo(t), IY(t) - yo(t)l L: we(t) on J. Then, by (5), we 
have 

IW - X@)l I E(t) - %+1Wl + IF (t, G, in; z.0) - F (6 X, Y; zo)l 

I %+1(t) + Ql @, I zn - XI, IY~ - YI) + lB2l t / 
E 

01 (s, 1~ - XI, IY~ - YI) ds 
0 

and 
Ii@> - WI I %+1(t) + M k%(t) - X(t)1 + N I?&> - WI 1 

for t E J. Hence, by mathematical induction, we have 

lit(t) - x(t)1 I2u,+1(t), IYn(Q - ml I2%+1($ tcJ, n=O,l,..., 

showing that 5 = X, jj = Y on J. It ends the proof. 

REMARK 1. Let the matrix B2 exist. Assumption Hz is satisfied if 

P(Z) < 19 where 2 = I+ lB2lT [ 1’ ID( ds] $4. (8) 

TO get condition (8), we need to apply the Banach fixed-point theorem to equation (4). Denote 
the left-hand side of problem (4) by A. Let U, fi E C( J, R”,). Then 

[Au - Acl = fl(t, u) - fl (t, a) + (B21 t 
I 

’ ID(s)1 [Q(s, 4 - Q(s, ai] ds 
0 

5 2 Ey b(t) - a(t)I , 

because 

IO(t,u) - R(t,fi)I 5 A /u(s) - ii(s)1 ds + f /’ t 14s) - a(s)I ds 1 
t y@(t) - ti(t)l 5 ;Ang$u(t) - a(t 
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Hence, operator A is a contraction mapping so problem (4) has a unique solution, by the Banach 
fixed-point theorem. 

REMARK 2. If D(t) = OpXpr t E [O,c], then 2 = (T/2)A. 

REMARK 3. If A0 = Al = OPxP, and D(t) = Ipxp, t E [O,Ej, then 2 = (1 + (2T/t))(T/2)A. 

REMARK 4. Indeed, condition p(Z) < 1 holds if 

1+ llhll T1’ IMs)ll ds 
I 

< 27 

where 11 . II denotes the Tchebysheff maximum norm. 

In place of the above considered process of successive approximations (7), it is sometimes 
convenient to use Seidel’s method described by 

1 

~~+l(~) = ~(~,&l,~rL;~o), %+1(t) = 9 (6 %, L%n) 1 

&.+1(t) =9@,&+1,A), 

or 

%+1(t) = ~(~,%%+1;~0) 7 
(9) 

for t E J and n = 0, 1, . . . . 
Let us define the following sequences: 

fro(t) = uo(t>, Co(t) = we(t), 
s E 

&+1(t) = %(~,~n,Ga) + Pzlt ID(s)1 v RI (3, %,,G) ds, 7.&+1(t) = Miin+lPt) + NGl(t), 

Co(t) = uo(t), ao@) = we(t), l&+1(t) = Mii*(t) + Nti,(t), 
s E 

%+1(t) = fh (t, on, %+I) + l&l t 
0 

ID(s (s, %@n+l) ds, 

for t E J, n = 0, 1, . . . . Now, we are able to show the following result by mathematical induction. 

LEMMA 3. Let Assumptions HI and H2 hold. Assume that B2 exists. Then 

o,(t) I ‘Il,@), *n(t) I wn(t), tc J, n=O,l,... s’, 

h(t) I %x(t), Gz(t) I wn(t), tEJ, n=O,l,..., 

and 
f&(t) --+ 0, tin(t) --) 0, &l(t) + 0, 271,(t) -+ 0, ifn--,co 

The simple consequence of Lemma 3 is the following. 

THEOREM 2. Assume that all assumptions of Theorem 1 are satisfied. Then the assertion of 
Theorem 1 holds and Z,(t) + 3(t), jjn(t) 4 &(t), i&(t) --) Z(t), &n(t) + g(t), t E J as n -+ oo, 
for %0(t) = 50(t) = so(t), go(t) = Go(t) = ye(t), t E J. Moreover, we have the estimates 

I%(t) - qt)l I a,(t), I?%$) - B@)( I &l(t), t E J, 

I%&) -WI I iin(t), Mt) - B(t)1 I tin(t), t E J, 

forn=O,l,.... 
Note that iterations (7) and (9) converge to (%,Q) under the same conditions but basing on 

Lemma 3 we see that the error estimates for (9) are better in comparing with the corresponding 
estimates for (7). This notice is important since {znr~,,}, {Z,,&,}, and {5&,&n) are approxi- 
mated solutions of problem (3). 



Samoilenko’s Method 605 

5. DIFFERENTIAL ALGEBRAIC SYSTEMS 
WITH DEVIATED ARGUMENTS 

Let LY, p, y E C( J, J). Let us consider the following problem: 

z’(t) = f (6 44)>, Y(m)> 7 tEJ=[O,T], 

Y(t) = 9 (t, 4-G)), y(t)) , t E J, (10) 

with condition (2), where f E C(J x WP x W*,WP), g E C(J x WP x lW,W). According to the 
numerical analytic method find the vector 6 such that 

z(t) = 50 + Pz@) + bt, withPz(t)= (1-~)~*(s)d8-~~T1(S)ds, 

satisfies condition (2). Then, by substituting z(t) = 30 + si z(s) ds, and introducing it to prob- 
lem (lo), we have the following auxiliary problem: 

z(t) = f 
( 

t, 30 + Pz (a(t)> - B24t) 1' D(s)Pz(s) ds + & (zo) 4% YW)) 

=F(hz,Y;Zo), t E J, 

y(t) = g 
( 

t, 3, + Pz (-r(t)) - &r(t) /' ~(s)Pz(s> ds + B3 (2.0) r(% y(t) 
0 

= G (C z, y; 20)) t E J, 

(11) 

where the matrices B2 and B3 are defined as in Section 2 assuming that B2 exists. 
Now, let us define the sequences {zn, yn} by formulas 

Zn+lO) = F@, zn, yn; 30) I i!c J, ZOEC(J,W~), 

Yn+l(t) = G(G%,Yn;~o) 1 tc J, YOEC(J,W~). (12) 

ASSUMPTION Hs. For any nonnegative function H E C( J x JRP, lR$) there exists a unique solution 
v E C(J, IR”,) of the comparison equation 

v(t) = KQo(+),v) + [KI&l4~) + W - WIWBzlr(P(Q)] 1’ ID(s)P 

+ L(I - NyMRo(y(P(a,v) + H(hZo), 

Note that, by Assumption HI, we have 

IF (C 2, y; ao) - F (6 5, g; Zo)l 

= f (h 30 + W&)) - &4) I' D(s)Pz(s) ds + B3 (zo)a(t), y@(t))) 

- f (6 zo + W4)) - &4) Jo' D(s)Pz(s) ds + B3 (20) 4), &(PW)) 

I K IP+x(t)) - P3(cx(t))l + K IBzl cx(t) 1’ ID(s)1 IPz(s) - PS(s)l ds 
0 

I 

(14) 

+ LIYOW)) - !xw))l 

I KRo (a(t), 12 - 31) + K I&) a(t) 1’ P(s)lfio @,I5 - fd) ds 
0 

+ L Iv@(G) - mw)l ? 
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= I( g t, 50 + Px (7(t)) - B27@) 6’ D(s)Pz(s) ds + B3 (50) y(t), y(t) 

) 

s < 
-9 6 30 + w7w - Bzr(t) D(s)Ws) ds + B3 (3.0) -Y@), s(t) 

0 

5 M IPx(r(t)> - Wr(t))l + ~4 P2lN /’ lW)I IWs) - Ws)l ds 
0 

+ N lY@) - iml 

(15) 

5 Moo (r(t), lx - 51) + ~4 I&l N /’ IW)IQo (8, b - zl) ds 
0 

+ N Iv(t) - BM . 

For 12 = O,l,. . . , let us define the sequences {un, w,,} by relations 

uo(t) = 4th 

%+1 w = KRo (a(t), zln) + K l&l +> 1’ IWWo (s, 4 ds + b@W) (16) 3 

w,+I(~) = Mflo(-dt), zcn) + MI&l-r(t) A’ ID(s>lflo(s, u,,) ds + NW,(t), 

we(t) = (I- NJ-’ 
[ 
Mao (r(t), w,) + M l&l 7(t) /’ lD(s)lfio (S,NI) ds + a(t) 

0 I 

(17) 
, 

where v is defined as in Assumption H3 with 

H (4 30) = L(I - w’+(t)) + IF@, zozo, yo; 30) - zo(ql , a(t) = IS (t, .zo, 310; zo> - YOM . 

LEMMA 4. Assume that f E C(J x WP x IV, IF’), g E C(J x WP x JR*, IV), LY, ,k?, 7 E C(J, J), 
and (Aolpxpt (Adpxp, Dpxpt and dpxl are given matrices. Assume that the matrix B2 exists. 
Let Assumptions HI and Hs be satisfied. Then the sequences {u,, w,} of form (16),(17) are 
nonincreasing and converge uniformly to zero functions if n + 00. Moreover, we can show that 

I%&) - zo(t>l 5 WI(t), 
bn+k(t) - Zk(t)l 5 Uk(t), 

Iv744 - YOW 5 wo@L 
bn+k(t) - Yk(t)I 5 Wk(t), 

08) 

for t E J and n = 0, 1, . . . , where z,, and yn are defined by (12). 

PROOF. By mathematical induction, it is simple to show that 

%&+1(t) I zcn(t) 5 Uo(G w,+1@) 5 w&> I wow9 tcJ, n=O,l,... 

Hence 21, + 0, wn + 0 on J, by Assumption Hs. Now we are going to show (18). Note that 

121(t) - zo(t)l = IF@, 2o,yo;20) - .zo(t)l = R@,Zo) I uo(Q, 

Iyl(t) - ?/o(t)1 = IQ (4 zo, yo; z ) -y&)1 = a(t) 5 [(I - N)(I - N)-’ + N(I - N)-l] a(t) 0 
= (I - Iv)-‘a(t) 5 w&), t E J. 
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Assume that Izk(t) - ze(t)( I uc(t), Iyk(t) - yc(t)j I w(t), t E J for some k L 1. By (14) 
and (15), we see that 

IZk+l(t)-ZO(t)l LI~‘(t,Zk,Yk;ZO)-g(t,zO,YO;ZO)I+R(tr~O) 

I KRO (@),uo) + If IB214) 1’ P(s)Po h uo) ds 

+ Lwo(P(t)) + R (t, 30) = uo(t), t E J, 

IYk+l(t) - ?hJ(t)I 5 IG(t, zk,$/k;ffO) - ~(t,zOrYO;zO)l +dt) 

I MRO (y(t),uo) + M Pzl r(t) I’ I~(s>l~o (ST uo> ds 

+ AhJo + a(t) = we(t), t E J. 

Hence, by mathematical induction, we have 

Izn(t> - zo(t)l 5 HO@), Iv*(t) - YOM I wow, tcJ, n=O,l,.... 

The rest of estimates (18) can be proved by similar argument. It ends the proof. 

Lemma 4 follows. 

THEOREM 3. Assume that all assumptions of Lemma 4 are satisfied. Then, for every IO E WP, 
system (12) of sequences {zn, y,,} converges to the unique solution (z, g) of problem (11) (unique- 
ness in the class A(zc,ys)), so zn(t) + L(t), yn(t) +g(t)fort~ Jifn+coandfortE Jwe 
have the error estimates 

{ 

IQ> - zo@>I I ho@), I$t) - Yo(t>I 5 ho@>, 
I%(t) - E(t)1 I ‘Iln(t), n = 0,l ,.“, { IYnW - WI I WI(t)? 12 = O,l,. . . . 

Moreover, (3, jj) with 5 = 10 + $ Z(S) ds is the solution of problem (10),(2) iff 

I 
E 

B2 
0 

D(s)PZ(s)ds + +/Ti(s)ds = B3(50) 
0 

REMARK 5. Note that Assumption Ha holds if we assume that p(W) < 1, where 

W = Ibp~Q(a(t)) + [K + L(I - IV)-‘M] lB2l $ I’ ID(s)1 ds 

+ =(I - WIMy-EyQ(r(P@))h with Q(t) = $(T - t). 

Similarly as before to find a solution (z, jj) of problem (ll), we can apply Seidel’s method. It 
means that we can formulate the following. 

THEOREM 4. Let all ssumptions of Lemma 4 be satisfied. Then the results of Theorem 3 hold 
and &n(t) --+ Z(t), Z,,(t) --) E(t), &n(t) -+ g(t), a(t) 4 g(t), where {%,,&} and {&,&} are 
defined by 

1 

%+1(t) = F(t,%,gn;Zo), !h+l(t) =~(t,L,~n;~o), 

%+1(t) = B(t,%a+l,%;~o), { a+l(t) = G(t,~n,&+l;~o), 

forte J, n=O,l,... with 20(t) = 20(t) = zo(t), g(t) = &,(t) = ye(t), t E J. 
Moreover, we have the error estimates 
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for t E J, n = 0, 1, . . . , where 

Go@> = 210(t), ao(t> = wo(t>, 

cn+l(t) = Kflo ((.~(t>, fin) + K lBzl4> I’ ID(s>Po (s, Q ds + L%@(t)), 

%+1(t) = Mao (y(t),G+l) + Ml&l y(t) 1’ ID(s)lRo (s,&+l) ds + N%(t), 

a,(t) = uo(t), Go(t) = wow, 

&+1(t) = Moo (r(t), En) + M l&l r(t) I’ lD(s)lno(s, iin) ds + N&(t), 

&+1(t) = KRo (a(t), G-J + K lB2l a(t) 1’ lD(s)Po(s, tin) ds + L&+1@(t)), 

with ug, wg defined as in relations (IS) and (17), respectively 
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