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During mammalian evolution, expansion of the cerebral hemispheres was accompanied by expansion of the frontal and
parietal bones of the skull vault and deployment of the coronal (fronto-parietal) and sagittal (parietal-parietal) sutures as
major growth centres. Using a transgenic mouse with a permanent neural crest cell lineage marker, Wnt1-Cre/R26R, we
show that both sutures are formed at a neural crest-mesoderm interface: the frontal bones are neural crest-derived and the
parietal bones mesodermal, with a tongue of neural crest between the two parietal bones. By detailed analysis of neural crest
migration pathways using X-gal staining, and mesodermal tracing by Dil labelling, we show that the neural crest-
mesodermal tissue juxtaposition that later forms the coronal suture is established at E9.5 as the caudal boundary of the
frontonasal mesenchyme. As the cerebral hemispheres expand, they extend caudally, passing beneath the neural
crest-mesodermal interface within the dermis, carrying with them a layer of neural crest cells that forms their meningeal
covering. Exposure of embryos to retinoic acid at E10.0 reduces this meningeal neural crest and inhibits parietal ossification,
suggesting that intramembranous ossification of this mesodermal bone requires interaction with neural crest-derived
meninges, whereas ossification of the neural crest-derived frontal bone is autonomous. These observations provide new
perspectives on skull evolution and on human genetic abnormalities of skull growth and ossification. © 2001 Elsevier Science
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INTRODUCTION

The vertebrate skull consists of the neurocranium
(skull vault and base) and the viscerocranium (jaws and
other branchial arch derivatives). It is formed from cra-
nial skeletogenic mesenchyme derived from two distinct
embryonic sources: mesoderm and neural crest. The
neural crest cell origins of the viscerocranium and the
anterior skull base are well established (Le Douarin and
Kalcheim, 1999, and references therein). However, stud-
ies from two laboratories using the quail-chick chimaera
technique have come to different conclusions on the

to analyse in mammals: cell lineage studies using embryo
culture and/or short-term labelling techniques have suc-
cessfully elucidated neural crest cell migration pathways
but not their contributions to mature structures (Tan and
Morriss-Kay, 1986; Serbedzija et al., 1992; Osumi-
Yamashita et al., 1994, 1996).

In tetrapods, the skull vault (roof of the neurocranium) is
formed mainly by the paired frontal and parietal bones,
with a lesser contribution from the postparietals (mamma-
lian interparietal). During mammalian evolution, the enor-
mous expansion of the cerebral hemispheres was accommo-

origin of the skull vault, reporting that it is of mixed
neural crest and mesodermal origin (Le Lievre, 1978;
Noden, 1978, 1984, 1988) or entirely neural crest-derived
(Couly et al., 1993). Skull bone origins have been difficult

! To whom correspondence should be addressed. Fax: +44 (1865)
272-420. E-mail: morrissk@ermine.ox.ac.uk.

106

dated by expansion of the frontal and parietal bones and
incorporation of the squamosal and part of the alisphenoid
into the neurocranium (Goodrich, 1958). Growth of the
mammalian skull vault takes place mainly in the fibrous
joints (sutures) between these bones, all of which differen-
tiate directly within the skeletogenic mesenchyme that lies
between the brain and surface ectoderm (intramembranous
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ossification). Two sutures, the sagittal (between the two
parietal bones) and the coronal (between the frontal and
parietal bones) form the main sites of growth in the human
skull, so that premature loss of these growth centres has a
major effect on skull size and shape (Wall, 1997). They are
also major signalling centres, as indicated by the discovery
that mutations of the human genes encoding FGF receptors
and the transcription factors TWIST and MSX2 cause pre-
mature sutural fusion (Bellus et al., 1996; El Ghouzzi et al.,
1997; Howard et al., 1997; Wilkie and Morriss-Kay, 2001,
and references therein). Developmental studies on the
mouse skull have shown that these signalling systems
control the balance between proliferation of osteogenic
stem cells and their differentiation to form new bone (Iseki
et al., 1997, 1999; Kim et al., 1997; Rice et al., 2000; Zhou
et al., 2000).

Knowledge of the developmental tissue origins of the
mammalian frontal and parietal bones, and hence of the
sutural growth centres, is clearly of considerable scien-
tific and clinical interest. It is now possible to identify
neural crest cells in mouse embryos by using a compound
transgenic mouse (Jiang et al., 2000; Chai et al., 2000).
The mouse is doubly heterozygous for the constitutively
expressed R26R allele, which encodes B-galactosidase
only in cells (and their progeny) that express Cre recom-
binase (Soriano, 1999), and the Wntl-Cre transgene,
which is specific to neural crest and to some parts of the
brain. The results of the previous studies demonstrated
that all known neural crest cell lineages are efficiently
and stably marked by combining these two components
(Jiang et al., 2000; Chai et al., 2000). Here, we use the
Wntl1-Cre/R26R construct to distinguish between neural
crest-derived and mesodermal components of cranial
skeletogenic mesenchyme and thus investigate the tissue
origins of the skull vault. This method has advantages
over previous methods of skull bone lineage analysis in
that it does not require either surgical intervention or
embryo culture, and the contributions made by neural
crest cells can be analysed on whole specimens as well as
sections, from early developmental stages to mature
tissues.

The results show that both the sagittal and coronal
sutures are formed as juxtapositions between neural crest-
derived and mesodermal mesenchyme. Mesodermal tissue
in the region from which the parietal bone is derived is
identified by Dil labelling followed by embryo culture.
Exposure to retinoic acid (RA) at E10.0 results in inhibition
of ossification of the parietal bones and their partial replace-
ment by a layer of ectopic cartilage. Analysis of RA-treated
Wntl-Cre/R26R mice reveals that this effect is correlated
with defective formation of the neural crest-derived men-
ingeal layer that underlies both frontal and parietal bones.
These results are discussed in the context of the influence
of tissue interactions on the differentiation, growth, and
evolution of the skull vault.
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MATERIALS AND METHODS

Wntl1-Cre/R26R transgenic mice were constructed as described
previously (Jiang et al., 2000). X-Gal staining was carried out on
whole embryos from E8.5 to E10.5, and on E15.5 and E17.5 heads.
For E17.5 heads, the brain was removed prior to X-gal staining;
some specimens were further stained with Alizarin red S and
subsequently cleared, dehydrated, and stored in glycerol. Sections
(10 wm) were obtained from previously X-gal-stained E9.5 and
E10.5 embryos following dehydration and paraffin embedding.
Older stages (E11.5-E17.5) were embedded in OCT, cut on a
cryostat at 10 um, and X-gal stained after cutting. All sections were
counter-stained with nuclear fast red and eosin. Retinoic acid (100
mg/kg suspension in sesame or peanut oil) was administered by
gavage at 9 a.m. on E10.0 to both wild-type and transgenic pregnant
female mice. Wild-type fetuses were double-stained with alcian
blue and Alizarin red S for cartilage and bone at E17.5 as described
previously (Morriss-Kay, 1999). Double-stained heads were embed-
ded in paraffin and sectioned at 8 um. Dil was injected into the
cranial mesoderm under the convex neural folds of 3- or 4-somite-
stage embryos, i.e., prior to the stage of neural crest cell migration
(Nichols, 1981; Tan and Morriss-Kay, 1986; Echelard et al., 1994).
The Dil-filled micropipette was inserted through the yolk sac,
amnion, and surface ectoderm just lateral to the heart. Embryos
were subsequently cultured for up to 48 h then photographed by
brightfield and fluorescence microscopy after removal of the fetal
membranes, then embedded in OCT compound; frozen sections
were cut and photographed.

RESULTS

Neural Crest and Mesodermal Contributions to the
Skull Vault and Meninges

As described previously (Jiang et al., 2000; Chai et al.,
2000), compound Wnt1-Cre/R26R transgenic embryos sta-
bly express B-galactosidase in migrating neural crest cells
and in their mature derivatives. There is also expression in
the midbrain and hindbrain regions of the cranial neural
tube. Fetuses examined at E17.5 and stained with X-gal,
alone or in combination with Alizarin, show the pattern
illustrated in Figs. 1A-1C. The frontal bones, together with
the squamosal and viscerocranial bones, are completely
X-gal positive, and a tongue of X-gal-positive tissue extends
in the midline from the frontal region to insert between the
parietal bones. There is also an irregularly shaped patch of
stained cells in the region of the interparietal bone, which
coincides with the central part of the bone but also extends
rostral to it.

Sections of E17.5 heads (Figs. 1D-1G) confirm that the
frontal, but not the parietal, bones are X-gal-positive. The
meninges that surround the cerebral hemispheres, but not
the meningeal covering of the midbrain and hindbrain, are
also X-gal-positive (Fig. 1D). The light blue staining visible
through the unstained parietal bone in whole-mount prepa-
rations (Figs. 1A-1C) can be seen in sections to be menin-
geal (Figs. 1D and 1E). Sections through the coronal suture
show that the boundary between crest and noncrest cells in
the skeletogenic membrane is the caudal edge of the frontal
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FIG. 1. Tissue origins of the mouse skull vault. X-Gal staining
identifies neural crest-derived tissues in Wnt1-Cre/R26R mice. (A)
Combined X-gal and Alizarin red S staining shows that the frontal
bone (F) coincides with a strongly X-gal-stained area; in contrast,
the parietal bone overlies a lightly stained area and extends just
caudal to it. The entirely mesodermal basioccipital bone can be
seen through the unossified part of the skull vault; the centre of the
interparietal bone, and a patch of dermis rostral to it, is also
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bone: the midsutural mesenchyme as well as the parietal
bone are mesodermal. The characteristic overlap of the
parietal over the frontal bone can be seen in the coronal
suture at E17.5 (Fig. 1E). X-Gal staining of the skeletogenic
membrane in the sagittal suture extends down into the
meningeal layers, labelling the falx cerebri and tentorium
cerebelli as well as the meningeal covering of the cerebral
hemispheres (Figs. 1D and 1F). Although it cannot be
assumed that all neural crest cells faithfully express Wnt1,
there was no evidence of unlabelled cells in the frontal bone
or labelled cells in the parietal bone; the gaps in frontal bone
sections (Fig. 1E) are blood vessels, and the trabecular
pattern shown here is characteristic of the frontal (but not
the parietal) bone by E16.5 (Iseki et al., 1999). Staining in
the interparietal region is within the central area of the
dermal bone and in a patch of cartilage beneath it; all of the
osteoblasts are stained but some of the chondrocytes are not
(Fig. 1G). The staining rostral to the bone is in unossified
dermis (not shown).

These results, summarised in Fig. 1G, indicate that both
the sagittal and coronal sutures are formed at interfaces
between neural crest and mesodermal mesenchyme. The
sagittal suture is formed as a sandwich of neural crest
between the two mesodermal parietal bones, and the coro-
nal suture is a juxtaposition between the neural crest-
derived frontal bone and the mesodermal parietal bone.

X-gal-positive. (B) Similar specimen but without Alizarin staining,
showing strong staining in the skeletogenic membrane between
the parietal bones (sagittal suture); the orientation of the section
shown in (F) is indicated by the line. (C) Side view, showing X-gal
staining of the frontal, alisphenoid, and squamosal bones; the line
shows the position and orientation of (E). (D) Low-power transverse
section through the cerebral hemispheres at the level of the
olfactory lobes (left) and upper cerebellum (right); neural crest-
derived meninges surround the cerebral hemispheres and form the
falx cerebri and tentorium cerebelli. The boxed area indicates the
area shown at higher magnification in (E). (E) The coronal suture is
formed between two bones of different origins, the neural crest-
derived frontal bone and the mesodermal parietal bone (outlined);
both overlie the neural crest-derived meninges covering the cere-
bral hemispheres. (F) Coronal section showing that the sagittal
suture consists of a neural crest-derived membrane between the
two mesodermal parietal bones. (G) Transverse section through
part of the interparietal bone (midline is to the left), showing the
neural crest-derived central area (left), mesodermal area (right), and
underlying cartilage of mixed origin; noncartilaginous parts of the
inner layer are also of neural crest origin in the central region, but
the meningeal covering of the cerebellum is mesodermal. (H)
Summary diagram showing neural crest contribution to the skel-
etal elements and sutures of the mouse skull vault. A, alisphenoid,;
B, mineralised bone; B’, basioccipital, C, cartilage; c, coronal
suture; CB, cerebellum; CH, cerebral hemispheres; D, diencepha-
lon; F, frontal; FC, falx cerebri; IL, inner layer of skeletogenic
membrane; M, meninges; m, metopic suture; N, nasal; nc, nasal
cartilage; P, parietal; S, squamosal; SS, sagittal suture; TC, tento-
rium cerebelli. Scale bars: A-D, 1 mm; E, F, 100 pm.
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FIG. 2. The origin of the neural crest-mesoderm juxtaposition is revealed by X-gal staining of transgenic embryos during the period of
neurulation/neural crest cell migration (A-1), and by Dil labelling of the cranial mesoderm at the 3-somite stage followed by embryo culture (J-L)
(the site of injection is indicated by the asterisk in (A), and the trajectory of the micropipette by the arrow). Arrowheads indicate the position of
the preotic sulcus (prorhombomere A/B boundary) in (B-E), and the equivalent rhombomere (r) 2/3 boundary in (F-H). (A) Five-somite (s) stage
embryo, rostral view: expression in neural folds and neural crest cells, which are just starting to migrate from the lateral edge. (B) 6s embryo:
neural crest cells migrate as a continuous population from the caudal forebrain to the preotic sulcus. (C) 8s embryo, lateral view: migrating crest
cells are spreading over the surface of the expanding forebrain, and towards the mandibular arch; the hyoid population has started to migrate from
prB. (D) 8s embryo, dorsal view of the open neural folds: expression in prA and prB is in the lateral part of the neuroepithelium only. (E) 9s embryo,
lateral/dorsal view: crest cells have spread further over the forebrain and towards the mandibular arch; emigration of cells from prA results in
some loss of expression in the neural folds. (F) 14s embryo, lateral view: the telencephalon is now completely covered by crest cells, and migration
into the mandibular arch is complete; crest cells have moved away from prA, leaving an expression-free gap in the neuroepithelium. (G) 14s
embryo, dorsolateral view: loss of both trigeminal and hyoid crest cells from the neural folds results in lower staining intensity in their regions
of origin. (H) 18s embryo: migration is almost complete, and boundaries are becoming clear to delimit the neural crest from noncrest regions. (1)
23s embryo: the boundary of the frontonasal neural crest is well-defined, although some scattered crest cells are present in the trigeminal/
squamosal region. Staining in the neural tube is mainly in the midbrain and the dorsal part of r1 + 2. (J-N) Dil localisation in wild type embryos
cultured for 36-48 h after injection of Dil into the cranial mesoderm at the 3-somite stage: Dil fluorescence in a whole embryo (J) and frozen
section of a different embryo (M); darkfield view of section (L); superimposed fluorescence and darkfield images (K, N); the Dil-labelled cells are
positioned caudal to the frontonasal neural crest.

© 2001 Elsevier Science. All rights reserved.



110

Growth at the edges of the parietal bones therefore occurs at
a neural crest-mesodermal tissue interface in both coronal
and sagittal sutures. In contrast, the metopic (interfrontal)
suture is formed between two neural crest-derived bones
without any mesodermal involvement. Only the interpari-
etal bone is of mixed origin; it is still widely separated from
the parietal bones at E17.5, so it is not clear how its two
components contribute to the lambdoid suture.

Establishment of Distinct Neural Crest-Derived
and Mesodermal Domains of Cranial Mesenchyme

The changing pattern of X-gal-positive cells during the
period of cranial neurulation and neural crest cell migration
was followed in a series of E8.5 to E9.5 transgenic embryos
from the 5-somite (s) to the 23s stage (Figs. 2A-2l). At 5s,
neural crest cells have just begun to migrate, as established
previously (Nichols, 1981; Tan and Morriss-Kay, 1985,
1986). Cells emigrate from the caudal forebrain, midbrain,
and prorhombomere (pr) A of the hindbrain as a continuous
population. PrA is the area between the midbrain and the
preotic sulcus; it later separates into rhombomeres (r) 1 and
2 (Bartelmez and Evans, 1926; Ruberte et al., 1997). By the
8s stage, neural crest cells are spreading over the outer
(basal) surface of the expanding forebrain neuroepithelium
and also form a denser group migrating towards the man-
dibular arch (Fig. 2C; Tan and Morriss-Kay, 1985). At this
stage, X-gal staining within the neuroepithelium has ex-
tended caudally from the midbrain domain into the lateral
parts of prA; a second lateral population of X-gal-positive
cells is present in the lateral parts of prB, from which the
hyoid crest has just begun to migrate (Figs. 2C and 2D). As
the X-gal-positive neural crest cells emigrate from prA,
staining is lost from this region (Figs. 2F and 2G), suggesting
that the X-gal-positive neuroepithelial cells of prA are
presumptive neural crest. The trigeminal ganglion crest cell
population emerges mainly from this region (Figs. 2E-2lI;
Osumi-Yamashita et al., 1994). At the end of the migration
period (Fig. 2l1), the X-gal-positive cells form a domain of
frontonasal plus first branchial arch mesenchyme that has
also been observed in other studies using different tech-
niques (Noden, 1984, 1988; Osumi-Yamashita et al., 1994,
1996; Brault et al., 2001). There is a clear boundary between
the X-gal-stained frontonasal neural crest and the adjacent
unstained mesenchyme. Evidence that the tissue caudal to
this boundary is indeed mesodermal was provided by Dil
labelling of the most rostral cephalic mesoderm at the 3- to
4-somite stage (just prior to neural crest cell emigration) in
the position indicated by the asterisk in Fig. 2A, and
subsequent embryo culture for up to 48 hours. The Dil-
labelled cranial mesenchyme in the cultured embryos lies
entirely caudal to the frontonasal neural crest and superior
to the maxillary/squamosal/trigeminal crest (Figs. 2J and
2K). Sections confirm that the Dil labelling is confined to
the area that is X-gal-negative in the transgenic embryos
(compare Figs. 2L-2N and Figs. 3B and 3D).
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Formation of the Positional Relationships between
the Skull Vault Sutures and the Brain

The mammalian coronal suture is formed between the
frontal and parietal bones and lies over the cerebral hemi-
spheres. The position of this suture is not correlated with
any anatomical feature of the underlying brain. This is in
contrast to the sagittal and lambdoid sutures, which, re-
spectively, overlie the tissue between the two cerebral
hemispheres, and the tissue between the cerebral hemi-
spheres and cerebellum. The neural crest-mesodermal tis-
sue border observed at E9.5 is at the border of the telen-
cephalon and diencephalon (Figs. 21 and 3A), but by E17.5
the coronal suture, which has by then formed between the
bones derived from these two mesenchymal populations,
lies over the cerebral hemisphere (Fig. 1D). In order to
discover how this change in positional relationships devel-
ops, we examined Wnt1-Cre/R26R transgenic embryos at a
sequence of developmental stages from E9.5 to E17.5, as
both whole mounts and sections. The results are illustrated
in Fig. 3.

Whole embryo preparations show that at E9.5 the fronto-
nasal neural crest cell population surrounds the telenceph-
alon and is continuous with the maxillary and mandibular
populations (Figs. 21 and 3A). The maxillary crest cells are
continuous proximally with the squamosal population,
which partially covers the trigeminal ganglion. In sections,
a demarcation between X-gal-positive and X-gal-negative
cells can be seen in the cranial mesenchyme, although the
trigeminal ganglion (which is derived partly from ectoder-
mal placodal cells) is mixed (Fig. 3B).

By E10.5, the telencephalon has begun to expand to form
the cerebral hemispheres (Figs. 3C-3F). The frontonasal
crest layer covering them is thin except around the eye and
within the nasal swellings, but the boundary between
X-gal-positive and -negative cells remains in the same
position as at E9.5 (Fig. 3C). Sections show that the subec-
todermal cranial mesenchymal cells are now condensed in
both neural crest-derived and mesodermal domains (Figs.
3D-3F). Comparison with a sequence of later stages con-
firms identification of specific regions as frontal, parietal
and squamosal domains, of which only the parietal domain
is X-gal-negative, i.e.,, mesodermal. By this stage, there is
some mixing of X-gal-positive and -negative cells in the
deeper loose mesenchyme (fine arrows in Figs. 3D-3F) but
not in the condensed dermal mesenchyme (broad arrows).

During the next 3 days, the cerebral hemispheres con-
tinue to expand. They extend towards the rostral hindbrain,
passing between the diencephalon/midbrain and the dermal
mesenchyme, displacing the deeper loose cranial mesen-
chyme (Figs. 3G-3J). As they extend, they take with them a
thin layer of neural crest-derived cells, which later form the
meninges as seen at E17.5 (Figs. 1E and 1F). The boundary
between the neural crest-derived and mesoderm-derived
dermis remains in the same position at all stages of growth
of the cerebral hemispheres, which pass under it, together
with their meningeal neural crest cell covering. By E13.5,
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this boundary is situated over the surface of the cerebral
hemispheres, having almost attained the position of the
coronal suture as observed at E17.5 (compare Figs. 3l and 3J
with Fig. 1D). The condensed dermal mesenchyme can now
be identified as the skeletogenic membrane, since it lies
immediately over the meninges. At E15.5, the caudal
boundary of the neural crest domain is indented so that the
most caudal part is in the midline of the vertex of the skull
(Fig. 3K); the degree of indentation is increased by E17.5
(Figs. 1B and 1C), correlating with upwards growth of the
parietal bone (Iseki et al., 1997; Rice et al., 2000).

The origin of the patch of X-gal-positive cells observed in
the interparietal region at E17.5 (Figs. 1A-1C) was also
traced in the sections. Its precursor cells emerge individu-
ally from the rostral hindbrain on E9.5 and insert into the
surface ectoderm on E10.5 (not shown). They move from
the surface ectoderm into the underlying dermal mesen-
chyme during the next two days, and by E13.5 (Fig. 3I) are
located only in the dermis.

Effects of Retinoic Acid on Parietal Ossification

Administration of RA on E10.0 results in partial or
complete failure of ossification of the parietal and interpa-
rietal bones, and the formation of patches of ectopic carti-
lage in their place (Figs. 4A-4D). The squamous part of the
alisphenoid bone and the squamosal bone were also re-
duced, but no ectopic cartilage was formed in their place
(Fig. 4D). In specimens in which some parietal bone is
present, the ectopic cartilage can be seen to be deep to the
bone, in the same tissue layer as the normal cartilage that is
present in the temporal region at this stage (Figs. 4E and 4F)
and which underlies part of the interparietal bone (Fig. 1G).
Sections of E17.5 Wntl1-Cre/R26R fetuses show that the
RA-affected frontal bone is less trabecular in structure than
normal (Figs. 4G and 4H), but it is clearly mineralised, as
shown by Alizarin staining of both transgenic and wild-type
fetuses (Figs. 4B and 4D). The meningeal neural crest is thin
and discontinuous in both frontal and parietal regions; like
the parietal bone, the ectopic parietal cartilage is entirely of
mesodermal origin (Figs. 4G and 4H). Comparing four
sectioned specimens, there appears to be a correlation
between the amount of reduction in thickness of the
meningeal neural crest and the nature of parietal skeletal
differentiation, the cartilage:bone ratio being highest in the
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specimen with the thinnest meningeal layer. Examination
of sections from younger embryos showed that the neural
crest deficiency is present early, the extending cerebral
hemispheres having very few crest cells associated with
them (Figs. 41 and 4J). Since neural crest cells already cover
the telencephalon at E9.5 and the embryos were not ex-
posed to RA until E10.0, the deficiency seen at E13.5 must
have arisen during expansion of the cerebral hemispheres,
possibly through decreased cell division specifically in the
neural crest-derived tissue; this interpretation is consistent
with the reduced size of the facial bones (Fig. 4D). The
interparietal domain of neural crest was slightly reduced in
RA-treated specimens (Fig. 4B), interparietal ossification
was reduced or absent, and the thin layer of cartilage
normally present caudal to the parietal bone was increased
in extent and thickness (Fig. 4D).

DISCUSSION

Tissue Origins of the Mammalian Skull Vault

Using a transgenic embryo that enables detection of
neural crest cells and their derivatives, as well as Dil
labelling of cranial mesoderm, this study has demonstrated
that the mammalian skull vault is constructed from em-
bryonic tissues of two different origins, neural crest and
mesoderm. The two sutures (sagittal and coronal) that
make the greatest contributions to skull growth are formed
as juxtapositions between these two tissues.

Analysis of a series of developmental stages from E8.5 to
E17.5 revealed that the caudal boundary of the frontonasal
neural crest observed at the end of neural crest cell migra-
tion (E9.5) later forms the caudal border of the frontal bone
at the coronal suture. Initially the neural crest-derived and
mesoderm-derived cranial mesenchyme is two-layered, be-
ing composed of a condensed dermal layer which subse-
quently forms the intramembranous (dermal) bones of the
skull vault, and a loose mesenchymal layer deep to it. The
loose tissue is displaced as the cerebral hemispheres expand
caudally beneath the dermal skeletogenic layer. The fron-
tonasal crest-mesoderm juxtaposition is initially situated
over the telencephalon-diencephalon boundary. As the ce-
rebral hemispheres expand caudally, they progressively
change their positional relationship with the overlying
dermis so that the neural crest-mesoderm boundary attains

FIG. 3. Development of the neural crest and mesodermal contributions to the skull vault. Whole embryos are stained with X-gal only;
sections are counter-stained with eosin and nuclear fast red. In addition to the neural crest-derived tissues, X-gal stains some mid- and
hindbrain areas. (A) E9.5 embryo showing the clearly defined junction (arrow) between the frontonasal neural crest, which overlies the
telencephalon, and the unstained cranial mesoderm caudal to it. The drawing shows neural crest without the brain staining. (B) Transverse
section of E9.5 head, as indicated in the drawing, showing frontonasal neural crest overlying the telencephalon and surrounding the eye.
A condensed layer of dermal mesoderm forms the parietal anlage between the eye, the trigeminal ganglion and the primary head vein
(asterisk). (C) E10.5 embryo: cerebral hemispheres have started to expand and the frontonasal neural crest is thinned over their upper
surfaces. The parietal anlage lies immediately caudal to the edge of the frontonasal neural crest (arrowed) and dorsal to the
maxillary/squamosal neural crest; it partially overlies the trigeminal ganglion. The drawing shows neural crest distribution only; the thin
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layer over the cerebral hemispheres is indicated in lighter blue. (D-F) Transverse sections of an E10.5 head, as indicated in the drawing,
showing the neural crest-mesoderm junction within the loose cranial mesenchyme (fine arrow) and at the fronto-parietal juxtaposition
(broad arrow, D and E only); in (F) the continuity between frontal and squamosal neural crest can be seen. (G, H) E12.5: transverse sections
at levels equivalent to those shown in (D) and (E), respectively; the cerebral hemispheres have extended back as far as the fronto-parietal
junction (arrow), which now has the oblique orientation characteristic of the future coronal suture. (I) E13.5: transverse section through the
cerebral hemispheres and cerebellum; X-gal-stained cells cover the cerebral hemispheres but not the diencephalon (all hindbrain staining
is neural); a patch of stained cells is present in the dermis overlying the cerebellum (arrow). (J) E13.5: detail of the developing fronto-parietal
area of a different specimen; the oblique junction between the X-gal-stained and unstained tissue (arrow) is now close to the position of the
mature coronal suture. (K) E15.5: head, skin removed; the position of the caudal border of the cerebral hemisphere is indicated by a broken
line. The caudal boundary of the neural crest domain is indented (arrow) except in the midline (arrowhead); the white arrow indicates the
patch of interparietal staining (partially obscured by staining of the underlying brain). CB, cerebellum; CH, cerebral hemispheres; D,
diencephalon; E, eye; F, frontal mesenchyme; FN, frontonasal neural crest; HB, hindbrain; MB, midbrain; Md, mandibular arch; P, parietal
mesenchyme; S, squamosal mesenchyme; TEL, telencephalon; V, trigeminal ganglion; V1, ophthalmic branch of trigeminal nerve. Scale
bars: A, C, G, H, J, 200 um; B, D-F, 100 um; I, 500 um; K, 1 mm.

© 2001 Elsevier Science. All rights reserved.
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FIG. 4. Effects of RA exposure at E10.0 on skeletogenic differen-
tiation of the parietal mesenchyme. (A) Control, (B) RA-treated
heads of E17.5 Wntl-Cre/R26R fetuses stained with X-gal and
Alizarin, showing decreased mineralisation of the parietal bone. (C)
Control, (D) RA-treated E17.5 wild-type fetal heads double-stained
with Alizarin and alcian blue, showing RA-induced decrease of
parietal ossification and a lace-work pattern of ectopic cartilage in
the parietal region. (E, F) Sections of the parietal bone of E17.5
control (E) and RA-exposed (F) skulls double-stained with Alizarin
and alcian blue before sectioning: the normal parietal bone lies in
a layer superficial to the cartilage of the temporal region, slightly
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its mature position over the cerebral hemispheres at or soon
after E13.5. Signals from the underlying cerebral hemi-
spheres cannot therefore be involved in determining the
site at which the suture forms, although they may play a
role in initiating signalling activity; this is first detectable
at E14, when Twist and Fgfr2 expression are localised to the
suture (Johnson et al., 2000).

The neural crest-mesodermal tissue juxtaposition of the
sagittal suture forms as the parietal mesoderm indents the
caudal boundary of the frontal neural crest domain, leaving
a strip of neural crest in the midline attached to the
underlying falx cerebri. This observation is consistent with
the pattern of growth of the parietal bone anlagen, which
originate in a lateral position and grow up towards the
vertex of the head (Iseki et al., 1997; Rice et al., 2000).

The effects of exposure to retinoic acid suggest that
intramembranous ossification of the mesodermal parietal
bone requires interaction with the underlying neural crest-
derived meninges; in contrast, ossification of the neural
crest-derived frontal bone appears to be autonomous. The
mesodermal component of the skeletogenic membrane is
revealed by these observations to consist of two layers: an
outer osteogenic layer and an inner layer whose chondro-
genic potential is normally expressed mainly in the areas
between the bone anlagen. (These remarks do not apply to
the endochondral bone of the occipital region and skull
base.)

Validity of the Results

The above interpretation of our observations is based on
the assumption that the Wnt1-Cre/R26R transgene combi-
nation is a reliable label for neural crest cells and their
derivatives, as demonstrated by two previous studies (Jiang
etal., 2000; Chai et al., 2000). In the second of these studies,
a small but increasing number of X-gal-negative cells was
observed to mingle with the X-gal-positive cells within the
visceral cartilages; it was not clear whether these unstained
cells were of nonneural crest origin, or whether a small
subset of neural crest-derived cells fails to express the
transgene. In our study of the lineage of the frontal and

overlapping it; in RA-treated fetuses the ectopic parietal cartilage
lies beneath the dermal bone remnants, in the same tissue layer as
the temporal and occipital cartilage. (G) Control, (H) RA-treated,
transverse sections of the coronal suture region of E17.5 transgenic
embryos: in the RA-treated specimen the ectopic cartilage lies
beneath the layer of condensed parietal mesenchyme, and the
meningeal neural crest is thin and discontinuous. (I) control, (J)
RA-treated, E13.5 transgenic embryos, transverse sections of the
caudal half of a cerebral hemisphere: migration of meningeal neural
crest (arrowed) around the cerebral hemispheres is decreased in
RA-exposed embryos. C, cartilage; CH, cerebral hemisphere; F,
frontal; M, meninges; P, parietal; S, squamosal. Scale bars: A-D, 1
mm; E-H, 100 pm; I, J, 200 um.

© 2001 Elsevier Science. All rights reserved.
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parietal bones no mixing of stained and unstained cells was
observed in these two bones until the neural crest-derived
frontal bone is invaded by blood vessels and develops a
trabeculated form. However, the cartilage underlying the
neural crest-derived component of the interparietal bone
includes some unstained chondrocytes.

The tissue origin of the skull vault has been a matter of
some controversy, following the publication of conflicting
results using quail-chick grafting. Noden (1978, 1988) re-
ported that the neural crest contributes only to the rostral
part of the frontal bones, the remainder of the frontal bones,
together with the parietal bones, being mesodermal. In
contrast, Couly et al. (1993) described the frontal and
parietal bones as being entirely neural crest-derived. How-
ever, the neural crest origin of the parietal bone is not
clearly established in the report by Couly et al. (1993): the
avian parietal bone is very small, and the histological
section said to illustrate quail-derived cells in the parietal
bone (their Fig. 5) does not in fact pass through that bone.

Neural crest cells arising from prA (r1 + 2) of the
hindbrain do not express Wntl or a Wntl-lacZ transgene at
presomite and post-neurulation stages (Echelard et al.,
1994; Brault et al., 2001). Our results show that during early
neurulation (early somite stages), the Wntl1l-Cre/R26R
transgene is expressed in the neural epithelium of prA, but
only the lateral region. When these lacZ-positive crest cells
emigrate, they leave a lacZ expression-free gap in the
neuroepithelium between the midbrain and prB (r3 + 4)
(Figs. 2G and 3C). This interesting observation confirms
that crest cells from prA were not missed in our analysis of
the skull vault origin, and suggests that Wnt1 is expressed
specifically in presumptive neural crest cells in prA.

The frontonasal and first branchial arch distribution of
postmigratory neural crest cells at E9.5 shown by Wntl-
Cre/R26R reporter gene expression agrees with the results
from other studies using a variety of methods, including
quail-chick grafting (Noden, 1984, 1988), Dil labelling of
mouse neural folds and subsequent embryo culture (Ser-
bedzija et al., 1992; Osumi-Yamashita et al., 1994, 1996),
and AP2 gene expression (Brault et al., 2001). Osumi-
Yamashita et al. (1994, 1996) traced the prA neural crest to
the most proximal region of the postmigratory domain. The
quail-chick analysis of Kontges and Lumsden (1996) agrees
with that result, and furthermore shows that the skeleto-
genic cells derived from this domain give rise to the
squamosal bone and proximal elements of the jaws. Their
study shows clear proximal boundaries of the squamosal
neural crest tissue, with no contribution to the immedi-
ately adjacent parietal bone. These reports are all consistent
with the interpretation that the Wnt1-Cre/R26R transgene-
induced lacZ expression illustrated in our study is detecting
all components of the skull derived from the forebrain,
midbrain and rostral hindbrain neural crest. The evidence
from our Dil results is complementary to these reports,
tracing the lineage of the cephalic mesoderm that is present
before neural crest cell emigration to the location that is
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lacZ-negative in the transgenic embryos at E9.5-E10.5, and
which later forms the parietal bone.

The recent report that Wnt1-Cre conditional inactivation
of B-catenin gene function results in a phenotype lacking
neural crest derivatives (Brault et al., 2001) appears at first
sight to conflict with our observations, since both frontal
and parietal bones fail to form in these mice. However, our
RA experimental results indicate that parietal ossification
depends on an interaction with the neural crest-derived
meninges, so the absence of the parietal bones in these
neural crest-deficient mice is consistent with our observa-
tions.

Sutural Tissue Origins and Organising Centre
Function

Sutures are formed in the skull vault where the prolifer-
ating edges of two dermal bones are separated by a strip of
mesenchyme. Our results show that in the coronal suture
this mesenchymal strip is mesodermal, separating the neu-
ral crest-derived frontal bone from the mesodermal parietal
bone. In the sagittal suture, the sutural mesenchyme is
neural crest-derived, separating the two mesodermal pari-
etal bones. Sutural growth and differentiation involves FGF
signalling through FGFR1, -2, and -3, and transcription
factors including TWIST and MSX2; mutations in each of
these genes have been detected in human craniosynostosis,
a condition characterised by premature loss of sutural
growth centres (reviewed by Wilkie and Morriss-Kay, 2001).
It is interesting to note that in mouse, Twist is expressed in
the mesenchyme between and within the proliferating
edges of the two bones in both the coronal and sagittal
sutures (Johnson et al., 2000; Rice et al., 2000), i.e., in
midsutural mesenchyme cells and osteogenic stem cells of
both mesodermal and neural crest origins. These observa-
tions suggest that neural crest-mesodermal interfaces may
play important roles in initiating these two sutures as
signalling centres in which growth and differentiation are
organised, but that their maintenance includes molecular
components whose expression is not tissue origin-specific.
Functional differences between the frontal and parietal
bones are more clearly reflected in ossification defects of
the skull vault, which most commonly (or most severely)
affect the parietal bones (Gonzales-del Angel et al., 1992;
Wilkie et al., 2000; Mavrogiannis et al., 2001).

The dual tissue origins and molecular signalling charac-
teristics of the coronal and sagittal sutures reflect Mein-
hardt’s (1983) definition of an organising centre as a site
where tissues of two different origins meet, and in which
interaction between them results in the formation of a
signalling system whose activity leads to developmental
change.

Evolutionary Changes in the Neural Crest
Component of the Skull Vault

The frontal and parietal bones show distinct evolution-
ary origins: the two frontal bones of tetrapods originated

© 2001 Elsevier Science. All rights reserved.
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by condensation of a group of small bones in the skull of
lobe-finned fishes (sarcopterygians), but the parietals and
postparietals have a much more ancient evolutionary
lineage as large bones from early gnathostomes onwards
(Ahlberg and Milner, 1994; Janvier, 1996). Application of
the results of our study to the skull roof changes during
the sarcopterygian-tetrapod transition suggests that these
changes involved a major expansion of the neural crest
territory in the skull roof (Morriss-Kay, 2001). If the avian
frontal bones are of entirely neural crest origin as de-
scribed by Couly et al. (1993), this process appears to
have extended furthest in birds, in which the frontal
bones extend as far back as the cerebellum. An alterna-
tive hypothesis for the origin of avian-mammalian skull
vault differences is that the frontal and parietal bones
fused in the reptilian ancestors of modern birds, as
occurred in anuran amphibians (Goodrich, 1958). This
idea is consistent with Noden’s (1978, 1984) report of the
dual neural crest/mesodermal origin of the frontal bones;
it would also explain the apparent absence of avian
postparietals, which are a general tetrapod feature, since
the bones designated parietals in birds would then be
postparietals.

Our observations may also shed light on the origin of
the single mammalian interparietal bone from the paired
postparietals of reptiles. Brault et al. (2001) observed that
in the absence of neural crest, the interparietal bone
was reduced to a narrow strip that was split into two in
the midline. This raises the intriguing possibility that
the patch of neural crest-derived dermal mesenchyme
that forms the central area of the interparietal bone
induces osteogenesis across the midline, thereby prevent-
ing formation of separate right and left post-parietal
bones.

Relative to mammals, the avian skull undergoes late
ossification and early sutural synostosis (Kardong, 1995).
Late ossification would be essential in a skull vault in
which one pair of bones (the frontals) forms the major
roofing of the skull; no sutures are in a suitable position
to form long-term growth centres contributing growth in
the fronto-occipital plane, equivalent to the function of
the mammalian coronal suture. The avian fronto-parietal
suture is in the wrong position to play this role, and also
differs from the mammalian coronal suture in not form-
ing as a close juxtaposition between the two bones
(illustrated in Bellairs and Osmond, 1998). These many
differences between the avian and mammalian skull
vaults suggest that different developmental mechanisms
could have shaped the evolutionary changes generating
their specific functional anatomical patterns.
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