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Abstract

Background: Metagenomics is a genomics research discipline devoted to the study of microbial communities in
environmental samples and human and animal organs and tissues. Sequenced metagenomic samples usually
comprise reads from a large number of different bacterial communities and hence tend to result in large file sizes,
typically ranging between 1–10 GB. This leads to challenges in analyzing, transferring and storing metagenomic data.
In order to overcome these data processing issues, we introduce MetaCRAM, the first de novo, parallelized software
suite specialized for FASTA and FASTQ format metagenomic read processing and lossless compression.

Results: MetaCRAM integrates algorithms for taxonomy identification and assembly, and introduces parallel
execution methods; furthermore, it enables genome reference selection and CRAM based compression. MetaCRAM
also uses novel reference-based compression methods designed through extensive studies of integer compression
techniques and through fitting of empirical distributions of metagenomic read-reference positions. MetaCRAM is a
lossless method compatible with standard CRAM formats, and it allows for fast selection of relevant files in the
compressed domain via maintenance of taxonomy information. The performance of MetaCRAM as a stand-alone
compression platform was evaluated on various metagenomic samples from the NCBI Sequence Read Archive,
suggesting 2- to 4-fold compression ratio improvements compared to gzip. On average, the compressed file sizes
were 2-13 percent of the original raw metagenomic file sizes.

Conclusions: We described the first architecture for reference-based, lossless compression of metagenomic data.
The compression scheme proposed offers significantly improved compression ratios as compared to off-the-shelf
methods such as zip programs. Furthermore, it enables running different components in parallel and it provides the
user with taxonomic and assembly information generated during execution of the compression pipeline.

Availability: The MetaCRAM software is freely available at http://web.engr.illinois.edu/~mkim158/metacram.html.
The website also contains a README file and other relevant instructions for running the code. Note that to run the
code one needs a minimum of 16 GB of RAM. In addition, virtual box is set up on a 4GB RAMmachine for users to run
a simple demonstration.
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Background
Metagenomics is an emerging discipline focused on
genomic studies of complex microorganismal population.
In particular, metagenomics enables a range of analy-
ses pertaining to species composition, the properties of
the species and their genes as well as their influence on
the host organism or the environment. As the interac-
tions between microbial populations and their hosts plays
an important role in the development and functional-
ity of the host, metagenomics is becoming an increas-
ingly important research area in biology, environmental
and medical sciences. As an example, the National Insti-
tute of Health (NIH) recently initiated a far-reaching
Human Microbiome Project [1] which has the aim to
identify species living at different sites of the human
body (in particular, the gut and skin [2]), observe their
roles in regulating metabolism and digestion, and eval-
uate their influence on the immune system. The find-
ings of such studies may have important impacts on
our understanding of the influence of microbials on an
individual’s health and disease, and hence aid in devel-
oping personalized medicine approaches. Another exam-
ple is the Sorcerer II Global Ocean Sampling Expedition
[3], led by the Craig Venter Institute, the purpose of
which is to study microorganisms that live in the ocean
and influence/maintain the fragile equilibrium of this
ecosystem.
There are many challenges in metagenomic data

analysis. Unlike classical genomic samples, metagenomic
samples comprise many diverse organisms, the major-
ity of which is usually unknown. Furthermore, due
to low sequencing depth, most widely used assembly
methods – in particular, those based on de Bruijn graphs –
often fail to produce quality results and it remains a chal-
lenge to develop accurate and sensitive meta-assemblers.
These and other issues are further exacerbated by the very
large file size of the samples and their ever increasing
number. Nevertheless, many algorithmic methods have
been developed to facilitate some aspects of microbial
population analysis: examples include MEGAN (MEta
Genome ANalyzer) [4], a widely used tool that allows
for an integrative analysis of metagenomic, metatran-
scriptomic, metaproteomic, and rRNA data; and PICRUSt
(Phylogenetic Investigation of Communities by Recon-
struction of Unobserved States) [5], developed to pre-
dict metagenome functional contents from 16S rRNA
marker gene sequences. Although suitable for taxonomic
and functional analysis of data, neither MEGAN nor
PICRUSt involve a data compression component, as is to
be expected from highly specialized analytic software.
In parallel, a wide range of software solutions have

been developed to efficiently compress classical genomic
data (a comprehensive survey of the state-of-the-art tech-
niques may be found in [6]). Specialized methods for

compressing whole genomes have been reported in [7–9],
building upon methods such as modified Lempel-Ziv
encoding and the Burrows-Wheeler transform. Com-
pression of reads is achieved by mapping the reads to
reference genomes and encoding only the differences
between the reference and the read; or, in a de novo fash-
ion that does not rely on references and uses classical
sequence compression methods. Quip [10] and CRAM
[11] are two of the best known reference-based com-
pression algorithms, whereas ReCoil [12], SCALCE [13],
MFCompress [14], and the NCBI Sequence Read Archive
method compress data without the use of reference
genomes. Reference-based algorithms in general achieve
better compression ratios than reference-free algorithms
by exploiting the similarity between some predetermined
reference and the newly sequenced reads. Unfortunately,
none of the current reference-based method can be suc-
cessfully applied to metagenomic data, due to the inherent
lack of “good” or known reference genomes. Hence, the
only means for compressing metagenomic FASTA and
FASTQ files is through the use of de novo compression
methods.
As a solution to the metagenomic big data problem, we

introduce MetaCRAM, the first de novo, parallel, CRAM-
like software specialized for FASTA-format metagenomic
read compression, which in addition provides taxon-
omy identification, alignment and assembly information.
This information primarily facilitates compression, but
also allows for fast searching of the data in the com-
pressive domain and for basic metagenomic analysis.
The gist of the classification method is to use a tax-
onomy identification tool – in this case, Kraken [15] –
which can accurately identify a sufficiently large num-
ber of organisms from a metagenomic mix. By aligning
the reads to the identified reference genomes of organ-
isms via Bowtie2 [16], one can perform efficient lossless
reference-based compression via the CRAM suite. Those
reads not aligned to any of the references can be assem-
bled into contigs through existing metagenome assembly
software algorithms, such as Velvet [17] or IDBA-UD
[18]; sufficiently long contigs can subsequently be used
to identify additional references through BLAST (Basic
Local Alignment Search Tool) [19]. The reads aligned
to references are compressed into the standard CRAM
format [11], using three different integer encoding meth-
ods, Huffman [20], Golomb [21], and Extended Golomb
encoding [22].
MetaCRAM is an automated software with many

options that accommodate different user preferences, and
it is compatible with the standard CRAM and SAMtools
data format. In addition, its default operational mode is
lossless, although additional savings are possible if one
opts for discarding read ID information. We report on
both the lossless and “lossy” techniques in the “Methods”
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Section. MetaCRAM also separates the read compression
process from the quality score compression technique, as
the former technique is by now well understood while
the latter is subject to constant changes due to differ-
ent quality score formats in sequencing technologies.
These changes may be attributed to increasing qualities
of reads and changes in the correlations of the score
values which depend on the sequencing platform. For
quality score compression, the recommended method is
QualComp [23].
MetaCRAM offers significant compression ratio

improvements when compared to standard bzip and
gzip methods, and methods that directly compress raw
reads. These improvements range from 2–4 fold file size
reductions, which leads to large storage cost reductions.
Furthermore, although MetaCRAM has a relatively long
compression phase, decompression may be performed in
a matter of minutes. This makes the method suitable for
both real time and archival applications.
The paper is organized as follows. The “Results”

Section contains an in-depth performance analysis of
MetaCRAM with respect to processing and retrieval
time, and achievable compression ratios. The “Discussion”
Section describes the advantages of using MetaCRAM
for data compression compared to other general-purpose
methods, and describes directions for future algorith-
mic improvements. The “Methods” Section contains
detailed information about the methodology behind the
MetaCRAM algorithmic blocks and it also outlines the
way constituent algorithms are integrated and their pur-
poses in the pipeline.

Results
The block diagram of the MetaCRAM algorithm is given
in Fig. 1, and the operation of the algorithm may be suc-
cinctly explained as follows. The first step is to identify
suitable references for compression, which is achieved
by identifying dominant taxonomies in the sample. The
number of references is chosen based on cut-off abun-
dance thresholds, which themselves are chosen using
several criteria that trade-off compression ratio and com-
pression time. Once the references are chosen, the raw
reads are aligned to their closest references and the start-
ing positions of the reads are statistically analyzed to
determine the best integer compression method to be
used for their encoding. Furthermore, reads that do not
align sufficiently well with any of the chosen references
are assembled using IDBA_UD, and the contig outputs of
the assembler are used to identify additional references
via BLAST search. Reads not matched with any references
after multiple iterations of the above procedure are com-
pressed independently with the MFCompress suite. The
results associated with each of the described processing
stages are discussed in the next subsections. Note that
here and throughout the paper, we use standard terms in
genomics and bioinformatics without explanations.
We tested MetaCRAM as a stand-alone platform and

compared it to MFCompress, a recently developed soft-
ware suite specialized for FASTA files, and bzip2 and
gzip [24], standard general purpose compression tools
(available at http://www.bzip.org). Other software tools
for compression of sequencing data such as SCALCE and
Quip, and SAMZIP [25] and SlimGene [26], were not
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Fig. 1 Block Diagram. The block diagram of the MetaCRAM Algorithm for Metagenomic Data Processing and Compression. Its main components
are taxonomy identification, alignment, assembly and compression
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tested because they were either for FASTQ or SAM file
formats, and not FASTA files.
As already pointed out, MetaCRAM does not directly

process FASTQ file formats for multiple reasons: 1) the
quality of sequencers are improving significantly, reach-
ing the point where quality scores may contain very little
information actually used during analysis; 2) reads with
low quality scores are usually discarded and not included
in metagenomics analysis – only high quality sequences
are kept; 3) there exist software tools such as QualComp
[23], specifically designed for compressing quality scores
that users can run independently along with MetaCRAM.

Taxonomy identification and reference genome selection
As the first step of our analysis, we compared twometage-
nomic taxonomy identification programs, Kraken and
MetaPhyler in terms of computation time and identifica-
tion accuracy on synthetic data, as it is impossible to test
the accuracy of taxonomy identification on real biological
datasets. For this purpose, we created mixtures of reads
from 15 species, listed in the Additional file 1. The two
Illumina paired-end read files were created by MetaSim
[27] with 1 % error rate, and they amounted to a file of size
6.7 GB. Kraken finished its processing task in 22 min and
successfully identified all species within the top 50 most
abundant taxons. On the other hand, MetaPhyler ran for
182 min and failed to identify Acetobacterium woodii and
Haloterrigena turkmenica at the genus level. This exam-
ple illustrates a general trend in our comparative findings,
and we therefore adopted Kraken as a default taxonomy
retrieval tool for MetaCRAM.
When deciding how to choose references for compres-

sion, one of the key questions is to decide which outputs

of the Kraken taxonomy identification tool are relevant.
Recall that Kraken reports the species identified accord-
ing to the number of reads matched to their genomes. The
most logical approach to this problem is hence to choose
a threshold for the abundance values of reads represent-
ing different bacterial species, and only use sequences of
species with high abundance as compression references.
Unfortunately, the choice for the optimal threshold value
is unclear and it may differ from one dataset to another; at
the same time, the threshold is a key parameter that deter-
mines the overall compression ratio – choosing too few
references may lead to poor compression due to the lack
of quality alignments, while choosing too many references
may reduce the compression ratio due to the existence
of many pointers to the reference files. In addition, if we
allow too many references, we sacrifice computation time
for the same final alignment rate. It is therefore important
to test the impact of the threshold choice on the resulting
number of selected reference genomes.
In Table 1, we listed our comparison results for all five

datasets studied, using two threshold values: 75 (high)
and 10 (low). For these two choices, the results are col-
ored gray and white, respectively. We observe that we
get slightly worse compression ratios if we select too
few references, as may be seen for the files ERR321482
and ERR532393. Still, the processing time is significantly
smaller when using fewer references, leading to 30 to 80
minutes of savings in real time. It is worth to point out
that this result may also be due to the different qualities of
internal hard drives: for example, the columns in gray were
obtained running the code on Seagate Barracuda ST3000,
while the results listed in white were obtained via testing
on Western Digital NAS.

Table 1 Analysis of the influence of different threshold values on reference genome selection after taxonomy identification and
compression ratios

Data Original (MB) Comp. (MB) Processing time Align. % No. files Comp. (MB) Processing time Align. % No. files

ERR321482 1429 191 299 m 20 s 26.99 211 193 239 m 28 s 24.22 29
422 m 21 s 3.57 1480 398 m 3 s 6.5 1567
12 m 24 s 8 m 13 s

SRR359032 3981 319 127 m 34 s 57.72 26 320 93 m 60 s 57.71 7
245 m 53 s 9.7 30 206 m 18 s 9.71 32
8 m 37s 7 m 27 s

ERR532393 8230 948 639 m 55 s 45.78 267 963 522 m 42.45 39
1061 m 50 s 1.98 1456 1067 m 49 s 7.16 1639
73 m 59 s 28 m 13s

SRR1450398 5399 703 440 m 4 s 7.14 190 703 364 m 34 s 6.82 26
866 m 56 s 0.6 793 790 m 52 s 0.91 818
21 m 2 s 17 m 38 s

SRR062462 6478 137 217 m 21 s 2.55 278 139 197 m 15 s 2.13 50
254 m 26 s 0.13 570 241 m 2 s 0.51 656
15 m 45 s 19 m 31 s

Columns in bold represent a threshold of 75 species, while the columns not bolded correspond to a cutoff of 10 species. The results are shown for MetaCRAM-Huffman.
“Align. %” refers to the alignment rates for the first and second round, and “No. files” refers to the number of reference genome files selected in the first and second iteration.
Processing times are recorded row by row denoting real, user, and system time in order
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Many of the most abundant references may be from the
same genus, and this may potentially lead to the prob-
lem of multiple alignment due to subspecies redundancy.
The almost negligible effect of the number of reference
genomes on alignment rate implies that combining them
to remove the redundancy would improve computational
efficiency, as suggested in [28]. Nevertheless, extensive
computer simulations reveal that the loss due to multiple
alignment is negligible whenever we choose up to 75–100
references. Therefore, our recommendation is to use, as
a rule of thumb, the threshold 75 in order to achieve the
best possible compression ratio and at the same time pro-
vide amore complete list of genomic references for further
analysis.

Compression performance analysis
Our chosen comparison quality criteria include the com-
pression ratio (i.e., the ratio of the uncompressed file
and the compressed file size), as well as the com-
pression and decompression time, as measured on an
affordable general purpose computing platform: Intel
Core i5–3470 CPU at 3.2 GHz, with a 16 GB RAM.
We present test results for five datasets: ERR321482,
SRR359032, ERR532393, SRR1450398, and SRR062462,
including metagenomic samples as diverse as a human
gut microbiome or a Richmond Mine biofilm sample,
retrieved from the NCBI Sequence Read Archive [29].
Additional file 2 contains detailed descriptions of the
datasets tested.
The comparison results of compression ratios among

six software suites are given in Table 2 and Fig. 2.
The methods compared include three different modes
of MetaCRAM, termed Huffman, Golomb and Extended
Golomb MetaCRAM. These three techniques differ from
each other with respect to the integer compression
scheme used. The schemes will be described in detail
in the next sections, although we remark that the three
methods are chosen to illustrate various compression ratio
and decompression time trade-offs.
The result indicates that MetaCRAM using Huffman

integer encoding method improves compression ratios
of the classical gzip algorithm 2–3 fold on average. For

example, MetaCRAM reduces the file size of SRR062462
to only 2 % of the original file size. Observe that
MetaCRAM also offers additional features that go beyond
compression only, such as taxonomy identification and
assembly. Users have the options to retrieve the alignment
rate, list of reference genomes, contig files, and align-
ment information in SAM format. This list produced by
MetaCRAM may be stored with very small storage over-
head and then used for quick identification of files based
on their taxonomic content, which allows for selection
in the compressive domain. Information regarding gene
profiles was not included in the pipeline output, as gene
analysis does not directly contribute to the quality of the
compression algorithm.
In the listed results, the column named “Qual Value

(MB)” provides the estimated size of the quality scores for
each file, after alignment to references found by Kraken.
In our implementation, we replaced these scores with a
single “*” symbol per read and also removed the redun-
dancy in read IDs. The result shows that these two options
provide better ratios than the default ratio, as shown in
Table 2 column “MCH2”. However, since read IDs may be
needed for analysis of some dataset, we also report results
for the default “MCH1” mode which does not dispose of
ID tags.
In terms of the processing time shown in Table 3, the

MetaCRAM suite is at a clear disadvantage, with pro-
cessing time 150-fold slower than bzip2 in the worst
case. Figure 3 presents the average runtime of each stage
for all five datasets tested, and illustrates that assem-
bly, alignment, and BLAST search are computationally
demanding, accounting for 62 percentage of the total time.
This implies that removing the second and subsequent
assembly rounds of MetaCRAM reduces the process-
ing time significantly, at the cost of a smaller compres-
sion ratio. Table 4 compares the compression ratios of
MetaCRAMwith one round and with two rounds of refer-
ence discovery, and indicates that removing the assembly,
alignment and BLAST steps adds 1–6 MB to the com-
pressed file size. Thus, the user has an option to skip
the second round in order to expedite the processing
time.

Table 2 Comparison of compression ratios of six software suites

Data Original (MB) MCH1 (MB) MCH2 (MB) MCG (MB) MCEG (MB) Align. % Qual value (MB) bzip2 (MB) gzip (MB) MFComp (MB)

ERR321482 1429 191 186 312 213 29.6 411 362 408 229

SRR359032 3981 319 282 657 458 61.8 2183 998 1133 263

ERR532393 8230 948 898 1503 1145 46.8 3410 2083 2366 1126

SRR1450398 5399 703 697 854 729 7.7 365 1345 1532 726

SRR062462 6478 137 135 188 144 2.7 153 222 356 161

For short hand notation, we used“MCH” = MetaCRAM-Huffman, “MCG” = MetaCRAM-Golomb, “MCEG” = MetaCRAM-extended Golomb, “MFComp” = MFCompress. MCH1 is
the default option of MetaCRAM with Huffman encoding, and MCH2 is a version of MetaCRAM in which we removed the redundancy in both quality scores and the read IDs.
“Align. %” refers to the total alignment rates from the first and second iteration. Minimum compressed file size achievable by the methods are written in bold case letters.
Minimum compressed file size achievable by the methods are written in bold case letters
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Fig. 2 Compression ratio. The compression ratios for all six software suites, indicating the compression ratio

Likewise, Table 5 illustrates that the retrieval time
of MetaCRAM is longer than that of bzip2, gzip, and
MFCompress, but still highly efficient. In practice, the
processing time is not as relevant as the retrieval time,
as compression is performed once while retrieval is per-
formed multiple times. For long term archival of data,
MetaCRAM is clearly the algorithm of choice since the
compression ratio, rather than processing or retrieval
time, is the most important quality criteria.
We also remark on the impact of different integer

encoding methods on the compression ratio. Huffman,
Golomb, and extended Golomb codes all have their
advantages and disadvantages. For the tested datasets,

Huffman clearly achieves the best ratio, as it represents
the optimal compression method, whereas Golomb and
extended Golomb compression improve the real and sys-
tem time as a result of computation efficiency. How-
ever, the parallel implementation of MetaCRAM makes
the comparison of processing time of the three meth-
ods slightly biased: for example, if we perform com-
pression while performing assembly, compression will
take much more time than compressing while run-
ning an alignment algorithm. As the processing and
retrieval time is not consistent among the three meth-
ods, we recommend using Huffman coding for archival
storage.

Table 3 Comparison of processing (compression) times of six software suites. Times are recorded row by row denoting real, user, and
system time in order

Data Time MCH MCG MCEG bzip2 gzip MFComp

ERR321482 real 299 m 20 s 294 m 27 s 274 m 43 s 2 m 2 s 3 m 49 s 2 m 38 s
user 422 m 21 s 422 m 49 s 402 m 25 s 1 m 56 s 3 m 45 s 4 m 49 s
sys 12 m 24 s 8 m 48 s 12 m 13 s 0 m 1 s 0 m 1 s 0 m 13 s

SRR359032 real 127 m 34 s 129 m 32 s 128 m 14 s 5 m 36 s 10 m 39 s 8 m 2 s
user 245 m 53 s 247 m 43 s 253 m 16 s 5 m 19 s 10 m 30 s 13 m 3 s
sys 8 m 37 s 10 m 1 s 15 m 25 s 0 m 2 s 0 m 2 s 0 m 15 s

ERR532393 real 639 m 55 s 635 m 53 s 641 m 32 s 11 m 28 s 22 m 18 s 17 m 2 s
user 1061 m 50 s 1069 m 9 s 1090 m 20 s 11 m 4 s 21 m 58 s 28 m 29 s
sys 73 m 59 s 27 m 59 s 43 m 35 s 0 m 5 s 0 m 5 s 0 m 21 s

SRR1450398 real 440 m 4 s 439 m 42 s 440 m 36 s 7 m 38 s 14 m 39 s 10 m 32 s
user 66 m 56 s 865 m 38 s 865 m 6 s 7 m 19 s 14 m 24 s 18 m 8 s
sys 821 m 2 s 23 m 51 s 26 m 5 s 0 m 3 s 0 m 3 s 0 m 18 s

SRR062462 real 217 m 21 s 224 m 32 s 215 m 58 s 2 m 48 s 2 m 6 s 6 m 38 s
user 254 m 26 s 261 m 19 s 256 m 17 s 2 m 7 s 1 m 18 s 10 m 39 s
sys 15 m 45 s 16 m 48 s 20 m 14 s 0 m 3 s 0 m 3 s 0 m 16 s
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Fig. 3 Average Runtime of Each Stage of MetaCRAM. Detailed distribution of the average runtimes of MetaCRAM for all five datasets tested. We
used “_1” to indicate the processes executed in the first round, and “_2” to denote the processes executed in the second round

Discussion
In what follows, we comment on a number of useful prop-
erties of the MetaCRAM program, including compatibil-
ity, losslessness, partial assembly results and compressive
computing.
Compatibility. MetaCRAM uses well established and

widely tested genomic analysis tools, and it also follows
the standard genomic data compression format CRAM,
hence making the results of downstream analysis compat-
ible with a current standard for genomic compression.
Lossless compression principle. By its very nature,

MetaCRAM is a lossless compression scheme as it

encodes the differential information between the refer-
ence and the metagenomic reads in a 100% accurate fash-
ion. Nevertheless, we enabled a feature that allow for some
partial loss of information, such as the read ID tags. It is
left to the discretion of the user to choose suitable options.
CRAM versus MFCompress. MFCompress achieves

good compression ratios when compressing highly redun-
dant reads. MetaCRAM consistently achieves a rate pro-
portional to the alignment rate because it only encodes
the small difference between the reference genome and
the read. As more microbial genome become available,
MetaCRAM will most likely offer higher compression

Table 4 Comparison of compressed file sizes of MetaCRAM-Huffman using 2 rounds and 1 round

Data Original (MB) MCH-2rounds (MB) Align. % MCH-1round (MB) Align. % gzip (MB) MFComp (MB)

ERR321482 1429 191 29.6 192 27 408 229

SRR359032 3981 319 61.8 315 57.7 1133 263

ERR532393 8230 948 46.8 952 45.8 2366 1126

SRR1450398 5399 703 7.7 707 7.1 1532 726

SRR062462 6478 137 2.7 143 2.6 356 161

For short hand notation, we used“MCH-2rounds” = MetaCRAM-Huffman with 2 rounds, “MCH-1round” = MetaCRAM-Huffman with 1 round. We also used the shortcut
“MFComp” = MFCompress and “Align. %” refers to the percentage of reads aligned during 2 rounds and 1 round, respectively, for MCH-2rounds and MCH-1round
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Table 5 Comparison of retrieval (decompression) times of six software suites. Times are recorded row by row denoting real, user, and
system time in order

Data Time MCH MCG MCEG bzip2 gzip MFComp

ERR321482 real 23 m 17 s 25 m 18 s 24 m 56 s 0 m 57 s 0 m 17 s 2 m 26 s
user 16 m 17 s 16 m 30 s 17 m 7 s 0 m 45 s 0 m 9 s 4 m 42 s
sys 9 m 2 s 10 m 42 s 10 m 25 s 0 m 2 s 0 m 1 s 0 m 4 s

SRR359032 real 12 m 16 s 11 m 43 s 13 m 17 s 2 m 37 s 1 m 28 s 7 m 58 s
user 11 m 59 s 11 m 24 s 12 m 43 s 2 m 8 s 0 m 28 s 15 m 10 s
sys 2 m 24 s 1 m 42 s 3 m 12 s 0 m 4 s 0 m 2 s 0 m 19 s

ERR532393 real 48 m 19 s 47 m 5 s 55 m 58 s 5 m 25 s 2 m 30 s 15 m 29 s
user 39 m 59 s 40 m 5 s 43 m 21 s 4 m 23 s 0 m 55 s 29 m 23 s
sys 15 m 39 s 13 m 25 s 29 m 17 s 0 m 7 s 0 m 5 s 0 m 17 s

SRR1450398 real 28 m 43 s 27 m 54 s 29 m 27 s 3 m 25 s 1 m 54 s 10 m 8 s
user 29 m 55 s 29 m 47 s 30 m 45 s 2 m 52 s 0 m 37 s 19 m 1 s
sys 7 m 10 s 5 m 52 s 7 m 4 s 0 m 5 s 0 m 3 s 0 m 26 s

SRR062462 real 23 m 9 s 22 m 55 s 26 m 6 s 1 m 3 s 1 m 19 s 5 m 52
user 21 m 10 s 21 m 10 s 21 m 58 s 0 m 42 s 0 m 22 s 10 m 31 s
sys 4 m 49 s 4 m 53 s 10 m 12 s 0 m 4 s 0 m 3 s 0 m 26 s

ratio than other tools in general. Note that only on one
data file - SRR359032 - did MFCompress achieve better
compression ratios than MetaCRAM, most likely due to
the redundancy issues previously mentioned.
Metagenomic assembly. Metagenomic assembly is a

challenging task, and there is a widely accepted belief that
it is frequently impossible to perform meaningful assem-
bly on mixture genomes containing species from related
genomes. Nevertheless, we are using assembly mostly as
a means for identifications, but at the same time its out-
put provides useful contigs for gene transfer analysis and
discovery. In the case that assembly fails on a dataset, we
suggest skipping the assembly step so as to trade off com-
putation time with discovery of new reference genomes
and contigs.
Compressive computing. There has been an effort

towards computing in the compressed domain, in order to
eliminate the need for persistne compression and decom-
pression time when all one needs to perform is simple
alignment [30]. Similarly, MetaCRAMoffers easy retrieval
and selection based on the list of references stored as an
option. For example, suppose we performMetaCRAM on
all available human gut metagenome data. If we want to
analyze the datasets with a concentration of Escherichia
coli, we avoid sacrificing retrieval time by quickly scanning
the list of reference files and only retrieving the datasets
with E. coli.

Methods
Pre-Processing
MetaCRAM accepts both unpaired and paired-end reads.
If paired-end reads are given as an input to MetaCRAM,
then the first preprocessing step is to append the read IDs
with a “_1” or a “_2” indicating that the read came from the
first or second mate, respectively. Another preprocessing

step includes filtering out the quality scores in case that
the input file is in FASTQ format. This filtering pro-
cess allows for using new and emerging quality score
compression methods without constantly updating the
MetaCRAM platform. Note that the paired end labeling
is done automatically, while filtering can be implemented
outside the integrated pipeline by the user, based on
his/her requirements for quality score lossy or lossless
compression goals.
MetaCRAM uses as a default FASTA files that do not

contain quality values, in which case the resulting SAM
file contains the symbol “I” repeated as many times as the
length of the sequence. These symbols amount to about
100 bytes per read, and this overhead increases propor-
tionally to the number of reads (Table 2 of the “Results”
Section illustrates the amount of storage space that data
quality scores occupy in each dataset, ranging from 153
MB to 3.4 GB). In order to reduce the size of this unneces-
sary field, MetaCRAM replaces the sequence of “I”s with
a single symbol “*”, complying with the standard SAM for-
mat. Likewise, read IDs are highly repetitive in nature:
for instance, every read ID starts with the data name
such as “SRR359032.”, followed by its unique read num-
ber. Rather than repeating the data name for every read,
we simply store it once, and append it when perform-
ing decompression. Both versions of MetaCRAM – one
incorporating these two options – and another one with-
out the described features are available to the user. The
former version of the methods requires a slightly longer
compression and decompression time.

Taxonomy identification
Given the labeled read sequences of a metagenomic sam-
ple, the first step is to identify the mixture of species
present in the sample. There are several taxonomy
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identification methods currently in use: the authors of
[31] proposes to use the 16S rRNA regions for bacterial
genome identification, MetaPhyler [32] scans for unique
markers exceeding length 20 and provides a taxonomy
level as specific as the genus. On the other hand, a new
taxonomy identification software known as Kraken [15],
based on exact alignment of k-mers to the database of
known species, often outperforms MetaPhyler and other
methods both in terms of speed and discovery of true
positives, as indicated by our tests.
MetaCRAM employs Kraken as a default tool in the

pipeline. Kraken produces an output report which is auto-
matically processed by MetaCRAM. Part of the report
contains information about species present in the sam-
ple, as well as their abundance. We rank order the species
in from the most abundant to the least abundant, where
abundance is based on the number of reads identified to
match a species in the database. For downstream analy-
sis, MetaCRAM selects the “most relevant” species and
uses their genomes as references. The default definition
of “most relevant” is the top 75 species, but one has the
option to choose a threshold for the abundance value
or for the number of references used. As an illustra-
tion, Table 1 lists the results of an analysis of the impact
of different thresholds on the processing time and the
compression ratio.

Alignment and assembly
After a group of reference genomes is carefully cho-
sen based on the Kraken software output, alignment of
reads to the reference genomes is performed. This task is
accomplished by using Bowtie2, a standard software tool
for ultra-fast alignment of short reads to long genomes.
The alignment information is stored in a SAM (Sequence
Alignment/Map) file format and subsequently used for
compression via reference-based algorithms.
Due to the fact that many species in a metagenome sam-

ple have never been sequenced before, some reads will not
be aligned to any of the references with high alignment
scores, and we collectively refer to them as unaligned
reads hereafter. In order to discover reference genomes
for unaligned reads, we assemble the unaligned reads in a
relatively efficient, although often time consuming man-
ner using a metagenomic assembler. Our metagenomic
assembler of choice is IDBA-UD [18], given that in our
tests it produced the largest number of contigs leading
to new reference identification. Alternatives to IDBA-UD
include the Ray Meta software [33].
When the reads have high sequencing depth and large

overlaps, the contigs produced by the assembler may be
queried using BLAST to identify the organisms they most
likely originated from. The user may choose to BLAST
only the top n longest contigs, where n is a user speci-
fied number, but in our analysis we use all contigs (which

is also the default setting). Subsequently, we align the
unaligned reads to the newly found references.
In some rare cases, the assembler may fail depending

on the number of species in the metasample and the
sequencing depth, in which case one may want to skip
the assembly step and compress the unaligned reads in
a reference-free manner. For reference-free compression,
the software of choice in MetaCRAM is MFCompress
[14]. As long as the assembler is successful, one can reduce
the volume of unaligned reads by iterating the process of
assembly, BLAST, and alignment as illustrated at the top
right hand of Fig. 1. All our demonstrations and results are
based on two iterations of the described algorithmic loop.

Distribution of read starting positions
We empirically studied the distribution of integers repre-
senting the read positions, variation positions, and paired-
end offsets in order to choose the most suitable com-
pression method. As an example, the distribution of the
starting positions for the reads that aligned to JH603150
(genome of Klebsiella oxytoca) in the dataset SRR359032
is shown in Fig. 4. This distribution was truncated after
achieving a 90 % coverage of the data (i.e., after only
10 % of the read start positions exceeded the depicted
maximum length). The empirical distribution is shown in
yellow, while a fitted power law distributions is plotted and
determined according to [22], with Pi = 2− logm i 1

2i(m−1) ,
where i is the integer to be encoded, andm is the divisor in
the extended Golomb code. The parameter choose shown
ism = 3 and 4. The negative binomial distribution is fitted
using Maximum Likelihood Estimation (MLE), while the
Geometric distribution is fitted by two different means:
using MLE and ezfit, a MATLAB script which performs
an unconstrained nonlinear minimization of the sum of
squared residuals with respect to various parameters.
For single reference alignment methods, it was reported

that the best fit for the empirical distribution is a geo-
metric distribution or a negative binomial distribution
[34]. However, due to sequencing errors and non-uniform
distributions of hydrogen bond breakage, the empirical
data often deviates from geometric or negative binomial
distributions [35]. In addition, for metagenomic sam-
ples, there exist multiple references which may have good
alignments with reads that did not originally correspond
to the genomic sample of the reference. This creates
additional changes in the read starting position with
respect to the geometric distribution. Moreover, one has
to encode not only the read positions but also the variation
positions and paired-end offsets, making it difficult to
claim any one of the fitted distributions is better than
others. This observation is supported by Fig. 4. Since
there is no known efficient optimal encoding method for
a set of integers with negative binomial distributions,
and Golomb and extended Golomb encoding are optimal
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Fig. 4 Integer Distribution. Distribution fitting of integers to be encoded, truncated at 90 % of the integer data

for geometric distributions and power law distributions,
respectively, we use these two methods with m = 3. The
parameter m is chosen based on extensive experiments,
although the user has the freedom to adjust andmodify its
value.
As the number of unaligned reads that remains after

a few iterations of MetaCRAM is relatively small, these
reads were compressed using a reference-free tool such
as MFCompress [14], which is based on finite-context
models. Furthermore, the SAM files produced after run-
ning Bowtie2 are converted to the sorted and indexed
binary format of a BAM file using SAMtools [36]. Each
BAM file is compressed via reference-based compression
against its representative to a standard CRAM format. We
tested three different modes of the CRAM toolkit [11]:
Huffman, Golomb, and Extended Golomb encoding, all
of which are described in the next section. Note that the
Extended Golomb encoding method is our new addition
to the classical CRAMmethod, as it appears to offer good
compromises between compression and decompression
speed and compression ratios.
Intrinsically, SAM files contain quality values and

unique read IDs for each read, which inevitably account
for a large file size: quality values are characters of length
as long as the sequence, and read IDs often repeat the
name of the dataset. By default, MetaCRAM preserves all
quality values and read IDs as designed in CRAM.

Compression
Compression in the reference-based mode is accom-
plished by compressing the starting points of references

with respect to the reference genomes and the base differ-
ences between the reads and references. As both the start-
ing points and bases belong to a finite integer alphabet, we
used three different integer compression methods, briefly
described below.
Huffman coding is a prefix-free variable length

compression method for known distributions [20] which
is information-theoretically optimal [37]. The idea is
to encode more frequent symbols with fewer bits than
non-frequent ones. For example, given an alphabet
A = (a, b, c, d, e) and the corresponding distribution
P = (0.25, 0.25, 0.2, 0.15, 0.15), building a Huffman
tree results in the codebook C = (00, 10, 11, 010, 011).
Decoding relies on the Huffman tree constructed during
encoding which is stored in an efficient manner, usually
ordered according to the frequency of the symbol. Due
to the prefix-free property, Huffman coding is uniquely
decodable coding and does not require any special marker
between words. Two drawbacks of Huffman coding that
make it a costly solution for genomic compression are
its storage complexity, since we need to record large
tree structures for big alphabet size which arise when
encoding positions in long sequences and the need to
know the underlying distribution a priori. Adaptive
Huffman coding mitigates the second problem, at the
cost of increased computational complexity associated
with constructing multiple encoding trees [38]. In order
to alleviate computational challenges, we implemented
so called canonical Huffman encoding, which bypasses
the problem of storing a large code tree by sequentially
encoding lengths of the codes [39].
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Golomb codes are optimal prefix-free codes for count-
ably infinite lists of non-negative integers following a geo-
metric distribution [21]. In Golomb coding, one encodes
an integer n in two parts, using its quotient q and remain-
der r with respect to the divisor m. The quotient is
encoded in unary, while the remainder is encoded via
truncated binary encoding. Given a list of integers fol-
lowing a geometric distribution with known mean μ, the
dividend m can be optimized so as to reduce code length.
In [40], the optimal value of m was derived for m = 2k ,
for any integer k. The encoding is known as the Golomb-
Rice procedure, and it proceeds as follows: first, we let

k∗ = max
{
0, 1+

⌊
log2

(
log(φ−1)
log

(
μ

μ+1

))⌋}
, where φ = (

√
5+1)
2 .

Unary coding represents an integer i by i ones followed
by a single zero. For example, the integer i = 4 in unary
reads as 11110. Truncated binary encoding is a prefix-free
code for an alphabet of size m, which is more efficient
than standard binary encoding. Because the remainder r
can only take values in {0,1,. . . , m-1}, according to trun-
cated binary encoding, we assign to the first 2k+1 − m
symbols codewords of fixed length k. The remaining sym-
bols are encoded via codewords of length k + 1, where
k = �log2(m)�. For instance, given n = 7 and m = 3, we
have 7 = 2 × 3 + 1, implying q = 2 and r = 1. Encod-
ing 2 in unary gives 110 and 1 in truncated binary reads as
10. Hence, the codeword used to encode the initial integer
is the concatenation of the two representations, namely
11010.
Decoding of Golomb encoded codewords is also decou-

pled into decoding of the quotient and the remainder.
Given a codeword, the number of ones before the first
zero determines the quotient q, while the remaining k
or k + 1 bits, represents the remainder r according to
truncated binary decoding for an alphabet of size m. The
integer n is obtained as n = q × m + r.
Golomb encoding has one advantages over Huffman

coding in so far that it is computationally efficient (as
it only requires division operations). One does not need
to the distribution a priori, although there are clearly
no guarantees that Golomb coding for an unknown
distribution will be even near-optimal: Golomb encod-
ing is optimal only for integers following a geometric
distribution.
An extension of Golomb encoding, termed extended

Golomb [22] coding, is an iterative method for encoding
non-negative integers following a power law distribution.
One divides an integer n bym until the quotient becomes
0, and then encodes the number of iterations M in unary,
and an array of remainders r according to an encoding
table. This method has an advantage over Golomb cod-
ing when encoding large integers, such is the case for
read position compression. As an example, consider the
integer n = 1000: with m = 2, Golomb coding would

produce q = 500 and r = 0, and unary encoding of
500 requires 501 bits. With extended Golomb coding, the
number of iterations equalsM = 9 and encoding requires
only 10 bits. As an illustration, let us encode n = 7
given m = 3. In the first iteration, 7 = 2 × 3 + 1, so
r1 = 1 is encoded as 10, and q1 = 2. Since the quo-
tient is not 0, we iterate the process: 2 = 0 × 3 + 2
implies r2 = 2, which is encoded as 1, and q2 = 0.
Because the quotient is at this step 0, we encode M =
2 as 110 and r = r2r1 = 110, and our codeword is
110110.
The decoding of extended Golomb code is also per-

formed inM iterations. Since we have a remainder stored
at each iteration and the last quotient equals qM = 0, it
is possible to reconstruct the original integer. Similar to
Golomb coding, extended Golomb encoding is computa-
tionally efficient, but optimal only for integers with power
law distribution.
There are various other methods for integer encoding,

such as Elias Gamma and Delta Encoding [41], which
are not pursued in this paper due to the fact that they
do not appear to offer good performance for the empiri-
cal distributions observed in our read position encoding
experiments.

Products
The compressed unaligned reads, CRAM files, list of
reference genomes (optional), alignment rate (optional),
contig files (optional) are all packaged into an archive.
The resulting archive can be stored in a distributed man-
ner and when desired, the reads can be losslessly recon-
structed via the CRAM toolkit. Additional file 3 contains
software instructions, and detailed descriptions of created
files and folders by MetaCRAM processing are available
in Additional file 4.

Decompression
Lossless reconstruction of the reads from the com-
pressed archive is done in two steps. For those reads
with known references in CRAM format, decompression
is performed with an appropriate integer decompression
algorithm. When the files are converted back into the
SAM format, we retrieve only the two necessary fields
for FASTA format, i.e., the read IDs and the sequences
printed in separate lines. Unaligned reads are decom-
pressed separately, through the decoding methods used in
MFCompress.

Post-processing
The two parts of reads are now combined into one file, and
they are sorted by the read IDs in an ascending order. If the
reads were paired-end, they are separated into two files
according to the mate “flag” assigned in the processing
step.
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Table 6 Processing time improvements for two rounds of
MetaCRAM on the SRR359032 dataset (5.4 GB, without removing
redundancy in description lines) resulting from parallelization of
assembly and compression

Time Without parallelization With parallelization Reduction (% )

Real 235 m 40 s 170 m 4 s 27.7

User 449 m 40 s 346 m 33 s 22.9

System 14 m 13 s 8 m 45 s 40.1

Effects of parallelization
One key innovation in the implementation ofMetaCRAM
is parallelization of the process, which was inspired by
parallel single genome assembly used in TIGER [42]. Given
that metagenomic assembly is computationally highly
demanding, and in order to fully utilize the computing
power of a standard desktop, MetaCRAM performs meta
assembly of unaligned reads and compression of aligned
reads in parallel. As shown in Table 6, parallelization
improves real, user, and system time by 23–40 %.

Availability of supporting data
The datasets supporting the results of this article are avail-
able in the National Center for Biotechnology Informa-
tion Sequence Read Archive repository, under accession
numbers ERR321482 (http://www.ncbi.nlm.nih.gov/sra/
ERX294615), SRR359032 (http://www.ncbi.nlm.nih.gov/
sra/SRX103579), ERR532393 (http://www.ncbi.nlm.nih.
gov/sra/ERX497596), SRR1450398 (http://www.ncbi.nlm.
nih.gov/sra/SRX621521), SRR062462 (http://www.ncbi.
nlm.nih.gov/sra/SRX024927).

Conclusions
We introduced MetaCRAM, the first parallel architecture
for reference-based, lossless compression of metagenomic
data. The compression scheme is compatible with stan-
dard CRAM formats and offers significantly improved
compression ratios compared to the existing software
suites, compressing file to 2-13 percent of the original
size. Furthermore, it provides the user with taxonomy and
assembly information, allowing for fast selection of rele-
vant files in the compressed domain. Thus, MetaCRAM
may represent an important processing platform for large
metagenomic files.

Additional files

Additional file 1: Comparison between Kraken andMetaPhyler.We
compare two taxonomy identification tools and decide that Kraken
outperforms MetaPhyler in terms of both speed and accuracy. Additional
file 4 contains a table of randomly selected set of 15 species used for the
comparison. (PDF 11 kb)

Additional file 2: Datasets used for testing MetaCRAM. This file has
detailed descriptions of the 5 datasets used for testing MetaCRAM, with
unique ID specified in the NCBI SRA and the type of library used. (PDF 13 kb)

Additional file 3: Software instruction. This file includes specific
commands to compress or decompress MetaCRAM, including options
available. It also contains default software commands used for each step of
MetaCRAM pipeline. (PDF 117 kb)

Additional file 4: Outcome of MetaCRAM. Additional file 2 illustrates
detailed outcome of MetaCRAM, such as files and folders produced after
compression and decompression, and an example of console output.
(PDF 82 kb)
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